xref: /linux/fs/proc/base.c (revision 6d9c939dbe4d0bcea09cd4b410f624cde1acb678)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/flex_array.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100 
101 #include "../../lib/kstrtox.h"
102 
103 /* NOTE:
104  *	Implementing inode permission operations in /proc is almost
105  *	certainly an error.  Permission checks need to happen during
106  *	each system call not at open time.  The reason is that most of
107  *	what we wish to check for permissions in /proc varies at runtime.
108  *
109  *	The classic example of a problem is opening file descriptors
110  *	in /proc for a task before it execs a suid executable.
111  */
112 
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115 
116 struct pid_entry {
117 	const char *name;
118 	unsigned int len;
119 	umode_t mode;
120 	const struct inode_operations *iop;
121 	const struct file_operations *fop;
122 	union proc_op op;
123 };
124 
125 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
126 	.name = (NAME),					\
127 	.len  = sizeof(NAME) - 1,			\
128 	.mode = MODE,					\
129 	.iop  = IOP,					\
130 	.fop  = FOP,					\
131 	.op   = OP,					\
132 }
133 
134 #define DIR(NAME, MODE, iops, fops)	\
135 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link)					\
137 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
138 		&proc_pid_link_inode_operations, NULL,		\
139 		{ .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops)				\
141 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show)				\
143 	NOD(NAME, (S_IFREG|(MODE)),			\
144 		NULL, &proc_single_file_operations,	\
145 		{ .proc_show = show } )
146 #define ATTR(LSM, NAME, MODE)				\
147 	NOD(NAME, (S_IFREG|(MODE)),			\
148 		NULL, &proc_pid_attr_operations,	\
149 		{ .lsm = LSM })
150 
151 /*
152  * Count the number of hardlinks for the pid_entry table, excluding the .
153  * and .. links.
154  */
155 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
156 	unsigned int n)
157 {
158 	unsigned int i;
159 	unsigned int count;
160 
161 	count = 2;
162 	for (i = 0; i < n; ++i) {
163 		if (S_ISDIR(entries[i].mode))
164 			++count;
165 	}
166 
167 	return count;
168 }
169 
170 static int get_task_root(struct task_struct *task, struct path *root)
171 {
172 	int result = -ENOENT;
173 
174 	task_lock(task);
175 	if (task->fs) {
176 		get_fs_root(task->fs, root);
177 		result = 0;
178 	}
179 	task_unlock(task);
180 	return result;
181 }
182 
183 static int proc_cwd_link(struct dentry *dentry, struct path *path)
184 {
185 	struct task_struct *task = get_proc_task(d_inode(dentry));
186 	int result = -ENOENT;
187 
188 	if (task) {
189 		task_lock(task);
190 		if (task->fs) {
191 			get_fs_pwd(task->fs, path);
192 			result = 0;
193 		}
194 		task_unlock(task);
195 		put_task_struct(task);
196 	}
197 	return result;
198 }
199 
200 static int proc_root_link(struct dentry *dentry, struct path *path)
201 {
202 	struct task_struct *task = get_proc_task(d_inode(dentry));
203 	int result = -ENOENT;
204 
205 	if (task) {
206 		result = get_task_root(task, path);
207 		put_task_struct(task);
208 	}
209 	return result;
210 }
211 
212 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
213 			      size_t count, loff_t *ppos)
214 {
215 	unsigned long arg_start, arg_end, env_start, env_end;
216 	unsigned long pos, len;
217 	char *page;
218 
219 	/* Check if process spawned far enough to have cmdline. */
220 	if (!mm->env_end)
221 		return 0;
222 
223 	spin_lock(&mm->arg_lock);
224 	arg_start = mm->arg_start;
225 	arg_end = mm->arg_end;
226 	env_start = mm->env_start;
227 	env_end = mm->env_end;
228 	spin_unlock(&mm->arg_lock);
229 
230 	if (arg_start >= arg_end)
231 		return 0;
232 
233 	/*
234 	 * We have traditionally allowed the user to re-write
235 	 * the argument strings and overflow the end result
236 	 * into the environment section. But only do that if
237 	 * the environment area is contiguous to the arguments.
238 	 */
239 	if (env_start != arg_end || env_start >= env_end)
240 		env_start = env_end = arg_end;
241 
242 	/* .. and limit it to a maximum of one page of slop */
243 	if (env_end >= arg_end + PAGE_SIZE)
244 		env_end = arg_end + PAGE_SIZE - 1;
245 
246 	/* We're not going to care if "*ppos" has high bits set */
247 	pos = arg_start + *ppos;
248 
249 	/* .. but we do check the result is in the proper range */
250 	if (pos < arg_start || pos >= env_end)
251 		return 0;
252 
253 	/* .. and we never go past env_end */
254 	if (env_end - pos < count)
255 		count = env_end - pos;
256 
257 	page = (char *)__get_free_page(GFP_KERNEL);
258 	if (!page)
259 		return -ENOMEM;
260 
261 	len = 0;
262 	while (count) {
263 		int got;
264 		size_t size = min_t(size_t, PAGE_SIZE, count);
265 		long offset;
266 
267 		/*
268 		 * Are we already starting past the official end?
269 		 * We always include the last byte that is *supposed*
270 		 * to be NUL
271 		 */
272 		offset = (pos >= arg_end) ? pos - arg_end + 1 : 0;
273 
274 		got = access_remote_vm(mm, pos - offset, page, size + offset, FOLL_ANON);
275 		if (got <= offset)
276 			break;
277 		got -= offset;
278 
279 		/* Don't walk past a NUL character once you hit arg_end */
280 		if (pos + got >= arg_end) {
281 			int n = 0;
282 
283 			/*
284 			 * If we started before 'arg_end' but ended up
285 			 * at or after it, we start the NUL character
286 			 * check at arg_end-1 (where we expect the normal
287 			 * EOF to be).
288 			 *
289 			 * NOTE! This is smaller than 'got', because
290 			 * pos + got >= arg_end
291 			 */
292 			if (pos < arg_end)
293 				n = arg_end - pos - 1;
294 
295 			/* Cut off at first NUL after 'n' */
296 			got = n + strnlen(page+n, offset+got-n);
297 			if (got < offset)
298 				break;
299 			got -= offset;
300 
301 			/* Include the NUL if it existed */
302 			if (got < size)
303 				got++;
304 		}
305 
306 		got -= copy_to_user(buf, page+offset, got);
307 		if (unlikely(!got)) {
308 			if (!len)
309 				len = -EFAULT;
310 			break;
311 		}
312 		pos += got;
313 		buf += got;
314 		len += got;
315 		count -= got;
316 	}
317 
318 	free_page((unsigned long)page);
319 	return len;
320 }
321 
322 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
323 				size_t count, loff_t *pos)
324 {
325 	struct mm_struct *mm;
326 	ssize_t ret;
327 
328 	mm = get_task_mm(tsk);
329 	if (!mm)
330 		return 0;
331 
332 	ret = get_mm_cmdline(mm, buf, count, pos);
333 	mmput(mm);
334 	return ret;
335 }
336 
337 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
338 				     size_t count, loff_t *pos)
339 {
340 	struct task_struct *tsk;
341 	ssize_t ret;
342 
343 	BUG_ON(*pos < 0);
344 
345 	tsk = get_proc_task(file_inode(file));
346 	if (!tsk)
347 		return -ESRCH;
348 	ret = get_task_cmdline(tsk, buf, count, pos);
349 	put_task_struct(tsk);
350 	if (ret > 0)
351 		*pos += ret;
352 	return ret;
353 }
354 
355 static const struct file_operations proc_pid_cmdline_ops = {
356 	.read	= proc_pid_cmdline_read,
357 	.llseek	= generic_file_llseek,
358 };
359 
360 #ifdef CONFIG_KALLSYMS
361 /*
362  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
363  * Returns the resolved symbol.  If that fails, simply return the address.
364  */
365 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
366 			  struct pid *pid, struct task_struct *task)
367 {
368 	unsigned long wchan;
369 	char symname[KSYM_NAME_LEN];
370 
371 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
372 		goto print0;
373 
374 	wchan = get_wchan(task);
375 	if (wchan && !lookup_symbol_name(wchan, symname)) {
376 		seq_puts(m, symname);
377 		return 0;
378 	}
379 
380 print0:
381 	seq_putc(m, '0');
382 	return 0;
383 }
384 #endif /* CONFIG_KALLSYMS */
385 
386 static int lock_trace(struct task_struct *task)
387 {
388 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
389 	if (err)
390 		return err;
391 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
392 		mutex_unlock(&task->signal->cred_guard_mutex);
393 		return -EPERM;
394 	}
395 	return 0;
396 }
397 
398 static void unlock_trace(struct task_struct *task)
399 {
400 	mutex_unlock(&task->signal->cred_guard_mutex);
401 }
402 
403 #ifdef CONFIG_STACKTRACE
404 
405 #define MAX_STACK_TRACE_DEPTH	64
406 
407 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
408 			  struct pid *pid, struct task_struct *task)
409 {
410 	struct stack_trace trace;
411 	unsigned long *entries;
412 	int err;
413 
414 	/*
415 	 * The ability to racily run the kernel stack unwinder on a running task
416 	 * and then observe the unwinder output is scary; while it is useful for
417 	 * debugging kernel issues, it can also allow an attacker to leak kernel
418 	 * stack contents.
419 	 * Doing this in a manner that is at least safe from races would require
420 	 * some work to ensure that the remote task can not be scheduled; and
421 	 * even then, this would still expose the unwinder as local attack
422 	 * surface.
423 	 * Therefore, this interface is restricted to root.
424 	 */
425 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
426 		return -EACCES;
427 
428 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
429 				GFP_KERNEL);
430 	if (!entries)
431 		return -ENOMEM;
432 
433 	trace.nr_entries	= 0;
434 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
435 	trace.entries		= entries;
436 	trace.skip		= 0;
437 
438 	err = lock_trace(task);
439 	if (!err) {
440 		unsigned int i;
441 
442 		save_stack_trace_tsk(task, &trace);
443 
444 		for (i = 0; i < trace.nr_entries; i++) {
445 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
446 		}
447 		unlock_trace(task);
448 	}
449 	kfree(entries);
450 
451 	return err;
452 }
453 #endif
454 
455 #ifdef CONFIG_SCHED_INFO
456 /*
457  * Provides /proc/PID/schedstat
458  */
459 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
460 			      struct pid *pid, struct task_struct *task)
461 {
462 	if (unlikely(!sched_info_on()))
463 		seq_printf(m, "0 0 0\n");
464 	else
465 		seq_printf(m, "%llu %llu %lu\n",
466 		   (unsigned long long)task->se.sum_exec_runtime,
467 		   (unsigned long long)task->sched_info.run_delay,
468 		   task->sched_info.pcount);
469 
470 	return 0;
471 }
472 #endif
473 
474 #ifdef CONFIG_LATENCYTOP
475 static int lstats_show_proc(struct seq_file *m, void *v)
476 {
477 	int i;
478 	struct inode *inode = m->private;
479 	struct task_struct *task = get_proc_task(inode);
480 
481 	if (!task)
482 		return -ESRCH;
483 	seq_puts(m, "Latency Top version : v0.1\n");
484 	for (i = 0; i < LT_SAVECOUNT; i++) {
485 		struct latency_record *lr = &task->latency_record[i];
486 		if (lr->backtrace[0]) {
487 			int q;
488 			seq_printf(m, "%i %li %li",
489 				   lr->count, lr->time, lr->max);
490 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
491 				unsigned long bt = lr->backtrace[q];
492 				if (!bt)
493 					break;
494 				if (bt == ULONG_MAX)
495 					break;
496 				seq_printf(m, " %ps", (void *)bt);
497 			}
498 			seq_putc(m, '\n');
499 		}
500 
501 	}
502 	put_task_struct(task);
503 	return 0;
504 }
505 
506 static int lstats_open(struct inode *inode, struct file *file)
507 {
508 	return single_open(file, lstats_show_proc, inode);
509 }
510 
511 static ssize_t lstats_write(struct file *file, const char __user *buf,
512 			    size_t count, loff_t *offs)
513 {
514 	struct task_struct *task = get_proc_task(file_inode(file));
515 
516 	if (!task)
517 		return -ESRCH;
518 	clear_all_latency_tracing(task);
519 	put_task_struct(task);
520 
521 	return count;
522 }
523 
524 static const struct file_operations proc_lstats_operations = {
525 	.open		= lstats_open,
526 	.read		= seq_read,
527 	.write		= lstats_write,
528 	.llseek		= seq_lseek,
529 	.release	= single_release,
530 };
531 
532 #endif
533 
534 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
535 			  struct pid *pid, struct task_struct *task)
536 {
537 	unsigned long totalpages = totalram_pages() + total_swap_pages;
538 	unsigned long points = 0;
539 
540 	points = oom_badness(task, NULL, NULL, totalpages) *
541 					1000 / totalpages;
542 	seq_printf(m, "%lu\n", points);
543 
544 	return 0;
545 }
546 
547 struct limit_names {
548 	const char *name;
549 	const char *unit;
550 };
551 
552 static const struct limit_names lnames[RLIM_NLIMITS] = {
553 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
554 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
555 	[RLIMIT_DATA] = {"Max data size", "bytes"},
556 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
557 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
558 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
559 	[RLIMIT_NPROC] = {"Max processes", "processes"},
560 	[RLIMIT_NOFILE] = {"Max open files", "files"},
561 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
562 	[RLIMIT_AS] = {"Max address space", "bytes"},
563 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
564 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
565 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
566 	[RLIMIT_NICE] = {"Max nice priority", NULL},
567 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
568 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
569 };
570 
571 /* Display limits for a process */
572 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
573 			   struct pid *pid, struct task_struct *task)
574 {
575 	unsigned int i;
576 	unsigned long flags;
577 
578 	struct rlimit rlim[RLIM_NLIMITS];
579 
580 	if (!lock_task_sighand(task, &flags))
581 		return 0;
582 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
583 	unlock_task_sighand(task, &flags);
584 
585 	/*
586 	 * print the file header
587 	 */
588 	seq_puts(m, "Limit                     "
589 		"Soft Limit           "
590 		"Hard Limit           "
591 		"Units     \n");
592 
593 	for (i = 0; i < RLIM_NLIMITS; i++) {
594 		if (rlim[i].rlim_cur == RLIM_INFINITY)
595 			seq_printf(m, "%-25s %-20s ",
596 				   lnames[i].name, "unlimited");
597 		else
598 			seq_printf(m, "%-25s %-20lu ",
599 				   lnames[i].name, rlim[i].rlim_cur);
600 
601 		if (rlim[i].rlim_max == RLIM_INFINITY)
602 			seq_printf(m, "%-20s ", "unlimited");
603 		else
604 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
605 
606 		if (lnames[i].unit)
607 			seq_printf(m, "%-10s\n", lnames[i].unit);
608 		else
609 			seq_putc(m, '\n');
610 	}
611 
612 	return 0;
613 }
614 
615 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
616 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
617 			    struct pid *pid, struct task_struct *task)
618 {
619 	long nr;
620 	unsigned long args[6], sp, pc;
621 	int res;
622 
623 	res = lock_trace(task);
624 	if (res)
625 		return res;
626 
627 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
628 		seq_puts(m, "running\n");
629 	else if (nr < 0)
630 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
631 	else
632 		seq_printf(m,
633 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
634 		       nr,
635 		       args[0], args[1], args[2], args[3], args[4], args[5],
636 		       sp, pc);
637 	unlock_trace(task);
638 
639 	return 0;
640 }
641 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
642 
643 /************************************************************************/
644 /*                       Here the fs part begins                        */
645 /************************************************************************/
646 
647 /* permission checks */
648 static int proc_fd_access_allowed(struct inode *inode)
649 {
650 	struct task_struct *task;
651 	int allowed = 0;
652 	/* Allow access to a task's file descriptors if it is us or we
653 	 * may use ptrace attach to the process and find out that
654 	 * information.
