xref: /linux/fs/proc/base.c (revision 704bf317fd21683e5c71a542f5fb5f65271a1582)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include "internal.h"
87 
88 /* NOTE:
89  *	Implementing inode permission operations in /proc is almost
90  *	certainly an error.  Permission checks need to happen during
91  *	each system call not at open time.  The reason is that most of
92  *	what we wish to check for permissions in /proc varies at runtime.
93  *
94  *	The classic example of a problem is opening file descriptors
95  *	in /proc for a task before it execs a suid executable.
96  */
97 
98 struct pid_entry {
99 	char *name;
100 	int len;
101 	mode_t mode;
102 	const struct inode_operations *iop;
103 	const struct file_operations *fop;
104 	union proc_op op;
105 };
106 
107 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
108 	.name = (NAME),					\
109 	.len  = sizeof(NAME) - 1,			\
110 	.mode = MODE,					\
111 	.iop  = IOP,					\
112 	.fop  = FOP,					\
113 	.op   = OP,					\
114 }
115 
116 #define DIR(NAME, MODE, iops, fops)	\
117 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
118 #define LNK(NAME, get_link)					\
119 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
120 		&proc_pid_link_inode_operations, NULL,		\
121 		{ .proc_get_link = get_link } )
122 #define REG(NAME, MODE, fops)				\
123 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
124 #define INF(NAME, MODE, read)				\
125 	NOD(NAME, (S_IFREG|(MODE)), 			\
126 		NULL, &proc_info_file_operations,	\
127 		{ .proc_read = read } )
128 #define ONE(NAME, MODE, show)				\
129 	NOD(NAME, (S_IFREG|(MODE)), 			\
130 		NULL, &proc_single_file_operations,	\
131 		{ .proc_show = show } )
132 
133 /*
134  * Count the number of hardlinks for the pid_entry table, excluding the .
135  * and .. links.
136  */
137 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
138 	unsigned int n)
139 {
140 	unsigned int i;
141 	unsigned int count;
142 
143 	count = 0;
144 	for (i = 0; i < n; ++i) {
145 		if (S_ISDIR(entries[i].mode))
146 			++count;
147 	}
148 
149 	return count;
150 }
151 
152 static int get_task_root(struct task_struct *task, struct path *root)
153 {
154 	int result = -ENOENT;
155 
156 	task_lock(task);
157 	if (task->fs) {
158 		get_fs_root(task->fs, root);
159 		result = 0;
160 	}
161 	task_unlock(task);
162 	return result;
163 }
164 
165 static int proc_cwd_link(struct inode *inode, struct path *path)
166 {
167 	struct task_struct *task = get_proc_task(inode);
168 	int result = -ENOENT;
169 
170 	if (task) {
171 		task_lock(task);
172 		if (task->fs) {
173 			get_fs_pwd(task->fs, path);
174 			result = 0;
175 		}
176 		task_unlock(task);
177 		put_task_struct(task);
178 	}
179 	return result;
180 }
181 
182 static int proc_root_link(struct inode *inode, struct path *path)
183 {
184 	struct task_struct *task = get_proc_task(inode);
185 	int result = -ENOENT;
186 
187 	if (task) {
188 		result = get_task_root(task, path);
189 		put_task_struct(task);
190 	}
191 	return result;
192 }
193 
194 /*
195  * Return zero if current may access user memory in @task, -error if not.
196  */
197 static int check_mem_permission(struct task_struct *task)
198 {
199 	/*
200 	 * A task can always look at itself, in case it chooses
201 	 * to use system calls instead of load instructions.
202 	 */
203 	if (task == current)
204 		return 0;
205 
206 	/*
207 	 * If current is actively ptrace'ing, and would also be
208 	 * permitted to freshly attach with ptrace now, permit it.
209 	 */
210 	if (task_is_stopped_or_traced(task)) {
211 		int match;
212 		rcu_read_lock();
213 		match = (tracehook_tracer_task(task) == current);
214 		rcu_read_unlock();
215 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
216 			return 0;
217 	}
218 
219 	/*
220 	 * Noone else is allowed.
221 	 */
222 	return -EPERM;
223 }
224 
225 struct mm_struct *mm_for_maps(struct task_struct *task)
226 {
227 	struct mm_struct *mm;
228 
229 	if (mutex_lock_killable(&task->signal->cred_guard_mutex))
230 		return NULL;
231 
232 	mm = get_task_mm(task);
233 	if (mm && mm != current->mm &&
234 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
235 		mmput(mm);
236 		mm = NULL;
237 	}
238 	mutex_unlock(&task->signal->cred_guard_mutex);
239 
240 	return mm;
241 }
242 
243 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
244 {
245 	int res = 0;
246 	unsigned int len;
247 	struct mm_struct *mm = get_task_mm(task);
248 	if (!mm)
249 		goto out;
250 	if (!mm->arg_end)
251 		goto out_mm;	/* Shh! No looking before we're done */
252 
253  	len = mm->arg_end - mm->arg_start;
254 
255 	if (len > PAGE_SIZE)
256 		len = PAGE_SIZE;
257 
258 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
259 
260 	// If the nul at the end of args has been overwritten, then
261 	// assume application is using setproctitle(3).
262 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
263 		len = strnlen(buffer, res);
264 		if (len < res) {
265 		    res = len;
266 		} else {
267 			len = mm->env_end - mm->env_start;
268 			if (len > PAGE_SIZE - res)
269 				len = PAGE_SIZE - res;
270 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
271 			res = strnlen(buffer, res);
272 		}
273 	}
274 out_mm:
275 	mmput(mm);
276 out:
277 	return res;
278 }
279 
280 static int proc_pid_auxv(struct task_struct *task, char *buffer)
281 {
282 	int res = 0;
283 	struct mm_struct *mm = get_task_mm(task);
284 	if (mm) {
285 		unsigned int nwords = 0;
286 		do {
287 			nwords += 2;
288 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
289 		res = nwords * sizeof(mm->saved_auxv[0]);
290 		if (res > PAGE_SIZE)
291 			res = PAGE_SIZE;
292 		memcpy(buffer, mm->saved_auxv, res);
293 		mmput(mm);
294 	}
295 	return res;
296 }
297 
298 
299 #ifdef CONFIG_KALLSYMS
300 /*
301  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
302  * Returns the resolved symbol.  If that fails, simply return the address.
303  */
304 static int proc_pid_wchan(struct task_struct *task, char *buffer)
305 {
306 	unsigned long wchan;
307 	char symname[KSYM_NAME_LEN];
308 
309 	wchan = get_wchan(task);
310 
311 	if (lookup_symbol_name(wchan, symname) < 0)
312 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
313 			return 0;
314 		else
315 			return sprintf(buffer, "%lu", wchan);
316 	else
317 		return sprintf(buffer, "%s", symname);
318 }
319 #endif /* CONFIG_KALLSYMS */
320 
321 #ifdef CONFIG_STACKTRACE
322 
323 #define MAX_STACK_TRACE_DEPTH	64
324 
325 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
326 			  struct pid *pid, struct task_struct *task)
327 {
328 	struct stack_trace trace;
329 	unsigned long *entries;
330 	int i;
331 
332 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
333 	if (!entries)
334 		return -ENOMEM;
335 
336 	trace.nr_entries	= 0;
337 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
338 	trace.entries		= entries;
339 	trace.skip		= 0;
340 	save_stack_trace_tsk(task, &trace);
341 
342 	for (i = 0; i < trace.nr_entries; i++) {
343 		seq_printf(m, "[<%p>] %pS\n",
344 			   (void *)entries[i], (void *)entries[i]);
345 	}
346 	kfree(entries);
347 
348 	return 0;
349 }
350 #endif
351 
352 #ifdef CONFIG_SCHEDSTATS
353 /*
354  * Provides /proc/PID/schedstat
355  */
356 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
357 {
358 	return sprintf(buffer, "%llu %llu %lu\n",
359 			(unsigned long long)task->se.sum_exec_runtime,
360 			(unsigned long long)task->sched_info.run_delay,
361 			task->sched_info.pcount);
362 }
363 #endif
364 
365 #ifdef CONFIG_LATENCYTOP
366 static int lstats_show_proc(struct seq_file *m, void *v)
367 {
368 	int i;
369 	struct inode *inode = m->private;
370 	struct task_struct *task = get_proc_task(inode);
371 
372 	if (!task)
373 		return -ESRCH;
374 	seq_puts(m, "Latency Top version : v0.1\n");
375 	for (i = 0; i < 32; i++) {
376 		if (task->latency_record[i].backtrace[0]) {
377 			int q;
378 			seq_printf(m, "%i %li %li ",
379 				task->latency_record[i].count,
380 				task->latency_record[i].time,
381 				task->latency_record[i].max);
382 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
383 				char sym[KSYM_SYMBOL_LEN];
384 				char *c;
385 				if (!task->latency_record[i].backtrace[q])
386 					break;
387 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
388 					break;
389 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
390 				c = strchr(sym, '+');
391 				if (c)
392 					*c = 0;
393 				seq_printf(m, "%s ", sym);
394 			}
395 			seq_printf(m, "\n");
396 		}
397 
398 	}
399 	put_task_struct(task);
400 	return 0;
401 }
402 
403 static int lstats_open(struct inode *inode, struct file *file)
404 {
405 	return single_open(file, lstats_show_proc, inode);
406 }
407 
408 static ssize_t lstats_write(struct file *file, const char __user *buf,
409 			    size_t count, loff_t *offs)
410 {
411 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
412 
413 	if (!task)
414 		return -ESRCH;
415 	clear_all_latency_tracing(task);
416 	put_task_struct(task);
417 
418 	return count;
419 }
420 
421 static const struct file_operations proc_lstats_operations = {
422 	.open		= lstats_open,
423 	.read		= seq_read,
424 	.write		= lstats_write,
425 	.llseek		= seq_lseek,
426 	.release	= single_release,
427 };
428 
429 #endif
430 
431 static int proc_oom_score(struct task_struct *task, char *buffer)
432 {
433 	unsigned long points = 0;
434 
435 	read_lock(&tasklist_lock);
436 	if (pid_alive(task))
437 		points = oom_badness(task, NULL, NULL,
438 					totalram_pages + total_swap_pages);
439 	read_unlock(&tasklist_lock);
440 	return sprintf(buffer, "%lu\n", points);
441 }
442 
443 struct limit_names {
444 	char *name;
445 	char *unit;
446 };
447 
448 static const struct limit_names lnames[RLIM_NLIMITS] = {
449 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
450 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
451 	[RLIMIT_DATA] = {"Max data size", "bytes"},
452 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
453 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
454 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
455 	[RLIMIT_NPROC] = {"Max processes", "processes"},
456 	[RLIMIT_NOFILE] = {"Max open files", "files"},
457 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
458 	[RLIMIT_AS] = {"Max address space", "bytes"},
459 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
460 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
461 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
462 	[RLIMIT_NICE] = {"Max nice priority", NULL},
463 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
464 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
465 };
466 
467 /* Display limits for a process */
468 static int proc_pid_limits(struct task_struct *task, char *buffer)
469 {
470 	unsigned int i;
471 	int count = 0;
472 	unsigned long flags;
473 	char *bufptr = buffer;
474 
475 	struct rlimit rlim[RLIM_NLIMITS];
476 
477 	if (!lock_task_sighand(task, &flags))
478 		return 0;
479 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
480 	unlock_task_sighand(task, &flags);
481 
482 	/*
483 	 * print the file header
484 	 */
485 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
486 			"Limit", "Soft Limit", "Hard Limit", "Units");
487 
488 	for (i = 0; i < RLIM_NLIMITS; i++) {
489 		if (rlim[i].rlim_cur == RLIM_INFINITY)
490 			count += sprintf(&bufptr[count], "%-25s %-20s ",
491 					 lnames[i].name, "unlimited");
492 		else
493 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
494 					 lnames[i].name, rlim[i].rlim_cur);
495 
496 		if (rlim[i].rlim_max == RLIM_INFINITY)
497 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
498 		else
499 			count += sprintf(&bufptr[count], "%-20lu ",
500 					 rlim[i].rlim_max);
501 
502 		if (lnames[i].unit)
503 			count += sprintf(&bufptr[count], "%-10s\n",
504 					 lnames[i].unit);
505 		else
506 			count += sprintf(&bufptr[count], "\n");
507 	}
508 
509 	return count;
510 }
511 
512 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
513 static int proc_pid_syscall(struct task_struct *task, char *buffer)
514 {
515 	long nr;
516 	unsigned long args[6], sp, pc;
517 
518 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
519 		return sprintf(buffer, "running\n");
520 
521 	if (nr < 0)
522 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
523 
524 	return sprintf(buffer,
525 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
526 		       nr,
527 		       args[0], args[1], args[2], args[3], args[4], args[5],
528 		       sp, pc);
529 }
530 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
531 
532 /************************************************************************/
533 /*                       Here the fs part begins                        */
534 /************************************************************************/
535 
536 /* permission checks */
537 static int proc_fd_access_allowed(struct inode *inode)
538 {
539 	struct task_struct *task;
540 	int allowed = 0;
541 	/* Allow access to a task's file descriptors if it is us or we
542 	 * may use ptrace attach to the process and find out that
543 	 * information.
