1 /* 2 * linux/fs/proc/base.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * proc base directory handling functions 7 * 8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 9 * Instead of using magical inumbers to determine the kind of object 10 * we allocate and fill in-core inodes upon lookup. They don't even 11 * go into icache. We cache the reference to task_struct upon lookup too. 12 * Eventually it should become a filesystem in its own. We don't use the 13 * rest of procfs anymore. 14 * 15 * 16 * Changelog: 17 * 17-Jan-2005 18 * Allan Bezerra 19 * Bruna Moreira <bruna.moreira@indt.org.br> 20 * Edjard Mota <edjard.mota@indt.org.br> 21 * Ilias Biris <ilias.biris@indt.org.br> 22 * Mauricio Lin <mauricio.lin@indt.org.br> 23 * 24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 25 * 26 * A new process specific entry (smaps) included in /proc. It shows the 27 * size of rss for each memory area. The maps entry lacks information 28 * about physical memory size (rss) for each mapped file, i.e., 29 * rss information for executables and library files. 30 * This additional information is useful for any tools that need to know 31 * about physical memory consumption for a process specific library. 32 * 33 * Changelog: 34 * 21-Feb-2005 35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 36 * Pud inclusion in the page table walking. 37 * 38 * ChangeLog: 39 * 10-Mar-2005 40 * 10LE Instituto Nokia de Tecnologia - INdT: 41 * A better way to walks through the page table as suggested by Hugh Dickins. 42 * 43 * Simo Piiroinen <simo.piiroinen@nokia.com>: 44 * Smaps information related to shared, private, clean and dirty pages. 45 * 46 * Paul Mundt <paul.mundt@nokia.com>: 47 * Overall revision about smaps. 48 */ 49 50 #include <asm/uaccess.h> 51 52 #include <linux/errno.h> 53 #include <linux/time.h> 54 #include <linux/proc_fs.h> 55 #include <linux/stat.h> 56 #include <linux/init.h> 57 #include <linux/capability.h> 58 #include <linux/file.h> 59 #include <linux/string.h> 60 #include <linux/seq_file.h> 61 #include <linux/namei.h> 62 #include <linux/mnt_namespace.h> 63 #include <linux/mm.h> 64 #include <linux/smp_lock.h> 65 #include <linux/rcupdate.h> 66 #include <linux/kallsyms.h> 67 #include <linux/mount.h> 68 #include <linux/security.h> 69 #include <linux/ptrace.h> 70 #include <linux/seccomp.h> 71 #include <linux/cpuset.h> 72 #include <linux/audit.h> 73 #include <linux/poll.h> 74 #include <linux/nsproxy.h> 75 #include <linux/oom.h> 76 #include "internal.h" 77 78 /* NOTE: 79 * Implementing inode permission operations in /proc is almost 80 * certainly an error. Permission checks need to happen during 81 * each system call not at open time. The reason is that most of 82 * what we wish to check for permissions in /proc varies at runtime. 83 * 84 * The classic example of a problem is opening file descriptors 85 * in /proc for a task before it execs a suid executable. 86 */ 87 88 89 /* Worst case buffer size needed for holding an integer. */ 90 #define PROC_NUMBUF 13 91 92 struct pid_entry { 93 int len; 94 char *name; 95 mode_t mode; 96 struct inode_operations *iop; 97 struct file_operations *fop; 98 union proc_op op; 99 }; 100 101 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 102 .len = sizeof(NAME) - 1, \ 103 .name = (NAME), \ 104 .mode = MODE, \ 105 .iop = IOP, \ 106 .fop = FOP, \ 107 .op = OP, \ 108 } 109 110 #define DIR(NAME, MODE, OTYPE) \ 111 NOD(NAME, (S_IFDIR|(MODE)), \ 112 &proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations, \ 113 {} ) 114 #define LNK(NAME, OTYPE) \ 115 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 116 &proc_pid_link_inode_operations, NULL, \ 117 { .proc_get_link = &proc_##OTYPE##_link } ) 118 #define REG(NAME, MODE, OTYPE) \ 119 NOD(NAME, (S_IFREG|(MODE)), NULL, \ 120 &proc_##OTYPE##_operations, {}) 121 #define INF(NAME, MODE, OTYPE) \ 122 NOD(NAME, (S_IFREG|(MODE)), \ 123 NULL, &proc_info_file_operations, \ 124 { .proc_read = &proc_##OTYPE } ) 125 126 static struct fs_struct *get_fs_struct(struct task_struct *task) 127 { 128 struct fs_struct *fs; 129 task_lock(task); 130 fs = task->fs; 131 if(fs) 132 atomic_inc(&fs->count); 133 task_unlock(task); 134 return fs; 135 } 136 137 static int get_nr_threads(struct task_struct *tsk) 138 { 139 /* Must be called with the rcu_read_lock held */ 140 unsigned long flags; 141 int count = 0; 142 143 if (lock_task_sighand(tsk, &flags)) { 144 count = atomic_read(&tsk->signal->count); 145 unlock_task_sighand(tsk, &flags); 146 } 147 return count; 148 } 149 150 static int proc_cwd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt) 151 { 152 struct task_struct *task = get_proc_task(inode); 153 struct fs_struct *fs = NULL; 154 int result = -ENOENT; 155 156 if (task) { 157 fs = get_fs_struct(task); 158 put_task_struct(task); 159 } 160 if (fs) { 161 read_lock(&fs->lock); 162 *mnt = mntget(fs->pwdmnt); 163 *dentry = dget(fs->pwd); 164 read_unlock(&fs->lock); 165 result = 0; 166 put_fs_struct(fs); 167 } 168 return result; 169 } 170 171 static int proc_root_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt) 172 { 173 struct task_struct *task = get_proc_task(inode); 174 struct fs_struct *fs = NULL; 175 int result = -ENOENT; 176 177 if (task) { 178 fs = get_fs_struct(task); 179 put_task_struct(task); 180 } 181 if (fs) { 182 read_lock(&fs->lock); 183 *mnt = mntget(fs->rootmnt); 184 *dentry = dget(fs->root); 185 read_unlock(&fs->lock); 186 result = 0; 187 put_fs_struct(fs); 188 } 189 return result; 190 } 191 192 #define MAY_PTRACE(task) \ 193 (task == current || \ 194 (task->parent == current && \ 195 (task->ptrace & PT_PTRACED) && \ 196 (task->state == TASK_STOPPED || task->state == TASK_TRACED) && \ 197 security_ptrace(current,task) == 0)) 198 199 static int proc_pid_environ(struct task_struct *task, char * buffer) 200 { 201 int res = 0; 202 struct mm_struct *mm = get_task_mm(task); 203 if (mm) { 204 unsigned int len = mm->env_end - mm->env_start; 205 if (len > PAGE_SIZE) 206 len = PAGE_SIZE; 207 res = access_process_vm(task, mm->env_start, buffer, len, 0); 208 if (!ptrace_may_attach(task)) 209 res = -ESRCH; 210 mmput(mm); 211 } 212 return res; 213 } 214 215 static int proc_pid_cmdline(struct task_struct *task, char * buffer) 216 { 217 int res = 0; 218 unsigned int len; 219 struct mm_struct *mm = get_task_mm(task); 220 if (!mm) 221 goto out; 222 if (!mm->arg_end) 223 goto out_mm; /* Shh! No looking before we're done */ 224 225 len = mm->arg_end - mm->arg_start; 226 227 if (len > PAGE_SIZE) 228 len = PAGE_SIZE; 229 230 res = access_process_vm(task, mm->arg_start, buffer, len, 0); 231 232 // If the nul at the end of args has been overwritten, then 233 // assume application is using setproctitle(3). 234 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) { 235 len = strnlen(buffer, res); 236 if (len < res) { 237 res = len; 238 } else { 239 len = mm->env_end - mm->env_start; 240 if (len > PAGE_SIZE - res) 241 len = PAGE_SIZE - res; 242 res += access_process_vm(task, mm->env_start, buffer+res, len, 0); 243 res = strnlen(buffer, res); 244 } 245 } 246 out_mm: 247 mmput(mm); 248 out: 249 return res; 250 } 251 252 static int proc_pid_auxv(struct task_struct *task, char *buffer) 253 { 254 int res = 0; 255 struct mm_struct *mm = get_task_mm(task); 256 if (mm) { 257 unsigned int nwords = 0; 258 do 259 nwords += 2; 260 while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 261 res = nwords * sizeof(mm->saved_auxv[0]); 262 if (res > PAGE_SIZE) 263 res = PAGE_SIZE; 264 memcpy(buffer, mm->saved_auxv, res); 265 mmput(mm); 266 } 267 return res; 268 } 269 270 271 #ifdef CONFIG_KALLSYMS 272 /* 273 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 274 * Returns the resolved symbol. If that fails, simply return the address. 