1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/string.h> 63 #include <linux/seq_file.h> 64 #include <linux/namei.h> 65 #include <linux/mnt_namespace.h> 66 #include <linux/mm.h> 67 #include <linux/swap.h> 68 #include <linux/rcupdate.h> 69 #include <linux/kallsyms.h> 70 #include <linux/stacktrace.h> 71 #include <linux/resource.h> 72 #include <linux/module.h> 73 #include <linux/mount.h> 74 #include <linux/security.h> 75 #include <linux/ptrace.h> 76 #include <linux/tracehook.h> 77 #include <linux/printk.h> 78 #include <linux/cache.h> 79 #include <linux/cgroup.h> 80 #include <linux/cpuset.h> 81 #include <linux/audit.h> 82 #include <linux/poll.h> 83 #include <linux/nsproxy.h> 84 #include <linux/oom.h> 85 #include <linux/elf.h> 86 #include <linux/pid_namespace.h> 87 #include <linux/user_namespace.h> 88 #include <linux/fs_struct.h> 89 #include <linux/slab.h> 90 #include <linux/sched/autogroup.h> 91 #include <linux/sched/mm.h> 92 #include <linux/sched/coredump.h> 93 #include <linux/sched/debug.h> 94 #include <linux/sched/stat.h> 95 #include <linux/flex_array.h> 96 #include <linux/posix-timers.h> 97 #include <trace/events/oom.h> 98 #include "internal.h" 99 #include "fd.h" 100 101 #include "../../lib/kstrtox.h" 102 103 /* NOTE: 104 * Implementing inode permission operations in /proc is almost 105 * certainly an error. Permission checks need to happen during 106 * each system call not at open time. The reason is that most of 107 * what we wish to check for permissions in /proc varies at runtime. 108 * 109 * The classic example of a problem is opening file descriptors 110 * in /proc for a task before it execs a suid executable. 111 */ 112 113 static u8 nlink_tid __ro_after_init; 114 static u8 nlink_tgid __ro_after_init; 115 116 struct pid_entry { 117 const char *name; 118 unsigned int len; 119 umode_t mode; 120 const struct inode_operations *iop; 121 const struct file_operations *fop; 122 union proc_op op; 123 }; 124 125 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 126 .name = (NAME), \ 127 .len = sizeof(NAME) - 1, \ 128 .mode = MODE, \ 129 .iop = IOP, \ 130 .fop = FOP, \ 131 .op = OP, \ 132 } 133 134 #define DIR(NAME, MODE, iops, fops) \ 135 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 136 #define LNK(NAME, get_link) \ 137 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 138 &proc_pid_link_inode_operations, NULL, \ 139 { .proc_get_link = get_link } ) 140 #define REG(NAME, MODE, fops) \ 141 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 142 #define ONE(NAME, MODE, show) \ 143 NOD(NAME, (S_IFREG|(MODE)), \ 144 NULL, &proc_single_file_operations, \ 145 { .proc_show = show } ) 146 #define ATTR(LSM, NAME, MODE) \ 147 NOD(NAME, (S_IFREG|(MODE)), \ 148 NULL, &proc_pid_attr_operations, \ 149 { .lsm = LSM }) 150 151 /* 152 * Count the number of hardlinks for the pid_entry table, excluding the . 153 * and .. links. 154 */ 155 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 156 unsigned int n) 157 { 158 unsigned int i; 159 unsigned int count; 160 161 count = 2; 162 for (i = 0; i < n; ++i) { 163 if (S_ISDIR(entries[i].mode)) 164 ++count; 165 } 166 167 return count; 168 } 169 170 static int get_task_root(struct task_struct *task, struct path *root) 171 { 172 int result = -ENOENT; 173 174 task_lock(task); 175 if (task->fs) { 176 get_fs_root(task->fs, root); 177 result = 0; 178 } 179 task_unlock(task); 180 return result; 181 } 182 183 static int proc_cwd_link(struct dentry *dentry, struct path *path) 184 { 185 struct task_struct *task = get_proc_task(d_inode(dentry)); 186 int result = -ENOENT; 187 188 if (task) { 189 task_lock(task); 190 if (task->fs) { 191 get_fs_pwd(task->fs, path); 192 result = 0; 193 } 194 task_unlock(task); 195 put_task_struct(task); 196 } 197 return result; 198 } 199 200 static int proc_root_link(struct dentry *dentry, struct path *path) 201 { 202 struct task_struct *task = get_proc_task(d_inode(dentry)); 203 int result = -ENOENT; 204 205 if (task) { 206 result = get_task_root(task, path); 207 put_task_struct(task); 208 } 209 return result; 210 } 211 212 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 213 size_t count, loff_t *ppos) 214 { 215 unsigned long arg_start, arg_end, env_start, env_end; 216 unsigned long pos, len; 217 char *page; 218 219 /* Check if process spawned far enough to have cmdline. */ 220 if (!mm->env_end) 221 return 0; 222 223 spin_lock(&mm->arg_lock); 224 arg_start = mm->arg_start; 225 arg_end = mm->arg_end; 226 env_start = mm->env_start; 227 env_end = mm->env_end; 228 spin_unlock(&mm->arg_lock); 229 230 if (arg_start >= arg_end) 231 return 0; 232 233 /* 234 * We have traditionally allowed the user to re-write 235 * the argument strings and overflow the end result 236 * into the environment section. But only do that if 237 * the environment area is contiguous to the arguments. 238 */ 239 if (env_start != arg_end || env_start >= env_end) 240 env_start = env_end = arg_end; 241 242 /* .. and limit it to a maximum of one page of slop */ 243 if (env_end >= arg_end + PAGE_SIZE) 244 env_end = arg_end + PAGE_SIZE - 1; 245 246 /* We're not going to care if "*ppos" has high bits set */ 247 pos = arg_start + *ppos; 248 249 /* .. but we do check the result is in the proper range */ 250 if (pos < arg_start || pos >= env_end) 251 return 0; 252 253 /* .. and we never go past env_end */ 254 if (env_end - pos < count) 255 count = env_end - pos; 256 257 page = (char *)__get_free_page(GFP_KERNEL); 258 if (!page) 259 return -ENOMEM; 260 261 len = 0; 262 while (count) { 263 int got; 264 size_t size = min_t(size_t, PAGE_SIZE, count); 265 long offset; 266 267 /* 268 * Are we already starting past the official end? 269 * We always include the last byte that is *supposed* 270 * to be NUL 271 */ 272 offset = (pos >= arg_end) ? pos - arg_end + 1 : 0; 273 274 got = access_remote_vm(mm, pos - offset, page, size + offset, FOLL_ANON); 275 if (got <= offset) 276 break; 277 got -= offset; 278 279 /* Don't walk past a NUL character once you hit arg_end */ 280 if (pos + got >= arg_end) { 281 int n = 0; 282 283 /* 284 * If we started before 'arg_end' but ended up 285 * at or after it, we start the NUL character 286 * check at arg_end-1 (where we expect the normal 287 * EOF to be). 288 * 289 * NOTE! This is smaller than 'got', because 290 * pos + got >= arg_end 291 */ 292 if (pos < arg_end) 293 n = arg_end - pos - 1; 294 295 /* Cut off at first NUL after 'n' */ 296 got = n + strnlen(page+n, offset+got-n); 297 if (got < offset) 298 break; 299 got -= offset; 300 301 /* Include the NUL if it existed */ 302 if (got < size) 303 got++; 304 } 305 306 got -= copy_to_user(buf, page+offset, got); 307 if (unlikely(!got)) { 308 if (!len) 309 len = -EFAULT; 310 break; 311 } 312 pos += got; 313 buf += got; 314 len += got; 315 count -= got; 316 } 317 318 free_page((unsigned long)page); 319 return len; 320 } 321 322 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 323 size_t count, loff_t *pos) 324 { 325 struct mm_struct *mm; 326 ssize_t ret; 327 328 mm = get_task_mm(tsk); 329 if (!mm) 330 return 0; 331 332 ret = get_mm_cmdline(mm, buf, count, pos); 333 mmput(mm); 334 return ret; 335 } 336 337 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 338 size_t count, loff_t *pos) 339 { 340 struct task_struct *tsk; 341 ssize_t ret; 342 343 BUG_ON(*pos < 0); 344 345 tsk = get_proc_task(file_inode(file)); 346 if (!tsk) 347 return -ESRCH; 348 ret = get_task_cmdline(tsk, buf, count, pos); 349 put_task_struct(tsk); 350 if (ret > 0) 351 *pos += ret; 352 return ret; 353 } 354 355 static const struct file_operations proc_pid_cmdline_ops = { 356 .read = proc_pid_cmdline_read, 357 .llseek = generic_file_llseek, 358 }; 359 360 #ifdef CONFIG_KALLSYMS 361 /* 362 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 363 * Returns the resolved symbol. If that fails, simply return the address. 364 */ 365 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 366 struct pid *pid, struct task_struct *task) 367 { 368 unsigned long wchan; 369 char symname[KSYM_NAME_LEN]; 370 371 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 372 goto print0; 373 374 wchan = get_wchan(task); 375 if (wchan && !lookup_symbol_name(wchan, symname)) { 376 seq_puts(m, symname); 377 return 0; 378 } 379 380 print0: 381 seq_putc(m, '0'); 382 return 0; 383 } 384 #endif /* CONFIG_KALLSYMS */ 385 386 static int lock_trace(struct task_struct *task) 387 { 388 int err = mutex_lock_killable(&task->signal->cred_guard_mutex); 389 if (err) 390 return err; 391 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 392 mutex_unlock(&task->signal->cred_guard_mutex); 393 return -EPERM; 394 } 395 return 0; 396 } 397 398 static void unlock_trace(struct task_struct *task) 399 { 400 mutex_unlock(&task->signal->cred_guard_mutex); 401 } 402 403 #ifdef CONFIG_STACKTRACE 404 405 #define MAX_STACK_TRACE_DEPTH 64 406 407 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 408 struct pid *pid, struct task_struct *task) 409 { 410 struct stack_trace trace; 411 unsigned long *entries; 412 int err; 413 414 /* 415 * The ability to racily run the kernel stack unwinder on a running task 416 * and then observe the unwinder output is scary; while it is useful for 417 * debugging kernel issues, it can also allow an attacker to leak kernel 418 * stack contents. 419 * Doing this in a manner that is at least safe from races would require 420 * some work to ensure that the remote task can not be scheduled; and 421 * even then, this would still expose the unwinder as local attack 422 * surface. 423 * Therefore, this interface is restricted to root. 424 */ 425 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 426 return -EACCES; 427 428 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 429 GFP_KERNEL); 430 if (!entries) 431 return -ENOMEM; 432 433 trace.nr_entries = 0; 434 trace.max_entries = MAX_STACK_TRACE_DEPTH; 435 trace.entries = entries; 436 trace.skip = 0; 437 438 err = lock_trace(task); 439 if (!err) { 440 unsigned int i; 441 442 save_stack_trace_tsk(task, &trace); 443 444 for (i = 0; i < trace.nr_entries; i++) { 445 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 446 } 447 unlock_trace(task); 448 } 449 kfree(entries); 450 451 return err; 452 } 453 #endif 454 455 #ifdef CONFIG_SCHED_INFO 456 /* 457 * Provides /proc/PID/schedstat 458 */ 459 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 460 struct pid *pid, struct task_struct *task) 461 { 462 if (unlikely(!sched_info_on())) 463 seq_printf(m, "0 0 0\n"); 464 else 465 seq_printf(m, "%llu %llu %lu\n", 466 (unsigned long long)task->se.sum_exec_runtime, 467 (unsigned long long)task->sched_info.run_delay, 468 task->sched_info.pcount); 469 470 return 0; 471 } 472 #endif 473 474 #ifdef CONFIG_LATENCYTOP 475 static int lstats_show_proc(struct seq_file *m, void *v) 476 { 477 int i; 478 struct inode *inode = m->private; 479 struct task_struct *task = get_proc_task(inode); 480 481 if (!task) 482 return -ESRCH; 483 seq_puts(m, "Latency Top version : v0.1\n"); 484 for (i = 0; i < LT_SAVECOUNT; i++) { 485 struct latency_record *lr = &task->latency_record[i]; 486 if (lr->backtrace[0]) { 487 int q; 488 seq_printf(m, "%i %li %li", 489 lr->count, lr->time, lr->max); 490 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 491 unsigned long bt = lr->backtrace[q]; 492 if (!bt) 493 break; 494 if (bt == ULONG_MAX) 495 break; 496 seq_printf(m, " %ps", (void *)bt); 497 } 498 seq_putc(m, '\n'); 499 } 500 501 } 502 put_task_struct(task); 503 return 0; 504 } 505 506 static int lstats_open(struct inode *inode, struct file *file) 507 { 508 return single_open(file, lstats_show_proc, inode); 509 } 510 511 static ssize_t lstats_write(struct file *file, const char __user *buf, 512 size_t count, loff_t *offs) 513 { 514 struct task_struct *task = get_proc_task(file_inode(file)); 515 516 if (!task) 517 return -ESRCH; 518 clear_all_latency_tracing(task); 519 put_task_struct(task); 520 521 return count; 522 } 523 524 static const struct file_operations proc_lstats_operations = { 525 .open = lstats_open, 526 .read = seq_read, 527 .write = lstats_write, 528 .llseek = seq_lseek, 529 .release = single_release, 530 }; 531 532 #endif 533 534 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 535 