544 	 */
545 	task = get_proc_task(inode);
546 	if (task) {
547 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
548 		put_task_struct(task);
549 	}
550 	return allowed;
551 }
552 
553 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
554 {
555 	int error;
556 	struct inode *inode = dentry->d_inode;
557 
558 	if (attr->ia_valid & ATTR_MODE)
559 		return -EPERM;
560 
561 	error = inode_change_ok(inode, attr);
562 	if (error)
563 		return error;
564 
565 	if ((attr->ia_valid & ATTR_SIZE) &&
566 	    attr->ia_size != i_size_read(inode)) {
567 		error = vmtruncate(inode, attr->ia_size);
568 		if (error)
569 			return error;
570 	}
571 
572 	setattr_copy(inode, attr);
573 	mark_inode_dirty(inode);
574 	return 0;
575 }
576 
577 static const struct inode_operations proc_def_inode_operations = {
578 	.setattr	= proc_setattr,
579 };
580 
581 static int mounts_open_common(struct inode *inode, struct file *file,
582 			      const struct seq_operations *op)
583 {
584 	struct task_struct *task = get_proc_task(inode);
585 	struct nsproxy *nsp;
586 	struct mnt_namespace *ns = NULL;
587 	struct path root;
588 	struct proc_mounts *p;
589 	int ret = -EINVAL;
590 
591 	if (task) {
592 		rcu_read_lock();
593 		nsp = task_nsproxy(task);
594 		if (nsp) {
595 			ns = nsp->mnt_ns;
596 			if (ns)
597 				get_mnt_ns(ns);
598 		}
599 		rcu_read_unlock();
600 		if (ns && get_task_root(task, &root) == 0)
601 			ret = 0;
602 		put_task_struct(task);
603 	}
604 
605 	if (!ns)
606 		goto err;
607 	if (ret)
608 		goto err_put_ns;
609 
610 	ret = -ENOMEM;
611 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
612 	if (!p)
613 		goto err_put_path;
614 
615 	file->private_data = &p->m;
616 	ret = seq_open(file, op);
617 	if (ret)
618 		goto err_free;
619 
620 	p->m.private = p;
621 	p->ns = ns;
622 	p->root = root;
623 	p->event = ns->event;
624 
625 	return 0;
626 
627  err_free:
628 	kfree(p);
629  err_put_path:
630 	path_put(&root);
631  err_put_ns:
632 	put_mnt_ns(ns);
633  err:
634 	return ret;
635 }
636 
637 static int mounts_release(struct inode *inode, struct file *file)
638 {
639 	struct proc_mounts *p = file->private_data;
640 	path_put(&p->root);
641 	put_mnt_ns(p->ns);
642 	return seq_release(inode, file);
643 }
644 
645 static unsigned mounts_poll(struct file *file, poll_table *wait)
646 {
647 	struct proc_mounts *p = file->private_data;
648 	unsigned res = POLLIN | POLLRDNORM;
649 
650 	poll_wait(file, &p->ns->poll, wait);
651 	if (mnt_had_events(p))
652 		res |= POLLERR | POLLPRI;
653 
654 	return res;
655 }
656 
657 static int mounts_open(struct inode *inode, struct file *file)
658 {
659 	return mounts_open_common(inode, file, &mounts_op);
660 }
661 
662 static const struct file_operations proc_mounts_operations = {
663 	.open		= mounts_open,
664 	.read		= seq_read,
665 	.llseek		= seq_lseek,
666 	.release	= mounts_release,
667 	.poll		= mounts_poll,
668 };
669 
670 static int mountinfo_open(struct inode *inode, struct file *file)
671 {
672 	return mounts_open_common(inode, file, &mountinfo_op);
673 }
674 
675 static const struct file_operations proc_mountinfo_operations = {
676 	.open		= mountinfo_open,
677 	.read		= seq_read,
678 	.llseek		= seq_lseek,
679 	.release	= mounts_release,
680 	.poll		= mounts_poll,
681 };
682 
683 static int mountstats_open(struct inode *inode, struct file *file)
684 {
685 	return mounts_open_common(inode, file, &mountstats_op);
686 }
687 
688 static const struct file_operations proc_mountstats_operations = {
689 	.open		= mountstats_open,
690 	.read		= seq_read,
691 	.llseek		= seq_lseek,
692 	.release	= mounts_release,
693 };
694 
695 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
696 
697 static ssize_t proc_info_read(struct file * file, char __user * buf,
698 			  size_t count, loff_t *ppos)
699 {
700 	struct inode * inode = file->f_path.dentry->d_inode;
701 	unsigned long page;
702 	ssize_t length;
703 	struct task_struct *task = get_proc_task(inode);
704 
705 	length = -ESRCH;
706 	if (!task)
707 		goto out_no_task;
708 
709 	if (count > PROC_BLOCK_SIZE)
710 		count = PROC_BLOCK_SIZE;
711 
712 	length = -ENOMEM;
713 	if (!(page = __get_free_page(GFP_TEMPORARY)))
714 		goto out;
715 
716 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
717 
718 	if (length >= 0)
719 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
720 	free_page(page);
721 out:
722 	put_task_struct(task);
723 out_no_task:
724 	return length;
725 }
726 
727 static const struct file_operations proc_info_file_operations = {
728 	.read		= proc_info_read,
729 	.llseek		= generic_file_llseek,
730 };
731 
732 static int proc_single_show(struct seq_file *m, void *v)
733 {
734 	struct inode *inode = m->private;
735 	struct pid_namespace *ns;
736 	struct pid *pid;
737 	struct task_struct *task;
738 	int ret;
739 
740 	ns = inode->i_sb->s_fs_info;
741 	pid = proc_pid(inode);
742 	task = get_pid_task(pid, PIDTYPE_PID);
743 	if (!task)
744 		return -ESRCH;
745 
746 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
747 
748 	put_task_struct(task);
749 	return ret;
750 }
751 
752 static int proc_single_open(struct inode *inode, struct file *filp)
753 {
754 	int ret;
755 	ret = single_open(filp, proc_single_show, NULL);
756 	if (!ret) {
757 		struct seq_file *m = filp->private_data;
758 
759 		m->private = inode;
760 	}
761 	return ret;
762 }
763 
764 static const struct file_operations proc_single_file_operations = {
765 	.open		= proc_single_open,
766 	.read		= seq_read,
767 	.llseek		= seq_lseek,
768 	.release	= single_release,
769 };
770 
771 static int mem_open(struct inode* inode, struct file* file)
772 {
773 	file->private_data = (void*)((long)current->self_exec_id);
774 	/* OK to pass negative loff_t, we can catch out-of-range */
775 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
776 	return 0;
777 }
778 
779 static ssize_t mem_read(struct file * file, char __user * buf,
780 			size_t count, loff_t *ppos)
781 {
782 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
783 	char *page;
784 	unsigned long src = *ppos;
785 	int ret = -ESRCH;
786 	struct mm_struct *mm;
787 
788 	if (!task)
789 		goto out_no_task;
790 
791 	if (check_mem_permission(task))
792 		goto out;
793 
794 	ret = -ENOMEM;
795 	page = (char *)__get_free_page(GFP_TEMPORARY);
796 	if (!page)
797 		goto out;
798 
799 	ret = 0;
800 
801 	mm = get_task_mm(task);
802 	if (!mm)
803 		goto out_free;
804 
805 	ret = -EIO;
806 
807 	if (file->private_data != (void*)((long)current->self_exec_id))
808 		goto out_put;
809 
810 	ret = 0;
811 
812 	while (count > 0) {
813 		int this_len, retval;
814 
815 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
816 		retval = access_process_vm(task, src, page, this_len, 0);
817 		if (!retval || check_mem_permission(task)) {
818 			if (!ret)
819 				ret = -EIO;
820 			break;
821 		}
822 
823 		if (copy_to_user(buf, page, retval)) {
824 			ret = -EFAULT;
825 			break;
826 		}
827 
828 		ret += retval;
829 		src += retval;
830 		buf += retval;
831 		count -= retval;
832 	}
833 	*ppos = src;
834 
835 out_put:
836 	mmput(mm);
837 out_free:
838 	free_page((unsigned long) page);
839 out:
840 	put_task_struct(task);
841 out_no_task:
842 	return ret;
843 }
844 
845 #define mem_write NULL
846 
847 #ifndef mem_write
848 /* This is a security hazard */
849 static ssize_t mem_write(struct file * file, const char __user *buf,
850 			 size_t count, loff_t *ppos)
851 {
852 	int copied;
853 	char *page;
854 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
855 	unsigned long dst = *ppos;
856 
857 	copied = -ESRCH;
858 	if (!task)
859 		goto out_no_task;
860 
861 	if (check_mem_permission(task))
862 		goto out;
863 
864 	copied = -ENOMEM;
865 	page = (char *)__get_free_page(GFP_TEMPORARY);
866 	if (!page)
867 		goto out;
868 
869 	copied = 0;
870 	while (count > 0) {
871 		int this_len, retval;
872 
873 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
874 		if (copy_from_user(page, buf, this_len)) {
875 			copied = -EFAULT;
876 			break;
877 		}
878 		retval = access_process_vm(task, dst, page, this_len, 1);
879 		if (!retval) {
880 			if (!copied)
881 				copied = -EIO;
882 			break;
883 		}
884 		copied += retval;
885 		buf += retval;
886 		dst += retval;
887 		count -= retval;
888 	}
889 	*ppos = dst;
890 	free_page((unsigned long) page);
891 out:
892 	put_task_struct(task);
893 out_no_task:
894 	return copied;
895 }
896 #endif
897 
898 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
899 {
900 	switch (orig) {
901 	case 0:
902 		file->f_pos = offset;
903 		break;
904 	case 1:
905 		file->f_pos += offset;
906 		break;
907 	default:
908 		return -EINVAL;
909 	}
910 	force_successful_syscall_return();
911 	return file->f_pos;
912 }
913 
914 static const struct file_operations proc_mem_operations = {
915 	.llseek		= mem_lseek,
916 	.read		= mem_read,
917 	.write		= mem_write,
918 	.open		= mem_open,
919 };
920 
921 static ssize_t environ_read(struct file *file, char __user *buf,
922 			size_t count, loff_t *ppos)
923 {
924 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
925 	char *page;
926 	unsigned long src = *ppos;
927 	int ret = -ESRCH;
928 	struct mm_struct *mm;
929 
930 	if (!task)
931 		goto out_no_task;
932 
933 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
934 		goto out;
935 
936 	ret = -ENOMEM;
937 	page = (char *)__get_free_page(GFP_TEMPORARY);
938 	if (!page)
939 		goto out;
940 
941 	ret = 0;
942 
943 	mm = get_task_mm(task);
944 	if (!mm)
945 		goto out_free;
946 
947 	while (count > 0) {
948 		int this_len, retval, max_len;
949 
950 		this_len = mm->env_end - (mm->env_start + src);
951 
952 		if (this_len <= 0)
953 			break;
954 
955 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
956 		this_len = (this_len > max_len) ? max_len : this_len;
957 
958 		retval = access_process_vm(task, (mm->env_start + src),
959 			page, this_len, 0);
960 
961 		if (retval <= 0) {
962 			ret = retval;
963 			break;
964 		}
965 
966 		if (copy_to_user(buf, page, retval)) {
967 			ret = -EFAULT;
968 			break;
969 		}
970 
971 		ret += retval;
972 		src += retval;
973 		buf += retval;
974 		count -= retval;
975 	}
976 	*ppos = src;
977 
978 	mmput(mm);
979 out_free:
980 	free_page((unsigned long) page);
981 out:
982 	put_task_struct(task);
983 out_no_task:
984 	return ret;
985 }
986 
987 static const struct file_operations proc_environ_operations = {
988 	.read		= environ_read,
989 	.llseek		= generic_file_llseek,
990 };
991 
992 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
993 				size_t count, loff_t *ppos)
994 {
995 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
996 	char buffer[PROC_NUMBUF];
997 	size_t len;
998 	int oom_adjust = OOM_DISABLE;
999 	unsigned long flags;
1000 
1001 	if (!task)
1002 		return -ESRCH;
1003 
1004 	if (lock_task_sighand(task, &flags)) {
1005 		oom_adjust = task->signal->oom_adj;
1006 		unlock_task_sighand(task, &flags);
1007 	}
1008 
1009 	put_task_struct(task);
1010 
1011 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1012 
1013 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1014 }
1015 
1016 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1017 				size_t count, loff_t *ppos)
1018 {
1019 	struct task_struct *task;
1020 	char buffer[PROC_NUMBUF];
1021 	long oom_adjust;
1022 	unsigned long flags;
1023 	int err;
1024 
1025 	memset(buffer, 0, sizeof(buffer));
1026 	if (count > sizeof(buffer) - 1)
1027 		count = sizeof(buffer) - 1;
1028 	if (copy_from_user(buffer, buf, count)) {
1029 		err = -EFAULT;
1030 		goto out;
1031 	}
1032 
1033 	err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1034 	if (err)
1035 		goto out;
1036 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1037 	     oom_adjust != OOM_DISABLE) {
1038 		err = -EINVAL;
1039 		goto out;
1040 	}
1041 
1042 	task = get_proc_task(file->f_path.dentry->d_inode);
1043 	if (!task) {
1044 		err = -ESRCH;
1045 		goto out;
1046 	}
1047 
1048 	task_lock(task);
1049 	if (!task->mm) {
1050 		err = -EINVAL;
1051 		goto err_task_lock;
1052 	}
1053 
1054 	if (!lock_task_sighand(task, &flags)) {
1055 		err = -ESRCH;
1056 		goto err_task_lock;
1057 	}
1058 
1059 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1060 		err = -EACCES;
1061 		goto err_sighand;
1062 	}
1063 
1064 	if (oom_adjust != task->signal->oom_adj) {
1065 		if (oom_adjust == OOM_DISABLE)
1066 			atomic_inc(&task->mm->oom_disable_count);
1067 		if (task->signal->oom_adj == OOM_DISABLE)
1068 			atomic_dec(&task->mm->oom_disable_count);
1069 	}
1070 
1071 	/*
1072 	 * Warn that /proc/pid/oom_adj is deprecated, see
1073 	 * Documentation/feature-removal-schedule.txt.
