xref: /linux/fs/proc/base.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
84 #include "internal.h"
85 
86 /* NOTE:
87  *	Implementing inode permission operations in /proc is almost
88  *	certainly an error.  Permission checks need to happen during
89  *	each system call not at open time.  The reason is that most of
90  *	what we wish to check for permissions in /proc varies at runtime.
91  *
92  *	The classic example of a problem is opening file descriptors
93  *	in /proc for a task before it execs a suid executable.
94  */
95 
96 struct pid_entry {
97 	char *name;
98 	int len;
99 	mode_t mode;
100 	const struct inode_operations *iop;
101 	const struct file_operations *fop;
102 	union proc_op op;
103 };
104 
105 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
106 	.name = (NAME),					\
107 	.len  = sizeof(NAME) - 1,			\
108 	.mode = MODE,					\
109 	.iop  = IOP,					\
110 	.fop  = FOP,					\
111 	.op   = OP,					\
112 }
113 
114 #define DIR(NAME, MODE, iops, fops)	\
115 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
116 #define LNK(NAME, get_link)					\
117 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
118 		&proc_pid_link_inode_operations, NULL,		\
119 		{ .proc_get_link = get_link } )
120 #define REG(NAME, MODE, fops)				\
121 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
122 #define INF(NAME, MODE, read)				\
123 	NOD(NAME, (S_IFREG|(MODE)), 			\
124 		NULL, &proc_info_file_operations,	\
125 		{ .proc_read = read } )
126 #define ONE(NAME, MODE, show)				\
127 	NOD(NAME, (S_IFREG|(MODE)), 			\
128 		NULL, &proc_single_file_operations,	\
129 		{ .proc_show = show } )
130 
131 /*
132  * Count the number of hardlinks for the pid_entry table, excluding the .
133  * and .. links.
134  */
135 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
136 	unsigned int n)
137 {
138 	unsigned int i;
139 	unsigned int count;
140 
141 	count = 0;
142 	for (i = 0; i < n; ++i) {
143 		if (S_ISDIR(entries[i].mode))
144 			++count;
145 	}
146 
147 	return count;
148 }
149 
150 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
151 {
152 	struct fs_struct *fs;
153 	int result = -ENOENT;
154 
155 	task_lock(task);
156 	fs = task->fs;
157 	if (fs) {
158 		read_lock(&fs->lock);
159 		*path = root ? fs->root : fs->pwd;
160 		path_get(path);
161 		read_unlock(&fs->lock);
162 		result = 0;
163 	}
164 	task_unlock(task);
165 	return result;
166 }
167 
168 static int get_nr_threads(struct task_struct *tsk)
169 {
170 	unsigned long flags;
171 	int count = 0;
172 
173 	if (lock_task_sighand(tsk, &flags)) {
174 		count = atomic_read(&tsk->signal->count);
175 		unlock_task_sighand(tsk, &flags);
176 	}
177 	return count;
178 }
179 
180 static int proc_cwd_link(struct inode *inode, struct path *path)
181 {
182 	struct task_struct *task = get_proc_task(inode);
183 	int result = -ENOENT;
184 
185 	if (task) {
186 		result = get_fs_path(task, path, 0);
187 		put_task_struct(task);
188 	}
189 	return result;
190 }
191 
192 static int proc_root_link(struct inode *inode, struct path *path)
193 {
194 	struct task_struct *task = get_proc_task(inode);
195 	int result = -ENOENT;
196 
197 	if (task) {
198 		result = get_fs_path(task, path, 1);
199 		put_task_struct(task);
200 	}
201 	return result;
202 }
203 
204 /*
205  * Return zero if current may access user memory in @task, -error if not.
206  */
207 static int check_mem_permission(struct task_struct *task)
208 {
209 	/*
210 	 * A task can always look at itself, in case it chooses
211 	 * to use system calls instead of load instructions.
212 	 */
213 	if (task == current)
214 		return 0;
215 
216 	/*
217 	 * If current is actively ptrace'ing, and would also be
218 	 * permitted to freshly attach with ptrace now, permit it.
