xref: /linux/fs/proc/base.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #ifdef CONFIG_HARDWALL
87 #include <asm/hardwall.h>
88 #endif
89 #include "internal.h"
90 
91 /* NOTE:
92  *	Implementing inode permission operations in /proc is almost
93  *	certainly an error.  Permission checks need to happen during
94  *	each system call not at open time.  The reason is that most of
95  *	what we wish to check for permissions in /proc varies at runtime.
96  *
97  *	The classic example of a problem is opening file descriptors
98  *	in /proc for a task before it execs a suid executable.
99  */
100 
101 struct pid_entry {
102 	char *name;
103 	int len;
104 	mode_t mode;
105 	const struct inode_operations *iop;
106 	const struct file_operations *fop;
107 	union proc_op op;
108 };
109 
110 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
111 	.name = (NAME),					\
112 	.len  = sizeof(NAME) - 1,			\
113 	.mode = MODE,					\
114 	.iop  = IOP,					\
115 	.fop  = FOP,					\
116 	.op   = OP,					\
117 }
118 
119 #define DIR(NAME, MODE, iops, fops)	\
120 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
121 #define LNK(NAME, get_link)					\
122 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
123 		&proc_pid_link_inode_operations, NULL,		\
124 		{ .proc_get_link = get_link } )
125 #define REG(NAME, MODE, fops)				\
126 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
127 #define INF(NAME, MODE, read)				\
128 	NOD(NAME, (S_IFREG|(MODE)), 			\
129 		NULL, &proc_info_file_operations,	\
130 		{ .proc_read = read } )
131 #define ONE(NAME, MODE, show)				\
132 	NOD(NAME, (S_IFREG|(MODE)), 			\
133 		NULL, &proc_single_file_operations,	\
134 		{ .proc_show = show } )
135 
136 /*
137  * Count the number of hardlinks for the pid_entry table, excluding the .
138  * and .. links.
139  */
140 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
141 	unsigned int n)
142 {
143 	unsigned int i;
144 	unsigned int count;
145 
146 	count = 0;
147 	for (i = 0; i < n; ++i) {
148 		if (S_ISDIR(entries[i].mode))
149 			++count;
150 	}
151 
152 	return count;
153 }
154 
155 static int get_task_root(struct task_struct *task, struct path *root)
156 {
157 	int result = -ENOENT;
158 
159 	task_lock(task);
160 	if (task->fs) {
161 		get_fs_root(task->fs, root);
162 		result = 0;
163 	}
164 	task_unlock(task);
165 	return result;
166 }
167 
168 static int proc_cwd_link(struct inode *inode, struct path *path)
169 {
170 	struct task_struct *task = get_proc_task(inode);
171 	int result = -ENOENT;
172 
173 	if (task) {
174 		task_lock(task);
175 		if (task->fs) {
176 			get_fs_pwd(task->fs, path);
177 			result = 0;
178 		}
179 		task_unlock(task);
180 		put_task_struct(task);
181 	}
182 	return result;
183 }
184 
185 static int proc_root_link(struct inode *inode, struct path *path)
186 {
187 	struct task_struct *task = get_proc_task(inode);
188 	int result = -ENOENT;
189 
190 	if (task) {
191 		result = get_task_root(task, path);
192 		put_task_struct(task);
193 	}
194 	return result;
195 }
196 
197 static struct mm_struct *__check_mem_permission(struct task_struct *task)
198 {
199 	struct mm_struct *mm;
200 
201 	mm = get_task_mm(task);
202 	if (!mm)
203 		return ERR_PTR(-EINVAL);
204 
205 	/*
206 	 * A task can always look at itself, in case it chooses
207 	 * to use system calls instead of load instructions.
208 	 */
209 	if (task == current)
210 		return mm;
211 
212 	/*
213 	 * If current is actively ptrace'ing, and would also be
214 	 * permitted to freshly attach with ptrace now, permit it.
215 	 */
216 	if (task_is_stopped_or_traced(task)) {
217 		int match;
218 		rcu_read_lock();
219 		match = (ptrace_parent(task) == current);
220 		rcu_read_unlock();
221 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
222 			return mm;
223 	}
224 
225 	/*
226 	 * No one else is allowed.
227 	 */
228 	mmput(mm);
229 	return ERR_PTR(-EPERM);
230 }
231 
232 /*
233  * If current may access user memory in @task return a reference to the
234  * corresponding mm, otherwise ERR_PTR.
235  */
236 static struct mm_struct *check_mem_permission(struct task_struct *task)
237 {
238 	struct mm_struct *mm;
239 	int err;
240 
241 	/*
242 	 * Avoid racing if task exec's as we might get a new mm but validate
243 	 * against old credentials.
244 	 */
245 	err = mutex_lock_killable(&task->signal->cred_guard_mutex);
246 	if (err)
247 		return ERR_PTR(err);
248 
249 	mm = __check_mem_permission(task);
250 	mutex_unlock(&task->signal->cred_guard_mutex);
251 
252 	return mm;
253 }
254 
255 struct mm_struct *mm_for_maps(struct task_struct *task)
256 {
257 	struct mm_struct *mm;
258 	int err;
259 
260 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
261 	if (err)
262 		return ERR_PTR(err);
263 
264 	mm = get_task_mm(task);
265 	if (mm && mm != current->mm &&
266 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
267 		mmput(mm);
268 		mm = ERR_PTR(-EACCES);
269 	}
270 	mutex_unlock(&task->signal->cred_guard_mutex);
271 
272 	return mm;
273 }
274 
275 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
276 {
277 	int res = 0;
278 	unsigned int len;
279 	struct mm_struct *mm = get_task_mm(task);
280 	if (!mm)
281 		goto out;
282 	if (!mm->arg_end)
283 		goto out_mm;	/* Shh! No looking before we're done */
284 
285  	len = mm->arg_end - mm->arg_start;
286 
287 	if (len > PAGE_SIZE)
288 		len = PAGE_SIZE;
289 
290 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
291 
292 	// If the nul at the end of args has been overwritten, then
293 	// assume application is using setproctitle(3).
294 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
295 		len = strnlen(buffer, res);
296 		if (len < res) {
297 		    res = len;
298 		} else {
299 			len = mm->env_end - mm->env_start;
300 			if (len > PAGE_SIZE - res)
301 				len = PAGE_SIZE - res;
302 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
303 			res = strnlen(buffer, res);
304 		}
305 	}
306 out_mm:
307 	mmput(mm);
308 out:
309 	return res;
310 }
311 
312 static int proc_pid_auxv(struct task_struct *task, char *buffer)
313 {
314 	struct mm_struct *mm = mm_for_maps(task);
315 	int res = PTR_ERR(mm);
316 	if (mm && !IS_ERR(mm)) {
317 		unsigned int nwords = 0;
318 		do {
319 			nwords += 2;
320 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
321 		res = nwords * sizeof(mm->saved_auxv[0]);
322 		if (res > PAGE_SIZE)
323 			res = PAGE_SIZE;
324 		memcpy(buffer, mm->saved_auxv, res);
325 		mmput(mm);
326 	}
327 	return res;
328 }
329 
330 
331 #ifdef CONFIG_KALLSYMS
332 /*
333  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
334  * Returns the resolved symbol.  If that fails, simply return the address.
335  */
336 static int proc_pid_wchan(struct task_struct *task, char *buffer)
337 {
338 	unsigned long wchan;
339 	char symname[KSYM_NAME_LEN];
340 
341 	wchan = get_wchan(task);
342 
343 	if (lookup_symbol_name(wchan, symname) < 0)
344 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
345 			return 0;
346 		else
347 			return sprintf(buffer, "%lu", wchan);
348 	else
349 		return sprintf(buffer, "%s", symname);
350 }
351 #endif /* CONFIG_KALLSYMS */
352 
353 static int lock_trace(struct task_struct *task)
354 {
355 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
356 	if (err)
357 		return err;
358 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
359 		mutex_unlock(&task->signal->cred_guard_mutex);
360 		return -EPERM;
361 	}
362 	return 0;
363 }
364 
365 static void unlock_trace(struct task_struct *task)
366 {
367 	mutex_unlock(&task->signal->cred_guard_mutex);
368 }
369 
370 #ifdef CONFIG_STACKTRACE
371 
372 #define MAX_STACK_TRACE_DEPTH	64
373 
374 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
375 			  struct pid *pid, struct task_struct *task)
376 {
377 	struct stack_trace trace;
378 	unsigned long *entries;
379 	int err;
380 	int i;
381 
382 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
383 	if (!entries)
384 		return -ENOMEM;
385 
386 	trace.nr_entries	= 0;
387 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
388 	trace.entries		= entries;
389 	trace.skip		= 0;
390 
391 	err = lock_trace(task);
392 	if (!err) {
393 		save_stack_trace_tsk(task, &trace);
394 
395 		for (i = 0; i < trace.nr_entries; i++) {
396 			seq_printf(m, "[<%pK>] %pS\n",
397 				   (void *)entries[i], (void *)entries[i]);
398 		}
399 		unlock_trace(task);
400 	}
401 	kfree(entries);
402 
403 	return err;
404 }
405 #endif
406 
407 #ifdef CONFIG_SCHEDSTATS
408 /*
409  * Provides /proc/PID/schedstat
410  */
411 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
412 {
413 	return sprintf(buffer, "%llu %llu %lu\n",
414 			(unsigned long long)task->se.sum_exec_runtime,
415 			(unsigned long long)task->sched_info.run_delay,
416 			task->sched_info.pcount);
417 }
418 #endif
419 
420 #ifdef CONFIG_LATENCYTOP
421 static int lstats_show_proc(struct seq_file *m, void *v)
422 {
423 	int i;
424 	struct inode *inode = m->private;
425 	struct task_struct *task = get_proc_task(inode);
426 
427 	if (!task)
428 		return -ESRCH;
429 	seq_puts(m, "Latency Top version : v0.1\n");
430 	for (i = 0; i < 32; i++) {
431 		struct latency_record *lr = &task->latency_record[i];
432 		if (lr->backtrace[0]) {
433 			int q;
434 			seq_printf(m, "%i %li %li",
435 				   lr->count, lr->time, lr->max);
436 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
437 				unsigned long bt = lr->backtrace[q];
438 				if (!bt)
439 					break;
440 				if (bt == ULONG_MAX)
441 					break;
442 				seq_printf(m, " %ps", (void *)bt);
443 			}
444 			seq_putc(m, '\n');
445 		}
446 
447 	}
448 	put_task_struct(task);
449 	return 0;
450 }
451 
452 static int lstats_open(struct inode *inode, struct file *file)
453 {
454 	return single_open(file, lstats_show_proc, inode);
455 }
456 
457 static ssize_t lstats_write(struct file *file, const char __user *buf,
458 			    size_t count, loff_t *offs)
459 {
460 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
461 
462 	if (!task)
463 		return -ESRCH;
464 	clear_all_latency_tracing(task);
465 	put_task_struct(task);
466 
467 	return count;
468 }
469 
470 static const struct file_operations proc_lstats_operations = {
471 	.open		= lstats_open,
472 	.read		= seq_read,
473 	.write		= lstats_write,
474 	.llseek		= seq_lseek,
475 	.release	= single_release,
476 };
477 
478 #endif
479 
480 static int proc_oom_score(struct task_struct *task, char *buffer)
481 {
482 	unsigned long points = 0;
483 
484 	read_lock(&tasklist_lock);
485 	if (pid_alive(task))
486 		points = oom_badness(task, NULL, NULL,
487 					totalram_pages + total_swap_pages);
488 	read_unlock(&tasklist_lock);
489 	return sprintf(buffer, "%lu\n", points);
490 }
491 
492 struct limit_names {
493 	char *name;
494 	char *unit;
495 };
496 
497 static const struct limit_names lnames[RLIM_NLIMITS] = {
498 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
499 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
500 	[RLIMIT_DATA] = {"Max data size", "bytes"},
501 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
502 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
503 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
504 	[RLIMIT_NPROC] = {"Max processes", "processes"},
505 	[RLIMIT_NOFILE] = {"Max open files", "files"},
506 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
507 	[RLIMIT_AS] = {"Max address space", "bytes"},
508 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
509 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
510 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
511 	[RLIMIT_NICE] = {"Max nice priority", NULL},
512 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
513 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
514 };
515 
516 /* Display limits for a process */
517 static int proc_pid_limits(struct task_struct *task, char *buffer)
518 {
519 	unsigned int i;
520 	int count = 0;
521 	unsigned long flags;
522 	char *bufptr = buffer;
523 
524 	struct rlimit rlim[RLIM_NLIMITS];
525 
526 	if (!lock_task_sighand(task, &flags))
527 		return 0;
528 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
529 	unlock_task_sighand(task, &flags);
530 
531 	/*
532 	 * print the file header
533 	 */
534 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
535 			"Limit", "Soft Limit", "Hard Limit", "Units");
536 
537 	for (i = 0; i < RLIM_NLIMITS; i++) {
538 		if (rlim[i].rlim_cur == RLIM_INFINITY)
539 			count += sprintf(&bufptr[count], "%-25s %-20s ",
540 					 lnames[i].name, "unlimited");
541 		else
542 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
543 					 lnames[i].name, rlim[i].rlim_cur);
544 
545 		if (rlim[i].rlim_max == RLIM_INFINITY)
546 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
547 		else
548 			count += sprintf(&bufptr[count], "%-20lu ",
549 					 rlim[i].rlim_max);
550 
551 		if (lnames[i].unit)
552 			count += sprintf(&bufptr[count], "%-10s\n",
553 					 lnames[i].unit);
554 		else
555 			count += sprintf(&bufptr[count], "\n");
556 	}
557 
558 	return count;
559 }
560 
561 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
562 static int proc_pid_syscall(struct task_struct *task, char *buffer)
563 {
564 	long nr;
565 	unsigned long args[6], sp, pc;
566 	int res = lock_trace(task);
567 	if (res)
568 		return res;
569 
570 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
571 		res = sprintf(buffer, "running\n");
572 	else if (nr < 0)
573 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
574 	else
575 		res = sprintf(buffer,
576 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
577 		       nr,
578 		       args[0], args[1], args[2], args[3], args[4], args[5],
579 		       sp, pc);
580 	unlock_trace(task);
581 	return res;
582 }
583 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
584 
585 /************************************************************************/
586 /*                       Here the fs part begins                        */
587 /************************************************************************/
588 
589 /* permission checks */
590 static int proc_fd_access_allowed(struct inode *inode)
591 {
592 	struct task_struct *task;
593 	int allowed = 0;
594 	/* Allow access to a task's file descriptors if it is us or we
595 	 * may use ptrace attach to the process and find out that
596 	 * information.