1074 	 */
1075 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, "
1076 			"please use /proc/%d/oom_score_adj instead.\n",
1077 			current->comm, task_pid_nr(current),
1078 			task_pid_nr(task), task_pid_nr(task));
1079 	task->signal->oom_adj = oom_adjust;
1080 	/*
1081 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1082 	 * value is always attainable.
1083 	 */
1084 	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1085 		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1086 	else
1087 		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1088 								-OOM_DISABLE;
1089 err_sighand:
1090 	unlock_task_sighand(task, &flags);
1091 err_task_lock:
1092 	task_unlock(task);
1093 	put_task_struct(task);
1094 out:
1095 	return err < 0 ? err : count;
1096 }
1097 
1098 static const struct file_operations proc_oom_adjust_operations = {
1099 	.read		= oom_adjust_read,
1100 	.write		= oom_adjust_write,
1101 	.llseek		= generic_file_llseek,
1102 };
1103 
1104 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1105 					size_t count, loff_t *ppos)
1106 {
1107 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1108 	char buffer[PROC_NUMBUF];
1109 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1110 	unsigned long flags;
1111 	size_t len;
1112 
1113 	if (!task)
1114 		return -ESRCH;
1115 	if (lock_task_sighand(task, &flags)) {
1116 		oom_score_adj = task->signal->oom_score_adj;
1117 		unlock_task_sighand(task, &flags);
1118 	}
1119 	put_task_struct(task);
1120 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1121 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1122 }
1123 
1124 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1125 					size_t count, loff_t *ppos)
1126 {
1127 	struct task_struct *task;
1128 	char buffer[PROC_NUMBUF];
1129 	unsigned long flags;
1130 	long oom_score_adj;
1131 	int err;
1132 
1133 	memset(buffer, 0, sizeof(buffer));
1134 	if (count > sizeof(buffer) - 1)
1135 		count = sizeof(buffer) - 1;
1136 	if (copy_from_user(buffer, buf, count)) {
1137 		err = -EFAULT;
1138 		goto out;
1139 	}
1140 
1141 	err = strict_strtol(strstrip(buffer), 0, &oom_score_adj);
1142 	if (err)
1143 		goto out;
1144 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1145 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1146 		err = -EINVAL;
1147 		goto out;
1148 	}
1149 
1150 	task = get_proc_task(file->f_path.dentry->d_inode);
1151 	if (!task) {
1152 		err = -ESRCH;
1153 		goto out;
1154 	}
1155 
1156 	task_lock(task);
1157 	if (!task->mm) {
1158 		err = -EINVAL;
1159 		goto err_task_lock;
1160 	}
1161 
1162 	if (!lock_task_sighand(task, &flags)) {
1163 		err = -ESRCH;
1164 		goto err_task_lock;
1165 	}
1166 
1167 	if (oom_score_adj < task->signal->oom_score_adj &&
1168 			!capable(CAP_SYS_RESOURCE)) {
1169 		err = -EACCES;
1170 		goto err_sighand;
1171 	}
1172 
1173 	if (oom_score_adj != task->signal->oom_score_adj) {
1174 		if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1175 			atomic_inc(&task->mm->oom_disable_count);
1176 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1177 			atomic_dec(&task->mm->oom_disable_count);
1178 	}
1179 	task->signal->oom_score_adj = oom_score_adj;
1180 	/*
1181 	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1182 	 * always attainable.
1183 	 */
1184 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1185 		task->signal->oom_adj = OOM_DISABLE;
1186 	else
1187 		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1188 							OOM_SCORE_ADJ_MAX;
1189 err_sighand:
1190 	unlock_task_sighand(task, &flags);
1191 err_task_lock:
1192 	task_unlock(task);
1193 	put_task_struct(task);
1194 out:
1195 	return err < 0 ? err : count;
1196 }
1197 
1198 static const struct file_operations proc_oom_score_adj_operations = {
1199 	.read		= oom_score_adj_read,
1200 	.write		= oom_score_adj_write,
1201 	.llseek		= default_llseek,
1202 };
1203 
1204 #ifdef CONFIG_AUDITSYSCALL
1205 #define TMPBUFLEN 21
1206 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1207 				  size_t count, loff_t *ppos)
1208 {
1209 	struct inode * inode = file->f_path.dentry->d_inode;
1210 	struct task_struct *task = get_proc_task(inode);
1211 	ssize_t length;
1212 	char tmpbuf[TMPBUFLEN];
1213 
1214 	if (!task)
1215 		return -ESRCH;
1216 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1217 				audit_get_loginuid(task));
1218 	put_task_struct(task);
1219 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1220 }
1221 
1222 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1223 				   size_t count, loff_t *ppos)
1224 {
1225 	struct inode * inode = file->f_path.dentry->d_inode;
1226 	char *page, *tmp;
1227 	ssize_t length;
1228 	uid_t loginuid;
1229 
1230 	if (!capable(CAP_AUDIT_CONTROL))
1231 		return -EPERM;
1232 
1233 	rcu_read_lock();
1234 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1235 		rcu_read_unlock();
1236 		return -EPERM;
1237 	}
1238 	rcu_read_unlock();
1239 
1240 	if (count >= PAGE_SIZE)
1241 		count = PAGE_SIZE - 1;
1242 
1243 	if (*ppos != 0) {
1244 		/* No partial writes. */
1245 		return -EINVAL;
1246 	}
1247 	page = (char*)__get_free_page(GFP_TEMPORARY);
1248 	if (!page)
1249 		return -ENOMEM;
1250 	length = -EFAULT;
1251 	if (copy_from_user(page, buf, count))
1252 		goto out_free_page;
1253 
1254 	page[count] = '\0';
1255 	loginuid = simple_strtoul(page, &tmp, 10);
1256 	if (tmp == page) {
1257 		length = -EINVAL;
1258 		goto out_free_page;
1259 
1260 	}
1261 	length = audit_set_loginuid(current, loginuid);
1262 	if (likely(length == 0))
1263 		length = count;
1264 
1265 out_free_page:
1266 	free_page((unsigned long) page);
1267 	return length;
1268 }
1269 
1270 static const struct file_operations proc_loginuid_operations = {
1271 	.read		= proc_loginuid_read,
1272 	.write		= proc_loginuid_write,
1273 	.llseek		= generic_file_llseek,
1274 };
1275 
1276 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1277 				  size_t count, loff_t *ppos)
1278 {
1279 	struct inode * inode = file->f_path.dentry->d_inode;
1280 	struct task_struct *task = get_proc_task(inode);
1281 	ssize_t length;
1282 	char tmpbuf[TMPBUFLEN];
1283 
1284 	if (!task)
1285 		return -ESRCH;
1286 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1287 				audit_get_sessionid(task));
1288 	put_task_struct(task);
1289 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1290 }
1291 
1292 static const struct file_operations proc_sessionid_operations = {
1293 	.read		= proc_sessionid_read,
1294 	.llseek		= generic_file_llseek,
1295 };
1296 #endif
1297 
1298 #ifdef CONFIG_FAULT_INJECTION
1299 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1300 				      size_t count, loff_t *ppos)
1301 {
1302 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1303 	char buffer[PROC_NUMBUF];
1304 	size_t len;
1305 	int make_it_fail;
1306 
1307 	if (!task)
1308 		return -ESRCH;
1309 	make_it_fail = task->make_it_fail;
1310 	put_task_struct(task);
1311 
1312 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1313 
1314 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1315 }
1316 
1317 static ssize_t proc_fault_inject_write(struct file * file,
1318 			const char __user * buf, size_t count, loff_t *ppos)
1319 {
1320 	struct task_struct *task;
1321 	char buffer[PROC_NUMBUF], *end;
1322 	int make_it_fail;
1323 
1324 	if (!capable(CAP_SYS_RESOURCE))
1325 		return -EPERM;
1326 	memset(buffer, 0, sizeof(buffer));
1327 	if (count > sizeof(buffer) - 1)
1328 		count = sizeof(buffer) - 1;
1329 	if (copy_from_user(buffer, buf, count))
1330 		return -EFAULT;
1331 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1332 	if (*end)
1333 		return -EINVAL;
1334 	task = get_proc_task(file->f_dentry->d_inode);
1335 	if (!task)
1336 		return -ESRCH;
1337 	task->make_it_fail = make_it_fail;
1338 	put_task_struct(task);
1339 
1340 	return count;
1341 }
1342 
1343 static const struct file_operations proc_fault_inject_operations = {
1344 	.read		= proc_fault_inject_read,
1345 	.write		= proc_fault_inject_write,
1346 	.llseek		= generic_file_llseek,
1347 };
1348 #endif
1349 
1350 
1351 #ifdef CONFIG_SCHED_DEBUG
1352 /*
1353  * Print out various scheduling related per-task fields:
1354  */
1355 static int sched_show(struct seq_file *m, void *v)
1356 {
1357 	struct inode *inode = m->private;
1358 	struct task_struct *p;
1359 
1360 	p = get_proc_task(inode);
1361 	if (!p)
1362 		return -ESRCH;
1363 	proc_sched_show_task(p, m);
1364 
1365 	put_task_struct(p);
1366 
1367 	return 0;
1368 }
1369 
1370 static ssize_t
1371 sched_write(struct file *file, const char __user *buf,
1372 	    size_t count, loff_t *offset)
1373 {
1374 	struct inode *inode = file->f_path.dentry->d_inode;
1375 	struct task_struct *p;
1376 
1377 	p = get_proc_task(inode);
1378 	if (!p)
1379 		return -ESRCH;
1380 	proc_sched_set_task(p);
1381 
1382 	put_task_struct(p);
1383 
1384 	return count;
1385 }
1386 
1387 static int sched_open(struct inode *inode, struct file *filp)
1388 {
1389 	int ret;
1390 
1391 	ret = single_open(filp, sched_show, NULL);
1392 	if (!ret) {
1393 		struct seq_file *m = filp->private_data;
1394 
1395 		m->private = inode;
1396 	}
1397 	return ret;
1398 }
1399 
1400 static const struct file_operations proc_pid_sched_operations = {
1401 	.open		= sched_open,
1402 	.read		= seq_read,
1403 	.write		= sched_write,
1404 	.llseek		= seq_lseek,
1405 	.release	= single_release,
1406 };
1407 
1408 #endif
1409 
1410 #ifdef CONFIG_SCHED_AUTOGROUP
1411 /*
1412  * Print out autogroup related information:
1413  */
1414 static int sched_autogroup_show(struct seq_file *m, void *v)
1415 {
1416 	struct inode *inode = m->private;
1417 	struct task_struct *p;
1418 
1419 	p = get_proc_task(inode);
1420 	if (!p)
1421 		return -ESRCH;
1422 	proc_sched_autogroup_show_task(p, m);
1423 
1424 	put_task_struct(p);
1425 
1426 	return 0;
1427 }
1428 
1429 static ssize_t
1430 sched_autogroup_write(struct file *file, const char __user *buf,
1431 	    size_t count, loff_t *offset)
1432 {
1433 	struct inode *inode = file->f_path.dentry->d_inode;
1434 	struct task_struct *p;
1435 	char buffer[PROC_NUMBUF];
1436 	long nice;
1437 	int err;
1438 
1439 	memset(buffer, 0, sizeof(buffer));
1440 	if (count > sizeof(buffer) - 1)
1441 		count = sizeof(buffer) - 1;
1442 	if (copy_from_user(buffer, buf, count))
1443 		return -EFAULT;
1444 
1445 	err = strict_strtol(strstrip(buffer), 0, &nice);
1446 	if (err)
1447 		return -EINVAL;
1448 
1449 	p = get_proc_task(inode);
1450 	if (!p)
1451 		return -ESRCH;