655 	 */
656 	task = get_proc_task(inode);
657 	if (task) {
658 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
659 		put_task_struct(task);
660 	}
661 	return allowed;
662 }
663 
664 int proc_setattr(struct dentry *dentry, struct iattr *attr)
665 {
666 	int error;
667 	struct inode *inode = d_inode(dentry);
668 
669 	if (attr->ia_valid & ATTR_MODE)
670 		return -EPERM;
671 
672 	error = setattr_prepare(dentry, attr);
673 	if (error)
674 		return error;
675 
676 	setattr_copy(inode, attr);
677 	mark_inode_dirty(inode);
678 	return 0;
679 }
680 
681 /*
682  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
683  * or euid/egid (for hide_pid_min=2)?
684  */
685 static bool has_pid_permissions(struct pid_namespace *pid,
686 				 struct task_struct *task,
687 				 int hide_pid_min)
688 {
689 	if (pid->hide_pid < hide_pid_min)
690 		return true;
691 	if (in_group_p(pid->pid_gid))
692 		return true;
693 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
694 }
695 
696 
697 static int proc_pid_permission(struct inode *inode, int mask)
698 {
699 	struct pid_namespace *pid = proc_pid_ns(inode);
700 	struct task_struct *task;
701 	bool has_perms;
702 
703 	task = get_proc_task(inode);
704 	if (!task)
705 		return -ESRCH;
706 	has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
707 	put_task_struct(task);
708 
709 	if (!has_perms) {
710 		if (pid->hide_pid == HIDEPID_INVISIBLE) {
711 			/*
712 			 * Let's make getdents(), stat(), and open()
713 			 * consistent with each other.  If a process
714 			 * may not stat() a file, it shouldn't be seen
715 			 * in procfs at all.
716 			 */
717 			return -ENOENT;
718 		}
719 
720 		return -EPERM;
721 	}
722 	return generic_permission(inode, mask);
723 }
724 
725 
726 
727 static const struct inode_operations proc_def_inode_operations = {
728 	.setattr	= proc_setattr,
729 };
730 
731 static int proc_single_show(struct seq_file *m, void *v)
732 {
733 	struct inode *inode = m->private;
734 	struct pid_namespace *ns = proc_pid_ns(inode);
735 	struct pid *pid = proc_pid(inode);
736 	struct task_struct *task;
737 	int ret;
738 
739 	task = get_pid_task(pid, PIDTYPE_PID);
740 	if (!task)
741 		return -ESRCH;
742 
743 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
744 
745 	put_task_struct(task);
746 	return ret;
747 }
748 
749 static int proc_single_open(struct inode *inode, struct file *filp)
750 {
751 	return single_open(filp, proc_single_show, inode);
752 }
753 
754 static const struct file_operations proc_single_file_operations = {
755 	.open		= proc_single_open,
756 	.read		= seq_read,
757 	.llseek		= seq_lseek,
758 	.release	= single_release,
759 };
760 
761 
762 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
763 {
764 	struct task_struct *task = get_proc_task(inode);
765 	struct mm_struct *mm = ERR_PTR(-ESRCH);
766 
767 	if (task) {
768 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
769 		put_task_struct(task);
770 
771 		if (!IS_ERR_OR_NULL(mm)) {
772 			/* ensure this mm_struct can't be freed */
773 			mmgrab(mm);
774 			/* but do not pin its memory */
775 			mmput(mm);
776 		}
777 	}
778 
779 	return mm;
780 }
781 
782 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
783 {
784 	struct mm_struct *mm = proc_mem_open(inode, mode);
785 
786 	if (IS_ERR(mm))
787 		return PTR_ERR(mm);
788 
789 	file->private_data = mm;
790 	return 0;
791 }
792 
793 static int mem_open(struct inode *inode, struct file *file)
794 {
795 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
796 
797 	/* OK to pass negative loff_t, we can catch out-of-range */
798 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
799 
800 	return ret;
801 }
802 
803 static ssize_t mem_rw(struct file *file, char __user *buf,
804 			size_t count, loff_t *ppos, int write)
805 {
806 	struct mm_struct *mm = file->private_data;
807 	unsigned long addr = *ppos;
808 	ssize_t copied;
809 	char *page;
810 	unsigned int flags;
811 
812 	if (!mm)
813 		return 0;
814 
815 	page = (char *)__get_free_page(GFP_KERNEL);
816 	if (!page)
817 		return -ENOMEM;
818 
819 	copied = 0;
820 	if (!mmget_not_zero(mm))
821 		goto free;
822 
823 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
824 
825 	while (count > 0) {
826 		int this_len = min_t(int, count, PAGE_SIZE);
827 
828 		if (write && copy_from_user(page, buf, this_len)) {
829 			copied = -EFAULT;
830 			break;
831 		}
832 
833 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
834 		if (!this_len) {
835 			if (!copied)
836 				copied = -EIO;
837 			break;
838 		}
839 
840 		if (!write && copy_to_user(buf, page, this_len)) {
841 			copied = -EFAULT;
842 			break;
843 		}
844 
845 		buf += this_len;
846 		addr += this_len;
847 		copied += this_len;
848 		count -= this_len;
849 	}
850 	*ppos = addr;
851 
852 	mmput(mm);
853 free:
854 	free_page((unsigned long) page);
855 	return copied;
856 }
857 
858 static ssize_t mem_read(struct file *file, char __user *buf,
859 			size_t count, loff_t *ppos)
860 {
861 	return mem_rw(file, buf, count, ppos, 0);
862 }
863 
864 static ssize_t mem_write(struct file *file, const char __user *buf,
865 			 size_t count, loff_t *ppos)
866 {
867 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
868 }
869 
870 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
871 {
872 	switch (orig) {
873 	case 0:
874 		file->f_pos = offset;
875 		break;
876 	case 1:
877 		file->f_pos += offset;
878 		break;
879 	default:
880 		return -EINVAL;
881 	}
882 	force_successful_syscall_return();
883 	return file->f_pos;
884 }
885 
886 static int mem_release(struct inode *inode, struct file *file)
887 {
888 	struct mm_struct *mm = file->private_data;
889 	if (mm)
890 		mmdrop(mm);
891 	return 0;
892 }
893 
894 static const struct file_operations proc_mem_operations = {
895 	.llseek		= mem_lseek,
896 	.read		= mem_read,
897 	.write		= mem_write,
898 	.open		= mem_open,
899 	.release	= mem_release,
900 };
901 
902 static int environ_open(struct inode *inode, struct file *file)
903 {
904 	return __mem_open(inode, file, PTRACE_MODE_READ);
905 }
906 
907 static ssize_t environ_read(struct file *file, char __user *buf,
908 			size_t count, loff_t *ppos)
909 {
910 	char *page;
911 	unsigned long src = *ppos;
912 	int ret = 0;
913 	struct mm_struct *mm = file->private_data;
914 	unsigned long env_start, env_end;
915 
916 	/* Ensure the process spawned far enough to have an environment. */
917 	if (!mm || !mm->env_end)
918 		return 0;
919 
920 	page = (char *)__get_free_page(GFP_KERNEL);
921 	if (!page)
922 		return -ENOMEM;
923 
924 	ret = 0;
925 	if (!mmget_not_zero(mm))
926 		goto free;
927 
928 	spin_lock(&mm->arg_lock);
929 	env_start = mm->env_start;
930 	env_end = mm->env_end;
931 	spin_unlock(&mm->arg_lock);
932 
933 	while (count > 0) {
934 		size_t this_len, max_len;
935 		int retval;
936 
937 		if (src >= (env_end - env_start))
938 			break;
939 
940 		this_len = env_end - (env_start + src);
941 
942 		max_len = min_t(size_t, PAGE_SIZE, count);
943 		this_len = min(max_len, this_len);
944 
945 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
946 
947 		if (retval <= 0) {
948 			ret = retval;
949 			break;
950 		}
951 
952 		if (copy_to_user(buf, page, retval)) {
953 			ret = -EFAULT;
954 			break;
955 		}
956 
957 		ret += retval;
958 		src += retval;
959 		buf += retval;
960 		count -= retval;
961 	}
962 	*ppos = src;
963 	mmput(mm);
964 
965 free:
966 	free_page((unsigned long) page);
967 	return ret;
968 }
969 
970 static const struct file_operations proc_environ_operations = {
971 	.open		= environ_open,
972 	.read		= environ_read,
973 	.llseek		= generic_file_llseek,
974 	.release	= mem_release,
975 };
976 
977 static int auxv_open(struct inode *inode, struct file *file)
978 {
979 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
980 }
981 
982 static ssize_t auxv_read(struct file *file, char __user *buf,
983 			size_t count, loff_t *ppos)
984 {
985 	struct mm_struct *mm = file->private_data;
986 	unsigned int nwords = 0;
987 
988 	if (!mm)
989 		return 0;
990 	do {
991 		nwords += 2;
992 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
993 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
994 				       nwords * sizeof(mm->saved_auxv[0]));
995 }
996 
997 static const struct file_operations proc_auxv_operations = {
998 	.open		= auxv_open,
999 	.read		= auxv_read,
1000 	.llseek		= generic_file_llseek,
1001 	.release	= mem_release,
1002 };
1003 
1004 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1005 			    loff_t *ppos)
1006 {
1007 	struct task_struct *task = get_proc_task(file_inode(file));
1008 	char buffer[PROC_NUMBUF];
1009 	int oom_adj = OOM_ADJUST_MIN;
1010 	size_t len;
1011 
1012 	if (!task)
1013 		return -ESRCH;
1014 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1015 		oom_adj = OOM_ADJUST_MAX;
1016 	else
1017 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1018 			  OOM_SCORE_ADJ_MAX;
1019 	put_task_struct(task);
1020 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1021 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1022 }
1023 
1024 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1025 {
1026 	static DEFINE_MUTEX(oom_adj_mutex);
1027 	struct mm_struct *mm = NULL;
1028 	struct task_struct *task;
1029 	int err = 0;
1030 
1031 	task = get_proc_task(file_inode(file));
1032 	if (!task)
1033 		return -ESRCH;
1034 
1035 	mutex_lock(&oom_adj_mutex);
1036 	if (legacy) {
1037 		if (oom_adj < task->signal->oom_score_adj &&
1038 				!capable(CAP_SYS_RESOURCE)) {
1039 			err = -EACCES;
1040 			goto err_unlock;
1041 		}
1042 		/*
1043 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1044 		 * /proc/pid/oom_score_adj instead.