597 	 */
598 	task = get_proc_task(inode);
599 	if (task) {
600 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
601 		put_task_struct(task);
602 	}
603 	return allowed;
604 }
605 
606 int proc_setattr(struct dentry *dentry, struct iattr *attr)
607 {
608 	int error;
609 	struct inode *inode = dentry->d_inode;
610 
611 	if (attr->ia_valid & ATTR_MODE)
612 		return -EPERM;
613 
614 	error = inode_change_ok(inode, attr);
615 	if (error)
616 		return error;
617 
618 	if ((attr->ia_valid & ATTR_SIZE) &&
619 	    attr->ia_size != i_size_read(inode)) {
620 		error = vmtruncate(inode, attr->ia_size);
621 		if (error)
622 			return error;
623 	}
624 
625 	setattr_copy(inode, attr);
626 	mark_inode_dirty(inode);
627 	return 0;
628 }
629 
630 static const struct inode_operations proc_def_inode_operations = {
631 	.setattr	= proc_setattr,
632 };
633 
634 static int mounts_open_common(struct inode *inode, struct file *file,
635 			      const struct seq_operations *op)
636 {
637 	struct task_struct *task = get_proc_task(inode);
638 	struct nsproxy *nsp;
639 	struct mnt_namespace *ns = NULL;
640 	struct path root;
641 	struct proc_mounts *p;
642 	int ret = -EINVAL;
643 
644 	if (task) {
645 		rcu_read_lock();
646 		nsp = task_nsproxy(task);
647 		if (nsp) {
648 			ns = nsp->mnt_ns;
649 			if (ns)
650 				get_mnt_ns(ns);
651 		}
652 		rcu_read_unlock();
653 		if (ns && get_task_root(task, &root) == 0)
654 			ret = 0;
655 		put_task_struct(task);
656 	}
657 
658 	if (!ns)
659 		goto err;
660 	if (ret)
661 		goto err_put_ns;
662 
663 	ret = -ENOMEM;
664 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
665 	if (!p)
666 		goto err_put_path;
667 
668 	file->private_data = &p->m;
669 	ret = seq_open(file, op);
670 	if (ret)
671 		goto err_free;
672 
673 	p->m.private = p;
674 	p->ns = ns;
675 	p->root = root;
676 	p->m.poll_event = ns->event;
677 
678 	return 0;
679 
680  err_free:
681 	kfree(p);
682  err_put_path:
683 	path_put(&root);
684  err_put_ns:
685 	put_mnt_ns(ns);
686  err:
687 	return ret;
688 }
689 
690 static int mounts_release(struct inode *inode, struct file *file)
691 {
692 	struct proc_mounts *p = file->private_data;
693 	path_put(&p->root);
694 	put_mnt_ns(p->ns);
695 	return seq_release(inode, file);
696 }
697 
698 static unsigned mounts_poll(struct file *file, poll_table *wait)
699 {
700 	struct proc_mounts *p = file->private_data;
701 	unsigned res = POLLIN | POLLRDNORM;
702 
703 	poll_wait(file, &p->ns->poll, wait);
704 	if (mnt_had_events(p))
705 		res |= POLLERR | POLLPRI;
706 
707 	return res;
708 }
709 
710 static int mounts_open(struct inode *inode, struct file *file)
711 {
712 	return mounts_open_common(inode, file, &mounts_op);
713 }
714 
715 static const struct file_operations proc_mounts_operations = {
716 	.open		= mounts_open,
717 	.read		= seq_read,
718 	.llseek		= seq_lseek,
719 	.release	= mounts_release,
720 	.poll		= mounts_poll,
721 };
722 
723 static int mountinfo_open(struct inode *inode, struct file *file)
724 {
725 	return mounts_open_common(inode, file, &mountinfo_op);
726 }
727 
728 static const struct file_operations proc_mountinfo_operations = {
729 	.open		= mountinfo_open,
730 	.read		= seq_read,
731 	.llseek		= seq_lseek,
732 	.release	= mounts_release,
733 	.poll		= mounts_poll,
734 };
735 
736 static int mountstats_open(struct inode *inode, struct file *file)
737 {
738 	return mounts_open_common(inode, file, &mountstats_op);
739 }
740 
741 static const struct file_operations proc_mountstats_operations = {
742 	.open		= mountstats_open,
743 	.read		= seq_read,
744 	.llseek		= seq_lseek,
745 	.release	= mounts_release,
746 };
747 
748 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
749 
750 static ssize_t proc_info_read(struct file * file, char __user * buf,
751 			  size_t count, loff_t *ppos)
752 {
753 	struct inode * inode = file->f_path.dentry->d_inode;
754 	unsigned long page;
755 	ssize_t length;
756 	struct task_struct *task = get_proc_task(inode);
757 
758 	length = -ESRCH;
759 	if (!task)
760 		goto out_no_task;
761 
762 	if (count > PROC_BLOCK_SIZE)
763 		count = PROC_BLOCK_SIZE;
764 
765 	length = -ENOMEM;
766 	if (!(page = __get_free_page(GFP_TEMPORARY)))
767 		goto out;
768 
769 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
770 
771 	if (length >= 0)
772 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
773 	free_page(page);
774 out:
775 	put_task_struct(task);
776 out_no_task:
777 	return length;
778 }
779 
780 static const struct file_operations proc_info_file_operations = {
781 	.read		= proc_info_read,
782 	.llseek		= generic_file_llseek,
783 };
784 
785 static int proc_single_show(struct seq_file *m, void *v)
786 {
787 	struct inode *inode = m->private;
788 	struct pid_namespace *ns;
789 	struct pid *pid;
790 	struct task_struct *task;
791 	int ret;
792 
793 	ns = inode->i_sb->s_fs_info;
794 	pid = proc_pid(inode);
795 	task = get_pid_task(pid, PIDTYPE_PID);
796 	if (!task)
797 		return -ESRCH;
798 
799 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
800 
801 	put_task_struct(task);
802 	return ret;
803 }
804 
805 static int proc_single_open(struct inode *inode, struct file *filp)
806 {
807 	return single_open(filp, proc_single_show, inode);
808 }
809 
810 static const struct file_operations proc_single_file_operations = {
811 	.open		= proc_single_open,
812 	.read		= seq_read,
813 	.llseek		= seq_lseek,
814 	.release	= single_release,
815 };
816 
817 static int mem_open(struct inode* inode, struct file* file)
818 {
819 	file->private_data = (void*)((long)current->self_exec_id);
820 	/* OK to pass negative loff_t, we can catch out-of-range */
821 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
822 	return 0;
823 }
824 
825 static ssize_t mem_read(struct file * file, char __user * buf,
826 			size_t count, loff_t *ppos)
827 {
828 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
829 	char *page;
830 	unsigned long src = *ppos;
831 	int ret = -ESRCH;
832 	struct mm_struct *mm;
833 
834 	if (!task)
835 		goto out_no_task;
836 
837 	ret = -ENOMEM;
838 	page = (char *)__get_free_page(GFP_TEMPORARY);
839 	if (!page)
840 		goto out;
841 
842 	mm = check_mem_permission(task);
843 	ret = PTR_ERR(mm);
844 	if (IS_ERR(mm))
845 		goto out_free;
846 
847 	ret = -EIO;
848 
849 	if (file->private_data != (void*)((long)current->self_exec_id))
850 		goto out_put;
851 
852 	ret = 0;
853 
854 	while (count > 0) {
855 		int this_len, retval;
856 
857 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
858 		retval = access_remote_vm(mm, src, page, this_len, 0);
859 		if (!retval) {
860 			if (!ret)
861 				ret = -EIO;
862 			break;
863 		}
864 
865 		if (copy_to_user(buf, page, retval)) {
866 			ret = -EFAULT;
867 			break;
868 		}
869 
870 		ret += retval;
871 		src += retval;
872 		buf += retval;
873 		count -= retval;
874 	}
875 	*ppos = src;
876 
877 out_put:
878 	mmput(mm);
879 out_free:
880 	free_page((unsigned long) page);
881 out:
882 	put_task_struct(task);
883 out_no_task:
884 	return ret;
885 }
886 
887 static ssize_t mem_write(struct file * file, const char __user *buf,
888 			 size_t count, loff_t *ppos)
889 {
890 	int copied;
891 	char *page;
892 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
893 	unsigned long dst = *ppos;
894 	struct mm_struct *mm;
895 
896 	copied = -ESRCH;
897 	if (!task)
898 		goto out_no_task;
899 
900 	copied = -ENOMEM;
901 	page = (char *)__get_free_page(GFP_TEMPORARY);
902 	if (!page)
903 		goto out_task;
904 
905 	mm = check_mem_permission(task);
906 	copied = PTR_ERR(mm);
907 	if (IS_ERR(mm))
908 		goto out_free;
909 
910 	copied = -EIO;
911 	if (file->private_data != (void *)((long)current->self_exec_id))
912 		goto out_mm;
913 
914 	copied = 0;
915 	while (count > 0) {
916 		int this_len, retval;
917 
918 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
919 		if (copy_from_user(page, buf, this_len)) {
920 			copied = -EFAULT;
921 			break;
922 		}
923 		retval = access_remote_vm(mm, dst, page, this_len, 1);
924 		if (!retval) {
925 			if (!copied)
926 				copied = -EIO;
927 			break;
928 		}
929 		copied += retval;
930 		buf += retval;
931 		dst += retval;
932 		count -= retval;
933 	}
934 	*ppos = dst;
935 
936 out_mm:
937 	mmput(mm);
938 out_free:
939 	free_page((unsigned long) page);
940 out_task:
941 	put_task_struct(task);
942 out_no_task:
943 	return copied;
944 }
945 
946 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
947 {
948 	switch (orig) {
949 	case 0:
950 		file->f_pos = offset;
951 		break;
952 	case 1:
953 		file->f_pos += offset;
954 		break;
955 	default:
956 		return -EINVAL;
957 	}
958 	force_successful_syscall_return();
959 	return file->f_pos;
960 }
961 
962 static const struct file_operations proc_mem_operations = {
963 	.llseek		= mem_lseek,
964 	.read		= mem_read,
965 	.write		= mem_write,
966 	.open		= mem_open,
967 };
968 
969 static ssize_t environ_read(struct file *file, char __user *buf,
970 			size_t count, loff_t *ppos)
971 {
972 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
973 	char *page;
974 	unsigned long src = *ppos;
975 	int ret = -ESRCH;
976 	struct mm_struct *mm;
977 
978 	if (!task)
979 		goto out_no_task;
980 
981 	ret = -ENOMEM;
982 	page = (char *)__get_free_page(GFP_TEMPORARY);
983 	if (!page)
984 		goto out;
985 
986 
987 	mm = mm_for_maps(task);
988 	ret = PTR_ERR(mm);
989 	if (!mm || IS_ERR(mm))
990 		goto out_free;
991 
992 	ret = 0;
993 	while (count > 0) {
994 		int this_len, retval, max_len;
995 
996 		this_len = mm->env_end - (mm->env_start + src);
997 
998 		if (this_len <= 0)
999 			break;
1000 
1001 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
1002 		this_len = (this_len > max_len) ? max_len : this_len;
1003 
1004 		retval = access_process_vm(task, (mm->env_start + src),
1005 			page, this_len, 0);
1006 
1007 		if (retval <= 0) {
1008 			ret = retval;
1009 			break;
1010 		}
1011 
1012 		if (copy_to_user(buf, page, retval)) {
1013 			ret = -EFAULT;
1014 			break;
1015 		}
1016 
1017 		ret += retval;
1018 		src += retval;
1019 		buf += retval;
1020 		count -= retval;
1021 	}
1022 	*ppos = src;
1023 
1024 	mmput(mm);
1025 out_free:
1026 	free_page((unsigned long) page);
1027 out:
1028 	put_task_struct(task);
1029 out_no_task:
1030 	return ret;
1031 }
1032 
1033 static const struct file_operations proc_environ_operations = {
1034 	.read		= environ_read,
1035 	.llseek		= generic_file_llseek,
1036 };
1037 
1038 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1039 				size_t count, loff_t *ppos)
1040 {
1041 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1042 	char buffer[PROC_NUMBUF];
1043 	size_t len;
1044 	int oom_adjust = OOM_DISABLE;