1452 
1453 	err = nice;
1454 	err = proc_sched_autogroup_set_nice(p, &err);
1455 	if (err)
1456 		count = err;
1457 
1458 	put_task_struct(p);
1459 
1460 	return count;
1461 }
1462 
1463 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1464 {
1465 	int ret;
1466 
1467 	ret = single_open(filp, sched_autogroup_show, NULL);
1468 	if (!ret) {
1469 		struct seq_file *m = filp->private_data;
1470 
1471 		m->private = inode;
1472 	}
1473 	return ret;
1474 }
1475 
1476 static const struct file_operations proc_pid_sched_autogroup_operations = {
1477 	.open		= sched_autogroup_open,
1478 	.read		= seq_read,
1479 	.write		= sched_autogroup_write,
1480 	.llseek		= seq_lseek,
1481 	.release	= single_release,
1482 };
1483 
1484 #endif /* CONFIG_SCHED_AUTOGROUP */
1485 
1486 static ssize_t comm_write(struct file *file, const char __user *buf,
1487 				size_t count, loff_t *offset)
1488 {
1489 	struct inode *inode = file->f_path.dentry->d_inode;
1490 	struct task_struct *p;
1491 	char buffer[TASK_COMM_LEN];
1492 
1493 	memset(buffer, 0, sizeof(buffer));
1494 	if (count > sizeof(buffer) - 1)
1495 		count = sizeof(buffer) - 1;
1496 	if (copy_from_user(buffer, buf, count))
1497 		return -EFAULT;
1498 
1499 	p = get_proc_task(inode);
1500 	if (!p)
1501 		return -ESRCH;
1502 
1503 	if (same_thread_group(current, p))
1504 		set_task_comm(p, buffer);
1505 	else
1506 		count = -EINVAL;
1507 
1508 	put_task_struct(p);
1509 
1510 	return count;
1511 }
1512 
1513 static int comm_show(struct seq_file *m, void *v)
1514 {
1515 	struct inode *inode = m->private;
1516 	struct task_struct *p;
1517 
1518 	p = get_proc_task(inode);
1519 	if (!p)
1520 		return -ESRCH;
1521 
1522 	task_lock(p);
1523 	seq_printf(m, "%s\n", p->comm);
1524 	task_unlock(p);
1525 
1526 	put_task_struct(p);
1527 
1528 	return 0;
1529 }
1530 
1531 static int comm_open(struct inode *inode, struct file *filp)
1532 {
1533 	int ret;
1534 
1535 	ret = single_open(filp, comm_show, NULL);
1536 	if (!ret) {
1537 		struct seq_file *m = filp->private_data;
1538 
1539 		m->private = inode;
1540 	}
1541 	return ret;
1542 }
1543 
1544 static const struct file_operations proc_pid_set_comm_operations = {
1545 	.open		= comm_open,
1546 	.read		= seq_read,
1547 	.write		= comm_write,
1548 	.llseek		= seq_lseek,
1549 	.release	= single_release,
1550 };
1551 
1552 /*
1553  * We added or removed a vma mapping the executable. The vmas are only mapped
1554  * during exec and are not mapped with the mmap system call.
1555  * Callers must hold down_write() on the mm's mmap_sem for these
1556  */
1557 void added_exe_file_vma(struct mm_struct *mm)
1558 {
1559 	mm->num_exe_file_vmas++;
1560 }
1561 
1562 void removed_exe_file_vma(struct mm_struct *mm)
1563 {
1564 	mm->num_exe_file_vmas--;
1565 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1566 		fput(mm->exe_file);
1567 		mm->exe_file = NULL;
1568 	}
1569 
1570 }
1571 
1572 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1573 {
1574 	if (new_exe_file)
1575 		get_file(new_exe_file);
1576 	if (mm->exe_file)
1577 		fput(mm->exe_file);
1578 	mm->exe_file = new_exe_file;
1579 	mm->num_exe_file_vmas = 0;
1580 }
1581 
1582 struct file *get_mm_exe_file(struct mm_struct *mm)
1583 {
1584 	struct file *exe_file;
1585 
1586 	/* We need mmap_sem to protect against races with removal of
1587 	 * VM_EXECUTABLE vmas */
1588 	down_read(&mm->mmap_sem);
1589 	exe_file = mm->exe_file;
1590 	if (exe_file)
1591 		get_file(exe_file);
1592 	up_read(&mm->mmap_sem);
1593 	return exe_file;
1594 }
1595 
1596 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1597 {
1598 	/* It's safe to write the exe_file pointer without exe_file_lock because
1599 	 * this is called during fork when the task is not yet in /proc */
1600 	newmm->exe_file = get_mm_exe_file(oldmm);
1601 }
1602 
1603 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1604 {
1605 	struct task_struct *task;
1606 	struct mm_struct *mm;
1607 	struct file *exe_file;
1608 
1609 	task = get_proc_task(inode);
1610 	if (!task)
1611 		return -ENOENT;
1612 	mm = get_task_mm(task);
1613 	put_task_struct(task);
1614 	if (!mm)
1615 		return -ENOENT;
1616 	exe_file = get_mm_exe_file(mm);
1617 	mmput(mm);
1618 	if (exe_file) {
1619 		*exe_path = exe_file->f_path;
1620 		path_get(&exe_file->f_path);
1621 		fput(exe_file);
1622 		return 0;
1623 	} else
1624 		return -ENOENT;
1625 }
1626 
1627 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1628 {
1629 	struct inode *inode = dentry->d_inode;
1630 	int error = -EACCES;
1631 
1632 	/* We don't need a base pointer in the /proc filesystem */
1633 	path_put(&nd->path);
1634 
1635 	/* Are we allowed to snoop on the tasks file descriptors? */
1636 	if (!proc_fd_access_allowed(inode))
1637 		goto out;
1638 
1639 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1640 out:
1641 	return ERR_PTR(error);
1642 }
1643 
1644 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1645 {
1646 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1647 	char *pathname;
1648 	int len;
1649 
1650 	if (!tmp)
1651 		return -ENOMEM;
1652 
1653 	pathname = d_path(path, tmp, PAGE_SIZE);
1654 	len = PTR_ERR(pathname);
1655 	if (IS_ERR(pathname))
1656 		goto out;
1657 	len = tmp + PAGE_SIZE - 1 - pathname;
1658 
1659 	if (len > buflen)
1660 		len = buflen;
1661 	if (copy_to_user(buffer, pathname, len))
1662 		len = -EFAULT;
1663  out:
1664 	free_page((unsigned long)tmp);
1665 	return len;
1666 }
1667 
1668 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1669 {
1670 	int error = -EACCES;
1671 	struct inode *inode = dentry->d_inode;
1672 	struct path path;
1673 
1674 	/* Are we allowed to snoop on the tasks file descriptors? */
1675 	if (!proc_fd_access_allowed(inode))
1676 		goto out;
1677 
1678 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1679 	if (error)
1680 		goto out;
1681 
1682 	error = do_proc_readlink(&path, buffer, buflen);
1683 	path_put(&path);
1684 out:
1685 	return error;
1686 }
1687 
1688 static const struct inode_operations proc_pid_link_inode_operations = {
1689 	.readlink	= proc_pid_readlink,
1690 	.follow_link	= proc_pid_follow_link,
1691 	.setattr	= proc_setattr,
1692 };
1693 
1694 
1695 /* building an inode */
1696 
1697 static int task_dumpable(struct task_struct *task)
1698 {
1699 	int dumpable = 0;
1700 	struct mm_struct *mm;
1701 
1702 	task_lock(task);
1703 	mm = task->mm;
1704 	if (mm)
1705 		dumpable = get_dumpable(mm);
1706 	task_unlock(task);
1707 	if(dumpable == 1)
1708 		return 1;
1709 	return 0;
1710 }
1711 
1712 
1713 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1714 {
1715 	struct inode * inode;
1716 	struct proc_inode *ei;
1717 	const struct cred *cred;
1718 
1719 	/* We need a new inode */
1720 
1721 	inode = new_inode(sb);
1722 	if (!inode)
1723 		goto out;
1724 
1725 	/* Common stuff */
1726 	ei = PROC_I(inode);
1727 	inode->i_ino = get_next_ino();
1728 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1729 	inode->i_op = &proc_def_inode_operations;
1730 
1731 	/*
1732 	 * grab the reference to task.
1733 	 */
1734 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1735 	if (!ei->pid)
1736 		goto out_unlock;
1737 
1738 	if (task_dumpable(task)) {
1739 		rcu_read_lock();
1740 		cred = __task_cred(task);
1741 		inode->i_uid = cred->euid;
1742 		inode->i_gid = cred->egid;
1743 		rcu_read_unlock();
1744 	}
1745 	security_task_to_inode(task, inode);
1746 
1747 out:
1748 	return inode;
1749 
1750 out_unlock:
1751 	iput(inode);
1752 	return NULL;
1753 }
1754 
1755 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1756 {
1757 	struct inode *inode = dentry->d_inode;
1758 	struct task_struct *task;
1759 	const struct cred *cred;
1760 
1761 	generic_fillattr(inode, stat);
1762 
1763 	rcu_read_lock();
1764 	stat->uid = 0;
1765 	stat->gid = 0;
1766 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1767 	if (task) {
1768 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1769 		    task_dumpable(task)) {
1770 			cred = __task_cred(task);
1771 			stat->uid = cred->euid;
1772 			stat->gid = cred->egid;
1773 		}
1774 	}
1775 	rcu_read_unlock();
1776 	return 0;
1777 }
1778 
1779 /* dentry stuff */
1780 
1781 /*
1782  *	Exceptional case: normally we are not allowed to unhash a busy
1783  * directory. In this case, however, we can do it - no aliasing problems
1784  * due to the way we treat inodes.
1785  *
1786  * Rewrite the inode's ownerships here because the owning task may have
1787  * performed a setuid(), etc.
1788  *
1789  * Before the /proc/pid/status file was created the only way to read
1790  * the effective uid of a /process was to stat /proc/pid.  Reading
1791  * /proc/pid/status is slow enough that procps and other packages
1792  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1793  * made this apply to all per process world readable and executable
1794  * directories.
1795  */
1796 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1797 {
1798 	struct inode *inode;
1799 	struct task_struct *task;
1800 	const struct cred *cred;
1801 
1802 	if (nd && nd->flags & LOOKUP_RCU)
1803 		return -ECHILD;
1804 
1805 	inode = dentry->d_inode;
1806 	task = get_proc_task(inode);
1807 
1808 	if (task) {
1809 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1810 		    task_dumpable(task)) {
1811 			rcu_read_lock();
1812 			cred = __task_cred(task);
1813 			inode->i_uid = cred->euid;
1814 			inode->i_gid = cred->egid;
1815 			rcu_read_unlock();
1816 		} else {
1817 			inode->i_uid = 0;
1818 			inode->i_gid = 0;
1819 		}
1820 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1821 		security_task_to_inode(task, inode);
1822 		put_task_struct(task);
1823 		return 1;
1824 	}
1825 	d_drop(dentry);
1826 	return 0;
1827 }
1828 
1829 static int pid_delete_dentry(const struct dentry * dentry)
1830 {
1831 	/* Is the task we represent dead?
1832 	 * If so, then don't put the dentry on the lru list,
1833 	 * kill it immediately.
1834 	 */
1835 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1836 }
1837 
1838 static const struct dentry_operations pid_dentry_operations =
1839 {
1840 	.d_revalidate	= pid_revalidate,
1841 	.d_delete	= pid_delete_dentry,
1842 };
1843 
1844 /* Lookups */
1845 
1846 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1847 				struct task_struct *, const void *);
1848 
1849 /*
1850  * Fill a directory entry.
1851  *
1852  * If possible create the dcache entry and derive our inode number and
1853  * file type from dcache entry.