struct pid *pid, struct task_struct *task) 536 { 537 unsigned long totalpages = totalram_pages() + total_swap_pages; 538 unsigned long points = 0; 539 540 points = oom_badness(task, NULL, NULL, totalpages) * 541 1000 / totalpages; 542 seq_printf(m, "%lu\n", points); 543 544 return 0; 545 } 546 547 struct limit_names { 548 const char *name; 549 const char *unit; 550 }; 551 552 static const struct limit_names lnames[RLIM_NLIMITS] = { 553 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 554 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 555 [RLIMIT_DATA] = {"Max data size", "bytes"}, 556 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 557 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 558 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 559 [RLIMIT_NPROC] = {"Max processes", "processes"}, 560 [RLIMIT_NOFILE] = {"Max open files", "files"}, 561 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 562 [RLIMIT_AS] = {"Max address space", "bytes"}, 563 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 564 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 565 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 566 [RLIMIT_NICE] = {"Max nice priority", NULL}, 567 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 568 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 569 }; 570 571 /* Display limits for a process */ 572 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 573 struct pid *pid, struct task_struct *task) 574 { 575 unsigned int i; 576 unsigned long flags; 577 578 struct rlimit rlim[RLIM_NLIMITS]; 579 580 if (!lock_task_sighand(task, &flags)) 581 return 0; 582 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 583 unlock_task_sighand(task, &flags); 584 585 /* 586 * print the file header 587 */ 588 seq_puts(m, "Limit " 589 "Soft Limit " 590 "Hard Limit " 591 "Units \n"); 592 593 for (i = 0; i < RLIM_NLIMITS; i++) { 594 if (rlim[i].rlim_cur == RLIM_INFINITY) 595 seq_printf(m, "%-25s %-20s ", 596 lnames[i].name, "unlimited"); 597 else 598 seq_printf(m, "%-25s %-20lu ", 599 lnames[i].name, rlim[i].rlim_cur); 600 601 if (rlim[i].rlim_max == RLIM_INFINITY) 602 seq_printf(m, "%-20s ", "unlimited"); 603 else 604 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 605 606 if (lnames[i].unit) 607 seq_printf(m, "%-10s\n", lnames[i].unit); 608 else 609 seq_putc(m, '\n'); 610 } 611 612 return 0; 613 } 614 615 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 616 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 617 struct pid *pid, struct task_struct *task) 618 { 619 long nr; 620 unsigned long args[6], sp, pc; 621 int res; 622 623 res = lock_trace(task); 624 if (res) 625 return res; 626 627 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 628 seq_puts(m, "running\n"); 629 else if (nr < 0) 630 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 631 else 632 seq_printf(m, 633 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 634 nr, 635 args[0], args[1], args[2], args[3], args[4], args[5], 636 sp, pc); 637 unlock_trace(task); 638 639 return 0; 640 } 641 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 642 643 /************************************************************************/ 644 /* Here the fs part begins */ 645 /************************************************************************/ 646 647 /* permission checks */ 648 static int proc_fd_access_allowed(struct inode *inode) 649 { 650 struct task_struct *task; 651 int allowed = 0; 652 /* Allow access to a task's file descriptors if it is us or we 653 * may use ptrace attach to the process and find out that 654 * information. 655 */ 656 task = get_proc_task(inode); 657 if (task) { 658 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 659 put_task_struct(task); 660 } 661 return allowed; 662 } 663 664 int proc_setattr(struct dentry *dentry, struct iattr *attr) 665 { 666 int error; 667 struct inode *inode = d_inode(dentry); 668 669 if (attr->ia_valid & ATTR_MODE) 670 return -EPERM; 671 672 error = setattr_prepare(dentry, attr); 673 if (error) 674 return error; 675 676 setattr_copy(inode, attr); 677 mark_inode_dirty(inode); 678 return 0; 679 } 680 681 /* 682 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 683 * or euid/egid (for hide_pid_min=2)? 684 */ 685 static bool has_pid_permissions(struct pid_namespace *pid, 686 struct task_struct *task, 687 int hide_pid_min) 688 { 689 if (pid->hide_pid < hide_pid_min) 690 return true; 691 if (in_group_p(pid->pid_gid)) 692 return true; 693 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 694 } 695 696 697 static int proc_pid_permission(struct inode *inode, int mask) 698 { 699 struct pid_namespace *pid = proc_pid_ns(inode); 700 struct task_struct *task; 701 bool has_perms; 702 703 task = get_proc_task(inode); 704 if (!task) 705 return -ESRCH; 706 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS); 707 put_task_struct(task); 708 709 if (!has_perms) { 710 if (pid->hide_pid == HIDEPID_INVISIBLE) { 711 /* 712 * Let's make getdents(), stat(), and open() 713 * consistent with each other. If a process 714 * may not stat() a file, it shouldn't be seen 715 * in procfs at all. 716 */ 717 return -ENOENT; 718 } 719 720 return -EPERM; 721 } 722 return generic_permission(inode, mask); 723 } 724 725 726 727 static const struct inode_operations proc_def_inode_operations = { 728 .setattr = proc_setattr, 729 }; 730 731 static int proc_single_show(struct seq_file *m, void *v) 732 { 733 struct inode *inode = m->private; 734 struct pid_namespace *ns = proc_pid_ns(inode); 735 struct pid *pid = proc_pid(inode); 736 struct task_struct *task; 737 int ret; 738 739 task = get_pid_task(pid, PIDTYPE_PID); 740 if (!task) 741 return -ESRCH; 742 743 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 744 745 put_task_struct(task); 746 return ret; 747 } 748 749 static int proc_single_open(struct inode *inode, struct file *filp) 750 { 751 return single_open(filp, proc_single_show, inode); 752 } 753 754 static const struct file_operations proc_single_file_operations = { 755 .open = proc_single_open, 756 .read = seq_read, 757 .llseek = seq_lseek, 758 .release = single_release, 759 }; 760 761 762 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 763 { 764 struct task_struct *task = get_proc_task(inode); 765 struct mm_struct *mm = ERR_PTR(-ESRCH); 766 767 if (task) { 768 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 769 put_task_struct(task); 770 771 if (!IS_ERR_OR_NULL(mm)) { 772 /* ensure this mm_struct can't be freed */ 773 mmgrab(mm); 774 /* but do not pin its memory */ 775 mmput(mm); 776 } 777 } 778 779 return mm; 780 } 781 782 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 783 { 784 struct mm_struct *mm = proc_mem_open(inode, mode); 785 786 if (IS_ERR(mm)) 787 return PTR_ERR(mm); 788 789 file->private_data = mm; 790 return 0; 791 } 792 793 static int mem_open(struct inode *inode, struct file *file) 794 { 795 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 796 797 /* OK to pass negative loff_t, we can catch out-of-range */ 798 file->f_mode |= FMODE_UNSIGNED_OFFSET; 799 800 return ret; 801 } 802 803 static ssize_t mem_rw(struct file *file, char __user *buf, 804 size_t count, loff_t *ppos, int write) 805 { 806 struct mm_struct *mm = file->private_data; 807 unsigned long addr = *ppos; 808 ssize_t copied; 809 char *page; 810 unsigned int flags; 811 812 if (!mm) 813 return 0; 814 815 page = (char *)__get_free_page(GFP_KERNEL); 816 if (!page) 817 return -ENOMEM; 818 819 copied = 0; 820 if (!mmget_not_zero(mm)) 821 goto free; 822 823 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 824 825 while (count > 0) { 826 int this_len = min_t(int, count, PAGE_SIZE); 827 828 if (write && copy_from_user(page, buf, this_len)) { 829 copied = -EFAULT; 830 break; 831 } 832 833 this_len = access_remote_vm(mm, addr, page, this_len, flags); 834 if (!this_len) { 835 if (!copied) 836 copied = -EIO; 837 break; 838 } 839 840 if (!write && copy_to_user(buf, page, this_len)) { 841 copied = -EFAULT; 842 break; 843 } 844 845 buf += this_len; 846 addr += this_len; 847 copied += this_len; 848 count -= this_len; 849 } 850 *ppos = addr; 851 852 mmput(mm); 853 free: 854 free_page((unsigned long) page); 855 return copied; 856 } 857 858 static ssize_t mem_read(struct file *file, char __user *buf, 859 size_t count, loff_t *ppos) 860 { 861 return mem_rw(file, buf, count, ppos, 0); 862 } 863 864 static ssize_t mem_write(struct file *file, const char __user *buf, 865 size_t count, loff_t *ppos) 866 { 867 return mem_rw(file, (char __user*)buf, count, ppos, 1); 868 } 869 870 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 871 { 872 switch (orig) { 873 case 0: 874 file->f_pos = offset; 875 break; 876 case 1: 877 file->f_pos += offset; 878 break; 879 default: 880 return -EINVAL; 881 } 882 force_successful_syscall_return(); 883 return file->f_pos; 884 } 885 886 static int mem_release(struct inode *inode, struct file *file) 887 { 888 struct mm_struct *mm = file->private_data; 889 if (mm) 890 mmdrop(mm); 891 return 0; 892 } 893 894 static const struct file_operations proc_mem_operations = { 895 .llseek = mem_lseek, 896 .read = mem_read, 897 .write = mem_write, 898 .open = mem_open, 899 .release = mem_release, 900 }; 901 902 static int environ_open(struct inode *inode, struct file *file) 903 { 904 return __mem_open(inode, file, PTRACE_MODE_READ); 905 } 906 907 static ssize_t environ_read(struct file *file, char __user *buf, 908 size_t count, loff_t *ppos) 909 { 910 char *page; 911 unsigned long src = *ppos; 912 int ret = 0; 913 struct mm_struct *mm = file->private_data; 914 unsigned long env_start, env_end; 915 916 /* Ensure the process spawned far enough to have an environment. */ 917 if (!mm || !mm->env_end) 918 return 0; 919 920 page = (char *)__get_free_page(GFP_KERNEL); 921 if (!page) 922 return -ENOMEM; 923 924 ret = 0; 925 if (!mmget_not_zero(mm)) 926 goto free; 927 928 spin_lock(&mm->arg_lock); 929 env_start = mm->env_start; 930 env_end = mm->env_end; 931 spin_unlock(&mm->arg_lock); 932 933 while (count > 0) { 934 size_t this_len, max_len; 935 int retval; 936 937 if (src >= (env_end - env_start)) 938 break; 939 940 this_len = env_end - (env_start + src); 941 942 max_len = min_t(size_t, PAGE_SIZE, count); 943 this_len = min(max_len, this_len); 944 945 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 946 947 if (retval <= 0) { 948 ret = retval; 949 break; 950 } 951 952 if (copy_to_user(buf, page, retval)) { 953 ret = -EFAULT; 954 break; 955 } 956 957 ret += retval; 958 src += retval; 959 buf += retval; 960 count -= retval; 961 } 962 *ppos = src; 963 mmput(mm); 964 965 free: 966 free_page((unsigned long) page); 967 return ret; 968 } 969 970 static const struct file_operations proc_environ_operations = { 971 .open = environ_open, 972 .read = environ_read, 973 .llseek = generic_file_llseek, 974 .release = mem_release, 975 }; 976 977 static int auxv_open(struct inode *inode, struct file *file) 978 { 979 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 980 } 981 982 static ssize_t auxv_read(struct file *file, char __user *buf, 983 size_t count, loff_t *ppos) 984 { 985 struct mm_struct *mm = file->private_data; 986 unsigned int nwords = 0; 987 988 if (!mm) 989 return 0; 990 do { 991 nwords += 2; 992 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 993 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 994 nwords * sizeof(mm->saved_auxv[0])); 995 } 996 997 static const struct file_operations proc_auxv_operations = { 998 .open = auxv_open, 999 .read = auxv_read, 1000 .llseek = generic_file_llseek, 1001 .release = mem_release, 1002 }; 1003 1004 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1005 loff_t *ppos) 1006 { 1007 struct task_struct *task = get_proc_task(file_inode(file)); 1008 char buffer[PROC_NUMBUF]; 1009 int oom_adj = OOM_ADJUST_MIN; 1010 size_t len; 1011 1012 if (!task) 1013 return -ESRCH; 1014 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1015 oom_adj = OOM_ADJUST_MAX; 1016 else 1017 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1018 OOM_SCORE_ADJ_MAX; 1019 put_task_struct(task); 1020 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1021 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1022 } 1023 1024 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1025 { 1026 static DEFINE_MUTEX(oom_adj_mutex); 1027 struct mm_struct *mm = NULL; 1028 struct task_struct *task; 1029 int err = 0; 1030 1031 task = get_proc_task(file_inode(file)); 1032 if (!task) 1033 return -ESRCH; 1034 1035 mutex_lock(&oom_adj_mutex); 1036 if (legacy) { 1037 if (oom_adj < task->signal->oom_score_adj && 1038 !capable(CAP_SYS_RESOURCE)) { 1039 err = -EACCES; 1040 goto err_unlock; 1041 } 1042 /* 1043 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1044 * /proc/pid/oom_score_adj instead. 