1045 		 */
1046 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1047 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1048 			  task_pid_nr(task));
1049 	} else {
1050 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1051 				!capable(CAP_SYS_RESOURCE)) {
1052 			err = -EACCES;
1053 			goto err_unlock;
1054 		}
1055 	}
1056 
1057 	/*
1058 	 * Make sure we will check other processes sharing the mm if this is
1059 	 * not vfrok which wants its own oom_score_adj.
1060 	 * pin the mm so it doesn't go away and get reused after task_unlock
1061 	 */
1062 	if (!task->vfork_done) {
1063 		struct task_struct *p = find_lock_task_mm(task);
1064 
1065 		if (p) {
1066 			if (atomic_read(&p->mm->mm_users) > 1) {
1067 				mm = p->mm;
1068 				mmgrab(mm);
1069 			}
1070 			task_unlock(p);
1071 		}
1072 	}
1073 
1074 	task->signal->oom_score_adj = oom_adj;
1075 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1076 		task->signal->oom_score_adj_min = (short)oom_adj;
1077 	trace_oom_score_adj_update(task);
1078 
1079 	if (mm) {
1080 		struct task_struct *p;
1081 
1082 		rcu_read_lock();
1083 		for_each_process(p) {
1084 			if (same_thread_group(task, p))
1085 				continue;
1086 
1087 			/* do not touch kernel threads or the global init */
1088 			if (p->flags & PF_KTHREAD || is_global_init(p))
1089 				continue;
1090 
1091 			task_lock(p);
1092 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1093 				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1094 						task_pid_nr(p), p->comm,
1095 						p->signal->oom_score_adj, oom_adj,
1096 						task_pid_nr(task), task->comm);
1097 				p->signal->oom_score_adj = oom_adj;
1098 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1099 					p->signal->oom_score_adj_min = (short)oom_adj;
1100 			}
1101 			task_unlock(p);
1102 		}
1103 		rcu_read_unlock();
1104 		mmdrop(mm);
1105 	}
1106 err_unlock:
1107 	mutex_unlock(&oom_adj_mutex);
1108 	put_task_struct(task);
1109 	return err;
1110 }
1111 
1112 /*
1113  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1114  * kernels.  The effective policy is defined by oom_score_adj, which has a
1115  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1116  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1117  * Processes that become oom disabled via oom_adj will still be oom disabled
1118  * with this implementation.
1119  *
1120  * oom_adj cannot be removed since existing userspace binaries use it.
1121  */
1122 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1123 			     size_t count, loff_t *ppos)
1124 {
1125 	char buffer[PROC_NUMBUF];
1126 	int oom_adj;
1127 	int err;
1128 
1129 	memset(buffer, 0, sizeof(buffer));
1130 	if (count > sizeof(buffer) - 1)
1131 		count = sizeof(buffer) - 1;
1132 	if (copy_from_user(buffer, buf, count)) {
1133 		err = -EFAULT;
1134 		goto out;
1135 	}
1136 
1137 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1138 	if (err)
1139 		goto out;
1140 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1141 	     oom_adj != OOM_DISABLE) {
1142 		err = -EINVAL;
1143 		goto out;
1144 	}
1145 
1146 	/*
1147 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1148 	 * value is always attainable.
1149 	 */
1150 	if (oom_adj == OOM_ADJUST_MAX)
1151 		oom_adj = OOM_SCORE_ADJ_MAX;
1152 	else
1153 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1154 
1155 	err = __set_oom_adj(file, oom_adj, true);
1156 out:
1157 	return err < 0 ? err : count;
1158 }
1159 
1160 static const struct file_operations proc_oom_adj_operations = {
1161 	.read		= oom_adj_read,
1162 	.write		= oom_adj_write,
1163 	.llseek		= generic_file_llseek,
1164 };
1165 
1166 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1167 					size_t count, loff_t *ppos)
1168 {
1169 	struct task_struct *task = get_proc_task(file_inode(file));
1170 	char buffer[PROC_NUMBUF];
1171 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1172 	size_t len;
1173 
1174 	if (!task)
1175 		return -ESRCH;
1176 	oom_score_adj = task->signal->oom_score_adj;
1177 	put_task_struct(task);
1178 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1179 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1180 }
1181 
1182 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1183 					size_t count, loff_t *ppos)
1184 {
1185 	char buffer[PROC_NUMBUF];
1186 	int oom_score_adj;
1187 	int err;
1188 
1189 	memset(buffer, 0, sizeof(buffer));
1190 	if (count > sizeof(buffer) - 1)
1191 		count = sizeof(buffer) - 1;
1192 	if (copy_from_user(buffer, buf, count)) {
1193 		err = -EFAULT;
1194 		goto out;
1195 	}
1196 
1197 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1198 	if (err)
1199 		goto out;
1200 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1201 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1202 		err = -EINVAL;
1203 		goto out;
1204 	}
1205 
1206 	err = __set_oom_adj(file, oom_score_adj, false);
1207 out:
1208 	return err < 0 ? err : count;
1209 }
1210 
1211 static const struct file_operations proc_oom_score_adj_operations = {
1212 	.read		= oom_score_adj_read,
1213 	.write		= oom_score_adj_write,
1214 	.llseek		= default_llseek,
1215 };
1216 
1217 #ifdef CONFIG_AUDITSYSCALL
1218 #define TMPBUFLEN 11
1219 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1220 				  size_t count, loff_t *ppos)
1221 {
1222 	struct inode * inode = file_inode(file);
1223 	struct task_struct *task = get_proc_task(inode);
1224 	ssize_t length;
1225 	char tmpbuf[TMPBUFLEN];
1226 
1227 	if (!task)
1228 		return -ESRCH;
1229 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1230 			   from_kuid(file->f_cred->user_ns,
1231 				     audit_get_loginuid(task)));
1232 	put_task_struct(task);
1233 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1234 }
1235 
1236 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1237 				   size_t count, loff_t *ppos)
1238 {
1239 	struct inode * inode = file_inode(file);
1240 	uid_t loginuid;
1241 	kuid_t kloginuid;
1242 	int rv;
1243 
1244 	rcu_read_lock();
1245 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1246 		rcu_read_unlock();
1247 		return -EPERM;
1248 	}
1249 	rcu_read_unlock();
1250 
1251 	if (*ppos != 0) {
1252 		/* No partial writes. */
1253 		return -EINVAL;
1254 	}
1255 
1256 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1257 	if (rv < 0)
1258 		return rv;
1259 
1260 	/* is userspace tring to explicitly UNSET the loginuid? */
1261 	if (loginuid == AUDIT_UID_UNSET) {
1262 		kloginuid = INVALID_UID;
1263 	} else {
1264 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1265 		if (!uid_valid(kloginuid))
1266 			return -EINVAL;
1267 	}
1268 
1269 	rv = audit_set_loginuid(kloginuid);
1270 	if (rv < 0)
1271 		return rv;
1272 	return count;
1273 }
1274 
1275 static const struct file_operations proc_loginuid_operations = {
1276 	.read		= proc_loginuid_read,
1277 	.write		= proc_loginuid_write,
1278 	.llseek		= generic_file_llseek,
1279 };
1280 
1281 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1282 				  size_t count, loff_t *ppos)
1283 {
1284 	struct inode * inode = file_inode(file);
1285 	struct task_struct *task = get_proc_task(inode);
1286 	ssize_t length;
1287 	char tmpbuf[TMPBUFLEN];
1288 
1289 	if (!task)
1290 		return -ESRCH;
1291 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1292 				audit_get_sessionid(task));
1293 	put_task_struct(task);
1294 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1295 }
1296 
1297 static const struct file_operations proc_sessionid_operations = {
1298 	.read		= proc_sessionid_read,
1299 	.llseek		= generic_file_llseek,
1300 };
1301 #endif
1302 
1303 #ifdef CONFIG_FAULT_INJECTION
1304 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1305 				      size_t count, loff_t *ppos)
1306 {
1307 	struct task_struct *task = get_proc_task(file_inode(file));
1308 	char buffer[PROC_NUMBUF];
1309 	size_t len;
1310 	int make_it_fail;
1311 
1312 	if (!task)
1313 		return -ESRCH;
1314 	make_it_fail = task->make_it_fail;
1315 	put_task_struct(task);
1316 
1317 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1318 
1319 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1320 }
1321 
1322 static ssize_t proc_fault_inject_write(struct file * file,
1323 			const char __user * buf, size_t count, loff_t *ppos)
1324 {
1325 	struct task_struct *task;
1326 	char buffer[PROC_NUMBUF];
1327 	int make_it_fail;
1328 	int rv;
1329 
1330 	if (!capable(CAP_SYS_RESOURCE))
1331 		return -EPERM;
1332 	memset(buffer, 0, sizeof(buffer));
1333 	if (count > sizeof(buffer) - 1)
1334 		count = sizeof(buffer) - 1;
1335 	if (copy_from_user(buffer, buf, count))
1336 		return -EFAULT;
1337 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1338 	if (rv < 0)
1339 		return rv;
1340 	if (make_it_fail < 0 || make_it_fail > 1)
1341 		return -EINVAL;
1342 
1343 	task = get_proc_task(file_inode(file));
1344 	if (!task)
1345 		return -ESRCH;
1346 	task->make_it_fail = make_it_fail;
1347 	put_task_struct(task);
1348 
1349 	return count;
1350 }
1351 
1352 static const struct file_operations proc_fault_inject_operations = {
1353 	.read		= proc_fault_inject_read,
1354 	.write		= proc_fault_inject_write,
1355 	.llseek		= generic_file_llseek,
1356 };
1357 
1358 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1359 				   size_t count, loff_t *ppos)
1360 {
1361 	struct task_struct *task;
1362 	int err;
1363 	unsigned int n;
1364 
1365 	err = kstrtouint_from_user(buf, count, 0, &n);
1366 	if (err)
1367 		return err;
1368 
1369 	task = get_proc_task(file_inode(file));
1370 	if (!task)
1371 		return -ESRCH;
1372 	task->fail_nth = n;
1373 	put_task_struct(task);
1374 
1375 	return count;
1376 }
1377 
1378 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1379 				  size_t count, loff_t *ppos)
1380 {
1381 	struct task_struct *task;
1382 	char numbuf[PROC_NUMBUF];
1383 	ssize_t len;
1384 
1385 	task = get_proc_task(file_inode(file));
1386 	if (!task)
1387 		return -ESRCH;
1388 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1389 	put_task_struct(task);
1390 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1391 }
1392 
1393 static const struct file_operations proc_fail_nth_operations = {
1394 	.read		= proc_fail_nth_read,
1395 	.write		= proc_fail_nth_write,
1396 };
1397 #endif
1398 
1399 
1400 #ifdef CONFIG_SCHED_DEBUG
1401 /*
1402  * Print out various scheduling related per-task fields:
1403  */
1404 static int sched_show(struct seq_file *m, void *v)
1405 {
1406 	struct inode *inode = m->private;
1407 	struct pid_namespace *ns = proc_pid_ns(inode);
1408 	struct task_struct *p;
1409 
1410 	p = get_proc_task(inode);
1411 	if (!p)
1412 		return -ESRCH;
1413 	proc_sched_show_task(p, ns, m);
1414 
1415 	put_task_struct(p);
1416 
1417 	return 0;
1418 }
1419 
1420 static ssize_t
1421 sched_write(struct file *file, const char __user *buf,
1422 	    size_t count, loff_t *offset)
1423 {
1424 	struct inode *inode = file_inode(file);
1425 	struct task_struct *p;
1426 
1427 	p = get_proc_task(inode);
1428 	if (!p)
1429 		return -ESRCH;
1430 	proc_sched_set_task(p);
1431 
1432 	put_task_struct(p);
1433 
1434 	return count;
1435 }
1436 
1437 static int sched_open(struct inode *inode, struct file *filp)
1438 {
1439 	return single_open(filp, sched_show, inode);
1440 }
1441 
1442 static const struct file_operations proc_pid_sched_operations = {
1443 	.open		= sched_open,
1444 	.read		= seq_read,
1445 	.write		= sched_write,
1446 	.llseek		= seq_lseek,
1447 	.release	= single_release,
1448 };
1449 
1450 #endif
1451 
1452 #ifdef CONFIG_SCHED_AUTOGROUP
1453 /*
1454  * Print out autogroup related information:
1455  */
1456 static int sched_autogroup_show(struct seq_file *m, void *v)
1457 {
1458 	struct inode *inode = m->private;
1459 	struct task_struct *p;
1460 
1461 	p = get_proc_task(inode);
1462 	if (!p)
1463 		return -ESRCH;
1464 	proc_sched_autogroup_show_task(p, m);
1465 
1466 	put_task_struct(p);