1045 	unsigned long flags;
1046 
1047 	if (!task)
1048 		return -ESRCH;
1049 
1050 	if (lock_task_sighand(task, &flags)) {
1051 		oom_adjust = task->signal->oom_adj;
1052 		unlock_task_sighand(task, &flags);
1053 	}
1054 
1055 	put_task_struct(task);
1056 
1057 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1058 
1059 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1060 }
1061 
1062 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1063 				size_t count, loff_t *ppos)
1064 {
1065 	struct task_struct *task;
1066 	char buffer[PROC_NUMBUF];
1067 	int oom_adjust;
1068 	unsigned long flags;
1069 	int err;
1070 
1071 	memset(buffer, 0, sizeof(buffer));
1072 	if (count > sizeof(buffer) - 1)
1073 		count = sizeof(buffer) - 1;
1074 	if (copy_from_user(buffer, buf, count)) {
1075 		err = -EFAULT;
1076 		goto out;
1077 	}
1078 
1079 	err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
1080 	if (err)
1081 		goto out;
1082 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1083 	     oom_adjust != OOM_DISABLE) {
1084 		err = -EINVAL;
1085 		goto out;
1086 	}
1087 
1088 	task = get_proc_task(file->f_path.dentry->d_inode);
1089 	if (!task) {
1090 		err = -ESRCH;
1091 		goto out;
1092 	}
1093 
1094 	task_lock(task);
1095 	if (!task->mm) {
1096 		err = -EINVAL;
1097 		goto err_task_lock;
1098 	}
1099 
1100 	if (!lock_task_sighand(task, &flags)) {
1101 		err = -ESRCH;
1102 		goto err_task_lock;
1103 	}
1104 
1105 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1106 		err = -EACCES;
1107 		goto err_sighand;
1108 	}
1109 
1110 	if (oom_adjust != task->signal->oom_adj) {
1111 		if (oom_adjust == OOM_DISABLE)
1112 			atomic_inc(&task->mm->oom_disable_count);
1113 		if (task->signal->oom_adj == OOM_DISABLE)
1114 			atomic_dec(&task->mm->oom_disable_count);
1115 	}
1116 
1117 	/*
1118 	 * Warn that /proc/pid/oom_adj is deprecated, see
1119 	 * Documentation/feature-removal-schedule.txt.
1120 	 */
1121 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1122 		  current->comm, task_pid_nr(current), task_pid_nr(task),
1123 		  task_pid_nr(task));
1124 	task->signal->oom_adj = oom_adjust;
1125 	/*
1126 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1127 	 * value is always attainable.
1128 	 */
1129 	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1130 		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1131 	else
1132 		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1133 								-OOM_DISABLE;
1134 err_sighand:
1135 	unlock_task_sighand(task, &flags);
1136 err_task_lock:
1137 	task_unlock(task);
1138 	put_task_struct(task);
1139 out:
1140 	return err < 0 ? err : count;
1141 }
1142 
1143 static const struct file_operations proc_oom_adjust_operations = {
1144 	.read		= oom_adjust_read,
1145 	.write		= oom_adjust_write,
1146 	.llseek		= generic_file_llseek,
1147 };
1148 
1149 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1150 					size_t count, loff_t *ppos)
1151 {
1152 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1153 	char buffer[PROC_NUMBUF];
1154 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1155 	unsigned long flags;
1156 	size_t len;
1157 
1158 	if (!task)
1159 		return -ESRCH;
1160 	if (lock_task_sighand(task, &flags)) {
1161 		oom_score_adj = task->signal->oom_score_adj;
1162 		unlock_task_sighand(task, &flags);
1163 	}
1164 	put_task_struct(task);
1165 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1166 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1167 }
1168 
1169 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1170 					size_t count, loff_t *ppos)
1171 {
1172 	struct task_struct *task;
1173 	char buffer[PROC_NUMBUF];
1174 	unsigned long flags;
1175 	int oom_score_adj;
1176 	int err;
1177 
1178 	memset(buffer, 0, sizeof(buffer));
1179 	if (count > sizeof(buffer) - 1)
1180 		count = sizeof(buffer) - 1;
1181 	if (copy_from_user(buffer, buf, count)) {
1182 		err = -EFAULT;
1183 		goto out;
1184 	}
1185 
1186 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1187 	if (err)
1188 		goto out;
1189 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1190 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1191 		err = -EINVAL;
1192 		goto out;
1193 	}
1194 
1195 	task = get_proc_task(file->f_path.dentry->d_inode);
1196 	if (!task) {
1197 		err = -ESRCH;
1198 		goto out;
1199 	}
1200 
1201 	task_lock(task);
1202 	if (!task->mm) {
1203 		err = -EINVAL;
1204 		goto err_task_lock;
1205 	}
1206 
1207 	if (!lock_task_sighand(task, &flags)) {
1208 		err = -ESRCH;
1209 		goto err_task_lock;
1210 	}
1211 
1212 	if (oom_score_adj < task->signal->oom_score_adj_min &&
1213 			!capable(CAP_SYS_RESOURCE)) {
1214 		err = -EACCES;
1215 		goto err_sighand;
1216 	}
1217 
1218 	if (oom_score_adj != task->signal->oom_score_adj) {
1219 		if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1220 			atomic_inc(&task->mm->oom_disable_count);
1221 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1222 			atomic_dec(&task->mm->oom_disable_count);
1223 	}
1224 	task->signal->oom_score_adj = oom_score_adj;
1225 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1226 		task->signal->oom_score_adj_min = oom_score_adj;
1227 	/*
1228 	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1229 	 * always attainable.
1230 	 */
1231 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1232 		task->signal->oom_adj = OOM_DISABLE;
1233 	else
1234 		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1235 							OOM_SCORE_ADJ_MAX;
1236 err_sighand:
1237 	unlock_task_sighand(task, &flags);
1238 err_task_lock:
1239 	task_unlock(task);
1240 	put_task_struct(task);
1241 out:
1242 	return err < 0 ? err : count;
1243 }
1244 
1245 static const struct file_operations proc_oom_score_adj_operations = {
1246 	.read		= oom_score_adj_read,
1247 	.write		= oom_score_adj_write,
1248 	.llseek		= default_llseek,
1249 };
1250 
1251 #ifdef CONFIG_AUDITSYSCALL
1252 #define TMPBUFLEN 21
1253 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1254 				  size_t count, loff_t *ppos)
1255 {
1256 	struct inode * inode = file->f_path.dentry->d_inode;
1257 	struct task_struct *task = get_proc_task(inode);
1258 	ssize_t length;
1259 	char tmpbuf[TMPBUFLEN];
1260 
1261 	if (!task)
1262 		return -ESRCH;
1263 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1264 				audit_get_loginuid(task));
1265 	put_task_struct(task);
1266 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1267 }
1268 
1269 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1270 				   size_t count, loff_t *ppos)
1271 {
1272 	struct inode * inode = file->f_path.dentry->d_inode;
1273 	char *page, *tmp;
1274 	ssize_t length;
1275 	uid_t loginuid;
1276 
1277 	if (!capable(CAP_AUDIT_CONTROL))
1278 		return -EPERM;
1279 
1280 	rcu_read_lock();
1281 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1282 		rcu_read_unlock();
1283 		return -EPERM;
1284 	}
1285 	rcu_read_unlock();
1286 
1287 	if (count >= PAGE_SIZE)
1288 		count = PAGE_SIZE - 1;
1289 
1290 	if (*ppos != 0) {
1291 		/* No partial writes. */
1292 		return -EINVAL;
1293 	}
1294 	page = (char*)__get_free_page(GFP_TEMPORARY);
1295 	if (!page)
1296 		return -ENOMEM;
1297 	length = -EFAULT;
1298 	if (copy_from_user(page, buf, count))
1299 		goto out_free_page;
1300 
1301 	page[count] = '\0';
1302 	loginuid = simple_strtoul(page, &tmp, 10);
1303 	if (tmp == page) {
1304 		length = -EINVAL;
1305 		goto out_free_page;
1306 
1307 	}
1308 	length = audit_set_loginuid(current, loginuid);
1309 	if (likely(length == 0))
1310 		length = count;
1311 
1312 out_free_page:
1313 	free_page((unsigned long) page);
1314 	return length;
1315 }
1316 
1317 static const struct file_operations proc_loginuid_operations = {
1318 	.read		= proc_loginuid_read,
1319 	.write		= proc_loginuid_write,
1320 	.llseek		= generic_file_llseek,
1321 };
1322 
1323 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1324 				  size_t count, loff_t *ppos)
1325 {
1326 	struct inode * inode = file->f_path.dentry->d_inode;
1327 	struct task_struct *task = get_proc_task(inode);
1328 	ssize_t length;
1329 	char tmpbuf[TMPBUFLEN];
1330 
1331 	if (!task)
1332 		return -ESRCH;
1333 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1334 				audit_get_sessionid(task));
1335 	put_task_struct(task);
1336 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1337 }
1338 
1339 static const struct file_operations proc_sessionid_operations = {
1340 	.read		= proc_sessionid_read,
1341 	.llseek		= generic_file_llseek,
1342 };
1343 #endif
1344 
1345 #ifdef CONFIG_FAULT_INJECTION
1346 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1347 				      size_t count, loff_t *ppos)
1348 {
1349 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1350 	char buffer[PROC_NUMBUF];
1351 	size_t len;
1352 	int make_it_fail;
1353 
1354 	if (!task)
1355 		return -ESRCH;
1356 	make_it_fail = task->make_it_fail;
1357 	put_task_struct(task);
1358 
1359 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1360 
1361 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1362 }
1363 
1364 static ssize_t proc_fault_inject_write(struct file * file,
1365 			const char __user * buf, size_t count, loff_t *ppos)
1366 {
1367 	struct task_struct *task;
1368 	char buffer[PROC_NUMBUF], *end;
1369 	int make_it_fail;
1370 
1371 	if (!capable(CAP_SYS_RESOURCE))
1372 		return -EPERM;
1373 	memset(buffer, 0, sizeof(buffer));
1374 	if (count > sizeof(buffer) - 1)
1375 		count = sizeof(buffer) - 1;
1376 	if (copy_from_user(buffer, buf, count))
1377 		return -EFAULT;
1378 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1379 	if (*end)
1380 		return -EINVAL;
1381 	task = get_proc_task(file->f_dentry->d_inode);
1382 	if (!task)
1383 		return -ESRCH;
1384 	task->make_it_fail = make_it_fail;
1385 	put_task_struct(task);
1386 
1387 	return count;
1388 }
1389 
1390 static const struct file_operations proc_fault_inject_operations = {
1391 	.read		= proc_fault_inject_read,
1392 	.write		= proc_fault_inject_write,
1393 	.llseek		= generic_file_llseek,
1394 };
1395 #endif
1396 
1397 
1398 #ifdef CONFIG_SCHED_DEBUG
1399 /*
1400  * Print out various scheduling related per-task fields:
1401  */
1402 static int sched_show(struct seq_file *m, void *v)
1403 {
1404 	struct inode *inode = m->private;
1405 	struct task_struct *p;
1406 
1407 	p = get_proc_task(inode);
1408 	if (!p)
1409 		return -ESRCH;
1410 	proc_sched_show_task(p, m);
1411 
1412 	put_task_struct(p);
1413 
1414 	return 0;
1415 }
1416 
1417 static ssize_t
1418 sched_write(struct file *file, const char __user *buf,
1419 	    size_t count, loff_t *offset)
1420 {
1421 	struct inode *inode = file->f_path.dentry->d_inode;
1422 	struct task_struct *p;
1423 