275 */ 276 static int proc_pid_wchan(struct task_struct *task, char *buffer) 277 { 278 char *modname; 279 const char *sym_name; 280 unsigned long wchan, size, offset; 281 char namebuf[KSYM_NAME_LEN+1]; 282 283 wchan = get_wchan(task); 284 285 sym_name = kallsyms_lookup(wchan, &size, &offset, &modname, namebuf); 286 if (sym_name) 287 return sprintf(buffer, "%s", sym_name); 288 return sprintf(buffer, "%lu", wchan); 289 } 290 #endif /* CONFIG_KALLSYMS */ 291 292 #ifdef CONFIG_SCHEDSTATS 293 /* 294 * Provides /proc/PID/schedstat 295 */ 296 static int proc_pid_schedstat(struct task_struct *task, char *buffer) 297 { 298 return sprintf(buffer, "%lu %lu %lu\n", 299 task->sched_info.cpu_time, 300 task->sched_info.run_delay, 301 task->sched_info.pcnt); 302 } 303 #endif 304 305 /* The badness from the OOM killer */ 306 unsigned long badness(struct task_struct *p, unsigned long uptime); 307 static int proc_oom_score(struct task_struct *task, char *buffer) 308 { 309 unsigned long points; 310 struct timespec uptime; 311 312 do_posix_clock_monotonic_gettime(&uptime); 313 points = badness(task, uptime.tv_sec); 314 return sprintf(buffer, "%lu\n", points); 315 } 316 317 /************************************************************************/ 318 /* Here the fs part begins */ 319 /************************************************************************/ 320 321 /* permission checks */ 322 static int proc_fd_access_allowed(struct inode *inode) 323 { 324 struct task_struct *task; 325 int allowed = 0; 326 /* Allow access to a task's file descriptors if it is us or we 327 * may use ptrace attach to the process and find out that 328 * information. 329 */ 330 task = get_proc_task(inode); 331 if (task) { 332 allowed = ptrace_may_attach(task); 333 put_task_struct(task); 334 } 335 return allowed; 336 } 337 338 static int proc_setattr(struct dentry *dentry, struct iattr *attr) 339 { 340 int error; 341 struct inode *inode = dentry->d_inode; 342 343 if (attr->ia_valid & ATTR_MODE) 344 return -EPERM; 345 346 error = inode_change_ok(inode, attr); 347 if (!error) { 348 error = security_inode_setattr(dentry, attr); 349 if (!error) 350 error = inode_setattr(inode, attr); 351 } 352 return error; 353 } 354 355 static struct inode_operations proc_def_inode_operations = { 356 .setattr = proc_setattr, 357 }; 358 359 extern struct seq_operations mounts_op; 360 struct proc_mounts { 361 struct seq_file m; 362 int event; 363 }; 364 365 static int mounts_open(struct inode *inode, struct file *file) 366 { 367 struct task_struct *task = get_proc_task(inode); 368 struct mnt_namespace *ns = NULL; 369 struct proc_mounts *p; 370 int ret = -EINVAL; 371 372 if (task) { 373 task_lock(task); 374 ns = task->nsproxy->mnt_ns; 375 if (ns) 376 get_mnt_ns(ns); 377 task_unlock(task); 378 put_task_struct(task); 379 } 380 381 if (ns) { 382 ret = -ENOMEM; 383 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL); 384 if (p) { 385 file->private_data = &p->m; 386 ret = seq_open(file, &mounts_op); 387 if (!ret) { 388 p->m.private = ns; 389 p->event = ns->event; 390 return 0; 391 } 392 kfree(p); 393 } 394 put_mnt_ns(ns); 395 } 396 return ret; 397 } 398 399 static int mounts_release(struct inode *inode, struct file *file) 400 { 401 struct seq_file *m = file->private_data; 402 struct mnt_namespace *ns = m->private; 403 put_mnt_ns(ns); 404 return seq_release(inode, file); 405 } 406 407 static unsigned mounts_poll(struct file *file, poll_table *wait) 408 { 409 struct proc_mounts *p = file->private_data; 410 struct mnt_namespace *ns = p->m.private; 411 unsigned res = 0; 412 413 poll_wait(file, &ns->poll, wait); 414 415 spin_lock(&vfsmount_lock); 416 if (p->event != ns->event) { 417 p->event = ns->event; 418 res = POLLERR; 419 } 420 spin_unlock(&vfsmount_lock); 421 422 return res; 423 } 424 425 static struct file_operations proc_mounts_operations = { 426 .open = mounts_open, 427 .read = seq_read, 428 .llseek = seq_lseek, 429 .release = mounts_release, 430 .poll = mounts_poll, 431 }; 432 433 extern struct seq_operations mountstats_op; 434 static int mountstats_open(struct inode *inode, struct file *file) 435 { 436 int ret = seq_open(file, &mountstats_op); 437 438 if (!ret) { 439 struct seq_file *m = file->private_data; 440 struct mnt_namespace *mnt_ns = NULL; 441 struct task_struct *task = get_proc_task(inode); 442 443 if (task) { 444 task_lock(task); 445 if (task->nsproxy) 446 mnt_ns = task->nsproxy->mnt_ns; 447 if (mnt_ns) 448 get_mnt_ns(mnt_ns); 449 task_unlock(task); 450 put_task_struct(task); 451 } 452 453 if (mnt_ns) 454 m->private = mnt_ns; 455 else { 456 seq_release(inode, file); 457 ret = -EINVAL; 458 } 459 } 460 return ret; 461 } 462 463 static struct file_operations proc_mountstats_operations = { 464 .open = mountstats_open, 465 .read = seq_read, 466 .llseek = seq_lseek, 467 .release = mounts_release, 468 }; 469 470 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ 471 472 static ssize_t proc_info_read(struct file * file, char __user * buf, 473 size_t count, loff_t *ppos) 474 { 475 struct inode * inode = file->f_path.dentry->d_inode; 476 unsigned long page; 477 ssize_t length; 478 struct task_struct *task = get_proc_task(inode); 479 480 length = -ESRCH; 481 if (!task) 482 goto out_no_task; 483 484 if (count > PROC_BLOCK_SIZE) 485 count = PROC_BLOCK_SIZE; 486 487 length = -ENOMEM; 488 if (!(page = __get_free_page(GFP_KERNEL))) 489 goto out; 490 491 length = PROC_I(inode)->op.proc_read(task, (char*)page); 492 493 if (length >= 0) 494 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 495 free_page(page); 496 out: 497 put_task_struct(task); 498 out_no_task: 499 return length; 500 } 501 502 static struct file_operations proc_info_file_operations = { 503 .read = proc_info_read, 504 }; 505 506 static int mem_open(struct inode* inode, struct file* file) 507 { 508 file->private_data = (void*)((long)current->self_exec_id); 509 return 0; 510 } 511 512 static ssize_t mem_read(struct file * file, char __user * buf, 513 size_t count, loff_t *ppos) 514 { 515 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 516 char *page; 517 unsigned long src = *ppos; 518 int ret = -ESRCH; 519 struct mm_struct *mm; 520 521 if (!task) 522 goto out_no_task; 523 524 if (!MAY_PTRACE(task) || !ptrace_may_attach(task)) 525 goto out; 526 527 ret = -ENOMEM; 528 page = (char *)__get_free_page(GFP_USER); 529 if (!page) 530 goto out; 531 532 ret = 0; 533 534 mm = get_task_mm(task); 535 if (!mm) 536 goto out_free; 537 538 ret = -EIO; 539 540 if (file->private_data != (void*)((long)current->self_exec_id)) 541 goto out_put; 542 543 ret = 0; 544 545 while (count > 0) { 546 int this_len, retval; 547 548 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 549 retval = access_process_vm(task, src, page, this_len, 0); 550 if (!retval || !MAY_PTRACE(task) || !ptrace_may_attach(task)) { 551 if (!ret) 552 ret = -EIO; 553 break; 554 } 555 556 if (copy_to_user(buf, page, retval)) { 557 ret = -EFAULT; 558 break; 559 } 560 561 ret += retval; 562 src += retval; 563 buf += retval; 564 count -= retval; 565 } 566 *ppos = src; 567 568 out_put: 569 mmput(mm); 570 out_free: 571 free_page((unsigned long) page); 572 out: 573 put_task_struct(task); 574 out_no_task: 575 return ret; 576 } 577 578 #define mem_write NULL 579 580 #ifndef mem_write 581 /* This is a security hazard */ 582 static ssize_t mem_write(struct file * file, const char * buf, 583 size_t count, loff_t *ppos) 584 { 585 int copied; 586 char *page; 587 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 588 unsigned long dst = *ppos; 589 590 copied = -ESRCH; 591 if (!task) 592 goto out_no_task; 593 