1467 
1468 	return 0;
1469 }
1470 
1471 static ssize_t
1472 sched_autogroup_write(struct file *file, const char __user *buf,
1473 	    size_t count, loff_t *offset)
1474 {
1475 	struct inode *inode = file_inode(file);
1476 	struct task_struct *p;
1477 	char buffer[PROC_NUMBUF];
1478 	int nice;
1479 	int err;
1480 
1481 	memset(buffer, 0, sizeof(buffer));
1482 	if (count > sizeof(buffer) - 1)
1483 		count = sizeof(buffer) - 1;
1484 	if (copy_from_user(buffer, buf, count))
1485 		return -EFAULT;
1486 
1487 	err = kstrtoint(strstrip(buffer), 0, &nice);
1488 	if (err < 0)
1489 		return err;
1490 
1491 	p = get_proc_task(inode);
1492 	if (!p)
1493 		return -ESRCH;
1494 
1495 	err = proc_sched_autogroup_set_nice(p, nice);
1496 	if (err)
1497 		count = err;
1498 
1499 	put_task_struct(p);
1500 
1501 	return count;
1502 }
1503 
1504 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1505 {
1506 	int ret;
1507 
1508 	ret = single_open(filp, sched_autogroup_show, NULL);
1509 	if (!ret) {
1510 		struct seq_file *m = filp->private_data;
1511 
1512 		m->private = inode;
1513 	}
1514 	return ret;
1515 }
1516 
1517 static const struct file_operations proc_pid_sched_autogroup_operations = {
1518 	.open		= sched_autogroup_open,
1519 	.read		= seq_read,
1520 	.write		= sched_autogroup_write,
1521 	.llseek		= seq_lseek,
1522 	.release	= single_release,
1523 };
1524 
1525 #endif /* CONFIG_SCHED_AUTOGROUP */
1526 
1527 static ssize_t comm_write(struct file *file, const char __user *buf,
1528 				size_t count, loff_t *offset)
1529 {
1530 	struct inode *inode = file_inode(file);
1531 	struct task_struct *p;
1532 	char buffer[TASK_COMM_LEN];
1533 	const size_t maxlen = sizeof(buffer) - 1;
1534 
1535 	memset(buffer, 0, sizeof(buffer));
1536 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1537 		return -EFAULT;
1538 
1539 	p = get_proc_task(inode);
1540 	if (!p)
1541 		return -ESRCH;
1542 
1543 	if (same_thread_group(current, p))
1544 		set_task_comm(p, buffer);
1545 	else
1546 		count = -EINVAL;
1547 
1548 	put_task_struct(p);
1549 
1550 	return count;
1551 }
1552 
1553 static int comm_show(struct seq_file *m, void *v)
1554 {
1555 	struct inode *inode = m->private;
1556 	struct task_struct *p;
1557 
1558 	p = get_proc_task(inode);
1559 	if (!p)
1560 		return -ESRCH;
1561 
1562 	proc_task_name(m, p, false);
1563 	seq_putc(m, '\n');
1564 
1565 	put_task_struct(p);
1566 
1567 	return 0;
1568 }
1569 
1570 static int comm_open(struct inode *inode, struct file *filp)
1571 {
1572 	return single_open(filp, comm_show, inode);
1573 }
1574 
1575 static const struct file_operations proc_pid_set_comm_operations = {
1576 	.open		= comm_open,
1577 	.read		= seq_read,
1578 	.write		= comm_write,
1579 	.llseek		= seq_lseek,
1580 	.release	= single_release,
1581 };
1582 
1583 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1584 {
1585 	struct task_struct *task;
1586 	struct file *exe_file;
1587 
1588 	task = get_proc_task(d_inode(dentry));
1589 	if (!task)
1590 		return -ENOENT;
1591 	exe_file = get_task_exe_file(task);
1592 	put_task_struct(task);
1593 	if (exe_file) {
1594 		*exe_path = exe_file->f_path;
1595 		path_get(&exe_file->f_path);
1596 		fput(exe_file);
1597 		return 0;
1598 	} else
1599 		return -ENOENT;
1600 }
1601 
1602 static const char *proc_pid_get_link(struct dentry *dentry,
1603 				     struct inode *inode,
1604 				     struct delayed_call *done)
1605 {
1606 	struct path path;
1607 	int error = -EACCES;
1608 
1609 	if (!dentry)
1610 		return ERR_PTR(-ECHILD);
1611 
1612 	/* Are we allowed to snoop on the tasks file descriptors? */
1613 	if (!proc_fd_access_allowed(inode))
1614 		goto out;
1615 
1616 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1617 	if (error)
1618 		goto out;
1619 
1620 	nd_jump_link(&path);
1621 	return NULL;
1622 out:
1623 	return ERR_PTR(error);
1624 }
1625 
1626 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1627 {
1628 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1629 	char *pathname;
1630 	int len;
1631 
1632 	if (!tmp)
1633 		return -ENOMEM;
1634 
1635 	pathname = d_path(path, tmp, PAGE_SIZE);
1636 	len = PTR_ERR(pathname);
1637 	if (IS_ERR(pathname))
1638 		goto out;
1639 	len = tmp + PAGE_SIZE - 1 - pathname;
1640 
1641 	if (len > buflen)
1642 		len = buflen;
1643 	if (copy_to_user(buffer, pathname, len))
1644 		len = -EFAULT;
1645  out:
1646 	free_page((unsigned long)tmp);
1647 	return len;
1648 }
1649 
1650 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1651 {
1652 	int error = -EACCES;
1653 	struct inode *inode = d_inode(dentry);
1654 	struct path path;
1655 
1656 	/* Are we allowed to snoop on the tasks file descriptors? */
1657 	if (!proc_fd_access_allowed(inode))
1658 		goto out;
1659 
1660 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1661 	if (error)
1662 		goto out;
1663 
1664 	error = do_proc_readlink(&path, buffer, buflen);
1665 	path_put(&path);
1666 out:
1667 	return error;
1668 }
1669 
1670 const struct inode_operations proc_pid_link_inode_operations = {
1671 	.readlink	= proc_pid_readlink,
1672 	.get_link	= proc_pid_get_link,
1673 	.setattr	= proc_setattr,
1674 };
1675 
1676 
1677 /* building an inode */
1678 
1679 void task_dump_owner(struct task_struct *task, umode_t mode,
1680 		     kuid_t *ruid, kgid_t *rgid)
1681 {
1682 	/* Depending on the state of dumpable compute who should own a
1683 	 * proc file for a task.
1684 	 */
1685 	const struct cred *cred;
1686 	kuid_t uid;
1687 	kgid_t gid;
1688 
1689 	if (unlikely(task->flags & PF_KTHREAD)) {
1690 		*ruid = GLOBAL_ROOT_UID;
1691 		*rgid = GLOBAL_ROOT_GID;
1692 		return;
1693 	}
1694 
1695 	/* Default to the tasks effective ownership */
1696 	rcu_read_lock();
1697 	cred = __task_cred(task);
1698 	uid = cred->euid;
1699 	gid = cred->egid;
1700 	rcu_read_unlock();
1701 
1702 	/*
1703 	 * Before the /proc/pid/status file was created the only way to read
1704 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1705 	 * /proc/pid/status is slow enough that procps and other packages
1706 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1707 	 * made this apply to all per process world readable and executable
1708 	 * directories.
1709 	 */
1710 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1711 		struct mm_struct *mm;
1712 		task_lock(task);
1713 		mm = task->mm;
1714 		/* Make non-dumpable tasks owned by some root */
1715 		if (mm) {
1716 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1717 				struct user_namespace *user_ns = mm->user_ns;
1718 
1719 				uid = make_kuid(user_ns, 0);
1720 				if (!uid_valid(uid))
1721 					uid = GLOBAL_ROOT_UID;
1722 
1723 				gid = make_kgid(user_ns, 0);
1724 				if (!gid_valid(gid))
1725 					gid = GLOBAL_ROOT_GID;
1726 			}
1727 		} else {
1728 			uid = GLOBAL_ROOT_UID;
1729 			gid = GLOBAL_ROOT_GID;
1730 		}
1731 		task_unlock(task);
1732 	}
1733 	*ruid = uid;
1734 	*rgid = gid;
1735 }
1736 
1737 struct inode *proc_pid_make_inode(struct super_block * sb,
1738 				  struct task_struct *task, umode_t mode)
1739 {
1740 	struct inode * inode;
1741 	struct proc_inode *ei;
1742 
1743 	/* We need a new inode */
1744 
1745 	inode = new_inode(sb);
1746 	if (!inode)
1747 		goto out;
1748 
1749 	/* Common stuff */
1750 	ei = PROC_I(inode);
1751 	inode->i_mode = mode;
1752 	inode->i_ino = get_next_ino();
1753 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1754 	inode->i_op = &proc_def_inode_operations;
1755 
1756 	/*
1757 	 * grab the reference to task.
1758 	 */
1759 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1760 	if (!ei->pid)
1761 		goto out_unlock;
1762 
1763 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1764 	security_task_to_inode(task, inode);
1765 
1766 out:
1767 	return inode;
1768 
1769 out_unlock:
1770 	iput(inode);
1771 	return NULL;
1772 }
1773 
1774 int pid_getattr(const struct path *path, struct kstat *stat,
1775 		u32 request_mask, unsigned int query_flags)
1776 {
1777 	struct inode *inode = d_inode(path->dentry);
1778 	struct pid_namespace *pid = proc_pid_ns(inode);
1779 	struct task_struct *task;
1780 
1781 	generic_fillattr(inode, stat);
1782 
1783 	stat->uid = GLOBAL_ROOT_UID;
1784 	stat->gid = GLOBAL_ROOT_GID;
1785 	rcu_read_lock();
1786 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1787 	if (task) {
1788 		if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1789 			rcu_read_unlock();
1790 			/*
1791 			 * This doesn't prevent learning whether PID exists,
1792 			 * it only makes getattr() consistent with readdir().
1793 			 */
1794 			return -ENOENT;
1795 		}
1796 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1797 	}
1798 	rcu_read_unlock();
1799 	return 0;
1800 }
1801 
1802 /* dentry stuff */
1803 
1804 /*
1805  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1806  */
1807 void pid_update_inode(struct task_struct *task, struct inode *inode)
1808 {
1809 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1810 
1811 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1812 	security_task_to_inode(task, inode);
1813 }
1814 
1815 /*
1816  * Rewrite the inode's ownerships here because the owning task may have
1817  * performed a setuid(), etc.
1818  *
1819  */
1820 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1821 {
1822 	struct inode *inode;
1823 	struct task_struct *task;
1824 
1825 	if (flags & LOOKUP_RCU)
1826 		return -ECHILD;
1827 
1828 	inode = d_inode(dentry);
1829 	task = get_proc_task(inode);
1830 
1831 	if (task) {
1832 		pid_update_inode(task, inode);
1833 		put_task_struct(task);
1834 		return 1;
1835 	}
1836 	return 0;
1837 }
1838 
1839 static inline bool proc_inode_is_dead(struct inode *inode)
1840 {
1841 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1842 }
1843 
1844 int pid_delete_dentry(const struct dentry *dentry)
1845 {
1846 	/* Is the task we represent dead?
1847 	 * If so, then don't put the dentry on the lru list,
1848 	 * kill it immediately.
1849 	 */
1850 	return proc_inode_is_dead(d_inode(dentry));
1851 }
1852 
1853 const struct dentry_operations pid_dentry_operations =
1854 {
1855 	.d_revalidate	= pid_revalidate,
1856 	.d_delete	= pid_delete_dentry,
1857 };
1858 
1859 /* Lookups */
1860 
1861 /*
1862  * Fill a directory entry.
1863  *
1864  * If possible create the dcache entry and derive our inode number and
1865  * file type from dcache entry.
1866  *
1867  * Since all of the proc inode numbers are dynamically generated, the inode
1868  * numbers do not exist until the inode is cache.  This means creating the
1869  * the dcache entry in readdir is necessary to keep the inode numbers
1870  * reported by readdir in sync with the inode numbers reported
1871  * by stat.
1872  */
1873 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1874 	const char *name, unsigned int len,
1875 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1876 {
1877 	struct dentry *child, *dir = file->f_path.dentry;
1878 	struct qstr qname = QSTR_INIT(name, len);
1879 	struct inode *inode;
1880 	unsigned type = DT_UNKNOWN;
1881 	ino_t ino = 1;
1882 
1883 	child = d_hash_and_lookup(dir, &qname);
1884 	if (!child) {
1885 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1886 		child = d_alloc_parallel(dir, &qname, &wq);
1887 		if (IS_ERR(child))
1888 			goto end_instantiate;
1889 		if (d_in_lookup(child)) {
1890 			struct dentry *res;
1891 			res = instantiate(child, task, ptr);
1892 			d_lookup_done(child);
1893 			if (unlikely(res)) {
1894 				dput(child);
1895 				child = res;
1896 				if (IS_ERR(child))
1897 					goto end_instantiate;
1898 			}
1899 		}
1900 	}
1901 	inode = d_inode(child);
1902 	ino = inode->i_ino;
1903 	type = inode->i_mode >> 12;
1904 	dput(child);
1905 end_instantiate:
1906 	return dir_emit(ctx, name, len, ino, type);
1907 }
1908 
1909 /*
1910  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1911  * which represent vma start and end addresses.