1854  *
1855  * Since all of the proc inode numbers are dynamically generated, the inode
1856  * numbers do not exist until the inode is cache.  This means creating the
1857  * the dcache entry in readdir is necessary to keep the inode numbers
1858  * reported by readdir in sync with the inode numbers reported
1859  * by stat.
1860  */
1861 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1862 	char *name, int len,
1863 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1864 {
1865 	struct dentry *child, *dir = filp->f_path.dentry;
1866 	struct inode *inode;
1867 	struct qstr qname;
1868 	ino_t ino = 0;
1869 	unsigned type = DT_UNKNOWN;
1870 
1871 	qname.name = name;
1872 	qname.len  = len;
1873 	qname.hash = full_name_hash(name, len);
1874 
1875 	child = d_lookup(dir, &qname);
1876 	if (!child) {
1877 		struct dentry *new;
1878 		new = d_alloc(dir, &qname);
1879 		if (new) {
1880 			child = instantiate(dir->d_inode, new, task, ptr);
1881 			if (child)
1882 				dput(new);
1883 			else
1884 				child = new;
1885 		}
1886 	}
1887 	if (!child || IS_ERR(child) || !child->d_inode)
1888 		goto end_instantiate;
1889 	inode = child->d_inode;
1890 	if (inode) {
1891 		ino = inode->i_ino;
1892 		type = inode->i_mode >> 12;
1893 	}
1894 	dput(child);
1895 end_instantiate:
1896 	if (!ino)
1897 		ino = find_inode_number(dir, &qname);
1898 	if (!ino)
1899 		ino = 1;
1900 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1901 }
1902 
1903 static unsigned name_to_int(struct dentry *dentry)
1904 {
1905 	const char *name = dentry->d_name.name;
1906 	int len = dentry->d_name.len;
1907 	unsigned n = 0;
1908 
1909 	if (len > 1 && *name == '0')
1910 		goto out;
1911 	while (len-- > 0) {
1912 		unsigned c = *name++ - '0';
1913 		if (c > 9)
1914 			goto out;
1915 		if (n >= (~0U-9)/10)
1916 			goto out;
1917 		n *= 10;
1918 		n += c;
1919 	}
1920 	return n;
1921 out:
1922 	return ~0U;
1923 }
1924 
1925 #define PROC_FDINFO_MAX 64
1926 
1927 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1928 {
1929 	struct task_struct *task = get_proc_task(inode);
1930 	struct files_struct *files = NULL;
1931 	struct file *file;
1932 	int fd = proc_fd(inode);
1933 
1934 	if (task) {
1935 		files = get_files_struct(task);
1936 		put_task_struct(task);
1937 	}
1938 	if (files) {
1939 		/*
1940 		 * We are not taking a ref to the file structure, so we must
1941 		 * hold ->file_lock.
1942 		 */
1943 		spin_lock(&files->file_lock);
1944 		file = fcheck_files(files, fd);
1945 		if (file) {
1946 			if (path) {
1947 				*path = file->f_path;
1948 				path_get(&file->f_path);
1949 			}
1950 			if (info)
1951 				snprintf(info, PROC_FDINFO_MAX,
1952 					 "pos:\t%lli\n"
1953 					 "flags:\t0%o\n",
1954 					 (long long) file->f_pos,
1955 					 file->f_flags);
1956 			spin_unlock(&files->file_lock);
1957 			put_files_struct(files);
1958 			return 0;
1959 		}
1960 		spin_unlock(&files->file_lock);
1961 		put_files_struct(files);
1962 	}
1963 	return -ENOENT;
1964 }
1965 
1966 static int proc_fd_link(struct inode *inode, struct path *path)
1967 {
1968 	return proc_fd_info(inode, path, NULL);
1969 }
1970 
1971 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1972 {
1973 	struct inode *inode;
1974 	struct task_struct *task;
1975 	int fd;
1976 	struct files_struct *files;
1977 	const struct cred *cred;
1978 
1979 	if (nd && nd->flags & LOOKUP_RCU)
1980 		return -ECHILD;
1981 
1982 	inode = dentry->d_inode;
1983 	task = get_proc_task(inode);
1984 	fd = proc_fd(inode);
1985 
1986 	if (task) {
1987 		files = get_files_struct(task);
1988 		if (files) {
1989 			rcu_read_lock();
1990 			if (fcheck_files(files, fd)) {
1991 				rcu_read_unlock();
1992 				put_files_struct(files);
1993 				if (task_dumpable(task)) {
1994 					rcu_read_lock();
1995 					cred = __task_cred(task);
1996 					inode->i_uid = cred->euid;
1997 					inode->i_gid = cred->egid;
1998 					rcu_read_unlock();
1999 				} else {
2000 					inode->i_uid = 0;
2001 					inode->i_gid = 0;
2002 				}
2003 				inode->i_mode &= ~(S_ISUID | S_ISGID);
2004 				security_task_to_inode(task, inode);
2005 				put_task_struct(task);
2006 				return 1;
2007 			}
2008 			rcu_read_unlock();
2009 			put_files_struct(files);
2010 		}
2011 		put_task_struct(task);
2012 	}
2013 	d_drop(dentry);
2014 	return 0;
2015 }
2016 
2017 static const struct dentry_operations tid_fd_dentry_operations =
2018 {
2019 	.d_revalidate	= tid_fd_revalidate,
2020 	.d_delete	= pid_delete_dentry,
2021 };
2022 
2023 static struct dentry *proc_fd_instantiate(struct inode *dir,
2024 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2025 {
2026 	unsigned fd = *(const unsigned *)ptr;
2027 	struct file *file;
2028 	struct files_struct *files;
2029  	struct inode *inode;
2030  	struct proc_inode *ei;
2031 	struct dentry *error = ERR_PTR(-ENOENT);
2032 
2033 	inode = proc_pid_make_inode(dir->i_sb, task);
2034 	if (!inode)
2035 		goto out;
2036 	ei = PROC_I(inode);
2037 	ei->fd = fd;
2038 	files = get_files_struct(task);
2039 	if (!files)
2040 		goto out_iput;
2041 	inode->i_mode = S_IFLNK;
2042 
2043 	/*
2044 	 * We are not taking a ref to the file structure, so we must
2045 	 * hold ->file_lock.
2046 	 */
2047 	spin_lock(&files->file_lock);
2048 	file = fcheck_files(files, fd);
2049 	if (!file)
2050 		goto out_unlock;
2051 	if (file->f_mode & FMODE_READ)
2052 		inode->i_mode |= S_IRUSR | S_IXUSR;
2053 	if (file->f_mode & FMODE_WRITE)
2054 		inode->i_mode |= S_IWUSR | S_IXUSR;
2055 	spin_unlock(&files->file_lock);
2056 	put_files_struct(files);
2057 
2058 	inode->i_op = &proc_pid_link_inode_operations;
2059 	inode->i_size = 64;
2060 	ei->op.proc_get_link = proc_fd_link;
2061 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2062 	d_add(dentry, inode);
2063 	/* Close the race of the process dying before we return the dentry */
2064 	if (tid_fd_revalidate(dentry, NULL))
2065 		error = NULL;
2066 
2067  out:
2068 	return error;
2069 out_unlock:
2070 	spin_unlock(&files->file_lock);
2071 	put_files_struct(files);
2072 out_iput:
2073 	iput(inode);
2074 	goto out;
2075 }
2076 
2077 static struct dentry *proc_lookupfd_common(struct inode *dir,
2078 					   struct dentry *dentry,
2079 					   instantiate_t instantiate)
2080 {
2081 	struct task_struct *task = get_proc_task(dir);
2082 	unsigned fd = name_to_int(dentry);
2083 	struct dentry *result = ERR_PTR(-ENOENT);
2084 
2085 	if (!task)
2086 		goto out_no_task;
2087 	if (fd == ~0U)
2088 		goto out;
2089 
2090 	result = instantiate(dir, dentry, task, &fd);
2091 out:
2092 	put_task_struct(task);
2093 out_no_task:
2094 	return result;
2095 }
2096 
2097 static int proc_readfd_common(struct file * filp, void * dirent,
2098 			      filldir_t filldir, instantiate_t instantiate)
2099 {
2100 	struct dentry *dentry = filp->f_path.dentry;
2101 	struct inode *inode = dentry->d_inode;
2102 	struct task_struct *p = get_proc_task(inode);
2103 	unsigned int fd, ino;
2104 	int retval;
2105 	struct files_struct * files;
2106 
2107 	retval = -ENOENT;
2108 	if (!p)
2109 		goto out_no_task;
2110 	retval = 0;
2111 
2112 	fd = filp->f_pos;
2113 	switch (fd) {
2114 		case 0:
2115 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2116 				goto out;
2117 			filp->f_pos++;
2118 		case 1:
2119 			ino = parent_ino(dentry);
2120 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2121 				goto out;
2122 			filp->f_pos++;
2123 		default:
2124 			files = get_files_struct(p);
2125 			if (!files)
2126 				goto out;
2127 			rcu_read_lock();
2128 			for (fd = filp->f_pos-2;
2129 			     fd < files_fdtable(files)->max_fds;
2130 			     fd++, filp->f_pos++) {
2131 				char name[PROC_NUMBUF];
2132 				int len;
2133 
2134 				if (!fcheck_files(files, fd))
2135 					continue;
2136 				rcu_read_unlock();
2137 
2138 				len = snprintf(name, sizeof(name), "%d", fd);
2139 				if (proc_fill_cache(filp, dirent, filldir,
2140 						    name, len, instantiate,
2141 						    p, &fd) < 0) {
2142 					rcu_read_lock();
2143 					break;
2144 				}
2145 				rcu_read_lock();
2146 			}
2147 			rcu_read_unlock();
2148 			put_files_struct(files);
2149 	}
2150 out:
2151 	put_task_struct(p);
2152 out_no_task:
2153 	return retval;
2154 }
2155 
2156 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2157 				    struct nameidata *nd)
2158 {
2159 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2160 }
2161 
2162 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2163 {
2164 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2165 }
2166 
2167 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2168 				      size_t len, loff_t *ppos)
2169 {
2170 	char tmp[PROC_FDINFO_MAX];
2171 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2172 	if (!err)
2173 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2174 	return err;
2175 }
2176 
2177 static const struct file_operations proc_fdinfo_file_operations = {
2178 	.open           = nonseekable_open,
2179 	.read		= proc_fdinfo_read,
2180 	.llseek		= no_llseek,
2181 };
2182 
2183 static const struct file_operations proc_fd_operations = {
2184 	.read		= generic_read_dir,
2185 	.readdir	= proc_readfd,
2186 	.llseek		= default_llseek,
2187 };
2188 
2189 /*
2190  * /proc/pid/fd needs a special permission handler so that a process can still
2191  * access /proc/self/fd after it has executed a setuid().
2192  */
2193 static int proc_fd_permission(struct inode *inode, int mask, unsigned int flags)
2194 {
2195 	int rv;
2196 
2197 	if (flags & IPERM_FLAG_RCU)
2198 		return -ECHILD;
2199 	rv = generic_permission(inode, mask, flags, NULL);
2200 	if (rv == 0)
2201 		return 0;
2202 	if (task_pid(current) == proc_pid(inode))
2203 		rv = 0;
2204 	return rv;
2205 }
2206 
2207 /*
2208  * proc directories can do almost nothing..
2209  */
2210 static const struct inode_operations proc_fd_inode_operations = {
2211 	.lookup		= proc_lookupfd,
2212 	.permission	= proc_fd_permission,
2213 	.setattr	= proc_setattr,
2214 };
2215 
2216 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2217 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2218 {
2219 	unsigned fd = *(unsigned *)ptr;
2220  	struct inode *inode;
2221  	struct proc_inode *ei;
2222 	struct dentry *error = ERR_PTR(-ENOENT);
2223 
2224 	inode = proc_pid_make_inode(dir->i_sb, task);
2225 	if (!inode)
2226 		goto out;
2227 	ei = PROC_I(inode);
2228 	ei->fd = fd;
2229 	inode->i_mode = S_IFREG | S_IRUSR;
2230 	inode->i_fop = &proc_fdinfo_file_operations;
2231 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2232 	d_add(dentry, inode);
2233 	/* Close the race of the process dying before we return the dentry */
2234 	if (tid_fd_revalidate(dentry, NULL))
2235 		error = NULL;
2236 
2237  out:
2238 	return error;
2239 }
2240 
2241 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2242 					struct dentry *dentry,
2243 					struct nameidata *nd)
2244 {
2245 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2246 }
2247 
2248 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2249 {
2250 	return proc_readfd_common(filp, dirent, filldir,
2251 				  proc_fdinfo_instantiate);
2252 }
2253 
2254 static const struct file_operations proc_fdinfo_operations = {
2255 	.read		= generic_read_dir,
2256 	.readdir	= proc_readfdinfo,
2257 	.llseek		= default_llseek,
2258 };
2259 
2260 /*
2261  * proc directories can do almost nothing..