594 if (!MAY_PTRACE(task) || !ptrace_may_attach(task)) 595 goto out; 596 597 copied = -ENOMEM; 598 page = (char *)__get_free_page(GFP_USER); 599 if (!page) 600 goto out; 601 602 copied = 0; 603 while (count > 0) { 604 int this_len, retval; 605 606 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 607 if (copy_from_user(page, buf, this_len)) { 608 copied = -EFAULT; 609 break; 610 } 611 retval = access_process_vm(task, dst, page, this_len, 1); 612 if (!retval) { 613 if (!copied) 614 copied = -EIO; 615 break; 616 } 617 copied += retval; 618 buf += retval; 619 dst += retval; 620 count -= retval; 621 } 622 *ppos = dst; 623 free_page((unsigned long) page); 624 out: 625 put_task_struct(task); 626 out_no_task: 627 return copied; 628 } 629 #endif 630 631 static loff_t mem_lseek(struct file * file, loff_t offset, int orig) 632 { 633 switch (orig) { 634 case 0: 635 file->f_pos = offset; 636 break; 637 case 1: 638 file->f_pos += offset; 639 break; 640 default: 641 return -EINVAL; 642 } 643 force_successful_syscall_return(); 644 return file->f_pos; 645 } 646 647 static struct file_operations proc_mem_operations = { 648 .llseek = mem_lseek, 649 .read = mem_read, 650 .write = mem_write, 651 .open = mem_open, 652 }; 653 654 static ssize_t oom_adjust_read(struct file *file, char __user *buf, 655 size_t count, loff_t *ppos) 656 { 657 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 658 char buffer[PROC_NUMBUF]; 659 size_t len; 660 int oom_adjust; 661 loff_t __ppos = *ppos; 662 663 if (!task) 664 return -ESRCH; 665 oom_adjust = task->oomkilladj; 666 put_task_struct(task); 667 668 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust); 669 if (__ppos >= len) 670 return 0; 671 if (count > len-__ppos) 672 count = len-__ppos; 673 if (copy_to_user(buf, buffer + __ppos, count)) 674 return -EFAULT; 675 *ppos = __ppos + count; 676 return count; 677 } 678 679 static ssize_t oom_adjust_write(struct file *file, const char __user *buf, 680 size_t count, loff_t *ppos) 681 { 682 struct task_struct *task; 683 char buffer[PROC_NUMBUF], *end; 684 int oom_adjust; 685 686 memset(buffer, 0, sizeof(buffer)); 687 if (count > sizeof(buffer) - 1) 688 count = sizeof(buffer) - 1; 689 if (copy_from_user(buffer, buf, count)) 690 return -EFAULT; 691 oom_adjust = simple_strtol(buffer, &end, 0); 692 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) && 693 oom_adjust != OOM_DISABLE) 694 return -EINVAL; 695 if (*end == '\n') 696 end++; 697 task = get_proc_task(file->f_path.dentry->d_inode); 698 if (!task) 699 return -ESRCH; 700 if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) { 701 put_task_struct(task); 702 return -EACCES; 703 } 704 task->oomkilladj = oom_adjust; 705 put_task_struct(task); 706 if (end - buffer == 0) 707 return -EIO; 708 return end - buffer; 709 } 710 711 static struct file_operations proc_oom_adjust_operations = { 712 .read = oom_adjust_read, 713 .write = oom_adjust_write, 714 }; 715 716 #ifdef CONFIG_AUDITSYSCALL 717 #define TMPBUFLEN 21 718 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 719 size_t count, loff_t *ppos) 720 { 721 struct inode * inode = file->f_path.dentry->d_inode; 722 struct task_struct *task = get_proc_task(inode); 723 ssize_t length; 724 char tmpbuf[TMPBUFLEN]; 725 726 if (!task) 727 return -ESRCH; 728 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 729 audit_get_loginuid(task->audit_context)); 730 put_task_struct(task); 731 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 732 } 733 734 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 735 size_t count, loff_t *ppos) 736 { 737 struct inode * inode = file->f_path.dentry->d_inode; 738 char *page, *tmp; 739 ssize_t length; 740 uid_t loginuid; 741 742 if (!capable(CAP_AUDIT_CONTROL)) 743 return -EPERM; 744 745 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) 746 return -EPERM; 747 748 if (count >= PAGE_SIZE) 749 count = PAGE_SIZE - 1; 750 751 if (*ppos != 0) { 752 /* No partial writes. */ 753 return -EINVAL; 754 } 755 page = (char*)__get_free_page(GFP_USER); 756 if (!page) 757 return -ENOMEM; 758 length = -EFAULT; 759 if (copy_from_user(page, buf, count)) 760 goto out_free_page; 761 762 page[count] = '\0'; 763 loginuid = simple_strtoul(page, &tmp, 10); 764 if (tmp == page) { 765 length = -EINVAL; 766 goto out_free_page; 767 768 } 769 length = audit_set_loginuid(current, loginuid); 770 if (likely(length == 0)) 771 length = count; 772 773 out_free_page: 774 free_page((unsigned long) page); 775 return length; 776 } 777 778 static struct file_operations proc_loginuid_operations = { 779 .read = proc_loginuid_read, 780 .write = proc_loginuid_write, 781 }; 782 #endif 783 784 #ifdef CONFIG_SECCOMP 785 static ssize_t seccomp_read(struct file *file, char __user *buf, 786 size_t count, loff_t *ppos) 787 { 788 struct task_struct *tsk = get_proc_task(file->f_dentry->d_inode); 789 char __buf[20]; 790 loff_t __ppos = *ppos; 791 size_t len; 792 793 if (!tsk) 794 return -ESRCH; 795 /* no need to print the trailing zero, so use only len */ 796 len = sprintf(__buf, "%u\n", tsk->seccomp.mode); 797 put_task_struct(tsk); 798 if (__ppos >= len) 799 return 0; 800 if (count > len - __ppos) 801 count = len - __ppos; 802 if (copy_to_user(buf, __buf + __ppos, count)) 803 return -EFAULT; 804 *ppos = __ppos + count; 805 return count; 806 } 807 808 static ssize_t seccomp_write(struct file *file, const char __user *buf, 809 size_t count, loff_t *ppos) 810 { 811 struct task_struct *tsk = get_proc_task(file->f_dentry->d_inode); 812 char __buf[20], *end; 813 unsigned int seccomp_mode; 814 ssize_t result; 815 816 result = -ESRCH; 817 if (!tsk) 818 goto out_no_task; 819 820 /* can set it only once to be even more secure */ 821 result = -EPERM; 822 if (unlikely(tsk->seccomp.mode)) 823 goto out; 824 825 result = -EFAULT; 826 memset(__buf, 0, sizeof(__buf)); 827 count = min(count, sizeof(__buf) - 1); 828 if (copy_from_user(__buf, buf, count)) 829 goto out; 830 831 seccomp_mode = simple_strtoul(__buf, &end, 0); 832 if (*end == '\n') 833 end++; 834 result = -EINVAL; 835 if (seccomp_mode && seccomp_mode <= NR_SECCOMP_MODES) { 836 tsk->seccomp.mode = seccomp_mode; 837 set_tsk_thread_flag(tsk, TIF_SECCOMP); 838 } else 839 goto out; 840 result = -EIO; 841 if (unlikely(!(end - __buf))) 842 goto out; 843 result = end - __buf; 844 out: 845 put_task_struct(tsk); 846 out_no_task: 847 return result; 848 } 849 850 static struct file_operations proc_seccomp_operations = { 851 .read = seccomp_read, 852 .write = seccomp_write, 853 }; 854 #endif /* CONFIG_SECCOMP */ 855 856 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) 857 { 858 struct inode *inode = dentry->d_inode; 859 int error = -EACCES; 860 861 /* We don't need a base pointer in the /proc filesystem */ 862 path_release(nd); 863 864 /* Are we allowed to snoop on the tasks file descriptors? */ 865 if (!proc_fd_access_allowed(inode)) 866 goto out; 867 868 error = PROC_I(inode)->op.proc_get_link(inode, &nd->dentry, &nd->mnt); 869 nd->last_type = LAST_BIND; 870 out: 871 return ERR_PTR(error); 872 } 873 874 static int do_proc_readlink(struct dentry *dentry, struct vfsmount *mnt, 875 char __user *buffer, int buflen) 876 { 877 struct inode * inode; 878 char *tmp = (char*)__get_free_page(GFP_KERNEL), *path; 879 int len; 880 881 if (!tmp) 882 return -ENOMEM; 883 884 inode = dentry->d_inode; 885 path = d_path(dentry, mnt, tmp, PAGE_SIZE); 886 len = PTR_ERR(path); 887 if (IS_ERR(path)) 888 goto out; 889 len = tmp + PAGE_SIZE - 1 - path; 890 891 if (len > buflen) 892 len = buflen; 893 if (copy_to_user(buffer, path, len)) 894 len = -EFAULT; 895 out: 896 free_page((unsigned long)tmp); 897 return len; 898 } 899 900 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 