1045 */ 1046 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1047 current->comm, task_pid_nr(current), task_pid_nr(task), 1048 task_pid_nr(task)); 1049 } else { 1050 if ((short)oom_adj < task->signal->oom_score_adj_min && 1051 !capable(CAP_SYS_RESOURCE)) { 1052 err = -EACCES; 1053 goto err_unlock; 1054 } 1055 } 1056 1057 /* 1058 * Make sure we will check other processes sharing the mm if this is 1059 * not vfrok which wants its own oom_score_adj. 1060 * pin the mm so it doesn't go away and get reused after task_unlock 1061 */ 1062 if (!task->vfork_done) { 1063 struct task_struct *p = find_lock_task_mm(task); 1064 1065 if (p) { 1066 if (atomic_read(&p->mm->mm_users) > 1) { 1067 mm = p->mm; 1068 mmgrab(mm); 1069 } 1070 task_unlock(p); 1071 } 1072 } 1073 1074 task->signal->oom_score_adj = oom_adj; 1075 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1076 task->signal->oom_score_adj_min = (short)oom_adj; 1077 trace_oom_score_adj_update(task); 1078 1079 if (mm) { 1080 struct task_struct *p; 1081 1082 rcu_read_lock(); 1083 for_each_process(p) { 1084 if (same_thread_group(task, p)) 1085 continue; 1086 1087 /* do not touch kernel threads or the global init */ 1088 if (p->flags & PF_KTHREAD || is_global_init(p)) 1089 continue; 1090 1091 task_lock(p); 1092 if (!p->vfork_done && process_shares_mm(p, mm)) { 1093 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n", 1094 task_pid_nr(p), p->comm, 1095 p->signal->oom_score_adj, oom_adj, 1096 task_pid_nr(task), task->comm); 1097 p->signal->oom_score_adj = oom_adj; 1098 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1099 p->signal->oom_score_adj_min = (short)oom_adj; 1100 } 1101 task_unlock(p); 1102 } 1103 rcu_read_unlock(); 1104 mmdrop(mm); 1105 } 1106 err_unlock: 1107 mutex_unlock(&oom_adj_mutex); 1108 put_task_struct(task); 1109 return err; 1110 } 1111 1112 /* 1113 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1114 * kernels. The effective policy is defined by oom_score_adj, which has a 1115 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1116 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1117 * Processes that become oom disabled via oom_adj will still be oom disabled 1118 * with this implementation. 1119 * 1120 * oom_adj cannot be removed since existing userspace binaries use it. 1121 */ 1122 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1123 size_t count, loff_t *ppos) 1124 { 1125 char buffer[PROC_NUMBUF]; 1126 int oom_adj; 1127 int err; 1128 1129 memset(buffer, 0, sizeof(buffer)); 1130 if (count > sizeof(buffer) - 1) 1131 count = sizeof(buffer) - 1; 1132 if (copy_from_user(buffer, buf, count)) { 1133 err = -EFAULT; 1134 goto out; 1135 } 1136 1137 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1138 if (err) 1139 goto out; 1140 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1141 oom_adj != OOM_DISABLE) { 1142 err = -EINVAL; 1143 goto out; 1144 } 1145 1146 /* 1147 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1148 * value is always attainable. 1149 */ 1150 if (oom_adj == OOM_ADJUST_MAX) 1151 oom_adj = OOM_SCORE_ADJ_MAX; 1152 else 1153 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1154 1155 err = __set_oom_adj(file, oom_adj, true); 1156 out: 1157 return err < 0 ? err : count; 1158 } 1159 1160 static const struct file_operations proc_oom_adj_operations = { 1161 .read = oom_adj_read, 1162 .write = oom_adj_write, 1163 .llseek = generic_file_llseek, 1164 }; 1165 1166 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1167 size_t count, loff_t *ppos) 1168 { 1169 struct task_struct *task = get_proc_task(file_inode(file)); 1170 char buffer[PROC_NUMBUF]; 1171 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1172 size_t len; 1173 1174 if (!task) 1175 return -ESRCH; 1176 oom_score_adj = task->signal->oom_score_adj; 1177 put_task_struct(task); 1178 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1179 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1180 } 1181 1182 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1183 size_t count, loff_t *ppos) 1184 { 1185 char buffer[PROC_NUMBUF]; 1186 int oom_score_adj; 1187 int err; 1188 1189 memset(buffer, 0, sizeof(buffer)); 1190 if (count > sizeof(buffer) - 1) 1191 count = sizeof(buffer) - 1; 1192 if (copy_from_user(buffer, buf, count)) { 1193 err = -EFAULT; 1194 goto out; 1195 } 1196 1197 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1198 if (err) 1199 goto out; 1200 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1201 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1202 err = -EINVAL; 1203 goto out; 1204 } 1205 1206 err = __set_oom_adj(file, oom_score_adj, false); 1207 out: 1208 return err < 0 ? err : count; 1209 } 1210 1211 static const struct file_operations proc_oom_score_adj_operations = { 1212 .read = oom_score_adj_read, 1213 .write = oom_score_adj_write, 1214 .llseek = default_llseek, 1215 }; 1216 1217 #ifdef CONFIG_AUDITSYSCALL 1218 #define TMPBUFLEN 11 1219 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1220 size_t count, loff_t *ppos) 1221 { 1222 struct inode * inode = file_inode(file); 1223 struct task_struct *task = get_proc_task(inode); 1224 ssize_t length; 1225 char tmpbuf[TMPBUFLEN]; 1226 1227 if (!task) 1228 return -ESRCH; 1229 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1230 from_kuid(file->f_cred->user_ns, 1231 audit_get_loginuid(task))); 1232 put_task_struct(task); 1233 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1234 } 1235 1236 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1237 size_t count, loff_t *ppos) 1238 { 1239 struct inode * inode = file_inode(file); 1240 uid_t loginuid; 1241 kuid_t kloginuid; 1242 int rv; 1243 1244 rcu_read_lock(); 1245 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1246 rcu_read_unlock(); 1247 return -EPERM; 1248 } 1249 rcu_read_unlock(); 1250 1251 if (*ppos != 0) { 1252 /* No partial writes. */ 1253 return -EINVAL; 1254 } 1255 1256 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1257 if (rv < 0) 1258 return rv; 1259 1260 /* is userspace tring to explicitly UNSET the loginuid? */ 1261 if (loginuid == AUDIT_UID_UNSET) { 1262 kloginuid = INVALID_UID; 1263 } else { 1264 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1265 if (!uid_valid(kloginuid)) 1266 return -EINVAL; 1267 } 1268 1269 rv = audit_set_loginuid(kloginuid); 1270 if (rv < 0) 1271 return rv; 1272 return count; 1273 } 1274 1275 static const struct file_operations proc_loginuid_operations = { 1276 .read = proc_loginuid_read, 1277 .write = proc_loginuid_write, 1278 .llseek = generic_file_llseek, 1279 }; 1280 1281 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1282 size_t count, loff_t *ppos) 1283 { 1284 struct inode * inode = file_inode(file); 1285 struct task_struct *task = get_proc_task(inode); 1286 ssize_t length; 1287 char tmpbuf[TMPBUFLEN]; 1288 1289 if (!task) 1290 return -ESRCH; 1291 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1292 audit_get_sessionid(task)); 1293 put_task_struct(task); 1294 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1295 } 1296 1297 static const struct file_operations proc_sessionid_operations = { 1298 .read = proc_sessionid_read, 1299 .llseek = generic_file_llseek, 1300 }; 1301 #endif 1302 1303 #ifdef CONFIG_FAULT_INJECTION 1304 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1305 size_t count, loff_t *ppos) 1306 { 1307 struct task_struct *task = get_proc_task(file_inode(file)); 1308 char buffer[PROC_NUMBUF]; 1309 size_t len; 1310 int make_it_fail; 1311 1312 if (!task) 1313 return -ESRCH; 1314 make_it_fail = task->make_it_fail; 1315 put_task_struct(task); 1316 1317 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1318 1319 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1320 } 1321 1322 static ssize_t proc_fault_inject_write(struct file * file, 1323 const char __user * buf, size_t count, loff_t *ppos) 1324 { 1325 struct task_struct *task; 1326 char buffer[PROC_NUMBUF]; 1327 int make_it_fail; 1328 int rv; 1329 1330 if (!capable(CAP_SYS_RESOURCE)) 1331 return -EPERM; 1332 memset(buffer, 0, sizeof(buffer)); 1333 if (count > sizeof(buffer) - 1) 1334 count = sizeof(buffer) - 1; 1335 if (copy_from_user(buffer, buf, count)) 1336 return -EFAULT; 1337 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1338 if (rv < 0) 1339 return rv; 1340 if (make_it_fail < 0 || make_it_fail > 1) 1341 return -EINVAL; 1342 1343 task = get_proc_task(file_inode(file)); 1344 if (!task) 1345 return -ESRCH; 1346 task->make_it_fail = make_it_fail; 1347 put_task_struct(task); 1348 1349 return count; 1350 } 1351 1352 static const struct file_operations proc_fault_inject_operations = { 1353 .read = proc_fault_inject_read, 1354 .write = proc_fault_inject_write, 1355 .llseek = generic_file_llseek, 1356 }; 1357 1358 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1359 size_t count, loff_t *ppos) 1360 { 1361 struct task_struct *task; 1362 int err; 1363 unsigned int n; 1364 1365 err = kstrtouint_from_user(buf, count, 0, &n); 1366 if (err) 1367 return err; 1368 1369 task = get_proc_task(file_inode(file)); 1370 if (!task) 1371 return -ESRCH; 1372 task->fail_nth = n; 1373 put_task_struct(task); 1374 1375 return count; 1376 } 1377 1378 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1379 size_t count, loff_t *ppos) 1380 { 1381 struct task_struct *task; 1382 char numbuf[PROC_NUMBUF]; 1383 ssize_t len; 1384 1385 task = get_proc_task(file_inode(file)); 1386 if (!task) 1387 return -ESRCH; 1388 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1389 put_task_struct(task); 1390 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1391 } 1392 1393 static const struct file_operations proc_fail_nth_operations = { 1394 .read = proc_fail_nth_read, 1395 .write = proc_fail_nth_write, 1396 }; 1397 #endif 1398 1399 1400 #ifdef CONFIG_SCHED_DEBUG 1401 /* 1402 * Print out various scheduling related per-task fields: 1403 */ 1404 static int sched_show(struct seq_file *m, void *v) 1405 { 1406 struct inode *inode = m->private; 1407 struct pid_namespace *ns = proc_pid_ns(inode); 1408 struct task_struct *p; 1409 1410 p = get_proc_task(inode); 1411 if (!p) 1412 return -ESRCH; 1413 proc_sched_show_task(p, ns, m); 1414 1415 put_task_struct(p); 1416 1417 return 0; 1418 } 1419 1420 static ssize_t 1421 sched_write(struct file *file, const char __user *buf, 1422 size_t count, loff_t *offset) 1423 { 1424 struct inode *inode = file_inode(file); 1425 struct task_struct *p; 1426 1427 p = get_proc_task(inode); 1428 if (!p) 1429 return -ESRCH; 1430 proc_sched_set_task(p); 1431 1432 put_task_struct(p); 1433 1434 return count; 1435 } 1436 1437 static int sched_open(struct inode *inode, struct file *filp) 1438 { 1439 return single_open(filp, sched_show, inode); 1440 } 1441 1442 static const struct file_operations proc_pid_sched_operations = { 1443 .open = sched_open, 1444 .read = seq_read, 1445 .write = sched_write, 1446 .llseek = seq_lseek, 1447 .release = single_release, 1448 }; 1449 1450 #endif 1451 1452 #ifdef CONFIG_SCHED_AUTOGROUP 1453 /* 1454 * Print out autogroup related information: 1455 */ 1456 static int sched_autogroup_show(struct seq_file *m, void *v) 1457 { 1458 struct inode *inode = m->private; 1459 struct task_struct *p; 1460 1461 p = get_proc_task(inode); 1462 if (!p) 1463 return -ESRCH; 1464 proc_sched_autogroup_show_task(p, m); 1465 1466 put_task_struct(p); 1467 1468 return 0; 1469 } 1470 1471 static ssize_t 1472 sched_autogroup_write(struct file *file, const char __user *buf, 1473 size_t count, loff_t *offset) 1474 { 1475 struct inode *inode = file_inode(file); 1476 struct task_struct *p; 1477 char buffer[PROC_NUMBUF]; 1478 int nice; 1479 int err; 1480 1481 memset(buffer, 