2262  */
2263 static const struct inode_operations proc_fdinfo_inode_operations = {
2264 	.lookup		= proc_lookupfdinfo,
2265 	.setattr	= proc_setattr,
2266 };
2267 
2268 
2269 static struct dentry *proc_pident_instantiate(struct inode *dir,
2270 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2271 {
2272 	const struct pid_entry *p = ptr;
2273 	struct inode *inode;
2274 	struct proc_inode *ei;
2275 	struct dentry *error = ERR_PTR(-ENOENT);
2276 
2277 	inode = proc_pid_make_inode(dir->i_sb, task);
2278 	if (!inode)
2279 		goto out;
2280 
2281 	ei = PROC_I(inode);
2282 	inode->i_mode = p->mode;
2283 	if (S_ISDIR(inode->i_mode))
2284 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2285 	if (p->iop)
2286 		inode->i_op = p->iop;
2287 	if (p->fop)
2288 		inode->i_fop = p->fop;
2289 	ei->op = p->op;
2290 	d_set_d_op(dentry, &pid_dentry_operations);
2291 	d_add(dentry, inode);
2292 	/* Close the race of the process dying before we return the dentry */
2293 	if (pid_revalidate(dentry, NULL))
2294 		error = NULL;
2295 out:
2296 	return error;
2297 }
2298 
2299 static struct dentry *proc_pident_lookup(struct inode *dir,
2300 					 struct dentry *dentry,
2301 					 const struct pid_entry *ents,
2302 					 unsigned int nents)
2303 {
2304 	struct dentry *error;
2305 	struct task_struct *task = get_proc_task(dir);
2306 	const struct pid_entry *p, *last;
2307 
2308 	error = ERR_PTR(-ENOENT);
2309 
2310 	if (!task)
2311 		goto out_no_task;
2312 
2313 	/*
2314 	 * Yes, it does not scale. And it should not. Don't add
2315 	 * new entries into /proc/<tgid>/ without very good reasons.
2316 	 */
2317 	last = &ents[nents - 1];
2318 	for (p = ents; p <= last; p++) {
2319 		if (p->len != dentry->d_name.len)
2320 			continue;
2321 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2322 			break;
2323 	}
2324 	if (p > last)
2325 		goto out;
2326 
2327 	error = proc_pident_instantiate(dir, dentry, task, p);
2328 out:
2329 	put_task_struct(task);
2330 out_no_task:
2331 	return error;
2332 }
2333 
2334 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2335 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2336 {
2337 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2338 				proc_pident_instantiate, task, p);
2339 }
2340 
2341 static int proc_pident_readdir(struct file *filp,
2342 		void *dirent, filldir_t filldir,
2343 		const struct pid_entry *ents, unsigned int nents)
2344 {
2345 	int i;
2346 	struct dentry *dentry = filp->f_path.dentry;
2347 	struct inode *inode = dentry->d_inode;
2348 	struct task_struct *task = get_proc_task(inode);
2349 	const struct pid_entry *p, *last;
2350 	ino_t ino;
2351 	int ret;
2352 
2353 	ret = -ENOENT;
2354 	if (!task)
2355 		goto out_no_task;
2356 
2357 	ret = 0;
2358 	i = filp->f_pos;
2359 	switch (i) {
2360 	case 0:
2361 		ino = inode->i_ino;
2362 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2363 			goto out;
2364 		i++;
2365 		filp->f_pos++;
2366 		/* fall through */
2367 	case 1:
2368 		ino = parent_ino(dentry);
2369 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2370 			goto out;
2371 		i++;
2372 		filp->f_pos++;
2373 		/* fall through */
2374 	default:
2375 		i -= 2;
2376 		if (i >= nents) {
2377 			ret = 1;
2378 			goto out;
2379 		}
2380 		p = ents + i;
2381 		last = &ents[nents - 1];
2382 		while (p <= last) {
2383 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2384 				goto out;
2385 			filp->f_pos++;
2386 			p++;
2387 		}
2388 	}
2389 
2390 	ret = 1;
2391 out:
2392 	put_task_struct(task);
2393 out_no_task:
2394 	return ret;
2395 }
2396 
2397 #ifdef CONFIG_SECURITY
2398 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2399 				  size_t count, loff_t *ppos)
2400 {
2401 	struct inode * inode = file->f_path.dentry->d_inode;
2402 	char *p = NULL;
2403 	ssize_t length;
2404 	struct task_struct *task = get_proc_task(inode);
2405 
2406 	if (!task)
2407 		return -ESRCH;
2408 
2409 	length = security_getprocattr(task,
2410 				      (char*)file->f_path.dentry->d_name.name,
2411 				      &p);
2412 	put_task_struct(task);
2413 	if (length > 0)
2414 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2415 	kfree(p);
2416 	return length;
2417 }
2418 
2419 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2420 				   size_t count, loff_t *ppos)
2421 {
2422 	struct inode * inode = file->f_path.dentry->d_inode;
2423 	char *page;
2424 	ssize_t length;
2425 	struct task_struct *task = get_proc_task(inode);
2426 
2427 	length = -ESRCH;
2428 	if (!task)
2429 		goto out_no_task;
2430 	if (count > PAGE_SIZE)
2431 		count = PAGE_SIZE;
2432 
2433 	/* No partial writes. */
2434 	length = -EINVAL;
2435 	if (*ppos != 0)
2436 		goto out;
2437 
2438 	length = -ENOMEM;
2439 	page = (char*)__get_free_page(GFP_TEMPORARY);
2440 	if (!page)
2441 		goto out;
2442 
2443 	length = -EFAULT;
2444 	if (copy_from_user(page, buf, count))
2445 		goto out_free;
2446 
2447 	/* Guard against adverse ptrace interaction */
2448 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2449 	if (length < 0)
2450 		goto out_free;
2451 
2452 	length = security_setprocattr(task,
2453 				      (char*)file->f_path.dentry->d_name.name,
2454 				      (void*)page, count);
2455 	mutex_unlock(&task->signal->cred_guard_mutex);
2456 out_free:
2457 	free_page((unsigned long) page);
2458 out:
2459 	put_task_struct(task);
2460 out_no_task:
2461 	return length;
2462 }
2463 
2464 static const struct file_operations proc_pid_attr_operations = {
2465 	.read		= proc_pid_attr_read,
2466 	.write		= proc_pid_attr_write,
2467 	.llseek		= generic_file_llseek,
2468 };
2469 
2470 static const struct pid_entry attr_dir_stuff[] = {
2471 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2472 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2473 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2474 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2475 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2476 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2477 };
2478 
2479 static int proc_attr_dir_readdir(struct file * filp,
2480 			     void * dirent, filldir_t filldir)
2481 {
2482 	return proc_pident_readdir(filp,dirent,filldir,
2483 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2484 }
2485 
2486 static const struct file_operations proc_attr_dir_operations = {
2487 	.read		= generic_read_dir,
2488 	.readdir	= proc_attr_dir_readdir,
2489 	.llseek		= default_llseek,
2490 };
2491 
2492 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2493 				struct dentry *dentry, struct nameidata *nd)
2494 {
2495 	return proc_pident_lookup(dir, dentry,
2496 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2497 }
2498 
2499 static const struct inode_operations proc_attr_dir_inode_operations = {
2500 	.lookup		= proc_attr_dir_lookup,
2501 	.getattr	= pid_getattr,
2502 	.setattr	= proc_setattr,
2503 };
2504 
2505 #endif
2506 
2507 #ifdef CONFIG_ELF_CORE
2508 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2509 					 size_t count, loff_t *ppos)
2510 {
2511 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2512 	struct mm_struct *mm;
2513 	char buffer[PROC_NUMBUF];
2514 	size_t len;
2515 	int ret;
2516 
2517 	if (!task)
2518 		return -ESRCH;
2519 
2520 	ret = 0;
2521 	mm = get_task_mm(task);
2522 	if (mm) {
2523 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2524 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2525 				MMF_DUMP_FILTER_SHIFT));
2526 		mmput(mm);
2527 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2528 	}
2529 
2530 	put_task_struct(task);
2531 
2532 	return ret;
2533 }
2534 
2535 static ssize_t proc_coredump_filter_write(struct file *file,
2536 					  const char __user *buf,
2537 					  size_t count,
2538 					  loff_t *ppos)
2539 {
2540 	struct task_struct *task;
2541 	struct mm_struct *mm;
2542 	char buffer[PROC_NUMBUF], *end;
2543 	unsigned int val;
2544 	int ret;
2545 	int i;
2546 	unsigned long mask;
2547 
2548 	ret = -EFAULT;
2549 	memset(buffer, 0, sizeof(buffer));
2550 	if (count > sizeof(buffer) - 1)
2551 		count = sizeof(buffer) - 1;
2552 	if (copy_from_user(buffer, buf, count))
2553 		goto out_no_task;
2554 
2555 	ret = -EINVAL;
2556 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2557 	if (*end == '\n')
2558 		end++;
2559 	if (end - buffer == 0)
2560 		goto out_no_task;
2561 
2562 	ret = -ESRCH;
2563 	task = get_proc_task(file->f_dentry->d_inode);
2564 	if (!task)
2565 		goto out_no_task;
2566 
2567 	ret = end - buffer;
2568 	mm = get_task_mm(task);
2569 	if (!mm)
2570 		goto out_no_mm;
2571 
2572 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2573 		if (val & mask)
2574 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2575 		else
2576 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2577 	}
2578 
2579 	mmput(mm);
2580  out_no_mm:
2581 	put_task_struct(task);
2582  out_no_task:
2583 	return ret;
2584 }
2585 
2586 static const struct file_operations proc_coredump_filter_operations = {
2587 	.read		= proc_coredump_filter_read,
2588 	.write		= proc_coredump_filter_write,
2589 	.llseek		= generic_file_llseek,
2590 };
2591 #endif
2592 
2593 /*
2594  * /proc/self:
2595  */
2596 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2597 			      int buflen)
2598 {
2599 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2600 	pid_t tgid = task_tgid_nr_ns(current, ns);
2601 	char tmp[PROC_NUMBUF];
2602 	if (!tgid)
2603 		return -ENOENT;
2604 	sprintf(tmp, "%d", tgid);
2605 	return vfs_readlink(dentry,buffer,buflen,tmp);
2606 }
2607 
2608 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2609 {
2610 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2611 	pid_t tgid = task_tgid_nr_ns(current, ns);
2612 	char *name = ERR_PTR(-ENOENT);
2613 	if (tgid) {
2614 		name = __getname();
2615 		if (!name)
2616 			name = ERR_PTR(-ENOMEM);
2617 		else
2618 			sprintf(name, "%d", tgid);
2619 	}
2620 	nd_set_link(nd, name);
2621 	return NULL;
2622 }
2623 
2624 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2625 				void *cookie)
2626 {
2627 	char *s = nd_get_link(nd);
2628 	if (!IS_ERR(s))
2629 		__putname(s);
2630 }
2631 
2632 static const struct inode_operations proc_self_inode_operations = {
2633 	.readlink	= proc_self_readlink,
2634 	.follow_link	= proc_self_follow_link,
2635 	.put_link	= proc_self_put_link,
2636 };
2637 
2638 /*
2639  * proc base
2640  *
2641  * These are the directory entries in the root directory of /proc
2642  * that properly belong to the /proc filesystem, as they describe
2643  * describe something that is process related.
2644  */
2645 static const struct pid_entry proc_base_stuff[] = {
2646 	NOD("self", S_IFLNK|S_IRWXUGO,
2647 		&proc_self_inode_operations, NULL, {}),
2648 };
2649 
2650 /*
2651  *	Exceptional case: normally we are not allowed to unhash a busy
2652  * directory. In this case, however, we can do it - no aliasing problems
2653  * due to the way we treat inodes.
2654  */
2655 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2656 {
2657 	struct inode *inode;
2658 	struct task_struct *task;
2659 
2660 	if (nd->flags & LOOKUP_RCU)
2661 		return -ECHILD;
2662 
2663 	inode = dentry->d_inode;
2664 	task = get_proc_task(inode);
2665 	if (task) {
2666 		put_task_struct(task);
2667 		return 1;
2668 	}
2669 	d_drop(dentry);
2670 	return 0;
2671 }
2672 
2673 static const struct dentry_operations proc_base_dentry_operations =
2674 {
2675 	.d_revalidate	= proc_base_revalidate,
2676 	.d_delete	= pid_delete_dentry,
2677 };
2678 
2679 static struct dentry *proc_base_instantiate(struct inode *dir,
2680 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2681 {
2682 	const struct pid_entry *p = ptr;
2683 	struct inode *inode;
2684 	struct proc_inode *ei;
2685 	struct dentry *error;
2686 
2687 	/* Allocate the inode */
2688 	error = ERR_PTR(-ENOMEM);
2689 	inode = new_inode(dir->i_sb);
2690 	if (!inode)
2691 		goto out;
2692 
2693 	/* Initialize the inode */
2694 	ei = PROC_I(inode);
2695 	inode->i_ino = get_next_ino();
2696 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2697 
2698 	/*
2699 	 * grab the reference to the task.