901 { 902 int error = -EACCES; 903 struct inode *inode = dentry->d_inode; 904 struct dentry *de; 905 struct vfsmount *mnt = NULL; 906 907 /* Are we allowed to snoop on the tasks file descriptors? */ 908 if (!proc_fd_access_allowed(inode)) 909 goto out; 910 911 error = PROC_I(inode)->op.proc_get_link(inode, &de, &mnt); 912 if (error) 913 goto out; 914 915 error = do_proc_readlink(de, mnt, buffer, buflen); 916 dput(de); 917 mntput(mnt); 918 out: 919 return error; 920 } 921 922 static struct inode_operations proc_pid_link_inode_operations = { 923 .readlink = proc_pid_readlink, 924 .follow_link = proc_pid_follow_link, 925 .setattr = proc_setattr, 926 }; 927 928 929 /* building an inode */ 930 931 static int task_dumpable(struct task_struct *task) 932 { 933 int dumpable = 0; 934 struct mm_struct *mm; 935 936 task_lock(task); 937 mm = task->mm; 938 if (mm) 939 dumpable = mm->dumpable; 940 task_unlock(task); 941 if(dumpable == 1) 942 return 1; 943 return 0; 944 } 945 946 947 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) 948 { 949 struct inode * inode; 950 struct proc_inode *ei; 951 952 /* We need a new inode */ 953 954 inode = new_inode(sb); 955 if (!inode) 956 goto out; 957 958 /* Common stuff */ 959 ei = PROC_I(inode); 960 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 961 inode->i_op = &proc_def_inode_operations; 962 963 /* 964 * grab the reference to task. 965 */ 966 ei->pid = get_task_pid(task, PIDTYPE_PID); 967 if (!ei->pid) 968 goto out_unlock; 969 970 inode->i_uid = 0; 971 inode->i_gid = 0; 972 if (task_dumpable(task)) { 973 inode->i_uid = task->euid; 974 inode->i_gid = task->egid; 975 } 976 security_task_to_inode(task, inode); 977 978 out: 979 return inode; 980 981 out_unlock: 982 iput(inode); 983 return NULL; 984 } 985 986 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 987 { 988 struct inode *inode = dentry->d_inode; 989 struct task_struct *task; 990 generic_fillattr(inode, stat); 991 992 rcu_read_lock(); 993 stat->uid = 0; 994 stat->gid = 0; 995 task = pid_task(proc_pid(inode), PIDTYPE_PID); 996 if (task) { 997 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 998 task_dumpable(task)) { 999 stat->uid = task->euid; 1000 stat->gid = task->egid; 1001 } 1002 } 1003 rcu_read_unlock(); 1004 return 0; 1005 } 1006 1007 /* dentry stuff */ 1008 1009 /* 1010 * Exceptional case: normally we are not allowed to unhash a busy 1011 * directory. In this case, however, we can do it - no aliasing problems 1012 * due to the way we treat inodes. 1013 * 1014 * Rewrite the inode's ownerships here because the owning task may have 1015 * performed a setuid(), etc. 1016 * 1017 * Before the /proc/pid/status file was created the only way to read 1018 * the effective uid of a /process was to stat /proc/pid. Reading 1019 * /proc/pid/status is slow enough that procps and other packages 1020 * kept stating /proc/pid. To keep the rules in /proc simple I have 1021 * made this apply to all per process world readable and executable 1022 * directories. 1023 */ 1024 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd) 1025 { 1026 struct inode *inode = dentry->d_inode; 1027 struct task_struct *task = get_proc_task(inode); 1028 if (task) { 1029 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1030 task_dumpable(task)) { 1031 inode->i_uid = task->euid; 1032 inode->i_gid = task->egid; 1033 } else { 1034 inode->i_uid = 0; 1035 inode->i_gid = 0; 1036 } 1037 inode->i_mode &= ~(S_ISUID | S_ISGID); 1038 security_task_to_inode(task, inode); 1039 put_task_struct(task); 1040 return 1; 1041 } 1042 d_drop(dentry); 1043 return 0; 1044 } 1045 1046 static int pid_delete_dentry(struct dentry * dentry) 1047 { 1048 /* Is the task we represent dead? 1049 * If so, then don't put the dentry on the lru list, 1050 * kill it immediately. 1051 */ 1052 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first; 1053 } 1054 1055 static struct dentry_operations pid_dentry_operations = 1056 { 1057 .d_revalidate = pid_revalidate, 1058 .d_delete = pid_delete_dentry, 1059 }; 1060 1061 /* Lookups */ 1062 1063 typedef struct dentry *instantiate_t(struct inode *, struct dentry *, struct task_struct *, void *); 1064 1065 /* 1066 * Fill a directory entry. 1067 * 1068 * If possible create the dcache entry and derive our inode number and 1069 * file type from dcache entry. 1070 * 1071 * Since all of the proc inode numbers are dynamically generated, the inode 1072 * numbers do not exist until the inode is cache. This means creating the 1073 * the dcache entry in readdir is necessary to keep the inode numbers 1074 * reported by readdir in sync with the inode numbers reported 1075 * by stat. 1076 */ 1077 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1078 char *name, int len, 1079 instantiate_t instantiate, struct task_struct *task, void *ptr) 1080 { 1081 struct dentry *child, *dir = filp->f_path.dentry; 1082 struct inode *inode; 1083 struct qstr qname; 1084 ino_t ino = 0; 1085 unsigned type = DT_UNKNOWN; 1086 1087 qname.name = name; 1088 qname.len = len; 1089 qname.hash = full_name_hash(name, len); 1090 1091 child = d_lookup(dir, &qname); 1092 if (!child) { 1093 struct dentry *new; 1094 new = d_alloc(dir, &qname); 1095 if (new) { 1096 child = instantiate(dir->d_inode, new, task, ptr); 1097 if (child) 1098 dput(new); 1099 else 1100 child = new; 1101 } 1102 } 1103 if (!child || IS_ERR(child) || !child->d_inode) 1104 goto end_instantiate; 1105 inode = child->d_inode; 1106 if (inode) { 1107 ino = inode->i_ino; 1108 type = inode->i_mode >> 12; 1109 } 1110 dput(child); 1111 end_instantiate: 1112 if (!ino) 1113 ino = find_inode_number(dir, &qname); 1114 if (!ino) 1115 ino = 1; 1116 return filldir(dirent, name, len, filp->f_pos, ino, type); 1117 } 1118 1119 static unsigned name_to_int(struct dentry *dentry) 1120 { 1121 const char *name = dentry->d_name.name; 1122 int len = dentry->d_name.len; 1123 unsigned n = 0; 1124 1125 if (len > 1 && *name == '0') 1126 goto out; 1127 while (len-- > 0) { 1128 unsigned c = *name++ - '0'; 1129 if (c > 9) 1130 goto out; 1131 if (n >= (~0U-9)/10) 1132 goto out; 1133 n *= 10; 1134 n += c; 1135 } 1136 return n; 1137 out: 1138 return ~0U; 1139 } 1140 1141 static int proc_fd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt) 1142 { 1143 struct task_struct *task = get_proc_task(inode); 1144 struct files_struct *files = NULL; 1145 struct file *file; 1146 int fd = proc_fd(inode); 1147 1148 if (task) { 1149 files = get_files_struct(task); 1150 put_task_struct(task); 1151 } 1152 if (files) { 1153 /* 1154 * We are not taking a ref to the file structure, so we must 1155 * hold ->file_lock. 1156 */ 1157 spin_lock(&files->file_lock); 1158 file = fcheck_files(files, fd); 1159 if (file) { 1160 *mnt = mntget(file->f_path.mnt); 1161 *dentry = dget(file->f_path.dentry); 1162 spin_unlock(&files->file_lock); 1163 put_files_struct(files); 1164 return 0; 1165 } 1166 spin_unlock(&files->file_lock); 1167 put_files_struct(files); 1168 } 1169 return -ENOENT; 1170 } 1171 1172 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd) 1173 { 1174 struct inode *inode = dentry->d_inode; 1175 struct task_struct *task = get_proc_task(inode); 1176 int fd = proc_fd(inode); 1177 struct files_struct *files; 1178 1179 if (task) { 1180 files = get_files_struct(task); 1181 if (files) { 1182 rcu_read_lock(); 1183 if (fcheck_files(files, fd)) { 1184 rcu_read_unlock(); 1185 put_files_struct(files); 1186 if (task_dumpable(task)) { 1187 inode->i_uid = task->euid; 1188 inode->i_gid = task->egid; 1189 } else { 1190 inode->i_uid = 0; 1191 inode->i_gid = 0; 1192 } 1193 inode->i_mode &= ~(S_ISUID | S_ISGID); 1194 security_task_to_inode(task, inode); 1195 