1424 	p = get_proc_task(inode);
1425 	if (!p)
1426 		return -ESRCH;
1427 	proc_sched_set_task(p);
1428 
1429 	put_task_struct(p);
1430 
1431 	return count;
1432 }
1433 
1434 static int sched_open(struct inode *inode, struct file *filp)
1435 {
1436 	return single_open(filp, sched_show, inode);
1437 }
1438 
1439 static const struct file_operations proc_pid_sched_operations = {
1440 	.open		= sched_open,
1441 	.read		= seq_read,
1442 	.write		= sched_write,
1443 	.llseek		= seq_lseek,
1444 	.release	= single_release,
1445 };
1446 
1447 #endif
1448 
1449 #ifdef CONFIG_SCHED_AUTOGROUP
1450 /*
1451  * Print out autogroup related information:
1452  */
1453 static int sched_autogroup_show(struct seq_file *m, void *v)
1454 {
1455 	struct inode *inode = m->private;
1456 	struct task_struct *p;
1457 
1458 	p = get_proc_task(inode);
1459 	if (!p)
1460 		return -ESRCH;
1461 	proc_sched_autogroup_show_task(p, m);
1462 
1463 	put_task_struct(p);
1464 
1465 	return 0;
1466 }
1467 
1468 static ssize_t
1469 sched_autogroup_write(struct file *file, const char __user *buf,
1470 	    size_t count, loff_t *offset)
1471 {
1472 	struct inode *inode = file->f_path.dentry->d_inode;
1473 	struct task_struct *p;
1474 	char buffer[PROC_NUMBUF];
1475 	int nice;
1476 	int err;
1477 
1478 	memset(buffer, 0, sizeof(buffer));
1479 	if (count > sizeof(buffer) - 1)
1480 		count = sizeof(buffer) - 1;
1481 	if (copy_from_user(buffer, buf, count))
1482 		return -EFAULT;
1483 
1484 	err = kstrtoint(strstrip(buffer), 0, &nice);
1485 	if (err < 0)
1486 		return err;
1487 
1488 	p = get_proc_task(inode);
1489 	if (!p)
1490 		return -ESRCH;
1491 
1492 	err = nice;
1493 	err = proc_sched_autogroup_set_nice(p, &err);
1494 	if (err)
1495 		count = err;
1496 
1497 	put_task_struct(p);
1498 
1499 	return count;
1500 }
1501 
1502 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1503 {
1504 	int ret;
1505 
1506 	ret = single_open(filp, sched_autogroup_show, NULL);
1507 	if (!ret) {
1508 		struct seq_file *m = filp->private_data;
1509 
1510 		m->private = inode;
1511 	}
1512 	return ret;
1513 }
1514 
1515 static const struct file_operations proc_pid_sched_autogroup_operations = {
1516 	.open		= sched_autogroup_open,
1517 	.read		= seq_read,
1518 	.write		= sched_autogroup_write,
1519 	.llseek		= seq_lseek,
1520 	.release	= single_release,
1521 };
1522 
1523 #endif /* CONFIG_SCHED_AUTOGROUP */
1524 
1525 static ssize_t comm_write(struct file *file, const char __user *buf,
1526 				size_t count, loff_t *offset)
1527 {
1528 	struct inode *inode = file->f_path.dentry->d_inode;
1529 	struct task_struct *p;
1530 	char buffer[TASK_COMM_LEN];
1531 
1532 	memset(buffer, 0, sizeof(buffer));
1533 	if (count > sizeof(buffer) - 1)
1534 		count = sizeof(buffer) - 1;
1535 	if (copy_from_user(buffer, buf, count))
1536 		return -EFAULT;
1537 
1538 	p = get_proc_task(inode);
1539 	if (!p)
1540 		return -ESRCH;
1541 
1542 	if (same_thread_group(current, p))
1543 		set_task_comm(p, buffer);
1544 	else
1545 		count = -EINVAL;
1546 
1547 	put_task_struct(p);
1548 
1549 	return count;
1550 }
1551 
1552 static int comm_show(struct seq_file *m, void *v)
1553 {
1554 	struct inode *inode = m->private;
1555 	struct task_struct *p;
1556 
1557 	p = get_proc_task(inode);
1558 	if (!p)
1559 		return -ESRCH;
1560 
1561 	task_lock(p);
1562 	seq_printf(m, "%s\n", p->comm);
1563 	task_unlock(p);
1564 
1565 	put_task_struct(p);
1566 
1567 	return 0;
1568 }
1569 
1570 static int comm_open(struct inode *inode, struct file *filp)
1571 {
1572 	return single_open(filp, comm_show, inode);
1573 }
1574 
1575 static const struct file_operations proc_pid_set_comm_operations = {
1576 	.open		= comm_open,
1577 	.read		= seq_read,
1578 	.write		= comm_write,
1579 	.llseek		= seq_lseek,
1580 	.release	= single_release,
1581 };
1582 
1583 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1584 {
1585 	struct task_struct *task;
1586 	struct mm_struct *mm;
1587 	struct file *exe_file;
1588 
1589 	task = get_proc_task(inode);
1590 	if (!task)
1591 		return -ENOENT;
1592 	mm = get_task_mm(task);
1593 	put_task_struct(task);
1594 	if (!mm)
1595 		return -ENOENT;
1596 	exe_file = get_mm_exe_file(mm);
1597 	mmput(mm);
1598 	if (exe_file) {
1599 		*exe_path = exe_file->f_path;
1600 		path_get(&exe_file->f_path);
1601 		fput(exe_file);
1602 		return 0;
1603 	} else
1604 		return -ENOENT;
1605 }
1606 
1607 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1608 {
1609 	struct inode *inode = dentry->d_inode;
1610 	int error = -EACCES;
1611 
1612 	/* We don't need a base pointer in the /proc filesystem */
1613 	path_put(&nd->path);
1614 
1615 	/* Are we allowed to snoop on the tasks file descriptors? */
1616 	if (!proc_fd_access_allowed(inode))
1617 		goto out;
1618 
1619 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1620 out:
1621 	return ERR_PTR(error);
1622 }
1623 
1624 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1625 {
1626 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1627 	char *pathname;
1628 	int len;
1629 
1630 	if (!tmp)
1631 		return -ENOMEM;
1632 
1633 	pathname = d_path(path, tmp, PAGE_SIZE);
1634 	len = PTR_ERR(pathname);
1635 	if (IS_ERR(pathname))
1636 		goto out;
1637 	len = tmp + PAGE_SIZE - 1 - pathname;
1638 
1639 	if (len > buflen)
1640 		len = buflen;
1641 	if (copy_to_user(buffer, pathname, len))
1642 		len = -EFAULT;
1643  out:
1644 	free_page((unsigned long)tmp);
1645 	return len;
1646 }
1647 
1648 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1649 {
1650 	int error = -EACCES;
1651 	struct inode *inode = dentry->d_inode;
1652 	struct path path;
1653 
1654 	/* Are we allowed to snoop on the tasks file descriptors? */
1655 	if (!proc_fd_access_allowed(inode))
1656 		goto out;
1657 
1658 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1659 	if (error)
1660 		goto out;
1661 
1662 	error = do_proc_readlink(&path, buffer, buflen);
1663 	path_put(&path);
1664 out:
1665 	return error;
1666 }
1667 
1668 static const struct inode_operations proc_pid_link_inode_operations = {
1669 	.readlink	= proc_pid_readlink,
1670 	.follow_link	= proc_pid_follow_link,
1671 	.setattr	= proc_setattr,
1672 };
1673 
1674 
1675 /* building an inode */
1676 
1677 static int task_dumpable(struct task_struct *task)
1678 {
1679 	int dumpable = 0;
1680 	struct mm_struct *mm;
1681 
1682 	task_lock(task);
1683 	mm = task->mm;
1684 	if (mm)
1685 		dumpable = get_dumpable(mm);
1686 	task_unlock(task);
1687 	if(dumpable == 1)
1688 		return 1;
1689 	return 0;
1690 }
1691 
1692 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1693 {
1694 	struct inode * inode;
1695 	struct proc_inode *ei;
1696 	const struct cred *cred;
1697 
1698 	/* We need a new inode */
1699 
1700 	inode = new_inode(sb);
1701 	if (!inode)
1702 		goto out;
1703 
1704 	/* Common stuff */
1705 	ei = PROC_I(inode);
1706 	inode->i_ino = get_next_ino();
1707 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1708 	inode->i_op = &proc_def_inode_operations;
1709 
1710 	/*
1711 	 * grab the reference to task.
1712 	 */
1713 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1714 	if (!ei->pid)
1715 		goto out_unlock;
1716 
1717 	if (task_dumpable(task)) {
1718 		rcu_read_lock();
1719 		cred = __task_cred(task);
1720 		inode->i_uid = cred->euid;
1721 		inode->i_gid = cred->egid;
1722 		rcu_read_unlock();
1723 	}
1724 	security_task_to_inode(task, inode);
1725 
1726 out:
1727 	return inode;
1728 
1729 out_unlock:
1730 	iput(inode);
1731 	return NULL;
1732 }
1733 
1734 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1735 {
1736 	struct inode *inode = dentry->d_inode;
1737 	struct task_struct *task;
1738 	const struct cred *cred;
1739 
1740 	generic_fillattr(inode, stat);
1741 
1742 	rcu_read_lock();
1743 	stat->uid = 0;
1744 	stat->gid = 0;
1745 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1746 	if (task) {
1747 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1748 		    task_dumpable(task)) {
1749 			cred = __task_cred(task);
1750 			stat->uid = cred->euid;
1751 			stat->gid = cred->egid;
1752 		}
1753 	}
1754 	rcu_read_unlock();
1755 	return 0;
1756 }
1757 
1758 /* dentry stuff */
1759 
1760 /*
1761  *	Exceptional case: normally we are not allowed to unhash a busy
1762  * directory. In this case, however, we can do it - no aliasing problems
1763  * due to the way we treat inodes.
1764  *
1765  * Rewrite the inode's ownerships here because the owning task may have
1766  * performed a setuid(), etc.
1767  *
1768  * Before the /proc/pid/status file was created the only way to read
1769  * the effective uid of a /process was to stat /proc/pid.  Reading
1770  * /proc/pid/status is slow enough that procps and other packages
1771  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1772  * made this apply to all per process world readable and executable
1773  * directories.
1774  */
1775 int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1776 {
1777 	struct inode *inode;
1778 	struct task_struct *task;
1779 	const struct cred *cred;
1780 
1781 	if (nd && nd->flags & LOOKUP_RCU)
1782 		return -ECHILD;
1783 
1784 	inode = dentry->d_inode;
1785 	task = get_proc_task(inode);
1786 
1787 	if (task) {
1788 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1789 		    task_dumpable(task)) {
1790 			rcu_read_lock();
1791 			cred = __task_cred(task);
1792 			inode->i_uid = cred->euid;
1793 			inode->i_gid = cred->egid;
1794 			rcu_read_unlock();
1795 		} else {
1796 			inode->i_uid = 0;
1797 			inode->i_gid = 0;
1798 		}
1799 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1800 		security_task_to_inode(task, inode);
1801 		put_task_struct(task);
1802 		return 1;
1803 	}
1804 	d_drop(dentry);
1805 	return 0;
1806 }
1807 
1808 static int pid_delete_dentry(const struct dentry * dentry)
1809 {
1810 	/* Is the task we represent dead?
1811 	 * If so, then don't put the dentry on the lru list,
1812 	 * kill it immediately.
1813 	 */
1814 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1815 }
1816 
1817 const struct dentry_operations pid_dentry_operations =
1818 {
1819 	.d_revalidate	= pid_revalidate,
1820 	.d_delete	= pid_delete_dentry,
1821 };
1822 
1823 /* Lookups */
1824 
1825 /*
1826  * Fill a directory entry.
1827  *
1828  * If possible create the dcache entry and derive our inode number and
1829  * file type from dcache entry.
1830  *
1831  * Since all of the proc inode numbers are dynamically generated, the inode
1832  * numbers do not exist until the inode is cache.  This means creating the
1833  * the dcache entry in readdir is necessary to keep the inode numbers
1834  * reported by readdir in sync with the inode numbers reported
1835  * by stat.