0, sizeof(buffer)); 1482 if (count > sizeof(buffer) - 1) 1483 count = sizeof(buffer) - 1; 1484 if (copy_from_user(buffer, buf, count)) 1485 return -EFAULT; 1486 1487 err = kstrtoint(strstrip(buffer), 0, &nice); 1488 if (err < 0) 1489 return err; 1490 1491 p = get_proc_task(inode); 1492 if (!p) 1493 return -ESRCH; 1494 1495 err = proc_sched_autogroup_set_nice(p, nice); 1496 if (err) 1497 count = err; 1498 1499 put_task_struct(p); 1500 1501 return count; 1502 } 1503 1504 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1505 { 1506 int ret; 1507 1508 ret = single_open(filp, sched_autogroup_show, NULL); 1509 if (!ret) { 1510 struct seq_file *m = filp->private_data; 1511 1512 m->private = inode; 1513 } 1514 return ret; 1515 } 1516 1517 static const struct file_operations proc_pid_sched_autogroup_operations = { 1518 .open = sched_autogroup_open, 1519 .read = seq_read, 1520 .write = sched_autogroup_write, 1521 .llseek = seq_lseek, 1522 .release = single_release, 1523 }; 1524 1525 #endif /* CONFIG_SCHED_AUTOGROUP */ 1526 1527 static ssize_t comm_write(struct file *file, const char __user *buf, 1528 size_t count, loff_t *offset) 1529 { 1530 struct inode *inode = file_inode(file); 1531 struct task_struct *p; 1532 char buffer[TASK_COMM_LEN]; 1533 const size_t maxlen = sizeof(buffer) - 1; 1534 1535 memset(buffer, 0, sizeof(buffer)); 1536 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1537 return -EFAULT; 1538 1539 p = get_proc_task(inode); 1540 if (!p) 1541 return -ESRCH; 1542 1543 if (same_thread_group(current, p)) 1544 set_task_comm(p, buffer); 1545 else 1546 count = -EINVAL; 1547 1548 put_task_struct(p); 1549 1550 return count; 1551 } 1552 1553 static int comm_show(struct seq_file *m, void *v) 1554 { 1555 struct inode *inode = m->private; 1556 struct task_struct *p; 1557 1558 p = get_proc_task(inode); 1559 if (!p) 1560 return -ESRCH; 1561 1562 proc_task_name(m, p, false); 1563 seq_putc(m, '\n'); 1564 1565 put_task_struct(p); 1566 1567 return 0; 1568 } 1569 1570 static int comm_open(struct inode *inode, struct file *filp) 1571 { 1572 return single_open(filp, comm_show, inode); 1573 } 1574 1575 static const struct file_operations proc_pid_set_comm_operations = { 1576 .open = comm_open, 1577 .read = seq_read, 1578 .write = comm_write, 1579 .llseek = seq_lseek, 1580 .release = single_release, 1581 }; 1582 1583 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1584 { 1585 struct task_struct *task; 1586 struct file *exe_file; 1587 1588 task = get_proc_task(d_inode(dentry)); 1589 if (!task) 1590 return -ENOENT; 1591 exe_file = get_task_exe_file(task); 1592 put_task_struct(task); 1593 if (exe_file) { 1594 *exe_path = exe_file->f_path; 1595 path_get(&exe_file->f_path); 1596 fput(exe_file); 1597 return 0; 1598 } else 1599 return -ENOENT; 1600 } 1601 1602 static const char *proc_pid_get_link(struct dentry *dentry, 1603 struct inode *inode, 1604 struct delayed_call *done) 1605 { 1606 struct path path; 1607 int error = -EACCES; 1608 1609 if (!dentry) 1610 return ERR_PTR(-ECHILD); 1611 1612 /* Are we allowed to snoop on the tasks file descriptors? */ 1613 if (!proc_fd_access_allowed(inode)) 1614 goto out; 1615 1616 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1617 if (error) 1618 goto out; 1619 1620 nd_jump_link(&path); 1621 return NULL; 1622 out: 1623 return ERR_PTR(error); 1624 } 1625 1626 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1627 { 1628 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1629 char *pathname; 1630 int len; 1631 1632 if (!tmp) 1633 return -ENOMEM; 1634 1635 pathname = d_path(path, tmp, PAGE_SIZE); 1636 len = PTR_ERR(pathname); 1637 if (IS_ERR(pathname)) 1638 goto out; 1639 len = tmp + PAGE_SIZE - 1 - pathname; 1640 1641 if (len > buflen) 1642 len = buflen; 1643 if (copy_to_user(buffer, pathname, len)) 1644 len = -EFAULT; 1645 out: 1646 free_page((unsigned long)tmp); 1647 return len; 1648 } 1649 1650 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1651 { 1652 int error = -EACCES; 1653 struct inode *inode = d_inode(dentry); 1654 struct path path; 1655 1656 /* Are we allowed to snoop on the tasks file descriptors? */ 1657 if (!proc_fd_access_allowed(inode)) 1658 goto out; 1659 1660 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1661 if (error) 1662 goto out; 1663 1664 error = do_proc_readlink(&path, buffer, buflen); 1665 path_put(&path); 1666 out: 1667 return error; 1668 } 1669 1670 const struct inode_operations proc_pid_link_inode_operations = { 1671 .readlink = proc_pid_readlink, 1672 .get_link = proc_pid_get_link, 1673 .setattr = proc_setattr, 1674 }; 1675 1676 1677 /* building an inode */ 1678 1679 void task_dump_owner(struct task_struct *task, umode_t mode, 1680 kuid_t *ruid, kgid_t *rgid) 1681 { 1682 /* Depending on the state of dumpable compute who should own a 1683 * proc file for a task. 1684 */ 1685 const struct cred *cred; 1686 kuid_t uid; 1687 kgid_t gid; 1688 1689 if (unlikely(task->flags & PF_KTHREAD)) { 1690 *ruid = GLOBAL_ROOT_UID; 1691 *rgid = GLOBAL_ROOT_GID; 1692 return; 1693 } 1694 1695 /* Default to the tasks effective ownership */ 1696 rcu_read_lock(); 1697 cred = __task_cred(task); 1698 uid = cred->euid; 1699 gid = cred->egid; 1700 rcu_read_unlock(); 1701 1702 /* 1703 * Before the /proc/pid/status file was created the only way to read 1704 * the effective uid of a /process was to stat /proc/pid. Reading 1705 * /proc/pid/status is slow enough that procps and other packages 1706 * kept stating /proc/pid. To keep the rules in /proc simple I have 1707 * made this apply to all per process world readable and executable 1708 * directories. 1709 */ 1710 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1711 struct mm_struct *mm; 1712 task_lock(task); 1713 mm = task->mm; 1714 /* Make non-dumpable tasks owned by some root */ 1715 if (mm) { 1716 if (get_dumpable(mm) != SUID_DUMP_USER) { 1717 struct user_namespace *user_ns = mm->user_ns; 1718 1719 uid = make_kuid(user_ns, 0); 1720 if (!uid_valid(uid)) 1721 uid = GLOBAL_ROOT_UID; 1722 1723 gid = make_kgid(user_ns, 0); 1724 if (!gid_valid(gid)) 1725 gid = GLOBAL_ROOT_GID; 1726 } 1727 } else { 1728 uid = GLOBAL_ROOT_UID; 1729 gid = GLOBAL_ROOT_GID; 1730 } 1731 task_unlock(task); 1732 } 1733 *ruid = uid; 1734 *rgid = gid; 1735 } 1736 1737 struct inode *proc_pid_make_inode(struct super_block * sb, 1738 struct task_struct *task, umode_t mode) 1739 { 1740 struct inode * inode; 1741 struct proc_inode *ei; 1742 1743 /* We need a new inode */ 1744 1745 inode = new_inode(sb); 1746 if (!inode) 1747 goto out; 1748 1749 /* Common stuff */ 1750 ei = PROC_I(inode); 1751 inode->i_mode = mode; 1752 inode->i_ino = get_next_ino(); 1753 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1754 inode->i_op = &proc_def_inode_operations; 1755 1756 /* 1757 * grab the reference to task. 1758 */ 1759 ei->pid = get_task_pid(task, PIDTYPE_PID); 1760 if (!ei->pid) 1761 goto out_unlock; 1762 1763 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1764 security_task_to_inode(task, inode); 1765 1766 out: 1767 return inode; 1768 1769 out_unlock: 1770 iput(inode); 1771 return NULL; 1772 } 1773 1774 int pid_getattr(const struct path *path, struct kstat *stat, 1775 u32 request_mask, unsigned int query_flags) 1776 { 1777 struct inode *inode = d_inode(path->dentry); 1778 struct pid_namespace *pid = proc_pid_ns(inode); 1779 struct task_struct *task; 1780 1781 generic_fillattr(inode, stat); 1782 1783 stat->uid = GLOBAL_ROOT_UID; 1784 stat->gid = GLOBAL_ROOT_GID; 1785 rcu_read_lock(); 1786 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1787 if (task) { 1788 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) { 1789 rcu_read_unlock(); 1790 /* 1791 * This doesn't prevent learning whether PID exists, 1792 * it only makes getattr() consistent with readdir(). 1793 */ 1794 return -ENOENT; 1795 } 1796 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1797 } 1798 rcu_read_unlock(); 1799 return 0; 1800 } 1801 1802 /* dentry stuff */ 1803 1804 /* 1805 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 1806 */ 1807 void pid_update_inode(struct task_struct *task, struct inode *inode) 1808 { 1809 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1810 1811 inode->i_mode &= ~(S_ISUID | S_ISGID); 1812 security_task_to_inode(task, inode); 1813 } 1814 1815 /* 1816 * Rewrite the inode's ownerships here because the owning task may have 1817 * performed a setuid(), etc. 1818 * 1819 */ 1820 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 1821 { 1822 struct inode *inode; 1823 struct task_struct *task; 1824 1825 if (flags & LOOKUP_RCU) 1826 return -ECHILD; 1827 1828 inode = d_inode(dentry); 1829 task = get_proc_task(inode); 1830 1831 if (task) { 1832 pid_update_inode(task, inode); 1833 put_task_struct(task); 1834 return 1; 1835 } 1836 return 0; 1837 } 1838 1839 static inline bool proc_inode_is_dead(struct inode *inode) 1840 { 1841 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 1842 } 1843 1844 int pid_delete_dentry(const struct dentry *dentry) 1845 { 1846 /* Is the task we represent dead? 1847 * If so, then don't put the dentry on the lru list, 1848 * kill it immediately. 1849 */ 1850 return proc_inode_is_dead(d_inode(dentry)); 1851 } 1852 1853 const struct dentry_operations pid_dentry_operations = 1854 { 1855 .d_revalidate = pid_revalidate, 1856 .d_delete = pid_delete_dentry, 1857 }; 1858 1859 /* Lookups */ 1860 1861 /* 1862 * Fill a directory entry. 1863 * 1864 * If possible create the dcache entry and derive our inode number and 1865 * file type from dcache entry. 1866 * 1867 * Since all of the proc inode numbers are dynamically generated, the inode 1868 * numbers do not exist until the inode is cache. This means creating the 1869 * the dcache entry in readdir is necessary to keep the inode numbers 1870 * reported by readdir in sync with the inode numbers reported 1871 * by stat. 1872 */ 1873 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 1874 const char *name, unsigned int len, 1875 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1876 { 1877 struct dentry *child, *dir = file->f_path.dentry; 1878 struct qstr qname = QSTR_INIT(name, len); 1879 struct inode *inode; 1880 unsigned type = DT_UNKNOWN; 1881 ino_t ino = 1; 1882 1883 child = d_hash_and_lookup(dir, &qname); 1884 if (!child) { 1885 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1886 child = d_alloc_parallel(dir, &qname, &wq); 1887 if (IS_ERR(child)) 1888 goto end_instantiate; 1889 if (d_in_lookup(child)) { 1890 struct dentry *res; 1891 res = instantiate(child, task, ptr); 1892 d_lookup_done(child); 1893 if (unlikely(res)) { 1894 dput(child); 1895 child = res; 1896 if (IS_ERR(child)) 1897 goto end_instantiate; 1898 } 1899 } 1900 } 1901 inode = d_inode(child); 1902 ino = inode->i_ino; 1903 type = inode->i_mode >> 12; 1904 dput(child); 1905 end_instantiate: 1906 return dir_emit(ctx, name, len, ino, type); 1907 } 1908 1909 /* 1910 * dname_to_vma_addr - maps a dentry name into two unsigned longs 1911 * which represent vma start and end addresses. 