put_task_struct(task); 1196 return 1; 1197 } 1198 rcu_read_unlock(); 1199 put_files_struct(files); 1200 } 1201 put_task_struct(task); 1202 } 1203 d_drop(dentry); 1204 return 0; 1205 } 1206 1207 static struct dentry_operations tid_fd_dentry_operations = 1208 { 1209 .d_revalidate = tid_fd_revalidate, 1210 .d_delete = pid_delete_dentry, 1211 }; 1212 1213 static struct dentry *proc_fd_instantiate(struct inode *dir, 1214 struct dentry *dentry, struct task_struct *task, void *ptr) 1215 { 1216 unsigned fd = *(unsigned *)ptr; 1217 struct file *file; 1218 struct files_struct *files; 1219 struct inode *inode; 1220 struct proc_inode *ei; 1221 struct dentry *error = ERR_PTR(-ENOENT); 1222 1223 inode = proc_pid_make_inode(dir->i_sb, task); 1224 if (!inode) 1225 goto out; 1226 ei = PROC_I(inode); 1227 ei->fd = fd; 1228 files = get_files_struct(task); 1229 if (!files) 1230 goto out_iput; 1231 inode->i_mode = S_IFLNK; 1232 1233 /* 1234 * We are not taking a ref to the file structure, so we must 1235 * hold ->file_lock. 1236 */ 1237 spin_lock(&files->file_lock); 1238 file = fcheck_files(files, fd); 1239 if (!file) 1240 goto out_unlock; 1241 if (file->f_mode & 1) 1242 inode->i_mode |= S_IRUSR | S_IXUSR; 1243 if (file->f_mode & 2) 1244 inode->i_mode |= S_IWUSR | S_IXUSR; 1245 spin_unlock(&files->file_lock); 1246 put_files_struct(files); 1247 1248 inode->i_op = &proc_pid_link_inode_operations; 1249 inode->i_size = 64; 1250 ei->op.proc_get_link = proc_fd_link; 1251 dentry->d_op = &tid_fd_dentry_operations; 1252 d_add(dentry, inode); 1253 /* Close the race of the process dying before we return the dentry */ 1254 if (tid_fd_revalidate(dentry, NULL)) 1255 error = NULL; 1256 1257 out: 1258 return error; 1259 out_unlock: 1260 spin_unlock(&files->file_lock); 1261 put_files_struct(files); 1262 out_iput: 1263 iput(inode); 1264 goto out; 1265 } 1266 1267 static struct dentry *proc_lookupfd(struct inode * dir, struct dentry * dentry, struct nameidata *nd) 1268 { 1269 struct task_struct *task = get_proc_task(dir); 1270 unsigned fd = name_to_int(dentry); 1271 struct dentry *result = ERR_PTR(-ENOENT); 1272 1273 if (!task) 1274 goto out_no_task; 1275 if (fd == ~0U) 1276 goto out; 1277 1278 result = proc_fd_instantiate(dir, dentry, task, &fd); 1279 out: 1280 put_task_struct(task); 1281 out_no_task: 1282 return result; 1283 } 1284 1285 static int proc_fd_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1286 struct task_struct *task, int fd) 1287 { 1288 char name[PROC_NUMBUF]; 1289 int len = snprintf(name, sizeof(name), "%d", fd); 1290 return proc_fill_cache(filp, dirent, filldir, name, len, 1291 proc_fd_instantiate, task, &fd); 1292 } 1293 1294 static int proc_readfd(struct file * filp, void * dirent, filldir_t filldir) 1295 { 1296 struct dentry *dentry = filp->f_path.dentry; 1297 struct inode *inode = dentry->d_inode; 1298 struct task_struct *p = get_proc_task(inode); 1299 unsigned int fd, tid, ino; 1300 int retval; 1301 struct files_struct * files; 1302 struct fdtable *fdt; 1303 1304 retval = -ENOENT; 1305 if (!p) 1306 goto out_no_task; 1307 retval = 0; 1308 tid = p->pid; 1309 1310 fd = filp->f_pos; 1311 switch (fd) { 1312 case 0: 1313 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0) 1314 goto out; 1315 filp->f_pos++; 1316 case 1: 1317 ino = parent_ino(dentry); 1318 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 1319 goto out; 1320 filp->f_pos++; 1321 default: 1322 files = get_files_struct(p); 1323 if (!files) 1324 goto out; 1325 rcu_read_lock(); 1326 fdt = files_fdtable(files); 1327 for (fd = filp->f_pos-2; 1328 fd < fdt->max_fds; 1329 fd++, filp->f_pos++) { 1330 1331 if (!fcheck_files(files, fd)) 1332 continue; 1333 rcu_read_unlock(); 1334 1335 if (proc_fd_fill_cache(filp, dirent, filldir, p, fd) < 0) { 1336 rcu_read_lock(); 1337 break; 1338 } 1339 rcu_read_lock(); 1340 } 1341 rcu_read_unlock(); 1342 put_files_struct(files); 1343 } 1344 out: 1345 put_task_struct(p); 1346 out_no_task: 1347 return retval; 1348 } 1349 1350 static struct file_operations proc_fd_operations = { 1351 .read = generic_read_dir, 1352 .readdir = proc_readfd, 1353 }; 1354 1355 /* 1356 * proc directories can do almost nothing.. 1357 */ 1358 static struct inode_operations proc_fd_inode_operations = { 1359 .lookup = proc_lookupfd, 1360 .setattr = proc_setattr, 1361 }; 1362 1363 static struct dentry *proc_pident_instantiate(struct inode *dir, 1364 struct dentry *dentry, struct task_struct *task, void *ptr) 1365 { 1366 struct pid_entry *p = ptr; 1367 struct inode *inode; 1368 struct proc_inode *ei; 1369 struct dentry *error = ERR_PTR(-EINVAL); 1370 1371 inode = proc_pid_make_inode(dir->i_sb, task); 1372 if (!inode) 1373 goto out; 1374 1375 ei = PROC_I(inode); 1376 inode->i_mode = p->mode; 1377 if (S_ISDIR(inode->i_mode)) 1378 inode->i_nlink = 2; /* Use getattr to fix if necessary */ 1379 if (p->iop) 1380 inode->i_op = p->iop; 1381 if (p->fop) 1382 inode->i_fop = p->fop; 1383 ei->op = p->op; 1384 dentry->d_op = &pid_dentry_operations; 1385 d_add(dentry, inode); 1386 /* Close the race of the process dying before we return the dentry */ 1387 if (pid_revalidate(dentry, NULL)) 1388 error = NULL; 1389 out: 1390 return error; 1391 } 1392 1393 static struct dentry *proc_pident_lookup(struct inode *dir, 1394 struct dentry *dentry, 1395 struct pid_entry *ents, 1396 unsigned int nents) 1397 { 1398 struct inode *inode; 1399 struct dentry *error; 1400 struct task_struct *task = get_proc_task(dir); 1401 struct pid_entry *p, *last; 1402 1403 error = ERR_PTR(-ENOENT); 1404 inode = NULL; 1405 1406 if (!task) 1407 goto out_no_task; 1408 1409 /* 1410 * Yes, it does not scale. And it should not. Don't add 1411 * new entries into /proc/<tgid>/ without very good reasons. 1412 */ 1413 last = &ents[nents - 1]; 1414 for (p = ents; p <= last; p++) { 1415 if (p->len != dentry->d_name.len) 1416 continue; 1417 if (!memcmp(dentry->d_name.name, p->name, p->len)) 1418 break; 1419 } 1420 if (p > last) 1421 goto out; 1422 1423 error = proc_pident_instantiate(dir, dentry, task, p); 1424 out: 1425 put_task_struct(task); 1426 out_no_task: 1427 return error; 1428 } 1429 1430 static int proc_pident_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1431 struct task_struct *task, struct pid_entry *p) 1432 { 1433 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 1434 proc_pident_instantiate, task, p); 1435 } 1436 1437 static int proc_pident_readdir(struct file *filp, 1438 void *dirent, filldir_t filldir, 1439 struct pid_entry *ents, unsigned int nents) 1440 { 1441 int i; 1442 int pid; 1443 struct dentry *dentry = filp->f_path.dentry; 1444 struct inode *inode = dentry->d_inode; 1445 struct task_struct *task = get_proc_task(inode); 1446 struct pid_entry *p, *last; 1447 ino_t ino; 1448 int ret; 1449 1450 ret = -ENOENT; 1451 if (!task) 1452 goto out_no_task; 1453 1454 ret = 0; 1455 pid = task->pid; 1456 i = filp->f_pos; 1457 switch (i) { 1458 case 0: 1459 ino = inode->i_ino; 1460 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 1461 goto out; 1462 i++; 1463 filp->f_pos++; 1464 /* fall through */ 1465 case 1: 1466 ino = parent_ino(dentry); 1467 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 1468 goto out; 1469 i++; 1470 filp->f_pos++; 1471 /* fall through */ 1472 default: 1473 i -= 2; 1474 if (i >= nents) { 1475 ret = 1; 1476 goto out; 1477 } 1478 p = ents + i; 1479 last = &ents[nents - 1]; 1480 while (p <= last) { 1481 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0) 1482 goto out; 1483 filp->f_pos++; 1484 p++; 1485 } 1486 } 1487 1488 ret = 1; 1489 out: 1490 put_task_struct(task); 1491 out_no_task: 1492 return ret; 1493 } 1494 1495 #ifdef CONFIG_SECURITY 1496 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 1497 size_t count, loff_t *ppos) 1498 { 1499 struct inode * inode = file->f_path.dentry->d_inode; 1500 unsigned long page; 1501 ssize_t length; 1502 struct task_struct *task = get_proc_task(inode); 1503 1504 length = -ESRCH; 1505 if (!task) 1506 goto out_no_task; 1507 1508 if (count > PAGE_SIZE) 1509 count = PAGE_SIZE; 1510 length = -ENOMEM; 1511 if (!