1912  */
1913 static int dname_to_vma_addr(struct dentry *dentry,
1914 			     unsigned long *start, unsigned long *end)
1915 {
1916 	const char *str = dentry->d_name.name;
1917 	unsigned long long sval, eval;
1918 	unsigned int len;
1919 
1920 	if (str[0] == '0' && str[1] != '-')
1921 		return -EINVAL;
1922 	len = _parse_integer(str, 16, &sval);
1923 	if (len & KSTRTOX_OVERFLOW)
1924 		return -EINVAL;
1925 	if (sval != (unsigned long)sval)
1926 		return -EINVAL;
1927 	str += len;
1928 
1929 	if (*str != '-')
1930 		return -EINVAL;
1931 	str++;
1932 
1933 	if (str[0] == '0' && str[1])
1934 		return -EINVAL;
1935 	len = _parse_integer(str, 16, &eval);
1936 	if (len & KSTRTOX_OVERFLOW)
1937 		return -EINVAL;
1938 	if (eval != (unsigned long)eval)
1939 		return -EINVAL;
1940 	str += len;
1941 
1942 	if (*str != '\0')
1943 		return -EINVAL;
1944 
1945 	*start = sval;
1946 	*end = eval;
1947 
1948 	return 0;
1949 }
1950 
1951 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1952 {
1953 	unsigned long vm_start, vm_end;
1954 	bool exact_vma_exists = false;
1955 	struct mm_struct *mm = NULL;
1956 	struct task_struct *task;
1957 	struct inode *inode;
1958 	int status = 0;
1959 
1960 	if (flags & LOOKUP_RCU)
1961 		return -ECHILD;
1962 
1963 	inode = d_inode(dentry);
1964 	task = get_proc_task(inode);
1965 	if (!task)
1966 		goto out_notask;
1967 
1968 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1969 	if (IS_ERR_OR_NULL(mm))
1970 		goto out;
1971 
1972 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1973 		down_read(&mm->mmap_sem);
1974 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1975 		up_read(&mm->mmap_sem);
1976 	}
1977 
1978 	mmput(mm);
1979 
1980 	if (exact_vma_exists) {
1981 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1982 
1983 		security_task_to_inode(task, inode);
1984 		status = 1;
1985 	}
1986 
1987 out:
1988 	put_task_struct(task);
1989 
1990 out_notask:
1991 	return status;
1992 }
1993 
1994 static const struct dentry_operations tid_map_files_dentry_operations = {
1995 	.d_revalidate	= map_files_d_revalidate,
1996 	.d_delete	= pid_delete_dentry,
1997 };
1998 
1999 static int map_files_get_link(struct dentry *dentry, struct path *path)
2000 {
2001 	unsigned long vm_start, vm_end;
2002 	struct vm_area_struct *vma;
2003 	struct task_struct *task;
2004 	struct mm_struct *mm;
2005 	int rc;
2006 
2007 	rc = -ENOENT;
2008 	task = get_proc_task(d_inode(dentry));
2009 	if (!task)
2010 		goto out;
2011 
2012 	mm = get_task_mm(task);
2013 	put_task_struct(task);
2014 	if (!mm)
2015 		goto out;
2016 
2017 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2018 	if (rc)
2019 		goto out_mmput;
2020 
2021 	rc = -ENOENT;
2022 	down_read(&mm->mmap_sem);
2023 	vma = find_exact_vma(mm, vm_start, vm_end);
2024 	if (vma && vma->vm_file) {
2025 		*path = vma->vm_file->f_path;
2026 		path_get(path);
2027 		rc = 0;
2028 	}
2029 	up_read(&mm->mmap_sem);
2030 
2031 out_mmput:
2032 	mmput(mm);
2033 out:
2034 	return rc;
2035 }
2036 
2037 struct map_files_info {
2038 	unsigned long	start;
2039 	unsigned long	end;
2040 	fmode_t		mode;
2041 };
2042 
2043 /*
2044  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2045  * symlinks may be used to bypass permissions on ancestor directories in the
2046  * path to the file in question.
2047  */
2048 static const char *
2049 proc_map_files_get_link(struct dentry *dentry,
2050 			struct inode *inode,
2051 		        struct delayed_call *done)
2052 {
2053 	if (!capable(CAP_SYS_ADMIN))
2054 		return ERR_PTR(-EPERM);
2055 
2056 	return proc_pid_get_link(dentry, inode, done);
2057 }
2058 
2059 /*
2060  * Identical to proc_pid_link_inode_operations except for get_link()
2061  */
2062 static const struct inode_operations proc_map_files_link_inode_operations = {
2063 	.readlink	= proc_pid_readlink,
2064 	.get_link	= proc_map_files_get_link,
2065 	.setattr	= proc_setattr,
2066 };
2067 
2068 static struct dentry *
2069 proc_map_files_instantiate(struct dentry *dentry,
2070 			   struct task_struct *task, const void *ptr)
2071 {
2072 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2073 	struct proc_inode *ei;
2074 	struct inode *inode;
2075 
2076 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2077 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2078 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2079 	if (!inode)
2080 		return ERR_PTR(-ENOENT);
2081 
2082 	ei = PROC_I(inode);
2083 	ei->op.proc_get_link = map_files_get_link;
2084 
2085 	inode->i_op = &proc_map_files_link_inode_operations;
2086 	inode->i_size = 64;
2087 
2088 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2089 	return d_splice_alias(inode, dentry);
2090 }
2091 
2092 static struct dentry *proc_map_files_lookup(struct inode *dir,
2093 		struct dentry *dentry, unsigned int flags)
2094 {
2095 	unsigned long vm_start, vm_end;
2096 	struct vm_area_struct *vma;
2097 	struct task_struct *task;
2098 	struct dentry *result;
2099 	struct mm_struct *mm;
2100 
2101 	result = ERR_PTR(-ENOENT);
2102 	task = get_proc_task(dir);
2103 	if (!task)
2104 		goto out;
2105 
2106 	result = ERR_PTR(-EACCES);
2107 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2108 		goto out_put_task;
2109 
2110 	result = ERR_PTR(-ENOENT);
2111 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2112 		goto out_put_task;
2113 
2114 	mm = get_task_mm(task);
2115 	if (!mm)
2116 		goto out_put_task;
2117 
2118 	down_read(&mm->mmap_sem);
2119 	vma = find_exact_vma(mm, vm_start, vm_end);
2120 	if (!vma)
2121 		goto out_no_vma;
2122 
2123 	if (vma->vm_file)
2124 		result = proc_map_files_instantiate(dentry, task,
2125 				(void *)(unsigned long)vma->vm_file->f_mode);
2126 
2127 out_no_vma:
2128 	up_read(&mm->mmap_sem);
2129 	mmput(mm);
2130 out_put_task:
2131 	put_task_struct(task);
2132 out:
2133 	return result;
2134 }
2135 
2136 static const struct inode_operations proc_map_files_inode_operations = {
2137 	.lookup		= proc_map_files_lookup,
2138 	.permission	= proc_fd_permission,
2139 	.setattr	= proc_setattr,
2140 };
2141 
2142 static int
2143 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2144 {
2145 	struct vm_area_struct *vma;
2146 	struct task_struct *task;
2147 	struct mm_struct *mm;
2148 	unsigned long nr_files, pos, i;
2149 	struct flex_array *fa = NULL;
2150 	struct map_files_info info;
2151 	struct map_files_info *p;
2152 	int ret;
2153 
2154 	ret = -ENOENT;
2155 	task = get_proc_task(file_inode(file));
2156 	if (!task)
2157 		goto out;
2158 
2159 	ret = -EACCES;
2160 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2161 		goto out_put_task;
2162 
2163 	ret = 0;
2164 	if (!dir_emit_dots(file, ctx))
2165 		goto out_put_task;
2166 
2167 	mm = get_task_mm(task);
2168 	if (!mm)
2169 		goto out_put_task;
2170 	down_read(&mm->mmap_sem);
2171 
2172 	nr_files = 0;
2173 
2174 	/*
2175 	 * We need two passes here:
2176 	 *
2177 	 *  1) Collect vmas of mapped files with mmap_sem taken
2178 	 *  2) Release mmap_sem and instantiate entries
2179 	 *
2180 	 * otherwise we get lockdep complained, since filldir()
2181 	 * routine might require mmap_sem taken in might_fault().
2182 	 */
2183 
2184 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2185 		if (vma->vm_file && ++pos > ctx->pos)
2186 			nr_files++;
2187 	}
2188 
2189 	if (nr_files) {
2190 		fa = flex_array_alloc(sizeof(info), nr_files,
2191 					GFP_KERNEL);
2192 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2193 						GFP_KERNEL)) {
2194 			ret = -ENOMEM;
2195 			if (fa)
2196 				flex_array_free(fa);
2197 			up_read(&mm->mmap_sem);
2198 			mmput(mm);
2199 			goto out_put_task;
2200 		}
2201 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2202 				vma = vma->vm_next) {
2203 			if (!vma->vm_file)
2204 				continue;
2205 			if (++pos <= ctx->pos)
2206 				continue;
2207 
2208 			info.start = vma->vm_start;
2209 			info.end = vma->vm_end;
2210 			info.mode = vma->vm_file->f_mode;
2211 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2212 				BUG();
2213 		}
2214 	}
2215 	up_read(&mm->mmap_sem);
2216 	mmput(mm);
2217 
2218 	for (i = 0; i < nr_files; i++) {
2219 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2220 		unsigned int len;
2221 
2222 		p = flex_array_get(fa, i);
2223 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2224 		if (!proc_fill_cache(file, ctx,
2225 				      buf, len,
2226 				      proc_map_files_instantiate,
2227 				      task,
2228 				      (void *)(unsigned long)p->mode))
2229 			break;
2230 		ctx->pos++;
2231 	}
2232 	if (fa)
2233 		flex_array_free(fa);
2234 
2235 out_put_task:
2236 	put_task_struct(task);
2237 out:
2238 	return ret;
2239 }
2240 
2241 static const struct file_operations proc_map_files_operations = {
2242 	.read		= generic_read_dir,
2243 	.iterate_shared	= proc_map_files_readdir,
2244 	.llseek		= generic_file_llseek,
2245 };
2246 
2247 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2248 struct timers_private {
2249 	struct pid *pid;
2250 	struct task_struct *task;
2251 	struct sighand_struct *sighand;
2252 	struct pid_namespace *ns;
2253 	unsigned long flags;
2254 };
2255 
2256 static void *timers_start(struct seq_file *m, loff_t *pos)
2257 {
2258 	struct timers_private *tp = m->private;
2259 
2260 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2261 	if (!tp->task)
2262 		return ERR_PTR(-ESRCH);
2263 
2264 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2265 	if (!tp->sighand)
2266 		return ERR_PTR(-ESRCH);
2267 
2268 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2269 }
2270 
2271 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2272 {
2273 	struct timers_private *tp = m->private;
2274 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2275 }
2276 
2277 static void timers_stop(struct seq_file *m, void *v)
2278 {
2279 	struct timers_private *tp = m->private;
2280 
2281 	if (tp->sighand) {
2282 		unlock_task_sighand(tp->task, &tp->flags);
2283 		tp->sighand = NULL;
2284 	}
2285 
2286 	if (tp->task) {
2287 		put_task_struct(tp->task);
2288 		tp->task = NULL;
2289 	}
2290 }
2291 
2292 static int show_timer(struct seq_file *m, void *v)
2293 {
2294 	struct k_itimer *timer;
2295 	struct timers_private *tp = m->private;
2296 	int notify;
2297 	static const char * const nstr[] = {
2298 		[SIGEV_SIGNAL] = "signal",
2299 		[SIGEV_NONE] = "none",
2300 		[SIGEV_THREAD] = "thread",
2301 	};
2302 
2303 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2304 	notify = timer->it_sigev_notify;
2305 
2306 	seq_printf(m, "ID: %d\n", timer->it_id);
2307 	seq_printf(m, "signal: %d/%px\n",
2308 		   timer->sigq->info.si_signo,
2309 		   timer->sigq->info.si_value.sival_ptr);
2310 	seq_printf(m, "notify: %s/%s.%d\n",
2311 		   nstr[notify & ~SIGEV_THREAD_ID],
2312 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2313 		   pid_nr_ns(timer->it_pid, tp->ns));
2314 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2315 
2316 	return 0;
2317 }
2318 
2319 static const struct seq_operations proc_timers_seq_ops = {
2320 	.start	= timers_start,
2321 	.next	= timers_next,
2322 	.stop	= timers_stop,
2323 	.show	= show_timer,
2324 };
2325 
2326 static int proc_timers_open(struct inode *inode, struct file *file)
2327 {
2328 	struct timers_private *tp;
2329 
2330 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2331 			sizeof(struct timers_private));
2332 	if (!tp)
2333 		return -ENOMEM;
2334 
2335 	tp->pid = proc_pid(inode);
2336 	tp->ns = proc_pid_ns(inode);
2337 	return 0;
2338 }
2339 
2340 static const struct file_operations proc_timers_operations = {
2341 	.open		= proc_timers_open,
2342 	.read		= seq_read,
2343 	.llseek		= seq_lseek,
2344 	.release	= seq_release_private,
2345 };
2346 #endif
2347 
2348 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2349 					size_t count, loff_t *offset)
2350 {
2351 	struct inode *inode = file_inode(file);
2352 	struct task_struct *p;
2353 	u64 slack_ns;
2354 	int err;
2355 
2356 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2357 	if (err < 0)
2358 		return err;
2359 
2360 	p = get_proc_task(inode);
2361 	if (!p)
2362 		return -ESRCH;
2363 
2364 	if (p != current) {
2365 		rcu_read_lock();
2366 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2367 			rcu_read_unlock();
2368 			count = -EPERM;
2369 			goto out;
2370 		}
2371 		rcu_read_unlock();
2372 
2373 		err = security_task_setscheduler(p);
2374 		if (err) {
2375 			count = err;
2376 			goto out;
2377 		}
2378 	}
2379 
2380 	task_lock(p);
2381 	if (slack_ns == 0)
2382 		p->timer_slack_ns = p->default_timer_slack_ns;
2383 	else
2384 		p->timer_slack_ns = slack_ns;
2385 	task_unlock(p);
2386 
2387 out:
2388 	put_task_struct(p);
2389 
2390 	return count;
2391 }
2392 
2393 static int timerslack_ns_show(struct seq_file *m, void *v)
2394 {
2395 	struct inode *inode = m->private;
2396 	struct task_struct *p;
2397 	int err = 0;
2398 
2399 	p = get_proc_task(inode);
2400 	if (!p)
2401 		return -ESRCH;
2402 
2403 	if (p != current) {
2404 		rcu_read_lock();
2405 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2406 			rcu_read_unlock();
2407 			err = -EPERM;
2408 			goto out;
2409 		}
2410 		rcu_read_unlock();
2411 
2412 		err = security_task_getscheduler(p);
2413 		if (err)
2414 			goto out;
2415 	}
2416 
2417 	task_lock(p);
2418 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2419 	task_unlock(p);
2420 
2421 out:
2422 	put_task_struct(p);
2423 
2424 	return err;
2425 }
2426 
2427 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2428 {
2429 	return single_open(filp, timerslack_ns_show, inode);
2430 }
2431 
2432 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2433 	.open		= timerslack_ns_open,
2434 	.read		= seq_read,
2435 	.write		= timerslack_ns_write,
2436 	.llseek		= seq_lseek,
2437 	.release	= single_release,
2438 };
2439 
2440 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2441 	struct task_struct *task, const void *ptr)
2442 {
2443 	const struct pid_entry *p = ptr;
2444 	struct inode *inode;
2445 	struct proc_inode *ei;
2446 
2447 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2448 	if (!inode)
2449 		return ERR_PTR(-ENOENT);
2450 
2451 	ei = PROC_I(inode);
2452 	if (S_ISDIR(inode->i_mode))
2453 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2454 	if (p->iop)
2455 		inode->i_op = p->iop;
2456 	if (p->fop)
2457 		inode->i_fop = p->fop;
2458 	ei->op = p->op;
2459 	pid_update_inode(task, inode);
2460 	d_set_d_op(dentry, &pid_dentry_operations);
2461 	return d_splice_alias(inode, dentry);
2462 }
2463 
2464 static struct dentry *proc_pident_lookup(struct inode *dir,
2465 					 struct dentry *dentry,
2466 					 const struct pid_entry *ents,
2467 					 unsigned int nents)
2468 {
2469 	struct task_struct *task = get_proc_task(dir);
2470 	const struct pid_entry *p, *last;
2471 	struct dentry *res = ERR_PTR(-ENOENT);
2472 
2473 	if (!task)
2474 		goto out_no_task;
2475 
2476 	/*
2477 	 * Yes, it does not scale. And it should not. Don't add
2478 	 * new entries into /proc/<tgid>/ without very good reasons.