219 	 */
220 	if (task_is_stopped_or_traced(task)) {
221 		int match;
222 		rcu_read_lock();
223 		match = (tracehook_tracer_task(task) == current);
224 		rcu_read_unlock();
225 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
226 			return 0;
227 	}
228 
229 	/*
230 	 * Noone else is allowed.
231 	 */
232 	return -EPERM;
233 }
234 
235 struct mm_struct *mm_for_maps(struct task_struct *task)
236 {
237 	struct mm_struct *mm = get_task_mm(task);
238 	if (!mm)
239 		return NULL;
240 	down_read(&mm->mmap_sem);
241 	task_lock(task);
242 	if (task->mm != mm)
243 		goto out;
244 	if (task->mm != current->mm &&
245 	    __ptrace_may_access(task, PTRACE_MODE_READ) < 0)
246 		goto out;
247 	task_unlock(task);
248 	return mm;
249 out:
250 	task_unlock(task);
251 	up_read(&mm->mmap_sem);
252 	mmput(mm);
253 	return NULL;
254 }
255 
256 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
257 {
258 	int res = 0;
259 	unsigned int len;
260 	struct mm_struct *mm = get_task_mm(task);
261 	if (!mm)
262 		goto out;
263 	if (!mm->arg_end)
264 		goto out_mm;	/* Shh! No looking before we're done */
265 
266  	len = mm->arg_end - mm->arg_start;
267 
268 	if (len > PAGE_SIZE)
269 		len = PAGE_SIZE;
270 
271 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
272 
273 	// If the nul at the end of args has been overwritten, then
274 	// assume application is using setproctitle(3).
275 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
276 		len = strnlen(buffer, res);
277 		if (len < res) {
278 		    res = len;
279 		} else {
280 			len = mm->env_end - mm->env_start;
281 			if (len > PAGE_SIZE - res)
282 				len = PAGE_SIZE - res;
283 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
284 			res = strnlen(buffer, res);
285 		}
286 	}
287 out_mm:
288 	mmput(mm);
289 out:
290 	return res;
291 }
292 
293 static int proc_pid_auxv(struct task_struct *task, char *buffer)
294 {
295 	int res = 0;
296 	struct mm_struct *mm = get_task_mm(task);
297 	if (mm) {
298 		unsigned int nwords = 0;
299 		do {
300 			nwords += 2;
301 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
302 		res = nwords * sizeof(mm->saved_auxv[0]);
303 		if (res > PAGE_SIZE)
304 			res = PAGE_SIZE;
305 		memcpy(buffer, mm->saved_auxv, res);
306 		mmput(mm);
307 	}
308 	return res;
309 }
310 
311 
312 #ifdef CONFIG_KALLSYMS
313 /*
314  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
315  * Returns the resolved symbol.  If that fails, simply return the address.
316  */
317 static int proc_pid_wchan(struct task_struct *task, char *buffer)
318 {
319 	unsigned long wchan;
320 	char symname[KSYM_NAME_LEN];
321 
322 	wchan = get_wchan(task);
323 
324 	if (lookup_symbol_name(wchan, symname) < 0)
325 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
326 			return 0;
327 		else
328 			return sprintf(buffer, "%lu", wchan);
329 	else
330 		return sprintf(buffer, "%s", symname);
331 }
332 #endif /* CONFIG_KALLSYMS */
333 
334 #ifdef CONFIG_STACKTRACE
335 
336 #define MAX_STACK_TRACE_DEPTH	64
337 
338 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
339 			  struct pid *pid, struct task_struct *task)
340 {
341 	struct stack_trace trace;
342 	unsigned long *entries;
343 	int i;
344 
345 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
346 	if (!entries)
347 		return -ENOMEM;
348 
349 	trace.nr_entries	= 0;
350 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
351 	trace.entries		= entries;
352 	trace.skip		= 0;
353 	save_stack_trace_tsk(task, &trace);
354 
355 	for (i = 0; i < trace.nr_entries; i++) {
356 		seq_printf(m, "[<%p>] %pS\n",
357 			   (void *)entries[i], (void *)entries[i]);
358 	}
359 	kfree(entries);
360 
361 	return 0;
362 }
363 #endif
364 
365 #ifdef CONFIG_SCHEDSTATS
366 /*
367  * Provides /proc/PID/schedstat
368  */
369 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
370 {
371 	return sprintf(buffer, "%llu %llu %lu\n",