2700 	 */
2701 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2702 	if (!ei->pid)
2703 		goto out_iput;
2704 
2705 	inode->i_mode = p->mode;
2706 	if (S_ISDIR(inode->i_mode))
2707 		inode->i_nlink = 2;
2708 	if (S_ISLNK(inode->i_mode))
2709 		inode->i_size = 64;
2710 	if (p->iop)
2711 		inode->i_op = p->iop;
2712 	if (p->fop)
2713 		inode->i_fop = p->fop;
2714 	ei->op = p->op;
2715 	d_set_d_op(dentry, &proc_base_dentry_operations);
2716 	d_add(dentry, inode);
2717 	error = NULL;
2718 out:
2719 	return error;
2720 out_iput:
2721 	iput(inode);
2722 	goto out;
2723 }
2724 
2725 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2726 {
2727 	struct dentry *error;
2728 	struct task_struct *task = get_proc_task(dir);
2729 	const struct pid_entry *p, *last;
2730 
2731 	error = ERR_PTR(-ENOENT);
2732 
2733 	if (!task)
2734 		goto out_no_task;
2735 
2736 	/* Lookup the directory entry */
2737 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2738 	for (p = proc_base_stuff; p <= last; p++) {
2739 		if (p->len != dentry->d_name.len)
2740 			continue;
2741 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2742 			break;
2743 	}
2744 	if (p > last)
2745 		goto out;
2746 
2747 	error = proc_base_instantiate(dir, dentry, task, p);
2748 
2749 out:
2750 	put_task_struct(task);
2751 out_no_task:
2752 	return error;
2753 }
2754 
2755 static int proc_base_fill_cache(struct file *filp, void *dirent,
2756 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2757 {
2758 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2759 				proc_base_instantiate, task, p);
2760 }
2761 
2762 #ifdef CONFIG_TASK_IO_ACCOUNTING
2763 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2764 {
2765 	struct task_io_accounting acct = task->ioac;
2766 	unsigned long flags;
2767 
2768 	if (whole && lock_task_sighand(task, &flags)) {
2769 		struct task_struct *t = task;
2770 
2771 		task_io_accounting_add(&acct, &task->signal->ioac);
2772 		while_each_thread(task, t)
2773 			task_io_accounting_add(&acct, &t->ioac);
2774 
2775 		unlock_task_sighand(task, &flags);
2776 	}
2777 	return sprintf(buffer,
2778 			"rchar: %llu\n"
2779 			"wchar: %llu\n"
2780 			"syscr: %llu\n"
2781 			"syscw: %llu\n"
2782 			"read_bytes: %llu\n"
2783 			"write_bytes: %llu\n"
2784 			"cancelled_write_bytes: %llu\n",
2785 			(unsigned long long)acct.rchar,
2786 			(unsigned long long)acct.wchar,
2787 			(unsigned long long)acct.syscr,
2788 			(unsigned long long)acct.syscw,
2789 			(unsigned long long)acct.read_bytes,
2790 			(unsigned long long)acct.write_bytes,
2791 			(unsigned long long)acct.cancelled_write_bytes);
2792 }
2793 
2794 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2795 {
2796 	return do_io_accounting(task, buffer, 0);
2797 }
2798 
2799 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2800 {
2801 	return do_io_accounting(task, buffer, 1);
2802 }
2803 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2804 
2805 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2806 				struct pid *pid, struct task_struct *task)
2807 {
2808 	seq_printf(m, "%08x\n", task->personality);
2809 	return 0;
2810 }
2811 
2812 /*
2813  * Thread groups
2814  */
2815 static const struct file_operations proc_task_operations;
2816 static const struct inode_operations proc_task_inode_operations;
2817 
2818 static const struct pid_entry tgid_base_stuff[] = {
2819 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2820 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2821 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2822 #ifdef CONFIG_NET
2823 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2824 #endif
2825 	REG("environ",    S_IRUSR, proc_environ_operations),
2826 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2827 	ONE("status",     S_IRUGO, proc_pid_status),
2828 	ONE("personality", S_IRUSR, proc_pid_personality),
2829 	INF("limits",	  S_IRUGO, proc_pid_limits),
2830 #ifdef CONFIG_SCHED_DEBUG
2831 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2832 #endif
2833 #ifdef CONFIG_SCHED_AUTOGROUP
2834 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2835 #endif
2836 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2837 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2838 	INF("syscall",    S_IRUSR, proc_pid_syscall),
2839 #endif
2840 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2841 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2842 	ONE("statm",      S_IRUGO, proc_pid_statm),
2843 	REG("maps",       S_IRUGO, proc_maps_operations),
2844 #ifdef CONFIG_NUMA
2845 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2846 #endif
2847 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2848 	LNK("cwd",        proc_cwd_link),
2849 	LNK("root",       proc_root_link),
2850 	LNK("exe",        proc_exe_link),
2851 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2852 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2853 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2854 #ifdef CONFIG_PROC_PAGE_MONITOR
2855 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2856 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2857 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2858 #endif
2859 #ifdef CONFIG_SECURITY
2860 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2861 #endif
2862 #ifdef CONFIG_KALLSYMS
2863 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2864 #endif
2865 #ifdef CONFIG_STACKTRACE
2866 	ONE("stack",      S_IRUSR, proc_pid_stack),
2867 #endif
2868 #ifdef CONFIG_SCHEDSTATS
2869 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2870 #endif
2871 #ifdef CONFIG_LATENCYTOP
2872 	REG("latency",  S_IRUGO, proc_lstats_operations),
2873 #endif
2874 #ifdef CONFIG_PROC_PID_CPUSET
2875 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2876 #endif
2877 #ifdef CONFIG_CGROUPS
2878 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2879 #endif
2880 	INF("oom_score",  S_IRUGO, proc_oom_score),
2881 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2882 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2883 #ifdef CONFIG_AUDITSYSCALL
2884 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2885 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2886 #endif
2887 #ifdef CONFIG_FAULT_INJECTION
2888 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2889 #endif
2890 #ifdef CONFIG_ELF_CORE
2891 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2892 #endif
2893 #ifdef CONFIG_TASK_IO_ACCOUNTING
2894 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2895 #endif
2896 };
2897 
2898 static int proc_tgid_base_readdir(struct file * filp,
2899 			     void * dirent, filldir_t filldir)
2900 {
2901 	return proc_pident_readdir(filp,dirent,filldir,
2902 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2903 }
2904 
2905 static const struct file_operations proc_tgid_base_operations = {
2906 	.read		= generic_read_dir,
2907 	.readdir	= proc_tgid_base_readdir,
2908 	.llseek		= default_llseek,
2909 };
2910 
2911 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2912 	return proc_pident_lookup(dir, dentry,
2913 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2914 }
2915 
2916 static const struct inode_operations proc_tgid_base_inode_operations = {
2917 	.lookup		= proc_tgid_base_lookup,
2918 	.getattr	= pid_getattr,
2919 	.setattr	= proc_setattr,
2920 };
2921 
2922 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2923 {
2924 	struct dentry *dentry, *leader, *dir;
2925 	char buf[PROC_NUMBUF];
2926 	struct qstr name;
2927 
2928 	name.name = buf;
2929 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2930 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2931 	if (dentry) {
2932 		shrink_dcache_parent(dentry);
2933 		d_drop(dentry);
2934 		dput(dentry);
2935 	}
2936 
2937 	name.name = buf;
2938 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2939 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2940 	if (!leader)
2941 		goto out;
2942 
2943 	name.name = "task";
2944 	name.len = strlen(name.name);
2945 	dir = d_hash_and_lookup(leader, &name);
2946 	if (!dir)
2947 		goto out_put_leader;
2948 
2949 	name.name = buf;
2950 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2951 	dentry = d_hash_and_lookup(dir, &name);
2952 	if (dentry) {
2953 		shrink_dcache_parent(dentry);
2954 		d_drop(dentry);
2955 		dput(dentry);
2956 	}
2957 
2958 	dput(dir);
2959 out_put_leader:
2960 	dput(leader);
2961 out:
2962 	return;
2963 }
2964 
2965 /**
2966  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2967  * @task: task that should be flushed.
2968  *
2969  * When flushing dentries from proc, one needs to flush them from global
2970  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2971  * in. This call is supposed to do all of this job.
2972  *
2973  * Looks in the dcache for
2974  * /proc/@pid
2975  * /proc/@tgid/task/@pid
2976  * if either directory is present flushes it and all of it'ts children
2977  * from the dcache.
2978  *
2979  * It is safe and reasonable to cache /proc entries for a task until
2980  * that task exits.  After that they just clog up the dcache with
2981  * useless entries, possibly causing useful dcache entries to be
2982  * flushed instead.  This routine is proved to flush those useless
2983  * dcache entries at process exit time.
2984  *
2985  * NOTE: This routine is just an optimization so it does not guarantee
2986  *       that no dcache entries will exist at process exit time it
2987  *       just makes it very unlikely that any will persist.
2988  */
2989 
2990 void proc_flush_task(struct task_struct *task)
2991 {
2992 	int i;
2993 	struct pid *pid, *tgid;
2994 	struct upid *upid;
2995 
2996 	pid = task_pid(task);
2997 	tgid = task_tgid(task);
2998 
2999 	for (i = 0; i <= pid->level; i++) {
3000 		upid = &pid->numbers[i];
3001 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3002 					tgid->numbers[i].nr);
3003 	}
3004 
3005 	upid = &pid->numbers[pid->level];
3006 	if (upid->nr == 1)
3007 		pid_ns_release_proc(upid->ns);
3008 }
3009 
3010 static struct dentry *proc_pid_instantiate(struct inode *dir,
3011 					   struct dentry * dentry,
3012 					   struct task_struct *task, const void *ptr)
3013 {
3014 	struct dentry *error = ERR_PTR(-ENOENT);
3015 	struct inode *inode;
3016 
3017 	inode = proc_pid_make_inode(dir->i_sb, task);
3018 	if (!inode)
3019 		goto out;
3020 
3021 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3022 	inode->i_op = &proc_tgid_base_inode_operations;
3023 	inode->i_fop = &proc_tgid_base_operations;
3024 	inode->i_flags|=S_IMMUTABLE;
3025 
3026 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
3027 		ARRAY_SIZE(tgid_base_stuff));
3028 
3029 	d_set_d_op(dentry, &pid_dentry_operations);
3030 
3031 	d_add(dentry, inode);
3032 	/* Close the race of the process dying before we return the dentry */
3033 	if (pid_revalidate(dentry, NULL))
3034 		error = NULL;
3035 out:
3036 	return error;
3037 }
3038 
3039 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3040 {
3041 	struct dentry *result;
3042 	struct task_struct *task;
3043 	unsigned tgid;
3044 	struct pid_namespace *ns;
3045 
3046 	result = proc_base_lookup(dir, dentry);
3047 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3048 		goto out;
3049 
3050 	tgid = name_to_int(dentry);
3051 	if (tgid == ~0U)
3052 		goto out;
3053 
3054 	ns = dentry->d_sb->s_fs_info;
3055 	rcu_read_lock();
3056 	task = find_task_by_pid_ns(tgid, ns);
3057 	if (task)
3058 		get_task_struct(task);
3059 	rcu_read_unlock();
3060 	if (!task)
3061 		goto out;
3062 
3063 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3064 	put_task_struct(task);
3065 out:
3066 	return result;
3067 }
3068 
3069 /*
3070  * Find the first task with tgid >= tgid
3071  *
3072  */
3073 struct tgid_iter {
3074 	unsigned int tgid;
3075 	struct task_struct *task;
3076 };
3077 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3078 {
3079 	struct pid *pid;
3080 
3081 	if (iter.task)
3082 		put_task_struct(iter.task);
3083 	rcu_read_lock();
3084 retry:
3085 	iter.task = NULL;
3086 	pid = find_ge_pid(iter.tgid, ns);
3087 	if (pid) {
3088 		iter.tgid = pid_nr_ns(pid, ns);
3089 		iter.task = pid_task(pid, PIDTYPE_PID);
3090 		/* What we to know is if the pid we have find is the
3091 		 * pid of a thread_group_leader.  Testing for task
3092 		 * being a thread_group_leader is the obvious thing
3093 		 * todo but there is a window when it fails, due to
3094 		 * the pid transfer logic in de_thread.