1912 */ 1913 static int dname_to_vma_addr(struct dentry *dentry, 1914 unsigned long *start, unsigned long *end) 1915 { 1916 const char *str = dentry->d_name.name; 1917 unsigned long long sval, eval; 1918 unsigned int len; 1919 1920 if (str[0] == '0' && str[1] != '-') 1921 return -EINVAL; 1922 len = _parse_integer(str, 16, &sval); 1923 if (len & KSTRTOX_OVERFLOW) 1924 return -EINVAL; 1925 if (sval != (unsigned long)sval) 1926 return -EINVAL; 1927 str += len; 1928 1929 if (*str != '-') 1930 return -EINVAL; 1931 str++; 1932 1933 if (str[0] == '0' && str[1]) 1934 return -EINVAL; 1935 len = _parse_integer(str, 16, &eval); 1936 if (len & KSTRTOX_OVERFLOW) 1937 return -EINVAL; 1938 if (eval != (unsigned long)eval) 1939 return -EINVAL; 1940 str += len; 1941 1942 if (*str != '\0') 1943 return -EINVAL; 1944 1945 *start = sval; 1946 *end = eval; 1947 1948 return 0; 1949 } 1950 1951 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 1952 { 1953 unsigned long vm_start, vm_end; 1954 bool exact_vma_exists = false; 1955 struct mm_struct *mm = NULL; 1956 struct task_struct *task; 1957 struct inode *inode; 1958 int status = 0; 1959 1960 if (flags & LOOKUP_RCU) 1961 return -ECHILD; 1962 1963 inode = d_inode(dentry); 1964 task = get_proc_task(inode); 1965 if (!task) 1966 goto out_notask; 1967 1968 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 1969 if (IS_ERR_OR_NULL(mm)) 1970 goto out; 1971 1972 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 1973 down_read(&mm->mmap_sem); 1974 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end); 1975 up_read(&mm->mmap_sem); 1976 } 1977 1978 mmput(mm); 1979 1980 if (exact_vma_exists) { 1981 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1982 1983 security_task_to_inode(task, inode); 1984 status = 1; 1985 } 1986 1987 out: 1988 put_task_struct(task); 1989 1990 out_notask: 1991 return status; 1992 } 1993 1994 static const struct dentry_operations tid_map_files_dentry_operations = { 1995 .d_revalidate = map_files_d_revalidate, 1996 .d_delete = pid_delete_dentry, 1997 }; 1998 1999 static int map_files_get_link(struct dentry *dentry, struct path *path) 2000 { 2001 unsigned long vm_start, vm_end; 2002 struct vm_area_struct *vma; 2003 struct task_struct *task; 2004 struct mm_struct *mm; 2005 int rc; 2006 2007 rc = -ENOENT; 2008 task = get_proc_task(d_inode(dentry)); 2009 if (!task) 2010 goto out; 2011 2012 mm = get_task_mm(task); 2013 put_task_struct(task); 2014 if (!mm) 2015 goto out; 2016 2017 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2018 if (rc) 2019 goto out_mmput; 2020 2021 rc = -ENOENT; 2022 down_read(&mm->mmap_sem); 2023 vma = find_exact_vma(mm, vm_start, vm_end); 2024 if (vma && vma->vm_file) { 2025 *path = vma->vm_file->f_path; 2026 path_get(path); 2027 rc = 0; 2028 } 2029 up_read(&mm->mmap_sem); 2030 2031 out_mmput: 2032 mmput(mm); 2033 out: 2034 return rc; 2035 } 2036 2037 struct map_files_info { 2038 unsigned long start; 2039 unsigned long end; 2040 fmode_t mode; 2041 }; 2042 2043 /* 2044 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the 2045 * symlinks may be used to bypass permissions on ancestor directories in the 2046 * path to the file in question. 2047 */ 2048 static const char * 2049 proc_map_files_get_link(struct dentry *dentry, 2050 struct inode *inode, 2051 struct delayed_call *done) 2052 { 2053 if (!capable(CAP_SYS_ADMIN)) 2054 return ERR_PTR(-EPERM); 2055 2056 return proc_pid_get_link(dentry, inode, done); 2057 } 2058 2059 /* 2060 * Identical to proc_pid_link_inode_operations except for get_link() 2061 */ 2062 static const struct inode_operations proc_map_files_link_inode_operations = { 2063 .readlink = proc_pid_readlink, 2064 .get_link = proc_map_files_get_link, 2065 .setattr = proc_setattr, 2066 }; 2067 2068 static struct dentry * 2069 proc_map_files_instantiate(struct dentry *dentry, 2070 struct task_struct *task, const void *ptr) 2071 { 2072 fmode_t mode = (fmode_t)(unsigned long)ptr; 2073 struct proc_inode *ei; 2074 struct inode *inode; 2075 2076 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2077 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2078 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2079 if (!inode) 2080 return ERR_PTR(-ENOENT); 2081 2082 ei = PROC_I(inode); 2083 ei->op.proc_get_link = map_files_get_link; 2084 2085 inode->i_op = &proc_map_files_link_inode_operations; 2086 inode->i_size = 64; 2087 2088 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2089 return d_splice_alias(inode, dentry); 2090 } 2091 2092 static struct dentry *proc_map_files_lookup(struct inode *dir, 2093 struct dentry *dentry, unsigned int flags) 2094 { 2095 unsigned long vm_start, vm_end; 2096 struct vm_area_struct *vma; 2097 struct task_struct *task; 2098 struct dentry *result; 2099 struct mm_struct *mm; 2100 2101 result = ERR_PTR(-ENOENT); 2102 task = get_proc_task(dir); 2103 if (!task) 2104 goto out; 2105 2106 result = ERR_PTR(-EACCES); 2107 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2108 goto out_put_task; 2109 2110 result = ERR_PTR(-ENOENT); 2111 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2112 goto out_put_task; 2113 2114 mm = get_task_mm(task); 2115 if (!mm) 2116 goto out_put_task; 2117 2118 down_read(&mm->mmap_sem); 2119 vma = find_exact_vma(mm, vm_start, vm_end); 2120 if (!vma) 2121 goto out_no_vma; 2122 2123 if (vma->vm_file) 2124 result = proc_map_files_instantiate(dentry, task, 2125 (void *)(unsigned long)vma->vm_file->f_mode); 2126 2127 out_no_vma: 2128 up_read(&mm->mmap_sem); 2129 mmput(mm); 2130 out_put_task: 2131 put_task_struct(task); 2132 out: 2133 return result; 2134 } 2135 2136 static const struct inode_operations proc_map_files_inode_operations = { 2137 .lookup = proc_map_files_lookup, 2138 .permission = proc_fd_permission, 2139 .setattr = proc_setattr, 2140 }; 2141 2142 static int 2143 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2144 { 2145 struct vm_area_struct *vma; 2146 struct task_struct *task; 2147 struct mm_struct *mm; 2148 unsigned long nr_files, pos, i; 2149 struct flex_array *fa = NULL; 2150 struct map_files_info info; 2151 struct map_files_info *p; 2152 int ret; 2153 2154 ret = -ENOENT; 2155 task = get_proc_task(file_inode(file)); 2156 if (!task) 2157 goto out; 2158 2159 ret = -EACCES; 2160 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2161 goto out_put_task; 2162 2163 ret = 0; 2164 if (!dir_emit_dots(file, ctx)) 2165 goto out_put_task; 2166 2167 mm = get_task_mm(task); 2168 if (!mm) 2169 goto out_put_task; 2170 down_read(&mm->mmap_sem); 2171 2172 nr_files = 0; 2173 2174 /* 2175 * We need two passes here: 2176 * 2177 * 1) Collect vmas of mapped files with mmap_sem taken 2178 * 2) Release mmap_sem and instantiate entries 2179 * 2180 * otherwise we get lockdep complained, since filldir() 2181 * routine might require mmap_sem taken in might_fault(). 2182 */ 2183 2184 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2185 if (vma->vm_file && ++pos > ctx->pos) 2186 nr_files++; 2187 } 2188 2189 if (nr_files) { 2190 fa = flex_array_alloc(sizeof(info), nr_files, 2191 GFP_KERNEL); 2192 if (!fa || flex_array_prealloc(fa, 0, nr_files, 2193 GFP_KERNEL)) { 2194 ret = -ENOMEM; 2195 if (fa) 2196 flex_array_free(fa); 2197 up_read(&mm->mmap_sem); 2198 mmput(mm); 2199 goto out_put_task; 2200 } 2201 for (i = 0, vma = mm->mmap, pos = 2; vma; 2202 vma = vma->vm_next) { 2203 if (!vma->vm_file) 2204 continue; 2205 if (++pos <= ctx->pos) 2206 continue; 2207 2208 info.start = vma->vm_start; 2209 info.end = vma->vm_end; 2210 info.mode = vma->vm_file->f_mode; 2211 if (flex_array_put(fa, i++, &info, GFP_KERNEL)) 2212 BUG(); 2213 } 2214 } 2215 up_read(&mm->mmap_sem); 2216 mmput(mm); 2217 2218 for (i = 0; i < nr_files; i++) { 2219 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2220 unsigned int len; 2221 2222 p = flex_array_get(fa, i); 2223 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2224 if (!proc_fill_cache(file, ctx, 2225 buf, len, 2226 proc_map_files_instantiate, 2227 task, 2228 (void *)(unsigned long)p->mode)) 2229 break; 2230 ctx->pos++; 2231 } 2232 if (fa) 2233 flex_array_free(fa); 2234 2235 out_put_task: 2236 put_task_struct(task); 2237 out: 2238 return ret; 2239 } 2240 2241 static const struct file_operations proc_map_files_operations = { 2242 .read = generic_read_dir, 2243 .iterate_shared = proc_map_files_readdir, 2244 .llseek = generic_file_llseek, 2245 }; 2246 2247 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2248 struct timers_private { 2249 struct pid *pid; 2250 struct task_struct *task; 2251 struct sighand_struct *sighand; 2252 struct pid_namespace *ns; 2253 unsigned long flags; 2254 }; 2255 2256 static void *timers_start(struct seq_file *m, loff_t *pos) 2257 { 2258 struct timers_private *tp = m->private; 2259 2260 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2261 if (!tp->task) 2262 return ERR_PTR(-ESRCH); 2263 2264 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2265 if (!tp->sighand) 2266 return ERR_PTR(-ESRCH); 2267 2268 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2269 } 2270 2271 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2272 { 2273 struct timers_private *tp = m->private; 2274 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2275 } 2276 2277 static void timers_stop(struct seq_file *m, void *v) 2278 { 2279 struct timers_private *tp = m->private; 2280 2281 if (tp->sighand) { 2282 unlock_task_sighand(tp->task, &tp->flags); 2283 tp->sighand = NULL; 2284 } 2285 2286 if (tp->task) { 2287 put_task_struct(tp->task); 2288 tp->task = NULL; 2289 } 2290 } 2291 2292 static int show_timer(struct seq_file *m, void *v) 2293 { 2294 struct k_itimer *timer; 2295 struct timers_private *tp = m->private; 2296 int notify; 2297 static const char * const nstr[] = { 2298 [SIGEV_SIGNAL] = "signal", 2299 [SIGEV_NONE] = "none", 2300 [SIGEV_THREAD] = "thread", 2301 }; 2302 2303 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2304 notify = timer->it_sigev_notify; 2305 2306 seq_printf(m, "ID: %d\n", timer->it_id); 2307 seq_printf(m, "signal: %d/%px\n", 2308 timer->sigq->info.si_signo, 2309 timer->sigq->info.si_value.sival_ptr); 2310 seq_printf(m, "notify: %s/%s.%d\n", 2311 nstr[notify & ~SIGEV_THREAD_ID], 2312 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2313 pid_nr_ns(timer->it_pid, tp->ns)); 2314 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2315 2316 return 0; 2317 } 2318 2319 static const struct seq_operations proc_timers_seq_ops = { 2320 .start = timers_start, 2321 .next = timers_next, 2322 .stop = timers_stop, 2323 .show = show_timer, 2324 }; 2325 2326 static int proc_timers_open(struct inode *inode, struct file *file) 2327 { 2328 struct timers_private *tp; 2329 2330 tp = __seq_open_private(file, &proc_timers_seq_ops, 2331 sizeof(struct timers_private)); 2332 if (!tp) 2333 return -ENOMEM; 2334 2335 tp->pid = proc_pid(inode); 2336 tp->ns = proc_pid_ns(inode); 2337 return 0; 2338 } 2339 2340 static const struct file_operations proc_timers_operations = { 2341 .open = proc_timers_open, 2342 .read = seq_read, 2343 .llseek = seq_lseek, 2344 .release = seq_release_private, 2345 }; 2346 #endif 2347 2348 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2349 size_t count, loff_t *offset) 2350 { 2351 struct inode *inode = file_inode(file); 2352 struct task_struct *p; 2353 u64 slack_ns; 2354 int err; 2355 2356 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2357 if (err < 0) 2358 return err; 2359 2360 p = get_proc_task(inode); 2361 if (!p) 2362 return -ESRCH; 2363 2364 if (p != current) { 2365 rcu_read_lock(); 2366 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2367 rcu_read_unlock(); 2368 count = -EPERM; 2369 goto out; 2370 } 2371 rcu_read_unlock(); 2372 2373 err = security_task_setscheduler(p); 2374 if (err) { 2375 count = err; 2376 goto out; 2377 } 2378 } 2379 2380 task_lock(p); 2381 if (slack_ns == 0) 2382 p->timer_slack_ns = p->default_timer_slack_ns; 2383 else 2384 p->timer_slack_ns = slack_ns; 2385 task_unlock(p); 2386 2387 out: 2388 put_task_struct(p); 2389 2390 return count; 2391 } 2392 2393 static int timerslack_ns_show(struct seq_file *m, void *v) 2394 { 2395 struct inode *inode = m->private; 2396 struct task_struct *p; 2397 int err = 0; 2398 2399 p = get_proc_task(inode); 2400 if (!p) 2401 return -ESRCH; 2402 2403 if (p != current) { 2404 rcu_read_lock(); 2405 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2406 rcu_read_unlock(); 2407 err = -EPERM; 2408 goto out; 2409 } 2410 rcu_read_unlock(); 2411 2412 err = security_task_getscheduler(p); 2413 if (err) 2414 goto out; 2415 } 2416 2417 task_lock(p); 2418 seq_printf(m, "%llu\n", p->timer_slack_ns); 2419 task_unlock(p); 2420 2421 out: 2422 put_task_struct(p); 2423 2424 return err; 2425 } 2426 2427 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2428 { 2429 return single_open(filp, timerslack_ns_show, inode); 2430 } 2431 2432 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2433 .open = timerslack_ns_open, 2434 .read = seq_read, 2435 .write = timerslack_ns_write, 2436 .llseek = seq_lseek, 2437 .release = single_release, 2438 }; 2439 2440 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2441 struct task_struct *task, const void *ptr) 2442 { 2443 const struct pid_entry *p = ptr; 2444 struct inode *inode; 2445 struct proc_inode *ei; 2446 2447 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2448 if (!inode) 2449 return ERR_PTR(-ENOENT); 2450 2451 ei = PROC_I(inode); 2452 if (S_ISDIR(inode->i_mode)) 2453 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2454 if (p->iop) 2455 inode->i_op = p->iop; 2456 if (p->fop) 2457 inode->i_fop = p->fop; 2458 ei->op = p->op; 2459 pid_update_inode(task, inode); 2460 d_set_d_op(dentry, &pid_dentry_operations); 2461 return d_splice_alias(inode, dentry); 2462 } 2463 2464 static struct dentry *proc_pident_lookup(struct inode *dir, 2465 struct dentry *dentry, 2466 const struct pid_entry *ents, 2467 unsigned int nents) 2468 { 2469 struct task_struct *task = get_proc_task(dir); 2470 const struct pid_entry *p, *last; 2471 struct dentry *res = ERR_PTR(-ENOENT); 2472 2473 if (!task) 2474 goto out_no_task; 2475 2476 /* 2477 * Yes, it does not scale. And it should not. Don't add 2478 * new entries into /proc/<tgid>/ without very good reasons. 