(page = __get_free_page(GFP_KERNEL))) 1512 goto out; 1513 1514 length = security_getprocattr(task, 1515 (char*)file->f_path.dentry->d_name.name, 1516 (void*)page, count); 1517 if (length >= 0) 1518 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 1519 free_page(page); 1520 out: 1521 put_task_struct(task); 1522 out_no_task: 1523 return length; 1524 } 1525 1526 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 1527 size_t count, loff_t *ppos) 1528 { 1529 struct inode * inode = file->f_path.dentry->d_inode; 1530 char *page; 1531 ssize_t length; 1532 struct task_struct *task = get_proc_task(inode); 1533 1534 length = -ESRCH; 1535 if (!task) 1536 goto out_no_task; 1537 if (count > PAGE_SIZE) 1538 count = PAGE_SIZE; 1539 1540 /* No partial writes. */ 1541 length = -EINVAL; 1542 if (*ppos != 0) 1543 goto out; 1544 1545 length = -ENOMEM; 1546 page = (char*)__get_free_page(GFP_USER); 1547 if (!page) 1548 goto out; 1549 1550 length = -EFAULT; 1551 if (copy_from_user(page, buf, count)) 1552 goto out_free; 1553 1554 length = security_setprocattr(task, 1555 (char*)file->f_path.dentry->d_name.name, 1556 (void*)page, count); 1557 out_free: 1558 free_page((unsigned long) page); 1559 out: 1560 put_task_struct(task); 1561 out_no_task: 1562 return length; 1563 } 1564 1565 static struct file_operations proc_pid_attr_operations = { 1566 .read = proc_pid_attr_read, 1567 .write = proc_pid_attr_write, 1568 }; 1569 1570 static struct pid_entry attr_dir_stuff[] = { 1571 REG("current", S_IRUGO|S_IWUGO, pid_attr), 1572 REG("prev", S_IRUGO, pid_attr), 1573 REG("exec", S_IRUGO|S_IWUGO, pid_attr), 1574 REG("fscreate", S_IRUGO|S_IWUGO, pid_attr), 1575 REG("keycreate", S_IRUGO|S_IWUGO, pid_attr), 1576 REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr), 1577 }; 1578 1579 static int proc_attr_dir_readdir(struct file * filp, 1580 void * dirent, filldir_t filldir) 1581 { 1582 return proc_pident_readdir(filp,dirent,filldir, 1583 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff)); 1584 } 1585 1586 static struct file_operations proc_attr_dir_operations = { 1587 .read = generic_read_dir, 1588 .readdir = proc_attr_dir_readdir, 1589 }; 1590 1591 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 1592 struct dentry *dentry, struct nameidata *nd) 1593 { 1594 return proc_pident_lookup(dir, dentry, 1595 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 1596 } 1597 1598 static struct inode_operations proc_attr_dir_inode_operations = { 1599 .lookup = proc_attr_dir_lookup, 1600 .getattr = pid_getattr, 1601 .setattr = proc_setattr, 1602 }; 1603 1604 #endif 1605 1606 /* 1607 * /proc/self: 1608 */ 1609 static int proc_self_readlink(struct dentry *dentry, char __user *buffer, 1610 int buflen) 1611 { 1612 char tmp[PROC_NUMBUF]; 1613 sprintf(tmp, "%d", current->tgid); 1614 return vfs_readlink(dentry,buffer,buflen,tmp); 1615 } 1616 1617 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd) 1618 { 1619 char tmp[PROC_NUMBUF]; 1620 sprintf(tmp, "%d", current->tgid); 1621 return ERR_PTR(vfs_follow_link(nd,tmp)); 1622 } 1623 1624 static struct inode_operations proc_self_inode_operations = { 1625 .readlink = proc_self_readlink, 1626 .follow_link = proc_self_follow_link, 1627 }; 1628 1629 /* 1630 * proc base 1631 * 1632 * These are the directory entries in the root directory of /proc 1633 * that properly belong to the /proc filesystem, as they describe 1634 * describe something that is process related. 1635 */ 1636 static struct pid_entry proc_base_stuff[] = { 1637 NOD("self", S_IFLNK|S_IRWXUGO, 1638 &proc_self_inode_operations, NULL, {}), 1639 }; 1640 1641 /* 1642 * Exceptional case: normally we are not allowed to unhash a busy 1643 * directory. In this case, however, we can do it - no aliasing problems 1644 * due to the way we treat inodes. 1645 */ 1646 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd) 1647 { 1648 struct inode *inode = dentry->d_inode; 1649 struct task_struct *task = get_proc_task(inode); 1650 if (task) { 1651 put_task_struct(task); 1652 return 1; 1653 } 1654 d_drop(dentry); 1655 return 0; 1656 } 1657 1658 static struct dentry_operations proc_base_dentry_operations = 1659 { 1660 .d_revalidate = proc_base_revalidate, 1661 .d_delete = pid_delete_dentry, 1662 }; 1663 1664 static struct dentry *proc_base_instantiate(struct inode *dir, 1665 struct dentry *dentry, struct task_struct *task, void *ptr) 1666 { 1667 struct pid_entry *p = ptr; 1668 struct inode *inode; 1669 struct proc_inode *ei; 1670 struct dentry *error = ERR_PTR(-EINVAL); 1671 1672 /* Allocate the inode */ 1673 error = ERR_PTR(-ENOMEM); 1674 inode = new_inode(dir->i_sb); 1675 if (!inode) 1676 goto out; 1677 1678 /* Initialize the inode */ 1679 ei = PROC_I(inode); 1680 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1681 1682 /* 1683 * grab the reference to the task. 1684 */ 1685 ei->pid = get_task_pid(task, PIDTYPE_PID); 1686 if (!ei->pid) 1687 goto out_iput; 1688 1689 inode->i_uid = 0; 1690 inode->i_gid = 0; 1691 inode->i_mode = p->mode; 1692 if (S_ISDIR(inode->i_mode)) 1693 inode->i_nlink = 2; 1694 if (S_ISLNK(inode->i_mode)) 1695 inode->i_size = 64; 1696 if (p->iop) 1697 inode->i_op = p->iop; 1698 if (p->fop) 1699 inode->i_fop = p->fop; 1700 ei->op = p->op; 1701 dentry->d_op = &proc_base_dentry_operations; 1702 d_add(dentry, inode); 1703 error = NULL; 1704 out: 1705 return error; 1706 out_iput: 1707 iput(inode); 1708 goto out; 1709 } 1710 1711 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry) 1712 { 1713 struct dentry *error; 1714 struct task_struct *task = get_proc_task(dir); 1715 struct pid_entry *p, *last; 1716 1717 error = ERR_PTR(-ENOENT); 1718 1719 if (!task) 1720 goto out_no_task; 1721 1722 /* Lookup the directory entry */ 1723 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1]; 1724 for (p = proc_base_stuff; p <= last; p++) { 1725 if (p->len != dentry->d_name.len) 1726 continue; 1727 if (!memcmp(dentry->d_name.name, p->name, p->len)) 1728 break; 1729 } 1730 if (p > last) 1731 goto out; 1732 1733 error = proc_base_instantiate(dir, dentry, task, p); 1734 1735 out: 1736 put_task_struct(task); 1737 out_no_task: 1738 return error; 1739 } 1740 1741 static int proc_base_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1742 struct task_struct *task, struct pid_entry *p) 1743 { 1744 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 1745 proc_base_instantiate, task, p); 1746 } 1747 1748 /* 1749 * Thread groups 1750 */ 1751 static struct file_operations proc_task_operations; 1752 static struct inode_operations proc_task_inode_operations; 1753 1754 static struct pid_entry tgid_base_stuff[] = { 1755 DIR("task", S_IRUGO|S_IXUGO, task), 1756 DIR("fd", S_IRUSR|S_IXUSR, fd), 1757 INF("environ", S_IRUSR, pid_environ), 1758 INF("auxv", S_IRUSR, pid_auxv), 1759 INF("status", S_IRUGO, pid_status), 1760 INF("cmdline", S_IRUGO, pid_cmdline), 1761 INF("stat", S_IRUGO, tgid_stat), 1762 INF("statm", S_IRUGO, pid_statm), 1763 REG("maps", S_IRUGO, maps), 1764 #ifdef CONFIG_NUMA 1765 REG("numa_maps", S_IRUGO, numa_maps), 1766 #endif 1767 REG("mem", S_IRUSR|S_IWUSR, mem), 1768 #ifdef CONFIG_SECCOMP 1769 REG("seccomp", S_IRUSR|S_IWUSR, seccomp), 1770 #endif 1771 LNK("cwd", cwd), 1772 LNK("root", root), 1773 LNK("exe", exe), 1774 REG("mounts", S_IRUGO, mounts), 1775 REG("mountstats", S_IRUSR, mountstats), 