3095 		 *
3096 		 * So we perform the straight forward test of seeing
3097 		 * if the pid we have found is the pid of a thread
3098 		 * group leader, and don't worry if the task we have
3099 		 * found doesn't happen to be a thread group leader.
3100 		 * As we don't care in the case of readdir.
3101 		 */
3102 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3103 			iter.tgid += 1;
3104 			goto retry;
3105 		}
3106 		get_task_struct(iter.task);
3107 	}
3108 	rcu_read_unlock();
3109 	return iter;
3110 }
3111 
3112 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3113 
3114 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3115 	struct tgid_iter iter)
3116 {
3117 	char name[PROC_NUMBUF];
3118 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3119 	return proc_fill_cache(filp, dirent, filldir, name, len,
3120 				proc_pid_instantiate, iter.task, NULL);
3121 }
3122 
3123 /* for the /proc/ directory itself, after non-process stuff has been done */
3124 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3125 {
3126 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3127 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
3128 	struct tgid_iter iter;
3129 	struct pid_namespace *ns;
3130 
3131 	if (!reaper)
3132 		goto out_no_task;
3133 
3134 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3135 		const struct pid_entry *p = &proc_base_stuff[nr];
3136 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3137 			goto out;
3138 	}
3139 
3140 	ns = filp->f_dentry->d_sb->s_fs_info;
3141 	iter.task = NULL;
3142 	iter.tgid = filp->f_pos - TGID_OFFSET;
3143 	for (iter = next_tgid(ns, iter);
3144 	     iter.task;
3145 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3146 		filp->f_pos = iter.tgid + TGID_OFFSET;
3147 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
3148 			put_task_struct(iter.task);
3149 			goto out;
3150 		}
3151 	}
3152 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3153 out:
3154 	put_task_struct(reaper);
3155 out_no_task:
3156 	return 0;
3157 }
3158 
3159 /*
3160  * Tasks
3161  */
3162 static const struct pid_entry tid_base_stuff[] = {
3163 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3164 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3165 	REG("environ",   S_IRUSR, proc_environ_operations),
3166 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3167 	ONE("status",    S_IRUGO, proc_pid_status),
3168 	ONE("personality", S_IRUSR, proc_pid_personality),
3169 	INF("limits",	 S_IRUGO, proc_pid_limits),
3170 #ifdef CONFIG_SCHED_DEBUG
3171 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3172 #endif
3173 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3174 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3175 	INF("syscall",   S_IRUSR, proc_pid_syscall),
3176 #endif
3177 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3178 	ONE("stat",      S_IRUGO, proc_tid_stat),
3179 	ONE("statm",     S_IRUGO, proc_pid_statm),
3180 	REG("maps",      S_IRUGO, proc_maps_operations),
3181 #ifdef CONFIG_NUMA
3182 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3183 #endif
3184 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3185 	LNK("cwd",       proc_cwd_link),
3186 	LNK("root",      proc_root_link),
3187 	LNK("exe",       proc_exe_link),
3188 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3189 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3190 #ifdef CONFIG_PROC_PAGE_MONITOR
3191 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3192 	REG("smaps",     S_IRUGO, proc_smaps_operations),
3193 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3194 #endif
3195 #ifdef CONFIG_SECURITY
3196 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3197 #endif
3198 #ifdef CONFIG_KALLSYMS
3199 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3200 #endif
3201 #ifdef CONFIG_STACKTRACE
3202 	ONE("stack",      S_IRUSR, proc_pid_stack),
3203 #endif
3204 #ifdef CONFIG_SCHEDSTATS
3205 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3206 #endif
3207 #ifdef CONFIG_LATENCYTOP
3208 	REG("latency",  S_IRUGO, proc_lstats_operations),
3209 #endif
3210 #ifdef CONFIG_PROC_PID_CPUSET
3211 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3212 #endif
3213 #ifdef CONFIG_CGROUPS
3214 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3215 #endif
3216 	INF("oom_score", S_IRUGO, proc_oom_score),
3217 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3218 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3219 #ifdef CONFIG_AUDITSYSCALL
3220 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3221 	REG("sessionid",  S_IRUSR, proc_sessionid_operations),
3222 #endif
3223 #ifdef CONFIG_FAULT_INJECTION
3224 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3225 #endif
3226 #ifdef CONFIG_TASK_IO_ACCOUNTING
3227 	INF("io",	S_IRUGO, proc_tid_io_accounting),
3228 #endif
3229 };
3230 
3231 static int proc_tid_base_readdir(struct file * filp,
3232 			     void * dirent, filldir_t filldir)
3233 {
3234 	return proc_pident_readdir(filp,dirent,filldir,
3235 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3236 }
3237 
3238 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3239 	return proc_pident_lookup(dir, dentry,
3240 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3241 }
3242 
3243 static const struct file_operations proc_tid_base_operations = {
3244 	.read		= generic_read_dir,
3245 	.readdir	= proc_tid_base_readdir,
3246 	.llseek		= default_llseek,
3247 };
3248 
3249 static const struct inode_operations proc_tid_base_inode_operations = {
3250 	.lookup		= proc_tid_base_lookup,
3251 	.getattr	= pid_getattr,
3252 	.setattr	= proc_setattr,
3253 };
3254 
3255 static struct dentry *proc_task_instantiate(struct inode *dir,
3256 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3257 {
3258 	struct dentry *error = ERR_PTR(-ENOENT);
3259 	struct inode *inode;
3260 	inode = proc_pid_make_inode(dir->i_sb, task);
3261 
3262 	if (!inode)
3263 		goto out;
3264 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3265 	inode->i_op = &proc_tid_base_inode_operations;
3266 	inode->i_fop = &proc_tid_base_operations;
3267 	inode->i_flags|=S_IMMUTABLE;
3268 
3269 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3270 		ARRAY_SIZE(tid_base_stuff));
3271 
3272 	d_set_d_op(dentry, &pid_dentry_operations);
3273 
3274 	d_add(dentry, inode);
3275 	/* Close the race of the process dying before we return the dentry */
3276 	if (pid_revalidate(dentry, NULL))
3277 		error = NULL;
3278 out:
3279 	return error;
3280 }
3281 
3282 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3283 {
3284 	struct dentry *result = ERR_PTR(-ENOENT);
3285 	struct task_struct *task;
3286 	struct task_struct *leader = get_proc_task(dir);
3287 	unsigned tid;
3288 	struct pid_namespace *ns;
3289 
3290 	if (!leader)
3291 		goto out_no_task;
3292 
3293 	tid = name_to_int(dentry);
3294 	if (tid == ~0U)
3295 		goto out;
3296 
3297 	ns = dentry->d_sb->s_fs_info;
3298 	rcu_read_lock();
3299 	task = find_task_by_pid_ns(tid, ns);
3300 	if (task)
3301 		get_task_struct(task);
3302 	rcu_read_unlock();
3303 	if (!task)
3304 		goto out;
3305 	if (!same_thread_group(leader, task))
3306 		goto out_drop_task;
3307 
3308 	result = proc_task_instantiate(dir, dentry, task, NULL);
3309 out_drop_task:
3310 	put_task_struct(task);
3311 out:
3312 	put_task_struct(leader);
3313 out_no_task:
3314 	return result;
3315 }
3316 
3317 /*
3318  * Find the first tid of a thread group to return to user space.
3319  *
3320  * Usually this is just the thread group leader, but if the users
3321  * buffer was too small or there was a seek into the middle of the
3322  * directory we have more work todo.
3323  *
3324  * In the case of a short read we start with find_task_by_pid.
3325  *
3326  * In the case of a seek we start with the leader and walk nr
3327  * threads past it.
3328  */
3329 static struct task_struct *first_tid(struct task_struct *leader,
3330 		int tid, int nr, struct pid_namespace *ns)
3331 {
3332 	struct task_struct *pos;
3333 
3334 	rcu_read_lock();
3335 	/* Attempt to start with the pid of a thread */
3336 	if (tid && (nr > 0)) {
3337 		pos = find_task_by_pid_ns(tid, ns);
3338 		if (pos && (pos->group_leader == leader))
3339 			goto found;
3340 	}
3341 
3342 	/* If nr exceeds the number of threads there is nothing todo */
3343 	pos = NULL;
3344 	if (nr && nr >= get_nr_threads(leader))
3345 		goto out;
3346 
3347 	/* If we haven't found our starting place yet start
3348 	 * with the leader and walk nr threads forward.
3349 	 */
3350 	for (pos = leader; nr > 0; --nr) {
3351 		pos = next_thread(pos);
3352 		if (pos == leader) {
3353 			pos = NULL;
3354 			goto out;
3355 		}
3356 	}
3357 found:
3358 	get_task_struct(pos);
3359 out:
3360 	rcu_read_unlock();
3361 	return pos;
3362 }
3363 
3364 /*
3365  * Find the next thread in the thread list.
3366  * Return NULL if there is an error or no next thread.
3367  *
3368  * The reference to the input task_struct is released.
3369  */
3370 static struct task_struct *next_tid(struct task_struct *start)
3371 {
3372 	struct task_struct *pos = NULL;
3373 	rcu_read_lock();
3374 	if (pid_alive(start)) {
3375 		pos = next_thread(start);
3376 		if (thread_group_leader(pos))
3377 			pos = NULL;
3378 		else
3379 			get_task_struct(pos);
3380 	}
3381 	rcu_read_unlock();
3382 	put_task_struct(start);
3383 	return pos;
3384 }
3385 
3386 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3387 	struct task_struct *task, int tid)
3388 {
3389 	char name[PROC_NUMBUF];
3390 	int len = snprintf(name, sizeof(name), "%d", tid);
3391 	return proc_fill_cache(filp, dirent, filldir, name, len,
3392 				proc_task_instantiate, task, NULL);
3393 }
3394 
3395 /* for the /proc/TGID/task/ directories */
3396 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3397 {
3398 	struct dentry *dentry = filp->f_path.dentry;
3399 	struct inode *inode = dentry->d_inode;
3400 	struct task_struct *leader = NULL;
3401 	struct task_struct *task;
3402 	int retval = -ENOENT;
3403 	ino_t ino;
3404 	int tid;
3405 	struct pid_namespace *ns;
3406 
3407 	task = get_proc_task(inode);
3408 	if (!task)
3409 		goto out_no_task;
3410 	rcu_read_lock();
3411 	if (pid_alive(task)) {
3412 		leader = task->group_leader;
3413 		get_task_struct(leader);
3414 	}
3415 	rcu_read_unlock();
3416 	put_task_struct(task);
3417 	if (!leader)
3418 		goto out_no_task;
3419 	retval = 0;
3420 
3421 	switch ((unsigned long)filp->f_pos) {
3422 	case 0:
3423 		ino = inode->i_ino;
3424 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3425 			goto out;
3426 		filp->f_pos++;
3427 		/* fall through */
3428 	case 1:
3429 		ino = parent_ino(dentry);
3430 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3431 			goto out;
3432 		filp->f_pos++;
3433 		/* fall through */
3434 	}
3435 
3436 	/* f_version caches the tgid value that the last readdir call couldn't
3437 	 * return. lseek aka telldir automagically resets f_version to 0.
3438 	 */
3439 	ns = filp->f_dentry->d_sb->s_fs_info;
3440 	tid = (int)filp->f_version;
3441 	filp->f_version = 0;
3442 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3443 	     task;
3444 	     task = next_tid(task), filp->f_pos++) {
3445 		tid = task_pid_nr_ns(task, ns);
3446 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3447 			/* returning this tgid failed, save it as the first
3448 			 * pid for the next readir call */
3449 			filp->f_version = (u64)tid;
3450 			put_task_struct(task);
3451 			break;
3452 		}
3453 	}
3454 out:
3455 	put_task_struct(leader);
3456 out_no_task:
3457 	return retval;
3458 }
3459 
3460 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3461 {
3462 	struct inode *inode = dentry->d_inode;
3463 	struct task_struct *p = get_proc_task(inode);
3464 	generic_fillattr(inode, stat);
3465 
3466 	if (p) {
3467 		stat->nlink += get_nr_threads(p);
3468 		put_task_struct(p);
3469 	}
3470 
3471 	return 0;
3472 }
3473 
3474 static const struct inode_operations proc_task_inode_operations = {
3475 	.lookup		= proc_task_lookup,
3476 	.getattr	= proc_task_getattr,
3477 	.setattr	= proc_setattr,
3478 };
3479 
3480 static const struct file_operations proc_task_operations = {
3481 	.read		= generic_read_dir,
3482 	.readdir	= proc_task_readdir,
3483 	.llseek		= default_llseek,
3484 };
3485