2479 */ 2480 last = &ents[nents]; 2481 for (p = ents; p < last; p++) { 2482 if (p->len != dentry->d_name.len) 2483 continue; 2484 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2485 res = proc_pident_instantiate(dentry, task, p); 2486 break; 2487 } 2488 } 2489 put_task_struct(task); 2490 out_no_task: 2491 return res; 2492 } 2493 2494 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2495 const struct pid_entry *ents, unsigned int nents) 2496 { 2497 struct task_struct *task = get_proc_task(file_inode(file)); 2498 const struct pid_entry *p; 2499 2500 if (!task) 2501 return -ENOENT; 2502 2503 if (!dir_emit_dots(file, ctx)) 2504 goto out; 2505 2506 if (ctx->pos >= nents + 2) 2507 goto out; 2508 2509 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2510 if (!proc_fill_cache(file, ctx, p->name, p->len, 2511 proc_pident_instantiate, task, p)) 2512 break; 2513 ctx->pos++; 2514 } 2515 out: 2516 put_task_struct(task); 2517 return 0; 2518 } 2519 2520 #ifdef CONFIG_SECURITY 2521 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2522 size_t count, loff_t *ppos) 2523 { 2524 struct inode * inode = file_inode(file); 2525 char *p = NULL; 2526 ssize_t length; 2527 struct task_struct *task = get_proc_task(inode); 2528 2529 if (!task) 2530 return -ESRCH; 2531 2532 length = security_getprocattr(task, PROC_I(inode)->op.lsm, 2533 (char*)file->f_path.dentry->d_name.name, 2534 &p); 2535 put_task_struct(task); 2536 if (length > 0) 2537 length = simple_read_from_buffer(buf, count, ppos, p, length); 2538 kfree(p); 2539 return length; 2540 } 2541 2542 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2543 size_t count, loff_t *ppos) 2544 { 2545 struct inode * inode = file_inode(file); 2546 struct task_struct *task; 2547 void *page; 2548 int rv; 2549 2550 rcu_read_lock(); 2551 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2552 if (!task) { 2553 rcu_read_unlock(); 2554 return -ESRCH; 2555 } 2556 /* A task may only write its own attributes. */ 2557 if (current != task) { 2558 rcu_read_unlock(); 2559 return -EACCES; 2560 } 2561 rcu_read_unlock(); 2562 2563 if (count > PAGE_SIZE) 2564 count = PAGE_SIZE; 2565 2566 /* No partial writes. */ 2567 if (*ppos != 0) 2568 return -EINVAL; 2569 2570 page = memdup_user(buf, count); 2571 if (IS_ERR(page)) { 2572 rv = PTR_ERR(page); 2573 goto out; 2574 } 2575 2576 /* Guard against adverse ptrace interaction */ 2577 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2578 if (rv < 0) 2579 goto out_free; 2580 2581 rv = security_setprocattr(PROC_I(inode)->op.lsm, 2582 file->f_path.dentry->d_name.name, page, 2583 count); 2584 mutex_unlock(¤t->signal->cred_guard_mutex); 2585 out_free: 2586 kfree(page); 2587 out: 2588 return rv; 2589 } 2590 2591 static const struct file_operations proc_pid_attr_operations = { 2592 .read = proc_pid_attr_read, 2593 .write = proc_pid_attr_write, 2594 .llseek = generic_file_llseek, 2595 }; 2596 2597 #define LSM_DIR_OPS(LSM) \ 2598 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2599 struct dir_context *ctx) \ 2600 { \ 2601 return proc_pident_readdir(filp, ctx, \ 2602 LSM##_attr_dir_stuff, \ 2603 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2604 } \ 2605 \ 2606 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2607 .read = generic_read_dir, \ 2608 .iterate = proc_##LSM##_attr_dir_iterate, \ 2609 .llseek = default_llseek, \ 2610 }; \ 2611 \ 2612 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2613 struct dentry *dentry, unsigned int flags) \ 2614 { \ 2615 return proc_pident_lookup(dir, dentry, \ 2616 LSM##_attr_dir_stuff, \ 2617 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2618 } \ 2619 \ 2620 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2621 .lookup = proc_##LSM##_attr_dir_lookup, \ 2622 .getattr = pid_getattr, \ 2623 .setattr = proc_setattr, \ 2624 } 2625 2626 #ifdef CONFIG_SECURITY_SMACK 2627 static const struct pid_entry smack_attr_dir_stuff[] = { 2628 ATTR("smack", "current", 0666), 2629 }; 2630 LSM_DIR_OPS(smack); 2631 #endif 2632 2633 static const struct pid_entry attr_dir_stuff[] = { 2634 ATTR(NULL, "current", 0666), 2635 ATTR(NULL, "prev", 0444), 2636 ATTR(NULL, "exec", 0666), 2637 ATTR(NULL, "fscreate", 0666), 2638 ATTR(NULL, "keycreate", 0666), 2639 ATTR(NULL, "sockcreate", 0666), 2640 #ifdef CONFIG_SECURITY_SMACK 2641 DIR("smack", 0555, 2642 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2643 #endif 2644 }; 2645 2646 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2647 { 2648 return proc_pident_readdir(file, ctx, 2649 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2650 } 2651 2652 static const struct file_operations proc_attr_dir_operations = { 2653 .read = generic_read_dir, 2654 .iterate_shared = proc_attr_dir_readdir, 2655 .llseek = generic_file_llseek, 2656 }; 2657 2658 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2659 struct dentry *dentry, unsigned int flags) 2660 { 2661 return proc_pident_lookup(dir, dentry, 2662 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2663 } 2664 2665 static const struct inode_operations proc_attr_dir_inode_operations = { 2666 .lookup = proc_attr_dir_lookup, 2667 .getattr = pid_getattr, 2668 .setattr = proc_setattr, 2669 }; 2670 2671 #endif 2672 2673 #ifdef CONFIG_ELF_CORE 2674 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2675 size_t count, loff_t *ppos) 2676 { 2677 struct task_struct *task = get_proc_task(file_inode(file)); 2678 struct mm_struct *mm; 2679 char buffer[PROC_NUMBUF]; 2680 size_t len; 2681 int ret; 2682 2683 if (!task) 2684 return -ESRCH; 2685 2686 ret = 0; 2687 mm = get_task_mm(task); 2688 if (mm) { 2689 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2690 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2691 MMF_DUMP_FILTER_SHIFT)); 2692 mmput(mm); 2693 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2694 } 2695 2696 put_task_struct(task); 2697 2698 return ret; 2699 } 2700 2701 static ssize_t proc_coredump_filter_write(struct file *file, 2702 const char __user *buf, 2703 size_t count, 2704 loff_t *ppos) 2705 { 2706 struct task_struct *task; 2707 struct mm_struct *mm; 2708 unsigned int val; 2709 int ret; 2710 int i; 2711 unsigned long mask; 2712 2713 ret = kstrtouint_from_user(buf, count, 0, &val); 2714 if (ret < 0) 2715 return ret; 2716 2717 ret = -ESRCH; 2718 task = get_proc_task(file_inode(file)); 2719 if (!task) 2720 goto out_no_task; 2721 2722 mm = get_task_mm(task); 2723 if (!mm) 2724 goto out_no_mm; 2725 ret = 0; 2726 2727 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2728 if (val & mask) 2729 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2730 else 2731 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2732 } 2733 2734 mmput(mm); 2735 out_no_mm: 2736 put_task_struct(task); 2737 out_no_task: 2738 if (ret < 0) 2739 return ret; 2740 return count; 2741 } 2742 2743 static const struct file_operations proc_coredump_filter_operations = { 2744 .read = proc_coredump_filter_read, 2745 .write = proc_coredump_filter_write, 2746 .llseek = generic_file_llseek, 2747 }; 2748 #endif 2749 2750 #ifdef CONFIG_TASK_IO_ACCOUNTING 2751 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2752 { 2753 struct task_io_accounting acct = task->ioac; 2754 unsigned long flags; 2755 int result; 2756 2757 result = mutex_lock_killable(&task->signal->cred_guard_mutex); 2758 if (result) 2759 return result; 2760 2761 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2762 result = -EACCES; 2763 goto out_unlock; 2764 } 2765 2766 if (whole && lock_task_sighand(task, &flags)) { 2767 struct task_struct *t = task; 2768 2769 task_io_accounting_add(&acct, &task->signal->ioac); 2770 while_each_thread(task, t) 2771 task_io_accounting_add(&acct, &t->ioac); 2772 2773 unlock_task_sighand(task, &flags); 2774 } 2775 seq_printf(m, 2776 "rchar: %llu\n" 2777 "wchar: %llu\n" 2778 "syscr: %llu\n" 2779 "syscw: %llu\n" 2780 "read_bytes: %llu\n" 2781 "write_bytes: %llu\n" 2782 "cancelled_write_bytes: %llu\n", 2783 (unsigned long long)acct.rchar, 2784 (unsigned long long)acct.wchar, 2785 (unsigned long long)acct.syscr, 2786 (unsigned long long)acct.syscw, 2787 (unsigned long long)acct.read_bytes, 2788 (unsigned long long)acct.write_bytes, 2789 (unsigned long long)acct.cancelled_write_bytes); 2790 result = 0; 2791 2792 out_unlock: 2793 mutex_unlock(&task->signal->cred_guard_mutex); 2794 return result; 2795 } 2796 2797 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2798 struct pid *pid, struct task_struct *task) 2799 { 2800 return do_io_accounting(task, m, 0); 2801 } 2802 2803 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2804 struct pid *pid, struct task_struct *task) 2805 { 2806 return do_io_accounting(task, m, 1); 2807 } 2808 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2809 2810 #ifdef CONFIG_USER_NS 2811 static int proc_id_map_open(struct inode *inode, struct file *file, 2812 const struct seq_operations *seq_ops) 2813 { 2814 struct user_namespace *ns = NULL; 2815 struct task_struct *task; 2816 struct seq_file *seq; 2817 int ret = -EINVAL; 2818 2819 task = get_proc_task(inode); 2820 if (task) { 2821 rcu_read_lock(); 2822 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2823 rcu_read_unlock(); 2824 put_task_struct(task); 2825 } 2826 if (!ns) 2827 goto err; 2828 2829 ret = seq_open(file, seq_ops); 2830 if (ret) 2831 goto err_put_ns; 2832 2833 seq = file->private_data; 2834 seq->private = ns; 2835 2836 return 0; 2837 err_put_ns: 2838 put_user_ns(ns); 2839 err: 2840 return ret; 2841 } 2842 2843 static int proc_id_map_release(struct inode *inode, struct file *file) 2844 { 2845 struct seq_file *seq = file->private_data; 2846 struct user_namespace *ns = seq->private; 2847 put_user_ns(ns); 2848 return seq_release(inode, file); 2849 } 2850 2851 static int proc_uid_map_open(struct inode *inode, struct file *file) 2852 { 2853 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 2854 } 2855 2856 static int proc_gid_map_open(struct inode *inode, struct file *file) 2857 { 2858 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 2859 } 2860 2861 static int proc_projid_map_open(struct inode *inode, struct file *file) 2862 { 2863 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 2864 } 2865 2866 static const struct file_operations proc_uid_map_operations = { 2867 .open = proc_uid_map_open, 2868 .write = proc_uid_map_write, 2869 .read = seq_read, 2870 .llseek = seq_lseek, 2871 .release = proc_id_map_release, 2872 }; 2873 2874 static const struct file_operations proc_gid_map_operations = { 2875 .open = proc_gid_map_open, 2876 .write = proc_gid_map_write, 2877 .read = seq_read, 2878 .llseek = seq_lseek, 2879 .release = proc_id_map_release, 2880 }; 2881 2882 static const struct file_operations proc_projid_map_operations = { 2883 .open = proc_projid_map_open, 2884 .write = proc_projid_map_write, 2885 .read = seq_read, 2886 .llseek = seq_lseek, 2887 .release = proc_id_map_release, 2888 }; 2889 2890 static int proc_setgroups_open(struct inode *inode, struct file *file) 2891 { 2892 struct user_namespace *ns = NULL; 2893 struct task_struct *task; 2894 int ret; 2895 2896 ret = -ESRCH; 2897 task = get_proc_task(inode); 2898 if (task) { 2899 rcu_read_lock(); 2900 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2901 rcu_read_unlock(); 2902 put_task_struct(task); 2903 } 2904 if (!ns) 2905 goto err; 2906 2907 if (file->f_mode & FMODE_WRITE) { 2908 ret = -EACCES; 2909 if (!ns_capable(ns, CAP_SYS_ADMIN)) 2910 