372 			(unsigned long long)task->se.sum_exec_runtime,
373 			(unsigned long long)task->sched_info.run_delay,
374 			task->sched_info.pcount);
375 }
376 #endif
377 
378 #ifdef CONFIG_LATENCYTOP
379 static int lstats_show_proc(struct seq_file *m, void *v)
380 {
381 	int i;
382 	struct inode *inode = m->private;
383 	struct task_struct *task = get_proc_task(inode);
384 
385 	if (!task)
386 		return -ESRCH;
387 	seq_puts(m, "Latency Top version : v0.1\n");
388 	for (i = 0; i < 32; i++) {
389 		if (task->latency_record[i].backtrace[0]) {
390 			int q;
391 			seq_printf(m, "%i %li %li ",
392 				task->latency_record[i].count,
393 				task->latency_record[i].time,
394 				task->latency_record[i].max);
395 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
396 				char sym[KSYM_SYMBOL_LEN];
397 				char *c;
398 				if (!task->latency_record[i].backtrace[q])
399 					break;
400 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
401 					break;
402 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
403 				c = strchr(sym, '+');
404 				if (c)
405 					*c = 0;
406 				seq_printf(m, "%s ", sym);
407 			}
408 			seq_printf(m, "\n");
409 		}
410 
411 	}
412 	put_task_struct(task);
413 	return 0;
414 }
415 
416 static int lstats_open(struct inode *inode, struct file *file)
417 {
418 	return single_open(file, lstats_show_proc, inode);
419 }
420 
421 static ssize_t lstats_write(struct file *file, const char __user *buf,
422 			    size_t count, loff_t *offs)
423 {
424 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
425 
426 	if (!task)
427 		return -ESRCH;
428 	clear_all_latency_tracing(task);
429 	put_task_struct(task);
430 
431 	return count;
432 }
433 
434 static const struct file_operations proc_lstats_operations = {
435 	.open		= lstats_open,
436 	.read		= seq_read,
437 	.write		= lstats_write,
438 	.llseek		= seq_lseek,
439 	.release	= single_release,
440 };
441 
442 #endif
443 
444 /* The badness from the OOM killer */
445 unsigned long badness(struct task_struct *p, unsigned long uptime);
446 static int proc_oom_score(struct task_struct *task, char *buffer)
447 {
448 	unsigned long points;
449 	struct timespec uptime;
450 
451 	do_posix_clock_monotonic_gettime(&uptime);
452 	read_lock(&tasklist_lock);
453 	points = badness(task, uptime.tv_sec);
454 	read_unlock(&tasklist_lock);
455 	return sprintf(buffer, "%lu\n", points);
456 }
457 
458 struct limit_names {
459 	char *name;
460 	char *unit;
461 };
462 
463 static const struct limit_names lnames[RLIM_NLIMITS] = {
464 	[RLIMIT_CPU] = {"Max cpu time", "ms"},
465 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
466 	[RLIMIT_DATA] = {"Max data size", "bytes"},
467 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
468 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
469 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
470 	[RLIMIT_NPROC] = {"Max processes", "processes"},
471 	[RLIMIT_NOFILE] = {"Max open files", "files"},
472 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
473 	[RLIMIT_AS] = {"Max address space", "bytes"},
474 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
475 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
476 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
477 	[RLIMIT_NICE] = {"Max nice priority", NULL},
478 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
479 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
480 };
481 
482 /* Display limits for a process */
483 static int proc_pid_limits(struct task_struct *task, char *buffer)
484 {
485 	unsigned int i;
486 	int count = 0;
487 	unsigned long flags;
488 	char *bufptr = buffer;
489 
490 	struct rlimit rlim[RLIM_NLIMITS];
491 
492 	if (!lock_task_sighand(task, &flags))
493 		return 0;
494 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
495 	unlock_task_sighand(task, &flags);
496 