1836  */
1837 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1838 	const char *name, int len,
1839 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1840 {
1841 	struct dentry *child, *dir = filp->f_path.dentry;
1842 	struct inode *inode;
1843 	struct qstr qname;
1844 	ino_t ino = 0;
1845 	unsigned type = DT_UNKNOWN;
1846 
1847 	qname.name = name;
1848 	qname.len  = len;
1849 	qname.hash = full_name_hash(name, len);
1850 
1851 	child = d_lookup(dir, &qname);
1852 	if (!child) {
1853 		struct dentry *new;
1854 		new = d_alloc(dir, &qname);
1855 		if (new) {
1856 			child = instantiate(dir->d_inode, new, task, ptr);
1857 			if (child)
1858 				dput(new);
1859 			else
1860 				child = new;
1861 		}
1862 	}
1863 	if (!child || IS_ERR(child) || !child->d_inode)
1864 		goto end_instantiate;
1865 	inode = child->d_inode;
1866 	if (inode) {
1867 		ino = inode->i_ino;
1868 		type = inode->i_mode >> 12;
1869 	}
1870 	dput(child);
1871 end_instantiate:
1872 	if (!ino)
1873 		ino = find_inode_number(dir, &qname);
1874 	if (!ino)
1875 		ino = 1;
1876 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1877 }
1878 
1879 static unsigned name_to_int(struct dentry *dentry)
1880 {
1881 	const char *name = dentry->d_name.name;
1882 	int len = dentry->d_name.len;
1883 	unsigned n = 0;
1884 
1885 	if (len > 1 && *name == '0')
1886 		goto out;
1887 	while (len-- > 0) {
1888 		unsigned c = *name++ - '0';
1889 		if (c > 9)
1890 			goto out;
1891 		if (n >= (~0U-9)/10)
1892 			goto out;
1893 		n *= 10;
1894 		n += c;
1895 	}
1896 	return n;
1897 out:
1898 	return ~0U;
1899 }
1900 
1901 #define PROC_FDINFO_MAX 64
1902 
1903 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1904 {
1905 	struct task_struct *task = get_proc_task(inode);
1906 	struct files_struct *files = NULL;
1907 	struct file *file;
1908 	int fd = proc_fd(inode);
1909 
1910 	if (task) {
1911 		files = get_files_struct(task);
1912 		put_task_struct(task);
1913 	}
1914 	if (files) {
1915 		/*
1916 		 * We are not taking a ref to the file structure, so we must
1917 		 * hold ->file_lock.
1918 		 */
1919 		spin_lock(&files->file_lock);
1920 		file = fcheck_files(files, fd);
1921 		if (file) {
1922 			unsigned int f_flags;
1923 			struct fdtable *fdt;
1924 
1925 			fdt = files_fdtable(files);
1926 			f_flags = file->f_flags & ~O_CLOEXEC;
1927 			if (FD_ISSET(fd, fdt->close_on_exec))
1928 				f_flags |= O_CLOEXEC;
1929 
1930 			if (path) {
1931 				*path = file->f_path;
1932 				path_get(&file->f_path);
1933 			}
1934 			if (info)
1935 				snprintf(info, PROC_FDINFO_MAX,
1936 					 "pos:\t%lli\n"
1937 					 "flags:\t0%o\n",
1938 					 (long long) file->f_pos,
1939 					 f_flags);
1940 			spin_unlock(&files->file_lock);
1941 			put_files_struct(files);
1942 			return 0;
1943 		}
1944 		spin_unlock(&files->file_lock);
1945 		put_files_struct(files);
1946 	}
1947 	return -ENOENT;
1948 }
1949 
1950 static int proc_fd_link(struct inode *inode, struct path *path)
1951 {
1952 	return proc_fd_info(inode, path, NULL);
1953 }
1954 
1955 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1956 {
1957 	struct inode *inode;
1958 	struct task_struct *task;
1959 	int fd;
1960 	struct files_struct *files;
1961 	const struct cred *cred;
1962 
1963 	if (nd && nd->flags & LOOKUP_RCU)
1964 		return -ECHILD;
1965 
1966 	inode = dentry->d_inode;
1967 	task = get_proc_task(inode);
1968 	fd = proc_fd(inode);
1969 
1970 	if (task) {
1971 		files = get_files_struct(task);
1972 		if (files) {
1973 			rcu_read_lock();
1974 			if (fcheck_files(files, fd)) {
1975 				rcu_read_unlock();
1976 				put_files_struct(files);
1977 				if (task_dumpable(task)) {
1978 					rcu_read_lock();
1979 					cred = __task_cred(task);
1980 					inode->i_uid = cred->euid;
1981 					inode->i_gid = cred->egid;
1982 					rcu_read_unlock();
1983 				} else {
1984 					inode->i_uid = 0;
1985 					inode->i_gid = 0;
1986 				}
1987 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1988 				security_task_to_inode(task, inode);
1989 				put_task_struct(task);
1990 				return 1;
1991 			}
1992 			rcu_read_unlock();
1993 			put_files_struct(files);
1994 		}
1995 		put_task_struct(task);
1996 	}
1997 	d_drop(dentry);
1998 	return 0;
1999 }
2000 
2001 static const struct dentry_operations tid_fd_dentry_operations =
2002 {
2003 	.d_revalidate	= tid_fd_revalidate,
2004 	.d_delete	= pid_delete_dentry,
2005 };
2006 
2007 static struct dentry *proc_fd_instantiate(struct inode *dir,
2008 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2009 {
2010 	unsigned fd = *(const unsigned *)ptr;
2011 	struct file *file;
2012 	struct files_struct *files;
2013  	struct inode *inode;
2014  	struct proc_inode *ei;
2015 	struct dentry *error = ERR_PTR(-ENOENT);
2016 
2017 	inode = proc_pid_make_inode(dir->i_sb, task);
2018 	if (!inode)
2019 		goto out;
2020 	ei = PROC_I(inode);
2021 	ei->fd = fd;
2022 	files = get_files_struct(task);
2023 	if (!files)
2024 		goto out_iput;
2025 	inode->i_mode = S_IFLNK;
2026 
2027 	/*
2028 	 * We are not taking a ref to the file structure, so we must
2029 	 * hold ->file_lock.
2030 	 */
2031 	spin_lock(&files->file_lock);
2032 	file = fcheck_files(files, fd);
2033 	if (!file)
2034 		goto out_unlock;
2035 	if (file->f_mode & FMODE_READ)
2036 		inode->i_mode |= S_IRUSR | S_IXUSR;
2037 	if (file->f_mode & FMODE_WRITE)
2038 		inode->i_mode |= S_IWUSR | S_IXUSR;
2039 	spin_unlock(&files->file_lock);
2040 	put_files_struct(files);
2041 
2042 	inode->i_op = &proc_pid_link_inode_operations;
2043 	inode->i_size = 64;
2044 	ei->op.proc_get_link = proc_fd_link;
2045 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2046 	d_add(dentry, inode);
2047 	/* Close the race of the process dying before we return the dentry */
2048 	if (tid_fd_revalidate(dentry, NULL))
2049 		error = NULL;
2050 
2051  out:
2052 	return error;
2053 out_unlock:
2054 	spin_unlock(&files->file_lock);
2055 	put_files_struct(files);
2056 out_iput:
2057 	iput(inode);
2058 	goto out;
2059 }
2060 
2061 static struct dentry *proc_lookupfd_common(struct inode *dir,
2062 					   struct dentry *dentry,
2063 					   instantiate_t instantiate)
2064 {
2065 	struct task_struct *task = get_proc_task(dir);
2066 	unsigned fd = name_to_int(dentry);
2067 	struct dentry *result = ERR_PTR(-ENOENT);
2068 
2069 	if (!task)
2070 		goto out_no_task;
2071 	if (fd == ~0U)
2072 		goto out;
2073 
2074 	result = instantiate(dir, dentry, task, &fd);
2075 out:
2076 	put_task_struct(task);
2077 out_no_task:
2078 	return result;
2079 }
2080 
2081 static int proc_readfd_common(struct file * filp, void * dirent,
2082 			      filldir_t filldir, instantiate_t instantiate)
2083 {
2084 	struct dentry *dentry = filp->f_path.dentry;
2085 	struct inode *inode = dentry->d_inode;
2086 	struct task_struct *p = get_proc_task(inode);
2087 	unsigned int fd, ino;
2088 	int retval;
2089 	struct files_struct * files;
2090 
2091 	retval = -ENOENT;
2092 	if (!p)
2093 		goto out_no_task;
2094 	retval = 0;
2095 
2096 	fd = filp->f_pos;
2097 	switch (fd) {
2098 		case 0:
2099 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2100 				goto out;
2101 			filp->f_pos++;
2102 		case 1:
2103 			ino = parent_ino(dentry);
2104 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2105 				goto out;
2106 			filp->f_pos++;
2107 		default:
2108 			files = get_files_struct(p);
2109 			if (!files)
2110 				goto out;
2111 			rcu_read_lock();
2112 			for (fd = filp->f_pos-2;
2113 			     fd < files_fdtable(files)->max_fds;
2114 			     fd++, filp->f_pos++) {
2115 				char name[PROC_NUMBUF];
2116 				int len;
2117 
2118 				if (!fcheck_files(files, fd))
2119 					continue;
2120 				rcu_read_unlock();
2121 
2122 				len = snprintf(name, sizeof(name), "%d", fd);
2123 				if (proc_fill_cache(filp, dirent, filldir,
2124 						    name, len, instantiate,
2125 						    p, &fd) < 0) {
2126 					rcu_read_lock();
2127 					break;
2128 				}
2129 				rcu_read_lock();
2130 			}
2131 			rcu_read_unlock();
2132 			put_files_struct(files);
2133 	}
2134 out:
2135 	put_task_struct(p);
2136 out_no_task:
2137 	return retval;
2138 }
2139 
2140 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2141 				    struct nameidata *nd)
2142 {
2143 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2144 }
2145 
2146 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2147 {
2148 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2149 }
2150 
2151 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2152 				      size_t len, loff_t *ppos)
2153 {
2154 	char tmp[PROC_FDINFO_MAX];
2155 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2156 	if (!err)
2157 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2158 	return err;
2159 }
2160 
2161 static const struct file_operations proc_fdinfo_file_operations = {
2162 	.open           = nonseekable_open,
2163 	.read		= proc_fdinfo_read,
2164 	.llseek		= no_llseek,
2165 };
2166 
2167 static const struct file_operations proc_fd_operations = {
2168 	.read		= generic_read_dir,
2169 	.readdir	= proc_readfd,
2170 	.llseek		= default_llseek,
2171 };
2172 
2173 /*
2174  * /proc/pid/fd needs a special permission handler so that a process can still
2175  * access /proc/self/fd after it has executed a setuid().
2176  */
2177 static int proc_fd_permission(struct inode *inode, int mask)
2178 {
2179 	int rv = generic_permission(inode, mask);
2180 	if (rv == 0)
2181 		return 0;
2182 	if (task_pid(current) == proc_pid(inode))
2183 		rv = 0;
2184 	return rv;
2185 }
2186 
2187 /*
2188  * proc directories can do almost nothing..
2189  */
2190 static const struct inode_operations proc_fd_inode_operations = {
2191 	.lookup		= proc_lookupfd,
2192 	.permission	= proc_fd_permission,
2193 	.setattr	= proc_setattr,
2194 };
2195 
2196 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2197 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2198 {
2199 	unsigned fd = *(unsigned *)ptr;
2200  	struct inode *inode;
2201  	struct proc_inode *ei;
2202 	struct dentry *error = ERR_PTR(-ENOENT);
2203 
2204 	inode = proc_pid_make_inode(dir->i_sb, task);
2205 	if (!inode)
2206 		goto out;
2207 	ei = PROC_I(inode);
2208 	ei->fd = fd;
2209 	inode->i_mode = S_IFREG | S_IRUSR;
2210 	inode->i_fop = &proc_fdinfo_file_operations;
2211 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2212 	d_add(dentry, inode);
2213 	/* Close the race of the process dying before we return the dentry */
2214 	if (tid_fd_revalidate(dentry, NULL))
2215 		error = NULL;
2216 
2217  out:
2218 	return error;
2219 }
2220 
2221 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2222 					struct dentry *dentry,
2223 					struct nameidata *nd)
2224 {
2225 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2226 }
2227 
2228 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2229 {
2230 	return proc_readfd_common(filp, dirent, filldir,
2231 				  proc_fdinfo_instantiate);
2232 }
2233 
2234 static const struct file_operations proc_fdinfo_operations = {
2235 	.read		= generic_read_dir,
2236 	.readdir	= proc_readfdinfo,
2237 	.llseek		= default_llseek,
2238 };
2239 
2240 /*
2241  * proc directories can do almost nothing..