goto err_put_ns; 2911 } 2912 2913 ret = single_open(file, &proc_setgroups_show, ns); 2914 if (ret) 2915 goto err_put_ns; 2916 2917 return 0; 2918 err_put_ns: 2919 put_user_ns(ns); 2920 err: 2921 return ret; 2922 } 2923 2924 static int proc_setgroups_release(struct inode *inode, struct file *file) 2925 { 2926 struct seq_file *seq = file->private_data; 2927 struct user_namespace *ns = seq->private; 2928 int ret = single_release(inode, file); 2929 put_user_ns(ns); 2930 return ret; 2931 } 2932 2933 static const struct file_operations proc_setgroups_operations = { 2934 .open = proc_setgroups_open, 2935 .write = proc_setgroups_write, 2936 .read = seq_read, 2937 .llseek = seq_lseek, 2938 .release = proc_setgroups_release, 2939 }; 2940 #endif /* CONFIG_USER_NS */ 2941 2942 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2943 struct pid *pid, struct task_struct *task) 2944 { 2945 int err = lock_trace(task); 2946 if (!err) { 2947 seq_printf(m, "%08x\n", task->personality); 2948 unlock_trace(task); 2949 } 2950 return err; 2951 } 2952 2953 #ifdef CONFIG_LIVEPATCH 2954 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 2955 struct pid *pid, struct task_struct *task) 2956 { 2957 seq_printf(m, "%d\n", task->patch_state); 2958 return 0; 2959 } 2960 #endif /* CONFIG_LIVEPATCH */ 2961 2962 #ifdef CONFIG_STACKLEAK_METRICS 2963 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 2964 struct pid *pid, struct task_struct *task) 2965 { 2966 unsigned long prev_depth = THREAD_SIZE - 2967 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 2968 unsigned long depth = THREAD_SIZE - 2969 (task->lowest_stack & (THREAD_SIZE - 1)); 2970 2971 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 2972 prev_depth, depth); 2973 return 0; 2974 } 2975 #endif /* CONFIG_STACKLEAK_METRICS */ 2976 2977 /* 2978 * Thread groups 2979 */ 2980 static const struct file_operations proc_task_operations; 2981 static const struct inode_operations proc_task_inode_operations; 2982 2983 static const struct pid_entry tgid_base_stuff[] = { 2984 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 2985 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2986 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 2987 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2988 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 2989 #ifdef CONFIG_NET 2990 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 2991 #endif 2992 REG("environ", S_IRUSR, proc_environ_operations), 2993 REG("auxv", S_IRUSR, proc_auxv_operations), 2994 ONE("status", S_IRUGO, proc_pid_status), 2995 ONE("personality", S_IRUSR, proc_pid_personality), 2996 ONE("limits", S_IRUGO, proc_pid_limits), 2997 #ifdef CONFIG_SCHED_DEBUG 2998 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2999 #endif 3000 #ifdef CONFIG_SCHED_AUTOGROUP 3001 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3002 #endif 3003 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3004 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3005 ONE("syscall", S_IRUSR, proc_pid_syscall), 3006 #endif 3007 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3008 ONE("stat", S_IRUGO, proc_tgid_stat), 3009 ONE("statm", S_IRUGO, proc_pid_statm), 3010 REG("maps", S_IRUGO, proc_pid_maps_operations), 3011 #ifdef CONFIG_NUMA 3012 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3013 #endif 3014 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3015 LNK("cwd", proc_cwd_link), 3016 LNK("root", proc_root_link), 3017 LNK("exe", proc_exe_link), 3018 REG("mounts", S_IRUGO, proc_mounts_operations), 3019 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3020 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3021 #ifdef CONFIG_PROC_PAGE_MONITOR 3022 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3023 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3024 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3025 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3026 #endif 3027 #ifdef CONFIG_SECURITY 3028 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3029 #endif 3030 #ifdef CONFIG_KALLSYMS 3031 ONE("wchan", S_IRUGO, proc_pid_wchan), 3032 #endif 3033 #ifdef CONFIG_STACKTRACE 3034 ONE("stack", S_IRUSR, proc_pid_stack), 3035 #endif 3036 #ifdef CONFIG_SCHED_INFO 3037 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3038 #endif 3039 #ifdef CONFIG_LATENCYTOP 3040 REG("latency", S_IRUGO, proc_lstats_operations), 3041 #endif 3042 #ifdef CONFIG_PROC_PID_CPUSET 3043 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3044 #endif 3045 #ifdef CONFIG_CGROUPS 3046 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3047 #endif 3048 ONE("oom_score", S_IRUGO, proc_oom_score), 3049 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3050 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3051 #ifdef CONFIG_AUDITSYSCALL 3052 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3053 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3054 #endif 3055 #ifdef CONFIG_FAULT_INJECTION 3056 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3057 REG("fail-nth", 0644, proc_fail_nth_operations), 3058 #endif 3059 #ifdef CONFIG_ELF_CORE 3060 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3061 #endif 3062 #ifdef CONFIG_TASK_IO_ACCOUNTING 3063 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3064 #endif 3065 #ifdef CONFIG_USER_NS 3066 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3067 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3068 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3069 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3070 #endif 3071 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3072 REG("timers", S_IRUGO, proc_timers_operations), 3073 #endif 3074 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3075 #ifdef CONFIG_LIVEPATCH 3076 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3077 #endif 3078 #ifdef CONFIG_STACKLEAK_METRICS 3079 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3080 #endif 3081 }; 3082 3083 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3084 { 3085 return proc_pident_readdir(file, ctx, 3086 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3087 } 3088 3089 static const struct file_operations proc_tgid_base_operations = { 3090 .read = generic_read_dir, 3091 .iterate_shared = proc_tgid_base_readdir, 3092 .llseek = generic_file_llseek, 3093 }; 3094 3095 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3096 { 3097 return proc_pident_lookup(dir, dentry, 3098 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3099 } 3100 3101 static const struct inode_operations proc_tgid_base_inode_operations = { 3102 .lookup = proc_tgid_base_lookup, 3103 .getattr = pid_getattr, 3104 .setattr = proc_setattr, 3105 .permission = proc_pid_permission, 3106 }; 3107 3108 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 3109 { 3110 struct dentry *dentry, *leader, *dir; 3111 char buf[10 + 1]; 3112 struct qstr name; 3113 3114 name.name = buf; 3115 name.len = snprintf(buf, sizeof(buf), "%u", pid); 3116 /* no ->d_hash() rejects on procfs */ 3117 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 3118 if (dentry) { 3119 d_invalidate(dentry); 3120 dput(dentry); 3121 } 3122 3123 if (pid == tgid) 3124 return; 3125 3126 name.name = buf; 3127 name.len = snprintf(buf, sizeof(buf), "%u", tgid); 3128 leader = d_hash_and_lookup(mnt->mnt_root, &name); 3129 if (!leader) 3130 goto out; 3131 3132 name.name = "task"; 3133 name.len = strlen(name.name); 3134 dir = d_hash_and_lookup(leader, &name); 3135 if (!dir) 3136 goto out_put_leader; 3137 3138 name.name = buf; 3139 name.len = snprintf(buf, sizeof(buf), "%u", pid); 3140 dentry = d_hash_and_lookup(dir, &name); 3141 if (dentry) { 3142 d_invalidate(dentry); 3143 dput(dentry); 3144 } 3145 3146 dput(dir); 3147 out_put_leader: 3148 dput(leader); 3149 out: 3150 return; 3151 } 3152 3153 /** 3154 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 3155 * @task: task that should be flushed. 3156 * 3157 * When flushing dentries from proc, one needs to flush them from global 3158 * proc (proc_mnt) and from all the namespaces' procs this task was seen 3159 * in. This call is supposed to do all of this job. 3160 * 3161 * Looks in the dcache for 3162 * /proc/@pid 3163 * /proc/@tgid/task/@pid 3164 * if either directory is present flushes it and all of it'ts children 3165 * from the dcache. 3166 * 3167 * It is safe and reasonable to cache /proc entries for a task until 3168 * that task exits. After that they just clog up the dcache with 3169 * useless entries, possibly causing useful dcache entries to be 3170 * flushed instead. This routine is proved to flush those useless 3171 * dcache entries at process exit time. 3172 * 3173 * NOTE: This routine is just an optimization so it does not guarantee 3174 * that no dcache entries will exist at process exit time it 3175 * just makes it very unlikely that any will persist. 3176 */ 3177 3178 void proc_flush_task(struct task_struct *task) 3179 { 3180 int i; 3181 struct pid *pid, *tgid; 3182 struct upid *upid; 3183 3184 pid = task_pid(task); 3185 tgid = task_tgid(task); 3186 3187 for (i = 0; i <= pid->level; i++) { 3188 upid = &pid->numbers[i]; 3189 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 3190 tgid->numbers[i].nr); 3191 } 3192 } 3193 3194 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3195 struct task_struct *task, const void *ptr) 3196 { 3197 struct inode *inode; 3198 3199 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3200 if (!inode) 3201 return ERR_PTR(-ENOENT); 3202 3203 inode->i_op = &proc_tgid_base_inode_operations; 3204 inode->i_fop = &proc_tgid_base_operations; 3205 inode->i_flags|=S_IMMUTABLE; 3206 3207 set_nlink(inode, nlink_tgid); 3208 pid_update_inode(task, inode); 3209 3210 d_set_d_op(dentry, &pid_dentry_operations); 3211 return d_splice_alias(inode, dentry); 3212 } 3213 3214 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3215 { 3216 struct task_struct *task; 3217 unsigned tgid; 3218 struct pid_namespace *ns; 3219 struct dentry *result = ERR_PTR(-ENOENT); 3220 3221 tgid = name_to_int(&dentry->d_name); 3222 if (tgid == ~0U) 3223 goto out; 3224 3225 ns = dentry->d_sb->s_fs_info; 3226 rcu_read_lock(); 3227 task = find_task_by_pid_ns(tgid, ns); 3228 if (task) 3229 get_task_struct(task); 3230 rcu_read_unlock(); 3231 if (!task) 3232 goto out; 3233 3234 result = proc_pid_instantiate(dentry, task, NULL); 3235 put_task_struct(task); 3236 out: 3237 return result; 3238 } 3239 3240 /* 3241 * Find the first task with tgid >= tgid 3242 * 3243 */ 3244 struct tgid_iter { 3245 unsigned int tgid; 3246 struct task_struct *task; 3247 }; 3248 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3249 { 3250 struct pid *pid; 3251 3252 if (iter.task) 3253 put_task_struct(iter.task); 3254 rcu_read_lock(); 3255 retry: 3256 iter.task = NULL; 3257 pid = find_ge_pid(iter.tgid, ns); 3258 if (pid) { 3259 iter.tgid = pid_nr_ns(pid, ns); 3260 iter.task = pid_task(pid, PIDTYPE_PID); 3261 /* What we to know is if the pid we have find is the 3262 * pid of a thread_group_leader. Testing for task 3263 * being a thread_group_leader is the obvious thing 3264 * todo but there is a window when it fails, due to 3265 * the pid transfer logic in de_thread. 3266 * 3267 * So we perform the straight forward test of seeing 3268 * if the pid we have found is the pid of a thread 3269 * group leader, and don't worry if the task we have 3270 * found doesn't happen to be a thread group leader. 3271 * As we don't care in the case of readdir. 