497 	/*
498 	 * print the file header
499 	 */
500 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
501 			"Limit", "Soft Limit", "Hard Limit", "Units");
502 
503 	for (i = 0; i < RLIM_NLIMITS; i++) {
504 		if (rlim[i].rlim_cur == RLIM_INFINITY)
505 			count += sprintf(&bufptr[count], "%-25s %-20s ",
506 					 lnames[i].name, "unlimited");
507 		else
508 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
509 					 lnames[i].name, rlim[i].rlim_cur);
510 
511 		if (rlim[i].rlim_max == RLIM_INFINITY)
512 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
513 		else
514 			count += sprintf(&bufptr[count], "%-20lu ",
515 					 rlim[i].rlim_max);
516 
517 		if (lnames[i].unit)
518 			count += sprintf(&bufptr[count], "%-10s\n",
519 					 lnames[i].unit);
520 		else
521 			count += sprintf(&bufptr[count], "\n");
522 	}
523 
524 	return count;
525 }
526 
527 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
528 static int proc_pid_syscall(struct task_struct *task, char *buffer)
529 {
530 	long nr;
531 	unsigned long args[6], sp, pc;
532 
533 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
534 		return sprintf(buffer, "running\n");
535 
536 	if (nr < 0)
537 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
538 
539 	return sprintf(buffer,
540 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
541 		       nr,
542 		       args[0], args[1], args[2], args[3], args[4], args[5],
543 		       sp, pc);
544 }
545 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
546 
547 /************************************************************************/
548 /*                       Here the fs part begins                        */
549 /************************************************************************/
550 
551 /* permission checks */
552 static int proc_fd_access_allowed(struct inode *inode)
553 {
554 	struct task_struct *task;
555 	int allowed = 0;
556 	/* Allow access to a task's file descriptors if it is us or we
557 	 * may use ptrace attach to the process and find out that
558 	 * information.
559 	 */
560 	task = get_proc_task(inode);
561 	if (task) {
562 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
563 		put_task_struct(task);
564 	}
565 	return allowed;
566 }
567 
568 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
569 {
570 	int error;
571 	struct inode *inode = dentry->d_inode;
572 
573 	if (attr->ia_valid & ATTR_MODE)
574 		return -EPERM;
575 
576 	error = inode_change_ok(inode, attr);
577 	if (!error)
578 		error = inode_setattr(inode, attr);
579 	return error;
580 }
581 
582 static const struct inode_operations proc_def_inode_operations = {
583 	.setattr	= proc_setattr,
584 };
585 
586 static int mounts_open_common(struct inode *inode, struct file *file,
587 			      const struct seq_operations *op)
588 {
589 	struct task_struct *task = get_proc_task(inode);
590 	struct nsproxy *nsp;
591 	struct mnt_namespace *ns = NULL;
592 	struct path root;
593 	struct proc_mounts *p;
594 	int ret = -EINVAL;
595 
596 	if (task) {
597 		rcu_read_lock();
598 		nsp = task_nsproxy(task);
599 		if (nsp) {
600 			ns = nsp->mnt_ns;
601 			if (ns)
602 				get_mnt_ns(ns);
603 		}
604 		rcu_read_unlock();
605 		if (ns && get_fs_path(task, &root, 1) == 0)
606 			ret = 0;
607 		put_task_struct(task);
608 	}
609 
610 	if (!ns)
611 		goto err;
612 	if (ret)
613 		goto err_put_ns;
614 
615 	ret = -ENOMEM;
616 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
617 	if (!p)
618 		goto err_put_path;
619 
620 	file->private_data = &p->m;
621 	ret = seq_open(file, op);
622 	if (ret)
623 		goto err_free;
624 
625 	p->m.private = p;
626 	p->ns = ns;
627 	p->root = root;
628 	p->event = ns->event;
629 
630 	return 0;
631 
632  err_free:
633 	kfree(p);
634  err_put_path:
635 	path_put(&root);
636  err_put_ns:
637 	put_mnt_ns(ns);
638  err:
639 	return ret;
640 }
641 