2242  */
2243 static const struct inode_operations proc_fdinfo_inode_operations = {
2244 	.lookup		= proc_lookupfdinfo,
2245 	.setattr	= proc_setattr,
2246 };
2247 
2248 
2249 static struct dentry *proc_pident_instantiate(struct inode *dir,
2250 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2251 {
2252 	const struct pid_entry *p = ptr;
2253 	struct inode *inode;
2254 	struct proc_inode *ei;
2255 	struct dentry *error = ERR_PTR(-ENOENT);
2256 
2257 	inode = proc_pid_make_inode(dir->i_sb, task);
2258 	if (!inode)
2259 		goto out;
2260 
2261 	ei = PROC_I(inode);
2262 	inode->i_mode = p->mode;
2263 	if (S_ISDIR(inode->i_mode))
2264 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2265 	if (p->iop)
2266 		inode->i_op = p->iop;
2267 	if (p->fop)
2268 		inode->i_fop = p->fop;
2269 	ei->op = p->op;
2270 	d_set_d_op(dentry, &pid_dentry_operations);
2271 	d_add(dentry, inode);
2272 	/* Close the race of the process dying before we return the dentry */
2273 	if (pid_revalidate(dentry, NULL))
2274 		error = NULL;
2275 out:
2276 	return error;
2277 }
2278 
2279 static struct dentry *proc_pident_lookup(struct inode *dir,
2280 					 struct dentry *dentry,
2281 					 const struct pid_entry *ents,
2282 					 unsigned int nents)
2283 {
2284 	struct dentry *error;
2285 	struct task_struct *task = get_proc_task(dir);
2286 	const struct pid_entry *p, *last;
2287 
2288 	error = ERR_PTR(-ENOENT);
2289 
2290 	if (!task)
2291 		goto out_no_task;
2292 
2293 	/*
2294 	 * Yes, it does not scale. And it should not. Don't add
2295 	 * new entries into /proc/<tgid>/ without very good reasons.
2296 	 */
2297 	last = &ents[nents - 1];
2298 	for (p = ents; p <= last; p++) {
2299 		if (p->len != dentry->d_name.len)
2300 			continue;
2301 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2302 			break;
2303 	}
2304 	if (p > last)
2305 		goto out;
2306 
2307 	error = proc_pident_instantiate(dir, dentry, task, p);
2308 out:
2309 	put_task_struct(task);
2310 out_no_task:
2311 	return error;
2312 }
2313 
2314 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2315 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2316 {
2317 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2318 				proc_pident_instantiate, task, p);
2319 }
2320 
2321 static int proc_pident_readdir(struct file *filp,
2322 		void *dirent, filldir_t filldir,
2323 		const struct pid_entry *ents, unsigned int nents)
2324 {
2325 	int i;
2326 	struct dentry *dentry = filp->f_path.dentry;
2327 	struct inode *inode = dentry->d_inode;
2328 	struct task_struct *task = get_proc_task(inode);
2329 	const struct pid_entry *p, *last;
2330 	ino_t ino;
2331 	int ret;
2332 
2333 	ret = -ENOENT;
2334 	if (!task)
2335 		goto out_no_task;
2336 
2337 	ret = 0;
2338 	i = filp->f_pos;
2339 	switch (i) {
2340 	case 0:
2341 		ino = inode->i_ino;
2342 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2343 			goto out;
2344 		i++;
2345 		filp->f_pos++;
2346 		/* fall through */
2347 	case 1:
2348 		ino = parent_ino(dentry);
2349 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2350 			goto out;
2351 		i++;
2352 		filp->f_pos++;
2353 		/* fall through */
2354 	default:
2355 		i -= 2;
2356 		if (i >= nents) {
2357 			ret = 1;
2358 			goto out;
2359 		}
2360 		p = ents + i;
2361 		last = &ents[nents - 1];
2362 		while (p <= last) {
2363 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2364 				goto out;
2365 			filp->f_pos++;
2366 			p++;
2367 		}
2368 	}
2369 
2370 	ret = 1;
2371 out:
2372 	put_task_struct(task);
2373 out_no_task:
2374 	return ret;
2375 }
2376 
2377 #ifdef CONFIG_SECURITY
2378 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2379 				  size_t count, loff_t *ppos)
2380 {
2381 	struct inode * inode = file->f_path.dentry->d_inode;
2382 	char *p = NULL;
2383 	ssize_t length;
2384 	struct task_struct *task = get_proc_task(inode);
2385 
2386 	if (!task)
2387 		return -ESRCH;
2388 
2389 	length = security_getprocattr(task,
2390 				      (char*)file->f_path.dentry->d_name.name,
2391 				      &p);
2392 	put_task_struct(task);
2393 	if (length > 0)
2394 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2395 	kfree(p);
2396 	return length;
2397 }
2398 
2399 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2400 				   size_t count, loff_t *ppos)
2401 {
2402 	struct inode * inode = file->f_path.dentry->d_inode;
2403 	char *page;
2404 	ssize_t length;
2405 	struct task_struct *task = get_proc_task(inode);
2406 
2407 	length = -ESRCH;
2408 	if (!task)
2409 		goto out_no_task;
2410 	if (count > PAGE_SIZE)
2411 		count = PAGE_SIZE;
2412 
2413 	/* No partial writes. */
2414 	length = -EINVAL;
2415 	if (*ppos != 0)
2416 		goto out;
2417 
2418 	length = -ENOMEM;
2419 	page = (char*)__get_free_page(GFP_TEMPORARY);
2420 	if (!page)
2421 		goto out;
2422 
2423 	length = -EFAULT;
2424 	if (copy_from_user(page, buf, count))
2425 		goto out_free;
2426 
2427 	/* Guard against adverse ptrace interaction */
2428 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2429 	if (length < 0)
2430 		goto out_free;
2431 
2432 	length = security_setprocattr(task,
2433 				      (char*)file->f_path.dentry->d_name.name,
2434 				      (void*)page, count);
2435 	mutex_unlock(&task->signal->cred_guard_mutex);
2436 out_free:
2437 	free_page((unsigned long) page);
2438 out:
2439 	put_task_struct(task);
2440 out_no_task:
2441 	return length;
2442 }
2443 
2444 static const struct file_operations proc_pid_attr_operations = {
2445 	.read		= proc_pid_attr_read,
2446 	.write		= proc_pid_attr_write,
2447 	.llseek		= generic_file_llseek,
2448 };
2449 
2450 static const struct pid_entry attr_dir_stuff[] = {
2451 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2452 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2453 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2454 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2455 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2456 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2457 };
2458 
2459 static int proc_attr_dir_readdir(struct file * filp,
2460 			     void * dirent, filldir_t filldir)
2461 {
2462 	return proc_pident_readdir(filp,dirent,filldir,
2463 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2464 }
2465 
2466 static const struct file_operations proc_attr_dir_operations = {
2467 	.read		= generic_read_dir,
2468 	.readdir	= proc_attr_dir_readdir,
2469 	.llseek		= default_llseek,
2470 };
2471 
2472 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2473 				struct dentry *dentry, struct nameidata *nd)
2474 {
2475 	return proc_pident_lookup(dir, dentry,
2476 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2477 }
2478 
2479 static const struct inode_operations proc_attr_dir_inode_operations = {
2480 	.lookup		= proc_attr_dir_lookup,
2481 	.getattr	= pid_getattr,
2482 	.setattr	= proc_setattr,
2483 };
2484 
2485 #endif
2486 
2487 #ifdef CONFIG_ELF_CORE
2488 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2489 					 size_t count, loff_t *ppos)
2490 {
2491 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2492 	struct mm_struct *mm;
2493 	char buffer[PROC_NUMBUF];
2494 	size_t len;
2495 	int ret;
2496 
2497 	if (!task)
2498 		return -ESRCH;
2499 
2500 	ret = 0;
2501 	mm = get_task_mm(task);
2502 	if (mm) {
2503 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2504 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2505 				MMF_DUMP_FILTER_SHIFT));
2506 		mmput(mm);
2507 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2508 	}
2509 
2510 	put_task_struct(task);
2511 
2512 	return ret;
2513 }
2514 
2515 static ssize_t proc_coredump_filter_write(struct file *file,
2516 					  const char __user *buf,
2517 					  size_t count,
2518 					  loff_t *ppos)
2519 {
2520 	struct task_struct *task;
2521 	struct mm_struct *mm;
2522 	char buffer[PROC_NUMBUF], *end;
2523 	unsigned int val;
2524 	int ret;
2525 	int i;
2526 	unsigned long mask;
2527 
2528 	ret = -EFAULT;
2529 	memset(buffer, 0, sizeof(buffer));
2530 	if (count > sizeof(buffer) - 1)
2531 		count = sizeof(buffer) - 1;
2532 	if (copy_from_user(buffer, buf, count))
2533 		goto out_no_task;
2534 
2535 	ret = -EINVAL;
2536 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2537 	if (*end == '\n')
2538 		end++;
2539 	if (end - buffer == 0)
2540 		goto out_no_task;
2541 
2542 	ret = -ESRCH;
2543 	task = get_proc_task(file->f_dentry->d_inode);
2544 	if (!task)
2545 		goto out_no_task;
2546 
2547 	ret = end - buffer;
2548 	mm = get_task_mm(task);
2549 	if (!mm)
2550 		goto out_no_mm;
2551 
2552 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2553 		if (val & mask)
2554 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2555 		else
2556 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2557 	}
2558 
2559 	mmput(mm);
2560  out_no_mm:
2561 	put_task_struct(task);
2562  out_no_task:
2563 	return ret;
2564 }
2565 
2566 static const struct file_operations proc_coredump_filter_operations = {
2567 	.read		= proc_coredump_filter_read,
2568 	.write		= proc_coredump_filter_write,
2569 	.llseek		= generic_file_llseek,
2570 };
2571 #endif
2572 
2573 /*
2574  * /proc/self:
2575  */
2576 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2577 			      int buflen)
2578 {
2579 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2580 	pid_t tgid = task_tgid_nr_ns(current, ns);
2581 	char tmp[PROC_NUMBUF];
2582 	if (!tgid)
2583 		return -ENOENT;
2584 	sprintf(tmp, "%d", tgid);
2585 	return vfs_readlink(dentry,buffer,buflen,tmp);
2586 }
2587 
2588 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2589 {
2590 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2591 	pid_t tgid = task_tgid_nr_ns(current, ns);
2592 	char *name = ERR_PTR(-ENOENT);
2593 	if (tgid) {
2594 		name = __getname();
2595 		if (!name)
2596 			name = ERR_PTR(-ENOMEM);
2597 		else
2598 			sprintf(name, "%d", tgid);
2599 	}
2600 	nd_set_link(nd, name);
2601 	return NULL;
2602 }
2603 
2604 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2605 				void *cookie)
2606 {
2607 	char *s = nd_get_link(nd);
2608 	if (!IS_ERR(s))
2609 		__putname(s);
2610 }
2611 
2612 static const struct inode_operations proc_self_inode_operations = {
2613 	.readlink	= proc_self_readlink,
2614 	.follow_link	= proc_self_follow_link,
2615 	.put_link	= proc_self_put_link,
2616 };
2617 
2618 /*
2619  * proc base
2620  *
2621  * These are the directory entries in the root directory of /proc
2622  * that properly belong to the /proc filesystem, as they describe
2623  * describe something that is process related.
2624  */
2625 static const struct pid_entry proc_base_stuff[] = {
2626 	NOD("self", S_IFLNK|S_IRWXUGO,
2627 		&proc_self_inode_operations, NULL, {}),
2628 };
2629 
2630 static struct dentry *proc_base_instantiate(struct inode *dir,
2631 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2632 {
2633 	const struct pid_entry *p = ptr;
2634 	struct inode *inode;
2635 	struct proc_inode *ei;
2636 	struct dentry *error;
2637 
2638 	/* Allocate the inode */
2639 	error = ERR_PTR(-ENOMEM);
2640 	inode = new_inode(dir->i_sb);
2641 	if (!inode)
2642 		goto out;
2643 
2644 	/* Initialize the inode */
2645 	ei = PROC_I(inode);
2646 	inode->i_ino = get_next_ino();
2647 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2648 
2649 	/*
2650 	 * grab the reference to the task.