2479 	 */
2480 	last = &ents[nents];
2481 	for (p = ents; p < last; p++) {
2482 		if (p->len != dentry->d_name.len)
2483 			continue;
2484 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2485 			res = proc_pident_instantiate(dentry, task, p);
2486 			break;
2487 		}
2488 	}
2489 	put_task_struct(task);
2490 out_no_task:
2491 	return res;
2492 }
2493 
2494 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2495 		const struct pid_entry *ents, unsigned int nents)
2496 {
2497 	struct task_struct *task = get_proc_task(file_inode(file));
2498 	const struct pid_entry *p;
2499 
2500 	if (!task)
2501 		return -ENOENT;
2502 
2503 	if (!dir_emit_dots(file, ctx))
2504 		goto out;
2505 
2506 	if (ctx->pos >= nents + 2)
2507 		goto out;
2508 
2509 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2510 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2511 				proc_pident_instantiate, task, p))
2512 			break;
2513 		ctx->pos++;
2514 	}
2515 out:
2516 	put_task_struct(task);
2517 	return 0;
2518 }
2519 
2520 #ifdef CONFIG_SECURITY
2521 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2522 				  size_t count, loff_t *ppos)
2523 {
2524 	struct inode * inode = file_inode(file);
2525 	char *p = NULL;
2526 	ssize_t length;
2527 	struct task_struct *task = get_proc_task(inode);
2528 
2529 	if (!task)
2530 		return -ESRCH;
2531 
2532 	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2533 				      (char*)file->f_path.dentry->d_name.name,
2534 				      &p);
2535 	put_task_struct(task);
2536 	if (length > 0)
2537 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2538 	kfree(p);
2539 	return length;
2540 }
2541 
2542 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2543 				   size_t count, loff_t *ppos)
2544 {
2545 	struct inode * inode = file_inode(file);
2546 	struct task_struct *task;
2547 	void *page;
2548 	int rv;
2549 
2550 	rcu_read_lock();
2551 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2552 	if (!task) {
2553 		rcu_read_unlock();
2554 		return -ESRCH;
2555 	}
2556 	/* A task may only write its own attributes. */
2557 	if (current != task) {
2558 		rcu_read_unlock();
2559 		return -EACCES;
2560 	}
2561 	rcu_read_unlock();
2562 
2563 	if (count > PAGE_SIZE)
2564 		count = PAGE_SIZE;
2565 
2566 	/* No partial writes. */
2567 	if (*ppos != 0)
2568 		return -EINVAL;
2569 
2570 	page = memdup_user(buf, count);
2571 	if (IS_ERR(page)) {
2572 		rv = PTR_ERR(page);
2573 		goto out;
2574 	}
2575 
2576 	/* Guard against adverse ptrace interaction */
2577 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2578 	if (rv < 0)
2579 		goto out_free;
2580 
2581 	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2582 				  file->f_path.dentry->d_name.name, page,
2583 				  count);
2584 	mutex_unlock(&current->signal->cred_guard_mutex);
2585 out_free:
2586 	kfree(page);
2587 out:
2588 	return rv;
2589 }
2590 
2591 static const struct file_operations proc_pid_attr_operations = {
2592 	.read		= proc_pid_attr_read,
2593 	.write		= proc_pid_attr_write,
2594 	.llseek		= generic_file_llseek,
2595 };
2596 
2597 #define LSM_DIR_OPS(LSM) \
2598 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2599 			     struct dir_context *ctx) \
2600 { \
2601 	return proc_pident_readdir(filp, ctx, \
2602 				   LSM##_attr_dir_stuff, \
2603 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2604 } \
2605 \
2606 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2607 	.read		= generic_read_dir, \
2608 	.iterate	= proc_##LSM##_attr_dir_iterate, \
2609 	.llseek		= default_llseek, \
2610 }; \
2611 \
2612 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2613 				struct dentry *dentry, unsigned int flags) \
2614 { \
2615 	return proc_pident_lookup(dir, dentry, \
2616 				  LSM##_attr_dir_stuff, \
2617 				  ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2618 } \
2619 \
2620 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2621 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2622 	.getattr	= pid_getattr, \
2623 	.setattr	= proc_setattr, \
2624 }
2625 
2626 #ifdef CONFIG_SECURITY_SMACK
2627 static const struct pid_entry smack_attr_dir_stuff[] = {
2628 	ATTR("smack", "current",	0666),
2629 };
2630 LSM_DIR_OPS(smack);
2631 #endif
2632 
2633 static const struct pid_entry attr_dir_stuff[] = {
2634 	ATTR(NULL, "current",		0666),
2635 	ATTR(NULL, "prev",		0444),
2636 	ATTR(NULL, "exec",		0666),
2637 	ATTR(NULL, "fscreate",		0666),
2638 	ATTR(NULL, "keycreate",		0666),
2639 	ATTR(NULL, "sockcreate",	0666),
2640 #ifdef CONFIG_SECURITY_SMACK
2641 	DIR("smack",			0555,
2642 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2643 #endif
2644 };
2645 
2646 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2647 {
2648 	return proc_pident_readdir(file, ctx,
2649 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2650 }
2651 
2652 static const struct file_operations proc_attr_dir_operations = {
2653 	.read		= generic_read_dir,
2654 	.iterate_shared	= proc_attr_dir_readdir,
2655 	.llseek		= generic_file_llseek,
2656 };
2657 
2658 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2659 				struct dentry *dentry, unsigned int flags)
2660 {
2661 	return proc_pident_lookup(dir, dentry,
2662 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2663 }
2664 
2665 static const struct inode_operations proc_attr_dir_inode_operations = {
2666 	.lookup		= proc_attr_dir_lookup,
2667 	.getattr	= pid_getattr,
2668 	.setattr	= proc_setattr,
2669 };
2670 
2671 #endif
2672 
2673 #ifdef CONFIG_ELF_CORE
2674 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2675 					 size_t count, loff_t *ppos)
2676 {
2677 	struct task_struct *task = get_proc_task(file_inode(file));
2678 	struct mm_struct *mm;
2679 	char buffer[PROC_NUMBUF];
2680 	size_t len;
2681 	int ret;
2682 
2683 	if (!task)
2684 		return -ESRCH;
2685 
2686 	ret = 0;
2687 	mm = get_task_mm(task);
2688 	if (mm) {
2689 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2690 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2691 				MMF_DUMP_FILTER_SHIFT));
2692 		mmput(mm);
2693 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2694 	}
2695 
2696 	put_task_struct(task);
2697 
2698 	return ret;
2699 }
2700 
2701 static ssize_t proc_coredump_filter_write(struct file *file,
2702 					  const char __user *buf,
2703 					  size_t count,
2704 					  loff_t *ppos)
2705 {
2706 	struct task_struct *task;
2707 	struct mm_struct *mm;
2708 	unsigned int val;
2709 	int ret;
2710 	int i;
2711 	unsigned long mask;
2712 
2713 	ret = kstrtouint_from_user(buf, count, 0, &val);
2714 	if (ret < 0)
2715 		return ret;
2716 
2717 	ret = -ESRCH;
2718 	task = get_proc_task(file_inode(file));
2719 	if (!task)
2720 		goto out_no_task;
2721 
2722 	mm = get_task_mm(task);
2723 	if (!mm)
2724 		goto out_no_mm;
2725 	ret = 0;
2726 
2727 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2728 		if (val & mask)
2729 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2730 		else
2731 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2732 	}
2733 
2734 	mmput(mm);
2735  out_no_mm:
2736 	put_task_struct(task);
2737  out_no_task:
2738 	if (ret < 0)
2739 		return ret;
2740 	return count;
2741 }
2742 
2743 static const struct file_operations proc_coredump_filter_operations = {
2744 	.read		= proc_coredump_filter_read,
2745 	.write		= proc_coredump_filter_write,
2746 	.llseek		= generic_file_llseek,
2747 };
2748 #endif
2749 
2750 #ifdef CONFIG_TASK_IO_ACCOUNTING
2751 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2752 {
2753 	struct task_io_accounting acct = task->ioac;
2754 	unsigned long flags;
2755 	int result;
2756 
2757 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2758 	if (result)
2759 		return result;
2760 
2761 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2762 		result = -EACCES;
2763 		goto out_unlock;
2764 	}
2765 
2766 	if (whole && lock_task_sighand(task, &flags)) {
2767 		struct task_struct *t = task;
2768 
2769 		task_io_accounting_add(&acct, &task->signal->ioac);
2770 		while_each_thread(task, t)
2771 			task_io_accounting_add(&acct, &t->ioac);
2772 
2773 		unlock_task_sighand(task, &flags);
2774 	}
2775 	seq_printf(m,
2776 		   "rchar: %llu\n"
2777 		   "wchar: %llu\n"
2778 		   "syscr: %llu\n"
2779 		   "syscw: %llu\n"
2780 		   "read_bytes: %llu\n"
2781 		   "write_bytes: %llu\n"
2782 		   "cancelled_write_bytes: %llu\n",
2783 		   (unsigned long long)acct.rchar,
2784 		   (unsigned long long)acct.wchar,
2785 		   (unsigned long long)acct.syscr,
2786 		   (unsigned long long)acct.syscw,
2787 		   (unsigned long long)acct.read_bytes,
2788 		   (unsigned long long)acct.write_bytes,
2789 		   (unsigned long long)acct.cancelled_write_bytes);
2790 	result = 0;
2791 
2792 out_unlock:
2793 	mutex_unlock(&task->signal->cred_guard_mutex);
2794 	return result;
2795 }
2796 
2797 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2798 				  struct pid *pid, struct task_struct *task)
2799 {
2800 	return do_io_accounting(task, m, 0);
2801 }
2802 
2803 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2804 				   struct pid *pid, struct task_struct *task)
2805 {
2806 	return do_io_accounting(task, m, 1);
2807 }
2808 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2809 
2810 #ifdef CONFIG_USER_NS
2811 static int proc_id_map_open(struct inode *inode, struct file *file,
2812 	const struct seq_operations *seq_ops)
2813 {
2814 	struct user_namespace *ns = NULL;
2815 	struct task_struct *task;
2816 	struct seq_file *seq;
2817 	int ret = -EINVAL;
2818 
2819 	task = get_proc_task(inode);
2820 	if (task) {
2821 		rcu_read_lock();
2822 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2823 		rcu_read_unlock();
2824 		put_task_struct(task);
2825 	}
2826 	if (!ns)
2827 		goto err;
2828 
2829 	ret = seq_open(file, seq_ops);
2830 	if (ret)
2831 		goto err_put_ns;
2832 
2833 	seq = file->private_data;
2834 	seq->private = ns;
2835 
2836 	return 0;
2837 err_put_ns:
2838 	put_user_ns(ns);
2839 err:
2840 	return ret;
2841 }
2842 
2843 static int proc_id_map_release(struct inode *inode, struct file *file)
2844 {
2845 	struct seq_file *seq = file->private_data;
2846 	struct user_namespace *ns = seq->private;
2847 	put_user_ns(ns);
2848 	return seq_release(inode, file);
2849 }
2850 
2851 static int proc_uid_map_open(struct inode *inode, struct file *file)
2852 {
2853 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2854 }
2855 
2856 static int proc_gid_map_open(struct inode *inode, struct file *file)
2857 {
2858 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2859 }
2860 
2861 static int proc_projid_map_open(struct inode *inode, struct file *file)
2862 {
2863 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2864 }
2865 
2866 static const struct file_operations proc_uid_map_operations = {
2867 	.open		= proc_uid_map_open,
2868 	.write		= proc_uid_map_write,
2869 	.read		= seq_read,
2870 	.llseek		= seq_lseek,
2871 	.release	= proc_id_map_release,
2872 };
2873 
2874 static const struct file_operations proc_gid_map_operations = {
2875 	.open		= proc_gid_map_open,
2876 	.write		= proc_gid_map_write,
2877 	.read		= seq_read,
2878 	.llseek		= seq_lseek,
2879 	.release	= proc_id_map_release,
2880 };
2881 
2882 static const struct file_operations proc_projid_map_operations = {
2883 	.open		= proc_projid_map_open,
2884 	.write		= proc_projid_map_write,
2885 	.read		= seq_read,
2886 	.llseek		= seq_lseek,
2887 	.release	= proc_id_map_release,
2888 };
2889 
2890 static int proc_setgroups_open(struct inode *inode, struct file *file)
2891 {
2892 	struct user_namespace *ns = NULL;
2893 	struct task_struct *task;
2894 	int ret;
2895 
2896 	ret = -ESRCH;
2897 	task = get_proc_task(inode);
2898 	if (task) {
2899 		rcu_read_lock();
2900 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2901 		rcu_read_unlock();