642 static int mounts_release(struct inode *inode, struct file *file)
643 {
644 	struct proc_mounts *p = file->private_data;
645 	path_put(&p->root);
646 	put_mnt_ns(p->ns);
647 	return seq_release(inode, file);
648 }
649 
650 static unsigned mounts_poll(struct file *file, poll_table *wait)
651 {
652 	struct proc_mounts *p = file->private_data;
653 	struct mnt_namespace *ns = p->ns;
654 	unsigned res = POLLIN | POLLRDNORM;
655 
656 	poll_wait(file, &ns->poll, wait);
657 
658 	spin_lock(&vfsmount_lock);
659 	if (p->event != ns->event) {
660 		p->event = ns->event;
661 		res |= POLLERR | POLLPRI;
662 	}
663 	spin_unlock(&vfsmount_lock);
664 
665 	return res;
666 }
667 
668 static int mounts_open(struct inode *inode, struct file *file)
669 {
670 	return mounts_open_common(inode, file, &mounts_op);
671 }
672 
673 static const struct file_operations proc_mounts_operations = {
674 	.open		= mounts_open,
675 	.read		= seq_read,
676 	.llseek		= seq_lseek,
677 	.release	= mounts_release,
678 	.poll		= mounts_poll,
679 };
680 
681 static int mountinfo_open(struct inode *inode, struct file *file)
682 {
683 	return mounts_open_common(inode, file, &mountinfo_op);
684 }
685 
686 static const struct file_operations proc_mountinfo_operations = {
687 	.open		= mountinfo_open,
688 	.read		= seq_read,
689 	.llseek		= seq_lseek,
690 	.release	= mounts_release,
691 	.poll		= mounts_poll,
692 };
693 
694 static int mountstats_open(struct inode *inode, struct file *file)
695 {
696 	return mounts_open_common(inode, file, &mountstats_op);
697 }
698 
699 static const struct file_operations proc_mountstats_operations = {
700 	.open		= mountstats_open,
701 	.read		= seq_read,
702 	.llseek		= seq_lseek,
703 	.release	= mounts_release,
704 };
705 
706 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
707 
708 static ssize_t proc_info_read(struct file * file, char __user * buf,
709 			  size_t count, loff_t *ppos)
710 {
711 	struct inode * inode = file->f_path.dentry->d_inode;
712 	unsigned long page;
713 	ssize_t length;
714 	struct task_struct *task = get_proc_task(inode);
715 
716 	length = -ESRCH;
717 	if (!task)
718 		goto out_no_task;
719 
720 	if (count > PROC_BLOCK_SIZE)
721 		count = PROC_BLOCK_SIZE;
722 
723 	length = -ENOMEM;
724 	if (!(page = __get_free_page(GFP_TEMPORARY)))
725 		goto out;
726 
727 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
728 
729 	if (length >= 0)
730 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
731 	free_page(page);
732 out:
733 	put_task_struct(task);
734 out_no_task:
735 	return length;
736 }
737 
738 static const struct file_operations proc_info_file_operations = {
739 	.read		= proc_info_read,
740 };
741 
742 static int proc_single_show(struct seq_file *m, void *v)
743 {
744 	struct inode *inode = m->private;
745 	struct pid_namespace *ns;
746 	struct pid *pid;
747 	struct task_struct *task;
748 	int ret;
749 
750 	ns = inode->i_sb->s_fs_info;
751 	pid = proc_pid(inode);
752 	task = get_pid_task(pid, PIDTYPE_PID);
753 	if (!task)
754 		return -ESRCH;
755 
756 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
757 
758 	put_task_struct(task);
759 	return ret;
760 }
761 
762 static int proc_single_open(struct inode *inode, struct file *filp)
763 {
764 	int ret;
765 	ret = single_open(filp, proc_single_show, NULL);
766 	if (!ret) {
767 		struct seq_file *m = filp->private_data;
768 
769 		m->private = inode;
770 	}
771 	return ret;
772 }
773 
774 static const struct file_operations proc_single_file_operations = {
775 	.open		= proc_single_open,
776 	.read		= seq_read,
777 	.llseek		= seq_lseek,
778 	.release	= single_release,
779 };
780 
781 static int mem_open(struct inode* inode, struct file* file)
782 {
783 	file->private_data = (void*)((long)current->self_exec_id);
784 	return 0;
785 }
786 
787 static ssize_t mem_read(struct file * file, char __user * buf,