2651 	 */
2652 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2653 	if (!ei->pid)
2654 		goto out_iput;
2655 
2656 	inode->i_mode = p->mode;
2657 	if (S_ISDIR(inode->i_mode))
2658 		inode->i_nlink = 2;
2659 	if (S_ISLNK(inode->i_mode))
2660 		inode->i_size = 64;
2661 	if (p->iop)
2662 		inode->i_op = p->iop;
2663 	if (p->fop)
2664 		inode->i_fop = p->fop;
2665 	ei->op = p->op;
2666 	d_add(dentry, inode);
2667 	error = NULL;
2668 out:
2669 	return error;
2670 out_iput:
2671 	iput(inode);
2672 	goto out;
2673 }
2674 
2675 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2676 {
2677 	struct dentry *error;
2678 	struct task_struct *task = get_proc_task(dir);
2679 	const struct pid_entry *p, *last;
2680 
2681 	error = ERR_PTR(-ENOENT);
2682 
2683 	if (!task)
2684 		goto out_no_task;
2685 
2686 	/* Lookup the directory entry */
2687 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2688 	for (p = proc_base_stuff; p <= last; p++) {
2689 		if (p->len != dentry->d_name.len)
2690 			continue;
2691 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2692 			break;
2693 	}
2694 	if (p > last)
2695 		goto out;
2696 
2697 	error = proc_base_instantiate(dir, dentry, task, p);
2698 
2699 out:
2700 	put_task_struct(task);
2701 out_no_task:
2702 	return error;
2703 }
2704 
2705 static int proc_base_fill_cache(struct file *filp, void *dirent,
2706 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2707 {
2708 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2709 				proc_base_instantiate, task, p);
2710 }
2711 
2712 #ifdef CONFIG_TASK_IO_ACCOUNTING
2713 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2714 {
2715 	struct task_io_accounting acct = task->ioac;
2716 	unsigned long flags;
2717 	int result;
2718 
2719 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2720 	if (result)
2721 		return result;
2722 
2723 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2724 		result = -EACCES;
2725 		goto out_unlock;
2726 	}
2727 
2728 	if (whole && lock_task_sighand(task, &flags)) {
2729 		struct task_struct *t = task;
2730 
2731 		task_io_accounting_add(&acct, &task->signal->ioac);
2732 		while_each_thread(task, t)
2733 			task_io_accounting_add(&acct, &t->ioac);
2734 
2735 		unlock_task_sighand(task, &flags);
2736 	}
2737 	result = sprintf(buffer,
2738 			"rchar: %llu\n"
2739 			"wchar: %llu\n"
2740 			"syscr: %llu\n"
2741 			"syscw: %llu\n"
2742 			"read_bytes: %llu\n"
2743 			"write_bytes: %llu\n"
2744 			"cancelled_write_bytes: %llu\n",
2745 			(unsigned long long)acct.rchar,
2746 			(unsigned long long)acct.wchar,
2747 			(unsigned long long)acct.syscr,
2748 			(unsigned long long)acct.syscw,
2749 			(unsigned long long)acct.read_bytes,
2750 			(unsigned long long)acct.write_bytes,
2751 			(unsigned long long)acct.cancelled_write_bytes);
2752 out_unlock:
2753 	mutex_unlock(&task->signal->cred_guard_mutex);
2754 	return result;
2755 }
2756 
2757 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2758 {
2759 	return do_io_accounting(task, buffer, 0);
2760 }
2761 
2762 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2763 {
2764 	return do_io_accounting(task, buffer, 1);
2765 }
2766 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2767 
2768 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2769 				struct pid *pid, struct task_struct *task)
2770 {
2771 	int err = lock_trace(task);
2772 	if (!err) {
2773 		seq_printf(m, "%08x\n", task->personality);
2774 		unlock_trace(task);
2775 	}
2776 	return err;
2777 }
2778 
2779 /*
2780  * Thread groups
2781  */
2782 static const struct file_operations proc_task_operations;
2783 static const struct inode_operations proc_task_inode_operations;
2784 
2785 static const struct pid_entry tgid_base_stuff[] = {
2786 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2787 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2788 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2789 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2790 #ifdef CONFIG_NET
2791 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2792 #endif
2793 	REG("environ",    S_IRUSR, proc_environ_operations),
2794 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2795 	ONE("status",     S_IRUGO, proc_pid_status),
2796 	ONE("personality", S_IRUGO, proc_pid_personality),
2797 	INF("limits",	  S_IRUGO, proc_pid_limits),
2798 #ifdef CONFIG_SCHED_DEBUG
2799 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2800 #endif
2801 #ifdef CONFIG_SCHED_AUTOGROUP
2802 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2803 #endif
2804 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2805 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2806 	INF("syscall",    S_IRUGO, proc_pid_syscall),
2807 #endif
2808 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2809 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2810 	ONE("statm",      S_IRUGO, proc_pid_statm),
2811 	REG("maps",       S_IRUGO, proc_maps_operations),
2812 #ifdef CONFIG_NUMA
2813 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2814 #endif
2815 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2816 	LNK("cwd",        proc_cwd_link),
2817 	LNK("root",       proc_root_link),
2818 	LNK("exe",        proc_exe_link),
2819 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2820 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2821 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2822 #ifdef CONFIG_PROC_PAGE_MONITOR
2823 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2824 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2825 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2826 #endif
2827 #ifdef CONFIG_SECURITY
2828 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2829 #endif
2830 #ifdef CONFIG_KALLSYMS
2831 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2832 #endif
2833 #ifdef CONFIG_STACKTRACE
2834 	ONE("stack",      S_IRUGO, proc_pid_stack),
2835 #endif
2836 #ifdef CONFIG_SCHEDSTATS
2837 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2838 #endif
2839 #ifdef CONFIG_LATENCYTOP
2840 	REG("latency",  S_IRUGO, proc_lstats_operations),
2841 #endif
2842 #ifdef CONFIG_PROC_PID_CPUSET
2843 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2844 #endif
2845 #ifdef CONFIG_CGROUPS
2846 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2847 #endif
2848 	INF("oom_score",  S_IRUGO, proc_oom_score),
2849 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2850 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2851 #ifdef CONFIG_AUDITSYSCALL
2852 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2853 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2854 #endif
2855 #ifdef CONFIG_FAULT_INJECTION
2856 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2857 #endif
2858 #ifdef CONFIG_ELF_CORE
2859 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2860 #endif
2861 #ifdef CONFIG_TASK_IO_ACCOUNTING
2862 	INF("io",	S_IRUSR, proc_tgid_io_accounting),
2863 #endif
2864 #ifdef CONFIG_HARDWALL
2865 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2866 #endif
2867 };
2868 
2869 static int proc_tgid_base_readdir(struct file * filp,
2870 			     void * dirent, filldir_t filldir)
2871 {
2872 	return proc_pident_readdir(filp,dirent,filldir,
2873 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2874 }
2875 
2876 static const struct file_operations proc_tgid_base_operations = {
2877 	.read		= generic_read_dir,
2878 	.readdir	= proc_tgid_base_readdir,
2879 	.llseek		= default_llseek,
2880 };
2881 
2882 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2883 	return proc_pident_lookup(dir, dentry,
2884 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2885 }
2886 
2887 static const struct inode_operations proc_tgid_base_inode_operations = {
2888 	.lookup		= proc_tgid_base_lookup,
2889 	.getattr	= pid_getattr,
2890 	.setattr	= proc_setattr,
2891 };
2892 
2893 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2894 {
2895 	struct dentry *dentry, *leader, *dir;
2896 	char buf[PROC_NUMBUF];
2897 	struct qstr name;
2898 
2899 	name.name = buf;
2900 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2901 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2902 	if (dentry) {
2903 		shrink_dcache_parent(dentry);
2904 		d_drop(dentry);
2905 		dput(dentry);
2906 	}
2907 
2908 	name.name = buf;
2909 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2910 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2911 	if (!leader)
2912 		goto out;
2913 
2914 	name.name = "task";
2915 	name.len = strlen(name.name);
2916 	dir = d_hash_and_lookup(leader, &name);
2917 	if (!dir)
2918 		goto out_put_leader;
2919 
2920 	name.name = buf;
2921 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2922 	dentry = d_hash_and_lookup(dir, &name);
2923 	if (dentry) {
2924 		shrink_dcache_parent(dentry);
2925 		d_drop(dentry);
2926 		dput(dentry);
2927 	}
2928 
2929 	dput(dir);
2930 out_put_leader:
2931 	dput(leader);
2932 out:
2933 	return;
2934 }
2935 
2936 /**
2937  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2938  * @task: task that should be flushed.
2939  *
2940  * When flushing dentries from proc, one needs to flush them from global
2941  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2942  * in. This call is supposed to do all of this job.
2943  *
2944  * Looks in the dcache for
2945  * /proc/@pid
2946  * /proc/@tgid/task/@pid
2947  * if either directory is present flushes it and all of it'ts children
2948  * from the dcache.
2949  *
2950  * It is safe and reasonable to cache /proc entries for a task until
2951  * that task exits.  After that they just clog up the dcache with
2952  * useless entries, possibly causing useful dcache entries to be
2953  * flushed instead.  This routine is proved to flush those useless
2954  * dcache entries at process exit time.
2955  *
2956  * NOTE: This routine is just an optimization so it does not guarantee
2957  *       that no dcache entries will exist at process exit time it
2958  *       just makes it very unlikely that any will persist.
2959  */
2960 
2961 void proc_flush_task(struct task_struct *task)
2962 {
2963 	int i;
2964 	struct pid *pid, *tgid;
2965 	struct upid *upid;
2966 
2967 	pid = task_pid(task);
2968 	tgid = task_tgid(task);
2969 
2970 	for (i = 0; i <= pid->level; i++) {
2971 		upid = &pid->numbers[i];
2972 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2973 					tgid->numbers[i].nr);
2974 	}
2975 
2976 	upid = &pid->numbers[pid->level];
2977 	if (upid->nr == 1)
2978 		pid_ns_release_proc(upid->ns);
2979 }
2980 
2981 static struct dentry *proc_pid_instantiate(struct inode *dir,
2982 					   struct dentry * dentry,
2983 					   struct task_struct *task, const void *ptr)
2984 {
2985 	struct dentry *error = ERR_PTR(-ENOENT);
2986 	struct inode *inode;
2987 
2988 	inode = proc_pid_make_inode(dir->i_sb, task);
2989 	if (!inode)
2990 		goto out;
2991 
2992 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2993 	inode->i_op = &proc_tgid_base_inode_operations;
2994 	inode->i_fop = &proc_tgid_base_operations;
2995 	inode->i_flags|=S_IMMUTABLE;
2996 
2997 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2998 		ARRAY_SIZE(tgid_base_stuff));
2999 
3000 	d_set_d_op(dentry, &pid_dentry_operations);
3001 
3002 	d_add(dentry, inode);
3003 	/* Close the race of the process dying before we return the dentry */
3004 	if (pid_revalidate(dentry, NULL))
3005 		error = NULL;
3006 out:
3007 	return error;
3008 }
3009 
3010 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3011 {
3012 	struct dentry *result;
3013 	struct task_struct *task;
3014 	unsigned tgid;
3015 	struct pid_namespace *ns;
3016 
3017 	result = proc_base_lookup(dir, dentry);
3018 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3019 		goto out;
3020 
3021 	tgid = name_to_int(dentry);
3022 	if (tgid == ~0U)
3023 		goto out;
3024 
3025 	ns = dentry->d_sb->s_fs_info;
3026 	rcu_read_lock();
3027 	task = find_task_by_pid_ns(tgid, ns);
3028 	if (task)
3029 		get_task_struct(task);
3030 	rcu_read_unlock();
3031 	if (!task)
3032 		goto out;
3033 
3034 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3035 	put_task_struct(task);
3036 out:
3037 	return result;
3038 }
3039 
3040 /*
3041  * Find the first task with tgid >= tgid
3042  *
3043  */
3044 struct tgid_iter {
3045 	unsigned int tgid;
3046 	struct task_struct *task;
3047 };
3048 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3049 {
3050 	struct pid *pid;
3051 
3052 	if (iter.task)
3053 		put_task_struct(iter.task);
3054 	rcu_read_lock();
3055 retry:
3056 	iter.task = NULL;
3057 	pid = find_ge_pid(iter.tgid, ns);
3058 	if (pid) {
3059 		iter.tgid = pid_nr_ns(pid, ns);
3060 		iter.task = pid_task(pid, PIDTYPE_PID);
3061 		/* What we to know is if the pid we have find is the
3062 		 * pid of a thread_group_leader.  Testing for task
3063 		 * being a thread_group_leader is the obvious thing
3064 		 * todo but there is a window when it fails, due to
3065 		 * the pid transfer logic in de_thread.
3066 		 *
3067 		 * So we perform the straight forward test of seeing
3068 		 * if the pid we have found is the pid of a thread
3069 		 * group leader, and don't worry if the task we have
3070 		 * found doesn't happen to be a thread group leader.