1776 #ifdef CONFIG_MMU 1777 REG("smaps", S_IRUGO, smaps), 1778 #endif 1779 #ifdef CONFIG_SECURITY 1780 DIR("attr", S_IRUGO|S_IXUGO, attr_dir), 1781 #endif 1782 #ifdef CONFIG_KALLSYMS 1783 INF("wchan", S_IRUGO, pid_wchan), 1784 #endif 1785 #ifdef CONFIG_SCHEDSTATS 1786 INF("schedstat", S_IRUGO, pid_schedstat), 1787 #endif 1788 #ifdef CONFIG_CPUSETS 1789 REG("cpuset", S_IRUGO, cpuset), 1790 #endif 1791 INF("oom_score", S_IRUGO, oom_score), 1792 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust), 1793 #ifdef CONFIG_AUDITSYSCALL 1794 REG("loginuid", S_IWUSR|S_IRUGO, loginuid), 1795 #endif 1796 }; 1797 1798 static int proc_tgid_base_readdir(struct file * filp, 1799 void * dirent, filldir_t filldir) 1800 { 1801 return proc_pident_readdir(filp,dirent,filldir, 1802 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff)); 1803 } 1804 1805 static struct file_operations proc_tgid_base_operations = { 1806 .read = generic_read_dir, 1807 .readdir = proc_tgid_base_readdir, 1808 }; 1809 1810 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 1811 return proc_pident_lookup(dir, dentry, 1812 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 1813 } 1814 1815 static struct inode_operations proc_tgid_base_inode_operations = { 1816 .lookup = proc_tgid_base_lookup, 1817 .getattr = pid_getattr, 1818 .setattr = proc_setattr, 1819 }; 1820 1821 /** 1822 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 1823 * 1824 * @task: task that should be flushed. 1825 * 1826 * Looks in the dcache for 1827 * /proc/@pid 1828 * /proc/@tgid/task/@pid 1829 * if either directory is present flushes it and all of it'ts children 1830 * from the dcache. 1831 * 1832 * It is safe and reasonable to cache /proc entries for a task until 1833 * that task exits. After that they just clog up the dcache with 1834 * useless entries, possibly causing useful dcache entries to be 1835 * flushed instead. This routine is proved to flush those useless 1836 * dcache entries at process exit time. 1837 * 1838 * NOTE: This routine is just an optimization so it does not guarantee 1839 * that no dcache entries will exist at process exit time it 1840 * just makes it very unlikely that any will persist. 1841 */ 1842 void proc_flush_task(struct task_struct *task) 1843 { 1844 struct dentry *dentry, *leader, *dir; 1845 char buf[PROC_NUMBUF]; 1846 struct qstr name; 1847 1848 name.name = buf; 1849 name.len = snprintf(buf, sizeof(buf), "%d", task->pid); 1850 dentry = d_hash_and_lookup(proc_mnt->mnt_root, &name); 1851 if (dentry) { 1852 shrink_dcache_parent(dentry); 1853 d_drop(dentry); 1854 dput(dentry); 1855 } 1856 1857 if (thread_group_leader(task)) 1858 goto out; 1859 1860 name.name = buf; 1861 name.len = snprintf(buf, sizeof(buf), "%d", task->tgid); 1862 leader = d_hash_and_lookup(proc_mnt->mnt_root, &name); 1863 if (!leader) 1864 goto out; 1865 1866 name.name = "task"; 1867 name.len = strlen(name.name); 1868 dir = d_hash_and_lookup(leader, &name); 1869 if (!dir) 1870 goto out_put_leader; 1871 1872 name.name = buf; 1873 name.len = snprintf(buf, sizeof(buf), "%d", task->pid); 1874 dentry = d_hash_and_lookup(dir, &name); 1875 if (dentry) { 1876 shrink_dcache_parent(dentry); 1877 d_drop(dentry); 1878 dput(dentry); 1879 } 1880 1881 dput(dir); 1882 out_put_leader: 1883 dput(leader); 1884 out: 1885 return; 1886 } 1887 1888 static struct dentry *proc_pid_instantiate(struct inode *dir, 1889 struct dentry * dentry, 1890 struct task_struct *task, void *ptr) 1891 { 1892 struct dentry *error = ERR_PTR(-ENOENT); 1893 struct inode *inode; 1894 1895 inode = proc_pid_make_inode(dir->i_sb, task); 1896 if (!inode) 1897 goto out; 1898 1899 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 1900 inode->i_op = &proc_tgid_base_inode_operations; 1901 inode->i_fop = &proc_tgid_base_operations; 1902 inode->i_flags|=S_IMMUTABLE; 1903 inode->i_nlink = 4; 1904 #ifdef CONFIG_SECURITY 1905 inode->i_nlink += 1; 1906 #endif 1907 1908 dentry->d_op = &pid_dentry_operations; 1909 1910 d_add(dentry, inode); 1911 /* Close the race of the process dying before we return the dentry */ 1912 if (pid_revalidate(dentry, NULL)) 1913 error = NULL; 1914 out: 1915 return error; 1916 } 1917 1918 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 1919 { 1920 struct dentry *result = ERR_PTR(-ENOENT); 1921 struct task_struct *task; 1922 unsigned tgid; 1923 1924 result = proc_base_lookup(dir, dentry); 1925 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT) 1926 goto out; 1927 1928 tgid = name_to_int(dentry); 1929 if (tgid == ~0U) 1930 goto out; 1931 1932 rcu_read_lock(); 1933 task = find_task_by_pid(tgid); 1934 if (task) 1935 get_task_struct(task); 1936 rcu_read_unlock(); 1937 if (!task) 1938 goto out; 1939 1940 result = proc_pid_instantiate(dir, dentry, task, NULL); 1941 put_task_struct(task); 1942 out: 1943 return result; 1944 } 1945 1946 /* 1947 * Find the first task with tgid >= tgid 1948 * 1949 */ 1950 static struct task_struct *next_tgid(unsigned int tgid) 1951 { 1952 struct task_struct *task; 1953 struct pid *pid; 1954 1955 rcu_read_lock(); 1956 retry: 1957 task = NULL; 1958 pid = find_ge_pid(tgid); 1959 if (pid) { 1960 tgid = pid->nr + 1; 1961 task = pid_task(pid, PIDTYPE_PID); 1962 /* What we to know is if the pid we have find is the 1963 * pid of a thread_group_leader. Testing for task 1964 * being a thread_group_leader is the obvious thing 1965 * todo but there is a window when it fails, due to 1966 * the pid transfer logic in de_thread. 1967 * 1968 * So we perform the straight forward test of seeing 1969 * if the pid we have found is the pid of a thread 1970 * group leader, and don't worry if the task we have 1971 * found doesn't happen to be a thread group leader. 1972 * As we don't care in the case of readdir. 1973 */ 1974 if (!task || !has_group_leader_pid(task)) 1975 goto retry; 1976 get_task_struct(task); 1977 } 1978 rcu_read_unlock(); 1979 return task; 1980 } 1981 1982 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff)) 1983 1984 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1985 struct task_struct *task, int tgid) 1986 { 1987 char name[PROC_NUMBUF]; 1988 int len = snprintf(name, sizeof(name), "%d", tgid); 1989 return proc_fill_cache(filp, dirent, filldir, name, len, 1990 proc_pid_instantiate, task, NULL); 1991 } 1992 1993 /* for the /proc/ directory itself, after non-process stuff has been done */ 1994 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) 1995 { 1996 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY; 1997 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode); 1998 struct task_struct *task; 1999 int tgid; 2000 2001 if (!reaper) 2002 goto out_no_task; 2003 2004 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) { 2005 struct pid_entry *p = &proc_base_stuff[nr]; 2006 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0) 2007 goto out; 2008 } 2009 2010 tgid = filp->f_pos - TGID_OFFSET; 2011 for (task = next_tgid(tgid); 2012 task; 2013 put_task_struct(task), task = next_tgid(tgid + 1)) { 2014 tgid = task->pid; 2015 filp->f_pos = tgid + TGID_OFFSET; 2016 if (proc_pid_fill_cache(filp, dirent, filldir, task, tgid) < 0) { 2017 put_task_struct(task); 2018 goto out; 2019 } 2020 } 2021 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET; 2022 out: 2023 put_task_struct(reaper); 2024 out_no_task: 2025 return 0; 2026 } 2027 2028 /* 2029 * Tasks 2030 */ 2031 static struct pid_entry tid_base_stuff[] = { 2032 DIR("fd", S_IRUSR|S_IXUSR, fd), 2033 INF("environ", S_IRUSR, pid_environ), 2034 INF("auxv", S_IRUSR, pid_auxv), 2035 INF("status", S_IRUGO, pid_status), 2036 INF("cmdline", S_IRUGO, pid_cmdline), 2037 INF("stat", S_IRUGO, tid_stat), 2038 