2902 		put_task_struct(task);
2903 	}
2904 	if (!ns)
2905 		goto err;
2906 
2907 	if (file->f_mode & FMODE_WRITE) {
2908 		ret = -EACCES;
2909 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2910 			goto err_put_ns;
2911 	}
2912 
2913 	ret = single_open(file, &proc_setgroups_show, ns);
2914 	if (ret)
2915 		goto err_put_ns;
2916 
2917 	return 0;
2918 err_put_ns:
2919 	put_user_ns(ns);
2920 err:
2921 	return ret;
2922 }
2923 
2924 static int proc_setgroups_release(struct inode *inode, struct file *file)
2925 {
2926 	struct seq_file *seq = file->private_data;
2927 	struct user_namespace *ns = seq->private;
2928 	int ret = single_release(inode, file);
2929 	put_user_ns(ns);
2930 	return ret;
2931 }
2932 
2933 static const struct file_operations proc_setgroups_operations = {
2934 	.open		= proc_setgroups_open,
2935 	.write		= proc_setgroups_write,
2936 	.read		= seq_read,
2937 	.llseek		= seq_lseek,
2938 	.release	= proc_setgroups_release,
2939 };
2940 #endif /* CONFIG_USER_NS */
2941 
2942 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2943 				struct pid *pid, struct task_struct *task)
2944 {
2945 	int err = lock_trace(task);
2946 	if (!err) {
2947 		seq_printf(m, "%08x\n", task->personality);
2948 		unlock_trace(task);
2949 	}
2950 	return err;
2951 }
2952 
2953 #ifdef CONFIG_LIVEPATCH
2954 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2955 				struct pid *pid, struct task_struct *task)
2956 {
2957 	seq_printf(m, "%d\n", task->patch_state);
2958 	return 0;
2959 }
2960 #endif /* CONFIG_LIVEPATCH */
2961 
2962 #ifdef CONFIG_STACKLEAK_METRICS
2963 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
2964 				struct pid *pid, struct task_struct *task)
2965 {
2966 	unsigned long prev_depth = THREAD_SIZE -
2967 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
2968 	unsigned long depth = THREAD_SIZE -
2969 				(task->lowest_stack & (THREAD_SIZE - 1));
2970 
2971 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
2972 							prev_depth, depth);
2973 	return 0;
2974 }
2975 #endif /* CONFIG_STACKLEAK_METRICS */
2976 
2977 /*
2978  * Thread groups
2979  */
2980 static const struct file_operations proc_task_operations;
2981 static const struct inode_operations proc_task_inode_operations;
2982 
2983 static const struct pid_entry tgid_base_stuff[] = {
2984 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2985 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2986 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2987 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2988 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2989 #ifdef CONFIG_NET
2990 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2991 #endif
2992 	REG("environ",    S_IRUSR, proc_environ_operations),
2993 	REG("auxv",       S_IRUSR, proc_auxv_operations),
2994 	ONE("status",     S_IRUGO, proc_pid_status),
2995 	ONE("personality", S_IRUSR, proc_pid_personality),
2996 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2997 #ifdef CONFIG_SCHED_DEBUG
2998 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2999 #endif
3000 #ifdef CONFIG_SCHED_AUTOGROUP
3001 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3002 #endif
3003 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3004 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3005 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3006 #endif
3007 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3008 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3009 	ONE("statm",      S_IRUGO, proc_pid_statm),
3010 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3011 #ifdef CONFIG_NUMA
3012 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3013 #endif
3014 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3015 	LNK("cwd",        proc_cwd_link),
3016 	LNK("root",       proc_root_link),
3017 	LNK("exe",        proc_exe_link),
3018 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3019 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3020 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3021 #ifdef CONFIG_PROC_PAGE_MONITOR
3022 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3023 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3024 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3025 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3026 #endif
3027 #ifdef CONFIG_SECURITY
3028 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3029 #endif
3030 #ifdef CONFIG_KALLSYMS
3031 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3032 #endif
3033 #ifdef CONFIG_STACKTRACE
3034 	ONE("stack",      S_IRUSR, proc_pid_stack),
3035 #endif
3036 #ifdef CONFIG_SCHED_INFO
3037 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3038 #endif
3039 #ifdef CONFIG_LATENCYTOP
3040 	REG("latency",  S_IRUGO, proc_lstats_operations),
3041 #endif
3042 #ifdef CONFIG_PROC_PID_CPUSET
3043 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3044 #endif
3045 #ifdef CONFIG_CGROUPS
3046 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3047 #endif
3048 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3049 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3050 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3051 #ifdef CONFIG_AUDITSYSCALL
3052 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3053 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3054 #endif
3055 #ifdef CONFIG_FAULT_INJECTION
3056 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3057 	REG("fail-nth", 0644, proc_fail_nth_operations),
3058 #endif
3059 #ifdef CONFIG_ELF_CORE
3060 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3061 #endif
3062 #ifdef CONFIG_TASK_IO_ACCOUNTING
3063 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3064 #endif
3065 #ifdef CONFIG_USER_NS
3066 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3067 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3068 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3069 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3070 #endif
3071 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3072 	REG("timers",	  S_IRUGO, proc_timers_operations),
3073 #endif
3074 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3075 #ifdef CONFIG_LIVEPATCH
3076 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3077 #endif
3078 #ifdef CONFIG_STACKLEAK_METRICS
3079 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3080 #endif
3081 };
3082 
3083 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3084 {
3085 	return proc_pident_readdir(file, ctx,
3086 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3087 }
3088 
3089 static const struct file_operations proc_tgid_base_operations = {
3090 	.read		= generic_read_dir,
3091 	.iterate_shared	= proc_tgid_base_readdir,
3092 	.llseek		= generic_file_llseek,
3093 };
3094 
3095 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3096 {
3097 	return proc_pident_lookup(dir, dentry,
3098 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3099 }
3100 
3101 static const struct inode_operations proc_tgid_base_inode_operations = {
3102 	.lookup		= proc_tgid_base_lookup,
3103 	.getattr	= pid_getattr,
3104 	.setattr	= proc_setattr,
3105 	.permission	= proc_pid_permission,
3106 };
3107 
3108 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3109 {
3110 	struct dentry *dentry, *leader, *dir;
3111 	char buf[10 + 1];
3112 	struct qstr name;
3113 
3114 	name.name = buf;
3115 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3116 	/* no ->d_hash() rejects on procfs */
3117 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3118 	if (dentry) {
3119 		d_invalidate(dentry);
3120 		dput(dentry);
3121 	}
3122 
3123 	if (pid == tgid)
3124 		return;
3125 
3126 	name.name = buf;
3127 	name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3128 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3129 	if (!leader)
3130 		goto out;
3131 
3132 	name.name = "task";
3133 	name.len = strlen(name.name);
3134 	dir = d_hash_and_lookup(leader, &name);
3135 	if (!dir)
3136 		goto out_put_leader;
3137 
3138 	name.name = buf;
3139 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3140 	dentry = d_hash_and_lookup(dir, &name);
3141 	if (dentry) {
3142 		d_invalidate(dentry);
3143 		dput(dentry);
3144 	}
3145 
3146 	dput(dir);
3147 out_put_leader:
3148 	dput(leader);
3149 out:
3150 	return;
3151 }
3152 
3153 /**
3154  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3155  * @task: task that should be flushed.
3156  *
3157  * When flushing dentries from proc, one needs to flush them from global
3158  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3159  * in. This call is supposed to do all of this job.
3160  *
3161  * Looks in the dcache for
3162  * /proc/@pid
3163  * /proc/@tgid/task/@pid
3164  * if either directory is present flushes it and all of it'ts children
3165  * from the dcache.
3166  *
3167  * It is safe and reasonable to cache /proc entries for a task until
3168  * that task exits.  After that they just clog up the dcache with
3169  * useless entries, possibly causing useful dcache entries to be
3170  * flushed instead.  This routine is proved to flush those useless
3171  * dcache entries at process exit time.
3172  *
3173  * NOTE: This routine is just an optimization so it does not guarantee
3174  *       that no dcache entries will exist at process exit time it
3175  *       just makes it very unlikely that any will persist.
3176  */
3177 
3178 void proc_flush_task(struct task_struct *task)
3179 {
3180 	int i;
3181 	struct pid *pid, *tgid;
3182 	struct upid *upid;
3183 
3184 	pid = task_pid(task);
3185 	tgid = task_tgid(task);
3186 
3187 	for (i = 0; i <= pid->level; i++) {
3188 		upid = &pid->numbers[i];
3189 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3190 					tgid->numbers[i].nr);
3191 	}
3192 }
3193 
3194 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3195 				   struct task_struct *task, const void *ptr)
3196 {
3197 	struct inode *inode;
3198 
3199 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3200 	if (!inode)
3201 		return ERR_PTR(-ENOENT);
3202 
3203 	inode->i_op = &proc_tgid_base_inode_operations;
3204 	inode->i_fop = &proc_tgid_base_operations;
3205 	inode->i_flags|=S_IMMUTABLE;
3206 
3207 	set_nlink(inode, nlink_tgid);
3208 	pid_update_inode(task, inode);
3209 
3210 	d_set_d_op(dentry, &pid_dentry_operations);
3211 	return d_splice_alias(inode, dentry);
3212 }
3213 
3214 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3215 {
3216 	struct task_struct *task;
3217 	unsigned tgid;
3218 	struct pid_namespace *ns;
3219 	struct dentry *result = ERR_PTR(-ENOENT);
3220 
3221 	tgid = name_to_int(&dentry->d_name);
3222 	if (tgid == ~0U)
3223 		goto out;
3224 
3225 	ns = dentry->d_sb->s_fs_info;
3226 	rcu_read_lock();
3227 	task = find_task_by_pid_ns(tgid, ns);
3228 	if (task)
3229 		get_task_struct(task);
3230 	rcu_read_unlock();
3231 	if (!task)
3232 		goto out;
3233 
3234 	result = proc_pid_instantiate(dentry, task, NULL);
3235 	put_task_struct(task);
3236 out:
3237 	return result;
3238 }
3239 
3240 /*
3241  * Find the first task with tgid >= tgid
3242  *
3243  */
3244 struct tgid_iter {
3245 	unsigned int tgid;
3246 	struct task_struct *task;
3247 };
3248 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3249 {
3250 	struct pid *pid;
3251 
3252 	if (iter.task)
3253 		put_task_struct(iter.task);
3254 	rcu_read_lock();
3255 retry:
3256 	iter.task = NULL;
3257 	pid = find_ge_pid(iter.tgid, ns);
3258 	if (pid) {
3259 		iter.tgid = pid_nr_ns(pid, ns);
3260 		iter.task = pid_task(pid, PIDTYPE_PID);
3261 		/* What we to know is if the pid we have find is the
3262 		 * pid of a thread_group_leader.  Testing for task
3263 		 * being a thread_group_leader is the obvious thing
3264 		 * todo but there is a window when it fails, due to
3265 		 * the pid transfer logic in de_thread.