3071 		 * As we don't care in the case of readdir.
3072 		 */
3073 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3074 			iter.tgid += 1;
3075 			goto retry;
3076 		}
3077 		get_task_struct(iter.task);
3078 	}
3079 	rcu_read_unlock();
3080 	return iter;
3081 }
3082 
3083 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3084 
3085 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3086 	struct tgid_iter iter)
3087 {
3088 	char name[PROC_NUMBUF];
3089 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3090 	return proc_fill_cache(filp, dirent, filldir, name, len,
3091 				proc_pid_instantiate, iter.task, NULL);
3092 }
3093 
3094 /* for the /proc/ directory itself, after non-process stuff has been done */
3095 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3096 {
3097 	unsigned int nr;
3098 	struct task_struct *reaper;
3099 	struct tgid_iter iter;
3100 	struct pid_namespace *ns;
3101 
3102 	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3103 		goto out_no_task;
3104 	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3105 
3106 	reaper = get_proc_task(filp->f_path.dentry->d_inode);
3107 	if (!reaper)
3108 		goto out_no_task;
3109 
3110 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3111 		const struct pid_entry *p = &proc_base_stuff[nr];
3112 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3113 			goto out;
3114 	}
3115 
3116 	ns = filp->f_dentry->d_sb->s_fs_info;
3117 	iter.task = NULL;
3118 	iter.tgid = filp->f_pos - TGID_OFFSET;
3119 	for (iter = next_tgid(ns, iter);
3120 	     iter.task;
3121 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3122 		filp->f_pos = iter.tgid + TGID_OFFSET;
3123 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
3124 			put_task_struct(iter.task);
3125 			goto out;
3126 		}
3127 	}
3128 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3129 out:
3130 	put_task_struct(reaper);
3131 out_no_task:
3132 	return 0;
3133 }
3134 
3135 /*
3136  * Tasks
3137  */
3138 static const struct pid_entry tid_base_stuff[] = {
3139 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3140 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3141 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3142 	REG("environ",   S_IRUSR, proc_environ_operations),
3143 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3144 	ONE("status",    S_IRUGO, proc_pid_status),
3145 	ONE("personality", S_IRUGO, proc_pid_personality),
3146 	INF("limits",	 S_IRUGO, proc_pid_limits),
3147 #ifdef CONFIG_SCHED_DEBUG
3148 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3149 #endif
3150 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3151 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3152 	INF("syscall",   S_IRUGO, proc_pid_syscall),
3153 #endif
3154 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3155 	ONE("stat",      S_IRUGO, proc_tid_stat),
3156 	ONE("statm",     S_IRUGO, proc_pid_statm),
3157 	REG("maps",      S_IRUGO, proc_maps_operations),
3158 #ifdef CONFIG_NUMA
3159 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3160 #endif
3161 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3162 	LNK("cwd",       proc_cwd_link),
3163 	LNK("root",      proc_root_link),
3164 	LNK("exe",       proc_exe_link),
3165 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3166 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3167 #ifdef CONFIG_PROC_PAGE_MONITOR
3168 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3169 	REG("smaps",     S_IRUGO, proc_smaps_operations),
3170 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3171 #endif
3172 #ifdef CONFIG_SECURITY
3173 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3174 #endif
3175 #ifdef CONFIG_KALLSYMS
3176 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3177 #endif
3178 #ifdef CONFIG_STACKTRACE
3179 	ONE("stack",      S_IRUGO, proc_pid_stack),
3180 #endif
3181 #ifdef CONFIG_SCHEDSTATS
3182 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3183 #endif
3184 #ifdef CONFIG_LATENCYTOP
3185 	REG("latency",  S_IRUGO, proc_lstats_operations),
3186 #endif
3187 #ifdef CONFIG_PROC_PID_CPUSET
3188 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3189 #endif
3190 #ifdef CONFIG_CGROUPS
3191 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3192 #endif
3193 	INF("oom_score", S_IRUGO, proc_oom_score),
3194 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3195 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3196 #ifdef CONFIG_AUDITSYSCALL
3197 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3198 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3199 #endif
3200 #ifdef CONFIG_FAULT_INJECTION
3201 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3202 #endif
3203 #ifdef CONFIG_TASK_IO_ACCOUNTING
3204 	INF("io",	S_IRUSR, proc_tid_io_accounting),
3205 #endif
3206 #ifdef CONFIG_HARDWALL
3207 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3208 #endif
3209 };
3210 
3211 static int proc_tid_base_readdir(struct file * filp,
3212 			     void * dirent, filldir_t filldir)
3213 {
3214 	return proc_pident_readdir(filp,dirent,filldir,
3215 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3216 }
3217 
3218 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3219 	return proc_pident_lookup(dir, dentry,
3220 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3221 }
3222 
3223 static const struct file_operations proc_tid_base_operations = {
3224 	.read		= generic_read_dir,
3225 	.readdir	= proc_tid_base_readdir,
3226 	.llseek		= default_llseek,
3227 };
3228 
3229 static const struct inode_operations proc_tid_base_inode_operations = {
3230 	.lookup		= proc_tid_base_lookup,
3231 	.getattr	= pid_getattr,
3232 	.setattr	= proc_setattr,
3233 };
3234 
3235 static struct dentry *proc_task_instantiate(struct inode *dir,
3236 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3237 {
3238 	struct dentry *error = ERR_PTR(-ENOENT);
3239 	struct inode *inode;
3240 	inode = proc_pid_make_inode(dir->i_sb, task);
3241 
3242 	if (!inode)
3243 		goto out;
3244 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3245 	inode->i_op = &proc_tid_base_inode_operations;
3246 	inode->i_fop = &proc_tid_base_operations;
3247 	inode->i_flags|=S_IMMUTABLE;
3248 
3249 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3250 		ARRAY_SIZE(tid_base_stuff));
3251 
3252 	d_set_d_op(dentry, &pid_dentry_operations);
3253 
3254 	d_add(dentry, inode);
3255 	/* Close the race of the process dying before we return the dentry */
3256 	if (pid_revalidate(dentry, NULL))
3257 		error = NULL;
3258 out:
3259 	return error;
3260 }
3261 
3262 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3263 {
3264 	struct dentry *result = ERR_PTR(-ENOENT);
3265 	struct task_struct *task;
3266 	struct task_struct *leader = get_proc_task(dir);
3267 	unsigned tid;
3268 	struct pid_namespace *ns;
3269 
3270 	if (!leader)
3271 		goto out_no_task;
3272 
3273 	tid = name_to_int(dentry);
3274 	if (tid == ~0U)
3275 		goto out;
3276 
3277 	ns = dentry->d_sb->s_fs_info;
3278 	rcu_read_lock();
3279 	task = find_task_by_pid_ns(tid, ns);
3280 	if (task)
3281 		get_task_struct(task);
3282 	rcu_read_unlock();
3283 	if (!task)
3284 		goto out;
3285 	if (!same_thread_group(leader, task))
3286 		goto out_drop_task;
3287 
3288 	result = proc_task_instantiate(dir, dentry, task, NULL);
3289 out_drop_task:
3290 	put_task_struct(task);
3291 out:
3292 	put_task_struct(leader);
3293 out_no_task:
3294 	return result;
3295 }
3296 
3297 /*
3298  * Find the first tid of a thread group to return to user space.
3299  *
3300  * Usually this is just the thread group leader, but if the users
3301  * buffer was too small or there was a seek into the middle of the
3302  * directory we have more work todo.
3303  *
3304  * In the case of a short read we start with find_task_by_pid.
3305  *
3306  * In the case of a seek we start with the leader and walk nr
3307  * threads past it.
3308  */
3309 static struct task_struct *first_tid(struct task_struct *leader,
3310 		int tid, int nr, struct pid_namespace *ns)
3311 {
3312 	struct task_struct *pos;
3313 
3314 	rcu_read_lock();
3315 	/* Attempt to start with the pid of a thread */
3316 	if (tid && (nr > 0)) {
3317 		pos = find_task_by_pid_ns(tid, ns);
3318 		if (pos && (pos->group_leader == leader))
3319 			goto found;
3320 	}
3321 
3322 	/* If nr exceeds the number of threads there is nothing todo */
3323 	pos = NULL;
3324 	if (nr && nr >= get_nr_threads(leader))
3325 		goto out;
3326 
3327 	/* If we haven't found our starting place yet start
3328 	 * with the leader and walk nr threads forward.
3329 	 */
3330 	for (pos = leader; nr > 0; --nr) {
3331 		pos = next_thread(pos);
3332 		if (pos == leader) {
3333 			pos = NULL;
3334 			goto out;
3335 		}
3336 	}
3337 found:
3338 	get_task_struct(pos);
3339 out:
3340 	rcu_read_unlock();
3341 	return pos;
3342 }
3343 
3344 /*
3345  * Find the next thread in the thread list.
3346  * Return NULL if there is an error or no next thread.
3347  *
3348  * The reference to the input task_struct is released.
3349  */
3350 static struct task_struct *next_tid(struct task_struct *start)
3351 {
3352 	struct task_struct *pos = NULL;
3353 	rcu_read_lock();
3354 	if (pid_alive(start)) {
3355 		pos = next_thread(start);
3356 		if (thread_group_leader(pos))
3357 			pos = NULL;
3358 		else
3359 			get_task_struct(pos);
3360 	}
3361 	rcu_read_unlock();
3362 	put_task_struct(start);
3363 	return pos;
3364 }
3365 
3366 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3367 	struct task_struct *task, int tid)
3368 {
3369 	char name[PROC_NUMBUF];
3370 	int len = snprintf(name, sizeof(name), "%d", tid);
3371 	return proc_fill_cache(filp, dirent, filldir, name, len,
3372 				proc_task_instantiate, task, NULL);
3373 }
3374 
3375 /* for the /proc/TGID/task/ directories */
3376 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3377 {
3378 	struct dentry *dentry = filp->f_path.dentry;
3379 	struct inode *inode = dentry->d_inode;
3380 	struct task_struct *leader = NULL;
3381 	struct task_struct *task;
3382 	int retval = -ENOENT;
3383 	ino_t ino;
3384 	int tid;
3385 	struct pid_namespace *ns;
3386 
3387 	task = get_proc_task(inode);
3388 	if (!task)
3389 		goto out_no_task;
3390 	rcu_read_lock();
3391 	if (pid_alive(task)) {
3392 		leader = task->group_leader;
3393 		get_task_struct(leader);
3394 	}
3395 	rcu_read_unlock();
3396 	put_task_struct(task);
3397 	if (!leader)
3398 		goto out_no_task;
3399 	retval = 0;
3400 
3401 	switch ((unsigned long)filp->f_pos) {
3402 	case 0:
3403 		ino = inode->i_ino;
3404 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3405 			goto out;
3406 		filp->f_pos++;
3407 		/* fall through */
3408 	case 1:
3409 		ino = parent_ino(dentry);
3410 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3411 			goto out;
3412 		filp->f_pos++;
3413 		/* fall through */
3414 	}
3415 
3416 	/* f_version caches the tgid value that the last readdir call couldn't
3417 	 * return. lseek aka telldir automagically resets f_version to 0.
3418 	 */
3419 	ns = filp->f_dentry->d_sb->s_fs_info;
3420 	tid = (int)filp->f_version;
3421 	filp->f_version = 0;
3422 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3423 	     task;
3424 	     task = next_tid(task), filp->f_pos++) {
3425 		tid = task_pid_nr_ns(task, ns);
3426 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3427 			/* returning this tgid failed, save it as the first
3428 			 * pid for the next readir call */
3429 			filp->f_version = (u64)tid;
3430 			put_task_struct(task);
3431 			break;
3432 		}
3433 	}
3434 out:
3435 	put_task_struct(leader);
3436 out_no_task:
3437 	return retval;
3438 }
3439 
3440 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3441 {
3442 	struct inode *inode = dentry->d_inode;
3443 	struct task_struct *p = get_proc_task(inode);
3444 	generic_fillattr(inode, stat);
3445 
3446 	if (p) {
3447 		stat->nlink += get_nr_threads(p);
3448 		put_task_struct(p);
3449 	}
3450 
3451 	return 0;
3452 }
3453 
3454 static const struct inode_operations proc_task_inode_operations = {
3455 	.lookup		= proc_task_lookup,
3456 	.getattr	= proc_task_getattr,
3457 	.setattr	= proc_setattr,
3458 };
3459 
3460 static const struct file_operations proc_task_operations = {
3461 	.read		= generic_read_dir,
3462 	.readdir	= proc_task_readdir,
3463 	.llseek		= default_llseek,
3464 };
3465