INF("statm", S_IRUGO, pid_statm), 2039 REG("maps", S_IRUGO, maps), 2040 #ifdef CONFIG_NUMA 2041 REG("numa_maps", S_IRUGO, numa_maps), 2042 #endif 2043 REG("mem", S_IRUSR|S_IWUSR, mem), 2044 #ifdef CONFIG_SECCOMP 2045 REG("seccomp", S_IRUSR|S_IWUSR, seccomp), 2046 #endif 2047 LNK("cwd", cwd), 2048 LNK("root", root), 2049 LNK("exe", exe), 2050 REG("mounts", S_IRUGO, mounts), 2051 #ifdef CONFIG_MMU 2052 REG("smaps", S_IRUGO, smaps), 2053 #endif 2054 #ifdef CONFIG_SECURITY 2055 DIR("attr", S_IRUGO|S_IXUGO, attr_dir), 2056 #endif 2057 #ifdef CONFIG_KALLSYMS 2058 INF("wchan", S_IRUGO, pid_wchan), 2059 #endif 2060 #ifdef CONFIG_SCHEDSTATS 2061 INF("schedstat", S_IRUGO, pid_schedstat), 2062 #endif 2063 #ifdef CONFIG_CPUSETS 2064 REG("cpuset", S_IRUGO, cpuset), 2065 #endif 2066 INF("oom_score", S_IRUGO, oom_score), 2067 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust), 2068 #ifdef CONFIG_AUDITSYSCALL 2069 REG("loginuid", S_IWUSR|S_IRUGO, loginuid), 2070 #endif 2071 }; 2072 2073 static int proc_tid_base_readdir(struct file * filp, 2074 void * dirent, filldir_t filldir) 2075 { 2076 return proc_pident_readdir(filp,dirent,filldir, 2077 tid_base_stuff,ARRAY_SIZE(tid_base_stuff)); 2078 } 2079 2080 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 2081 return proc_pident_lookup(dir, dentry, 2082 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 2083 } 2084 2085 static struct file_operations proc_tid_base_operations = { 2086 .read = generic_read_dir, 2087 .readdir = proc_tid_base_readdir, 2088 }; 2089 2090 static struct inode_operations proc_tid_base_inode_operations = { 2091 .lookup = proc_tid_base_lookup, 2092 .getattr = pid_getattr, 2093 .setattr = proc_setattr, 2094 }; 2095 2096 static struct dentry *proc_task_instantiate(struct inode *dir, 2097 struct dentry *dentry, struct task_struct *task, void *ptr) 2098 { 2099 struct dentry *error = ERR_PTR(-ENOENT); 2100 struct inode *inode; 2101 inode = proc_pid_make_inode(dir->i_sb, task); 2102 2103 if (!inode) 2104 goto out; 2105 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 2106 inode->i_op = &proc_tid_base_inode_operations; 2107 inode->i_fop = &proc_tid_base_operations; 2108 inode->i_flags|=S_IMMUTABLE; 2109 inode->i_nlink = 3; 2110 #ifdef CONFIG_SECURITY 2111 inode->i_nlink += 1; 2112 #endif 2113 2114 dentry->d_op = &pid_dentry_operations; 2115 2116 d_add(dentry, inode); 2117 /* Close the race of the process dying before we return the dentry */ 2118 if (pid_revalidate(dentry, NULL)) 2119 error = NULL; 2120 out: 2121 return error; 2122 } 2123 2124 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 2125 { 2126 struct dentry *result = ERR_PTR(-ENOENT); 2127 struct task_struct *task; 2128 struct task_struct *leader = get_proc_task(dir); 2129 unsigned tid; 2130 2131 if (!leader) 2132 goto out_no_task; 2133 2134 tid = name_to_int(dentry); 2135 if (tid == ~0U) 2136 goto out; 2137 2138 rcu_read_lock(); 2139 task = find_task_by_pid(tid); 2140 if (task) 2141 get_task_struct(task); 2142 rcu_read_unlock(); 2143 if (!task) 2144 goto out; 2145 if (leader->tgid != task->tgid) 2146 goto out_drop_task; 2147 2148 result = proc_task_instantiate(dir, dentry, task, NULL); 2149 out_drop_task: 2150 put_task_struct(task); 2151 out: 2152 put_task_struct(leader); 2153 out_no_task: 2154 return result; 2155 } 2156 2157 /* 2158 * Find the first tid of a thread group to return to user space. 2159 * 2160 * Usually this is just the thread group leader, but if the users 2161 * buffer was too small or there was a seek into the middle of the 2162 * directory we have more work todo. 2163 * 2164 * In the case of a short read we start with find_task_by_pid. 2165 * 2166 * In the case of a seek we start with the leader and walk nr 2167 * threads past it. 2168 */ 2169 static struct task_struct *first_tid(struct task_struct *leader, 2170 int tid, int nr) 2171 { 2172 struct task_struct *pos; 2173 2174 rcu_read_lock(); 2175 /* Attempt to start with the pid of a thread */ 2176 if (tid && (nr > 0)) { 2177 pos = find_task_by_pid(tid); 2178 if (pos && (pos->group_leader == leader)) 2179 goto found; 2180 } 2181 2182 /* If nr exceeds the number of threads there is nothing todo */ 2183 pos = NULL; 2184 if (nr && nr >= get_nr_threads(leader)) 2185 goto out; 2186 2187 /* If we haven't found our starting place yet start 2188 * with the leader and walk nr threads forward. 2189 */ 2190 for (pos = leader; nr > 0; --nr) { 2191 pos = next_thread(pos); 2192 if (pos == leader) { 2193 pos = NULL; 2194 goto out; 2195 } 2196 } 2197 found: 2198 get_task_struct(pos); 2199 out: 2200 rcu_read_unlock(); 2201 return pos; 2202 } 2203 2204 /* 2205 * Find the next thread in the thread list. 2206 * Return NULL if there is an error or no next thread. 2207 * 2208 * The reference to the input task_struct is released. 2209 */ 2210 static struct task_struct *next_tid(struct task_struct *start) 2211 { 2212 struct task_struct *pos = NULL; 2213 rcu_read_lock(); 2214 if (pid_alive(start)) { 2215 pos = next_thread(start); 2216 if (thread_group_leader(pos)) 2217 pos = NULL; 2218 else 2219 get_task_struct(pos); 2220 } 2221 rcu_read_unlock(); 2222 put_task_struct(start); 2223 return pos; 2224 } 2225 2226 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 2227 struct task_struct *task, int tid) 2228 { 2229 char name[PROC_NUMBUF]; 2230 int len = snprintf(name, sizeof(name), "%d", tid); 2231 return proc_fill_cache(filp, dirent, filldir, name, len, 2232 proc_task_instantiate, task, NULL); 2233 } 2234 2235 /* for the /proc/TGID/task/ directories */ 2236 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir) 2237 { 2238 struct dentry *dentry = filp->f_path.dentry; 2239 struct inode *inode = dentry->d_inode; 2240 struct task_struct *leader = get_proc_task(inode); 2241 struct task_struct *task; 2242 int retval = -ENOENT; 2243 ino_t ino; 2244 int tid; 2245 unsigned long pos = filp->f_pos; /* avoiding "long long" filp->f_pos */ 2246 2247 if (!leader) 2248 goto out_no_task; 2249 retval = 0; 2250 2251 switch (pos) { 2252 case 0: 2253 ino = inode->i_ino; 2254 if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0) 2255 goto out; 2256 pos++; 2257 /* fall through */ 2258 case 1: 2259 ino = parent_ino(dentry); 2260 if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0) 2261 goto out; 2262 pos++; 2263 /* fall through */ 2264 } 2265 2266 /* f_version caches the tgid value that the last readdir call couldn't 2267 * return. lseek aka telldir automagically resets f_version to 0. 2268 */ 2269 tid = filp->f_version; 2270 filp->f_version = 0; 2271 for (task = first_tid(leader, tid, pos - 2); 2272 task; 2273 task = next_tid(task), pos++) { 2274 tid = task->pid; 2275 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) { 2276 /* returning this tgid failed, save it as the first 2277 * pid for the next readir call */ 2278 filp->f_version = tid; 2279 put_task_struct(task); 2280 break; 2281 } 2282 } 2283 out: 2284 filp->f_pos = pos; 2285 put_task_struct(leader); 2286 out_no_task: 2287 return retval; 2288 } 2289 2290 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 2291 { 2292 struct inode *inode = dentry->d_inode; 2293 struct task_struct *p = get_proc_task(inode); 2294 generic_fillattr(inode, stat); 2295 2296 if (p) { 2297 rcu_read_lock(); 2298 stat->nlink += get_nr_threads(p); 2299 rcu_read_unlock(); 2300 put_task_struct(p); 2301 } 2302 2303 return 0; 2304 } 2305 2306 static struct inode_operations proc_task_inode_operations = { 2307 .lookup = proc_task_lookup, 2308 .getattr = proc_task_getattr, 2309 .setattr = proc_setattr, 2310 }; 2311 2312 static struct file_operations proc_task_operations = { 2313 .read = generic_read_dir, 2314 .readdir = proc_task_readdir, 2315 }; 2316