3272 */ 3273 if (!iter.task || !has_group_leader_pid(iter.task)) { 3274 iter.tgid += 1; 3275 goto retry; 3276 } 3277 get_task_struct(iter.task); 3278 } 3279 rcu_read_unlock(); 3280 return iter; 3281 } 3282 3283 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3284 3285 /* for the /proc/ directory itself, after non-process stuff has been done */ 3286 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3287 { 3288 struct tgid_iter iter; 3289 struct pid_namespace *ns = proc_pid_ns(file_inode(file)); 3290 loff_t pos = ctx->pos; 3291 3292 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3293 return 0; 3294 3295 if (pos == TGID_OFFSET - 2) { 3296 struct inode *inode = d_inode(ns->proc_self); 3297 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3298 return 0; 3299 ctx->pos = pos = pos + 1; 3300 } 3301 if (pos == TGID_OFFSET - 1) { 3302 struct inode *inode = d_inode(ns->proc_thread_self); 3303 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3304 return 0; 3305 ctx->pos = pos = pos + 1; 3306 } 3307 iter.tgid = pos - TGID_OFFSET; 3308 iter.task = NULL; 3309 for (iter = next_tgid(ns, iter); 3310 iter.task; 3311 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3312 char name[10 + 1]; 3313 unsigned int len; 3314 3315 cond_resched(); 3316 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE)) 3317 continue; 3318 3319 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3320 ctx->pos = iter.tgid + TGID_OFFSET; 3321 if (!proc_fill_cache(file, ctx, name, len, 3322 proc_pid_instantiate, iter.task, NULL)) { 3323 put_task_struct(iter.task); 3324 return 0; 3325 } 3326 } 3327 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3328 return 0; 3329 } 3330 3331 /* 3332 * proc_tid_comm_permission is a special permission function exclusively 3333 * used for the node /proc/<pid>/task/<tid>/comm. 3334 * It bypasses generic permission checks in the case where a task of the same 3335 * task group attempts to access the node. 3336 * The rationale behind this is that glibc and bionic access this node for 3337 * cross thread naming (pthread_set/getname_np(!self)). However, if 3338 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3339 * which locks out the cross thread naming implementation. 3340 * This function makes sure that the node is always accessible for members of 3341 * same thread group. 3342 */ 3343 static int proc_tid_comm_permission(struct inode *inode, int mask) 3344 { 3345 bool is_same_tgroup; 3346 struct task_struct *task; 3347 3348 task = get_proc_task(inode); 3349 if (!task) 3350 return -ESRCH; 3351 is_same_tgroup = same_thread_group(current, task); 3352 put_task_struct(task); 3353 3354 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3355 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3356 * read or written by the members of the corresponding 3357 * thread group. 3358 */ 3359 return 0; 3360 } 3361 3362 return generic_permission(inode, mask); 3363 } 3364 3365 static const struct inode_operations proc_tid_comm_inode_operations = { 3366 .permission = proc_tid_comm_permission, 3367 }; 3368 3369 /* 3370 * Tasks 3371 */ 3372 static const struct pid_entry tid_base_stuff[] = { 3373 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3374 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3375 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3376 #ifdef CONFIG_NET 3377 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3378 #endif 3379 REG("environ", S_IRUSR, proc_environ_operations), 3380 REG("auxv", S_IRUSR, proc_auxv_operations), 3381 ONE("status", S_IRUGO, proc_pid_status), 3382 ONE("personality", S_IRUSR, proc_pid_personality), 3383 ONE("limits", S_IRUGO, proc_pid_limits), 3384 #ifdef CONFIG_SCHED_DEBUG 3385 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3386 #endif 3387 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3388 &proc_tid_comm_inode_operations, 3389 &proc_pid_set_comm_operations, {}), 3390 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3391 ONE("syscall", S_IRUSR, proc_pid_syscall), 3392 #endif 3393 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3394 ONE("stat", S_IRUGO, proc_tid_stat), 3395 ONE("statm", S_IRUGO, proc_pid_statm), 3396 REG("maps", S_IRUGO, proc_pid_maps_operations), 3397 #ifdef CONFIG_PROC_CHILDREN 3398 REG("children", S_IRUGO, proc_tid_children_operations), 3399 #endif 3400 #ifdef CONFIG_NUMA 3401 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3402 #endif 3403 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3404 LNK("cwd", proc_cwd_link), 3405 LNK("root", proc_root_link), 3406 LNK("exe", proc_exe_link), 3407 REG("mounts", S_IRUGO, proc_mounts_operations), 3408 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3409 #ifdef CONFIG_PROC_PAGE_MONITOR 3410 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3411 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3412 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3413 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3414 #endif 3415 #ifdef CONFIG_SECURITY 3416 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3417 #endif 3418 #ifdef CONFIG_KALLSYMS 3419 ONE("wchan", S_IRUGO, proc_pid_wchan), 3420 #endif 3421 #ifdef CONFIG_STACKTRACE 3422 ONE("stack", S_IRUSR, proc_pid_stack), 3423 #endif 3424 #ifdef CONFIG_SCHED_INFO 3425 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3426 #endif 3427 #ifdef CONFIG_LATENCYTOP 3428 REG("latency", S_IRUGO, proc_lstats_operations), 3429 #endif 3430 #ifdef CONFIG_PROC_PID_CPUSET 3431 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3432 #endif 3433 #ifdef CONFIG_CGROUPS 3434 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3435 #endif 3436 ONE("oom_score", S_IRUGO, proc_oom_score), 3437 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3438 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3439 #ifdef CONFIG_AUDITSYSCALL 3440 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3441 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3442 #endif 3443 #ifdef CONFIG_FAULT_INJECTION 3444 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3445 REG("fail-nth", 0644, proc_fail_nth_operations), 3446 #endif 3447 #ifdef CONFIG_TASK_IO_ACCOUNTING 3448 ONE("io", S_IRUSR, proc_tid_io_accounting), 3449 #endif 3450 #ifdef CONFIG_USER_NS 3451 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3452 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3453 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3454 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3455 #endif 3456 #ifdef CONFIG_LIVEPATCH 3457 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3458 #endif 3459 }; 3460 3461 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3462 { 3463 return proc_pident_readdir(file, ctx, 3464 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3465 } 3466 3467 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3468 { 3469 return proc_pident_lookup(dir, dentry, 3470 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3471 } 3472 3473 static const struct file_operations proc_tid_base_operations = { 3474 .read = generic_read_dir, 3475 .iterate_shared = proc_tid_base_readdir, 3476 .llseek = generic_file_llseek, 3477 }; 3478 3479 static const struct inode_operations proc_tid_base_inode_operations = { 3480 .lookup = proc_tid_base_lookup, 3481 .getattr = pid_getattr, 3482 .setattr = proc_setattr, 3483 }; 3484 3485 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3486 struct task_struct *task, const void *ptr) 3487 { 3488 struct inode *inode; 3489 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3490 if (!inode) 3491 return ERR_PTR(-ENOENT); 3492 3493 inode->i_op = &proc_tid_base_inode_operations; 3494 inode->i_fop = &proc_tid_base_operations; 3495 inode->i_flags |= S_IMMUTABLE; 3496 3497 set_nlink(inode, nlink_tid); 3498 pid_update_inode(task, inode); 3499 3500 d_set_d_op(dentry, &pid_dentry_operations); 3501 return d_splice_alias(inode, dentry); 3502 } 3503 3504 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3505 { 3506 struct task_struct *task; 3507 struct task_struct *leader = get_proc_task(dir); 3508 unsigned tid; 3509 struct pid_namespace *ns; 3510 struct dentry *result = ERR_PTR(-ENOENT); 3511 3512 if (!leader) 3513 goto out_no_task; 3514 3515 tid = name_to_int(&dentry->d_name); 3516 if (tid == ~0U) 3517 goto out; 3518 3519 ns = dentry->d_sb->s_fs_info; 3520 rcu_read_lock(); 3521 task = find_task_by_pid_ns(tid, ns); 3522 if (task) 3523 get_task_struct(task); 3524 rcu_read_unlock(); 3525 if (!task) 3526 goto out; 3527 if (!same_thread_group(leader, task)) 3528 goto out_drop_task; 3529 3530 result = proc_task_instantiate(dentry, task, NULL); 3531 out_drop_task: 3532 put_task_struct(task); 3533 out: 3534 put_task_struct(leader); 3535 out_no_task: 3536 return result; 3537 } 3538 3539 /* 3540 * Find the first tid of a thread group to return to user space. 3541 * 3542 * Usually this is just the thread group leader, but if the users 3543 * buffer was too small or there was a seek into the middle of the 3544 * directory we have more work todo. 3545 * 3546 * In the case of a short read we start with find_task_by_pid. 3547 * 3548 * In the case of a seek we start with the leader and walk nr 3549 * threads past it. 3550 */ 3551 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3552 struct pid_namespace *ns) 3553 { 3554 struct task_struct *pos, *task; 3555 unsigned long nr = f_pos; 3556 3557 if (nr != f_pos) /* 32bit overflow? */ 3558 return NULL; 3559 3560 rcu_read_lock(); 3561 task = pid_task(pid, PIDTYPE_PID); 3562 if (!task) 3563 goto fail; 3564 3565 /* Attempt to start with the tid of a thread */ 3566 if (tid && nr) { 3567 pos = find_task_by_pid_ns(tid, ns); 3568 if (pos && same_thread_group(pos, task)) 3569 goto found; 3570 } 3571 3572 /* If nr exceeds the number of threads there is nothing todo */ 3573 if (nr >= get_nr_threads(task)) 3574 goto fail; 3575 3576 /* If we haven't found our starting place yet start 3577 * with the leader and walk nr threads forward. 3578 */ 3579 pos = task = task->group_leader; 3580 do { 3581 if (!nr--) 3582 goto found; 3583 } while_each_thread(task, pos); 3584 fail: 3585 pos = NULL; 3586 goto out; 3587 found: 3588 get_task_struct(pos); 3589 out: 3590 rcu_read_unlock(); 3591 return pos; 3592 } 3593 3594 /* 3595 * Find the next thread in the thread list. 3596 * Return NULL if there is an error or no next thread. 3597 * 3598 * The reference to the input task_struct is released. 3599 */ 3600 static struct task_struct *next_tid(struct task_struct *start) 3601 { 3602 struct task_struct *pos = NULL; 3603 rcu_read_lock(); 3604 if (pid_alive(start)) { 3605 pos = next_thread(start); 3606 if (thread_group_leader(pos)) 3607 pos = NULL; 3608 else 3609 get_task_struct(pos); 3610 } 3611 rcu_read_unlock(); 3612 put_task_struct(start); 3613 return pos; 3614 } 3615 3616 /* for the /proc/TGID/task/ directories */ 3617 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3618 { 3619 struct inode *inode = file_inode(file); 3620 struct task_struct *task; 3621 struct pid_namespace *ns; 3622 int tid; 3623 3624 if (proc_inode_is_dead(inode)) 3625 return -ENOENT; 3626 3627 if (!dir_emit_dots(file, ctx)) 3628 return 0; 3629 3630 /* f_version caches the tgid value that the last readdir call couldn't 3631 * return. lseek aka telldir automagically resets f_version to 0. 3632 */ 3633 ns = proc_pid_ns(inode); 3634 tid = (int)file->f_version; 3635 file->f_version = 0; 3636 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3637 task; 3638 task = next_tid(task), ctx->pos++) { 3639 char name[10 + 1]; 3640 unsigned int len; 3641 tid = task_pid_nr_ns(task, ns); 3642 len = snprintf(name, sizeof(name), "%u", tid); 3643 if (!proc_fill_cache(file, ctx, name, len, 3644 proc_task_instantiate, task, NULL)) { 3645 /* returning this tgid failed, save it as the first 3646 * pid for the next readir call */ 3647 file->f_version = (u64)tid; 3648 put_task_struct(task); 3649 break; 3650 } 3651 } 3652 3653 return 0; 3654 } 3655 3656 static int proc_task_getattr(const struct path *path, struct kstat *stat, 3657 u32 request_mask, unsigned int query_flags) 3658 { 3659 struct inode *inode = d_inode(path->dentry); 3660 struct task_struct *p = get_proc_task(inode); 3661 generic_fillattr(inode, stat); 3662 3663 if (p) { 3664 stat->nlink += get_nr_threads(p); 3665 put_task_struct(p); 3666 } 3667 3668 return 0; 3669 } 3670 3671 static const struct inode_operations proc_task_inode_operations = { 3672 .lookup = proc_task_lookup, 3673 .getattr = proc_task_getattr, 3674 .setattr = proc_setattr, 3675 .permission = proc_pid_permission, 3676 }; 3677 3678 static const struct file_operations proc_task_operations = { 3679 .read = generic_read_dir, 3680 .iterate_shared = proc_task_readdir, 3681 .llseek = generic_file_llseek, 3682 }; 3683 3684 void __init set_proc_pid_nlink(void) 3685 { 3686 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3687 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3688 } 3689