3266 		 *
3267 		 * So we perform the straight forward test of seeing
3268 		 * if the pid we have found is the pid of a thread
3269 		 * group leader, and don't worry if the task we have
3270 		 * found doesn't happen to be a thread group leader.
3271 		 * As we don't care in the case of readdir.
3272 		 */
3273 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3274 			iter.tgid += 1;
3275 			goto retry;
3276 		}
3277 		get_task_struct(iter.task);
3278 	}
3279 	rcu_read_unlock();
3280 	return iter;
3281 }
3282 
3283 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3284 
3285 /* for the /proc/ directory itself, after non-process stuff has been done */
3286 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3287 {
3288 	struct tgid_iter iter;
3289 	struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3290 	loff_t pos = ctx->pos;
3291 
3292 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3293 		return 0;
3294 
3295 	if (pos == TGID_OFFSET - 2) {
3296 		struct inode *inode = d_inode(ns->proc_self);
3297 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3298 			return 0;
3299 		ctx->pos = pos = pos + 1;
3300 	}
3301 	if (pos == TGID_OFFSET - 1) {
3302 		struct inode *inode = d_inode(ns->proc_thread_self);
3303 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3304 			return 0;
3305 		ctx->pos = pos = pos + 1;
3306 	}
3307 	iter.tgid = pos - TGID_OFFSET;
3308 	iter.task = NULL;
3309 	for (iter = next_tgid(ns, iter);
3310 	     iter.task;
3311 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3312 		char name[10 + 1];
3313 		unsigned int len;
3314 
3315 		cond_resched();
3316 		if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3317 			continue;
3318 
3319 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3320 		ctx->pos = iter.tgid + TGID_OFFSET;
3321 		if (!proc_fill_cache(file, ctx, name, len,
3322 				     proc_pid_instantiate, iter.task, NULL)) {
3323 			put_task_struct(iter.task);
3324 			return 0;
3325 		}
3326 	}
3327 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3328 	return 0;
3329 }
3330 
3331 /*
3332  * proc_tid_comm_permission is a special permission function exclusively
3333  * used for the node /proc/<pid>/task/<tid>/comm.
3334  * It bypasses generic permission checks in the case where a task of the same
3335  * task group attempts to access the node.
3336  * The rationale behind this is that glibc and bionic access this node for
3337  * cross thread naming (pthread_set/getname_np(!self)). However, if
3338  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3339  * which locks out the cross thread naming implementation.
3340  * This function makes sure that the node is always accessible for members of
3341  * same thread group.
3342  */
3343 static int proc_tid_comm_permission(struct inode *inode, int mask)
3344 {
3345 	bool is_same_tgroup;
3346 	struct task_struct *task;
3347 
3348 	task = get_proc_task(inode);
3349 	if (!task)
3350 		return -ESRCH;
3351 	is_same_tgroup = same_thread_group(current, task);
3352 	put_task_struct(task);
3353 
3354 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3355 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3356 		 * read or written by the members of the corresponding
3357 		 * thread group.
3358 		 */
3359 		return 0;
3360 	}
3361 
3362 	return generic_permission(inode, mask);
3363 }
3364 
3365 static const struct inode_operations proc_tid_comm_inode_operations = {
3366 		.permission = proc_tid_comm_permission,
3367 };
3368 
3369 /*
3370  * Tasks
3371  */
3372 static const struct pid_entry tid_base_stuff[] = {
3373 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3374 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3375 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3376 #ifdef CONFIG_NET
3377 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3378 #endif
3379 	REG("environ",   S_IRUSR, proc_environ_operations),
3380 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3381 	ONE("status",    S_IRUGO, proc_pid_status),
3382 	ONE("personality", S_IRUSR, proc_pid_personality),
3383 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3384 #ifdef CONFIG_SCHED_DEBUG
3385 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3386 #endif
3387 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3388 			 &proc_tid_comm_inode_operations,
3389 			 &proc_pid_set_comm_operations, {}),
3390 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3391 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3392 #endif
3393 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3394 	ONE("stat",      S_IRUGO, proc_tid_stat),
3395 	ONE("statm",     S_IRUGO, proc_pid_statm),
3396 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3397 #ifdef CONFIG_PROC_CHILDREN
3398 	REG("children",  S_IRUGO, proc_tid_children_operations),
3399 #endif
3400 #ifdef CONFIG_NUMA
3401 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3402 #endif
3403 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3404 	LNK("cwd",       proc_cwd_link),
3405 	LNK("root",      proc_root_link),
3406 	LNK("exe",       proc_exe_link),
3407 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3408 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3409 #ifdef CONFIG_PROC_PAGE_MONITOR
3410 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3411 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3412 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3413 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3414 #endif
3415 #ifdef CONFIG_SECURITY
3416 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3417 #endif
3418 #ifdef CONFIG_KALLSYMS
3419 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3420 #endif
3421 #ifdef CONFIG_STACKTRACE
3422 	ONE("stack",      S_IRUSR, proc_pid_stack),
3423 #endif
3424 #ifdef CONFIG_SCHED_INFO
3425 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3426 #endif
3427 #ifdef CONFIG_LATENCYTOP
3428 	REG("latency",  S_IRUGO, proc_lstats_operations),
3429 #endif
3430 #ifdef CONFIG_PROC_PID_CPUSET
3431 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3432 #endif
3433 #ifdef CONFIG_CGROUPS
3434 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3435 #endif
3436 	ONE("oom_score", S_IRUGO, proc_oom_score),
3437 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3438 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3439 #ifdef CONFIG_AUDITSYSCALL
3440 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3441 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3442 #endif
3443 #ifdef CONFIG_FAULT_INJECTION
3444 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3445 	REG("fail-nth", 0644, proc_fail_nth_operations),
3446 #endif
3447 #ifdef CONFIG_TASK_IO_ACCOUNTING
3448 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3449 #endif
3450 #ifdef CONFIG_USER_NS
3451 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3452 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3453 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3454 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3455 #endif
3456 #ifdef CONFIG_LIVEPATCH
3457 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3458 #endif
3459 };
3460 
3461 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3462 {
3463 	return proc_pident_readdir(file, ctx,
3464 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3465 }
3466 
3467 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3468 {
3469 	return proc_pident_lookup(dir, dentry,
3470 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3471 }
3472 
3473 static const struct file_operations proc_tid_base_operations = {
3474 	.read		= generic_read_dir,
3475 	.iterate_shared	= proc_tid_base_readdir,
3476 	.llseek		= generic_file_llseek,
3477 };
3478 
3479 static const struct inode_operations proc_tid_base_inode_operations = {
3480 	.lookup		= proc_tid_base_lookup,
3481 	.getattr	= pid_getattr,
3482 	.setattr	= proc_setattr,
3483 };
3484 
3485 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3486 	struct task_struct *task, const void *ptr)
3487 {
3488 	struct inode *inode;
3489 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3490 	if (!inode)
3491 		return ERR_PTR(-ENOENT);
3492 
3493 	inode->i_op = &proc_tid_base_inode_operations;
3494 	inode->i_fop = &proc_tid_base_operations;
3495 	inode->i_flags |= S_IMMUTABLE;
3496 
3497 	set_nlink(inode, nlink_tid);
3498 	pid_update_inode(task, inode);
3499 
3500 	d_set_d_op(dentry, &pid_dentry_operations);
3501 	return d_splice_alias(inode, dentry);
3502 }
3503 
3504 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3505 {
3506 	struct task_struct *task;
3507 	struct task_struct *leader = get_proc_task(dir);
3508 	unsigned tid;
3509 	struct pid_namespace *ns;
3510 	struct dentry *result = ERR_PTR(-ENOENT);
3511 
3512 	if (!leader)
3513 		goto out_no_task;
3514 
3515 	tid = name_to_int(&dentry->d_name);
3516 	if (tid == ~0U)
3517 		goto out;
3518 
3519 	ns = dentry->d_sb->s_fs_info;
3520 	rcu_read_lock();
3521 	task = find_task_by_pid_ns(tid, ns);
3522 	if (task)
3523 		get_task_struct(task);
3524 	rcu_read_unlock();
3525 	if (!task)
3526 		goto out;
3527 	if (!same_thread_group(leader, task))
3528 		goto out_drop_task;
3529 
3530 	result = proc_task_instantiate(dentry, task, NULL);
3531 out_drop_task:
3532 	put_task_struct(task);
3533 out:
3534 	put_task_struct(leader);
3535 out_no_task:
3536 	return result;
3537 }
3538 
3539 /*
3540  * Find the first tid of a thread group to return to user space.
3541  *
3542  * Usually this is just the thread group leader, but if the users
3543  * buffer was too small or there was a seek into the middle of the
3544  * directory we have more work todo.
3545  *
3546  * In the case of a short read we start with find_task_by_pid.
3547  *
3548  * In the case of a seek we start with the leader and walk nr
3549  * threads past it.
3550  */
3551 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3552 					struct pid_namespace *ns)
3553 {
3554 	struct task_struct *pos, *task;
3555 	unsigned long nr = f_pos;
3556 
3557 	if (nr != f_pos)	/* 32bit overflow? */
3558 		return NULL;
3559 
3560 	rcu_read_lock();
3561 	task = pid_task(pid, PIDTYPE_PID);
3562 	if (!task)
3563 		goto fail;
3564 
3565 	/* Attempt to start with the tid of a thread */
3566 	if (tid && nr) {
3567 		pos = find_task_by_pid_ns(tid, ns);
3568 		if (pos && same_thread_group(pos, task))
3569 			goto found;
3570 	}
3571 
3572 	/* If nr exceeds the number of threads there is nothing todo */
3573 	if (nr >= get_nr_threads(task))
3574 		goto fail;
3575 
3576 	/* If we haven't found our starting place yet start
3577 	 * with the leader and walk nr threads forward.
3578 	 */
3579 	pos = task = task->group_leader;
3580 	do {
3581 		if (!nr--)
3582 			goto found;
3583 	} while_each_thread(task, pos);
3584 fail:
3585 	pos = NULL;
3586 	goto out;
3587 found:
3588 	get_task_struct(pos);
3589 out:
3590 	rcu_read_unlock();
3591 	return pos;
3592 }
3593 
3594 /*
3595  * Find the next thread in the thread list.
3596  * Return NULL if there is an error or no next thread.
3597  *
3598  * The reference to the input task_struct is released.
3599  */
3600 static struct task_struct *next_tid(struct task_struct *start)
3601 {
3602 	struct task_struct *pos = NULL;
3603 	rcu_read_lock();
3604 	if (pid_alive(start)) {
3605 		pos = next_thread(start);
3606 		if (thread_group_leader(pos))
3607 			pos = NULL;
3608 		else
3609 			get_task_struct(pos);
3610 	}
3611 	rcu_read_unlock();
3612 	put_task_struct(start);
3613 	return pos;
3614 }
3615 
3616 /* for the /proc/TGID/task/ directories */
3617 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3618 {
3619 	struct inode *inode = file_inode(file);
3620 	struct task_struct *task;
3621 	struct pid_namespace *ns;
3622 	int tid;
3623 
3624 	if (proc_inode_is_dead(inode))
3625 		return -ENOENT;
3626 
3627 	if (!dir_emit_dots(file, ctx))
3628 		return 0;
3629 
3630 	/* f_version caches the tgid value that the last readdir call couldn't
3631 	 * return. lseek aka telldir automagically resets f_version to 0.
3632 	 */
3633 	ns = proc_pid_ns(inode);
3634 	tid = (int)file->f_version;
3635 	file->f_version = 0;
3636 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3637 	     task;
3638 	     task = next_tid(task), ctx->pos++) {
3639 		char name[10 + 1];
3640 		unsigned int len;
3641 		tid = task_pid_nr_ns(task, ns);
3642 		len = snprintf(name, sizeof(name), "%u", tid);
3643 		if (!proc_fill_cache(file, ctx, name, len,
3644 				proc_task_instantiate, task, NULL)) {
3645 			/* returning this tgid failed, save it as the first
3646 			 * pid for the next readir call */
3647 			file->f_version = (u64)tid;
3648 			put_task_struct(task);
3649 			break;
3650 		}
3651 	}
3652 
3653 	return 0;
3654 }
3655 
3656 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3657 			     u32 request_mask, unsigned int query_flags)
3658 {
3659 	struct inode *inode = d_inode(path->dentry);
3660 	struct task_struct *p = get_proc_task(inode);
3661 	generic_fillattr(inode, stat);
3662 
3663 	if (p) {
3664 		stat->nlink += get_nr_threads(p);
3665 		put_task_struct(p);
3666 	}
3667 
3668 	return 0;
3669 }
3670 
3671 static const struct inode_operations proc_task_inode_operations = {
3672 	.lookup		= proc_task_lookup,
3673 	.getattr	= proc_task_getattr,
3674 	.setattr	= proc_setattr,
3675 	.permission	= proc_pid_permission,
3676 };
3677 
3678 static const struct file_operations proc_task_operations = {
3679 	.read		= generic_read_dir,
3680 	.iterate_shared	= proc_task_readdir,
3681 	.llseek		= generic_file_llseek,
3682 };
3683 
3684 void __init set_proc_pid_nlink(void)
3685 {
3686 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3687 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3688 }
3689