788 			size_t count, loff_t *ppos)
789 {
790 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
791 	char *page;
792 	unsigned long src = *ppos;
793 	int ret = -ESRCH;
794 	struct mm_struct *mm;
795 
796 	if (!task)
797 		goto out_no_task;
798 
799 	if (check_mem_permission(task))
800 		goto out;
801 
802 	ret = -ENOMEM;
803 	page = (char *)__get_free_page(GFP_TEMPORARY);
804 	if (!page)
805 		goto out;
806 
807 	ret = 0;
808 
809 	mm = get_task_mm(task);
810 	if (!mm)
811 		goto out_free;
812 
813 	ret = -EIO;
814 
815 	if (file->private_data != (void*)((long)current->self_exec_id))
816 		goto out_put;
817 
818 	ret = 0;
819 
820 	while (count > 0) {
821 		int this_len, retval;
822 
823 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
824 		retval = access_process_vm(task, src, page, this_len, 0);
825 		if (!retval || check_mem_permission(task)) {
826 			if (!ret)
827 				ret = -EIO;
828 			break;
829 		}
830 
831 		if (copy_to_user(buf, page, retval)) {
832 			ret = -EFAULT;
833 			break;
834 		}
835 
836 		ret += retval;
837 		src += retval;
838 		buf += retval;
839 		count -= retval;
840 	}
841 	*ppos = src;
842 
843 out_put:
844 	mmput(mm);
845 out_free:
846 	free_page((unsigned long) page);
847 out:
848 	put_task_struct(task);
849 out_no_task:
850 	return ret;
851 }
852 
853 #define mem_write NULL
854 
855 #ifndef mem_write
856 /* This is a security hazard */
857 static ssize_t mem_write(struct file * file, const char __user *buf,
858 			 size_t count, loff_t *ppos)
859 {
860 	int copied;
861 	char *page;
862 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
863 	unsigned long dst = *ppos;
864 
865 	copied = -ESRCH;
866 	if (!task)
867 		goto out_no_task;
868 
869 	if (check_mem_permission(task))
870 		goto out;
871 
872 	copied = -ENOMEM;
873 	page = (char *)__get_free_page(GFP_TEMPORARY);
874 	if (!page)
875 		goto out;
876 
877 	copied = 0;
878 	while (count > 0) {
879 		int this_len, retval;
880 
881 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
882 		if (copy_from_user(page, buf, this_len)) {
883 			copied = -EFAULT;
884 			break;
885 		}
886 		retval = access_process_vm(task, dst, page, this_len, 1);
887 		if (!retval) {
888 			if (!copied)
889 				copied = -EIO;
890 			break;
891 		}
892 		copied += retval;
893 		buf += retval;
894 		dst += retval;
895 		count -= retval;
896 	}
897 	*ppos = dst;
898 	free_page((unsigned long) page);
899 out:
900 	put_task_struct(task);
901 out_no_task:
902 	return copied;
903 }
904 #endif
905 
906 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
907 {
908 	switch (orig) {
909 	case 0:
910 		file->f_pos = offset;
911 		break;
912 	case 1:
913 		file->f_pos += offset;
914 		break;
915 	default:
916 		return -EINVAL;
917 	}
918 	force_successful_syscall_return();
919 	return file->f_pos;
920 }
921 
922 static const struct file_operations proc_mem_operations = {
923 	.llseek		= mem_lseek,
924 	.read		= mem_read,
925 	.write		= mem_write,
926 	.open		= mem_open,
927 };
928 
929 static ssize_t environ_read(struct file *file, char __user *buf,
930 			size_t count, loff_t *ppos)
931 {
932 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
933 	char *page;
934 	unsigned long src = *ppos;
935 	int ret = -ESRCH;
936 	struct mm_struct *mm;
937 
938 	if (!task)
939 		goto out_no_task;
940 
941 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
942 		goto out;
943 
944 	ret = -ENOMEM;
945 	page = (char *)__get_free_page(GFP_TEMPORARY);
946 	if (!page)
947 		goto out;
948 
949 	ret = 0;
950 
951 	mm = get_task_mm(task);
952 	if (!mm)
953 		goto out_free;
954 
955 	while (count > 0) {
956 		int this_len, retval, max_len;
957 
958 		this_len = mm->env_end - (mm->env_start + src);
959 
960 		if (this_len <= 0)
961 			break;
962 
963 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
964 		this_len = (this_len > max_len) ? max_len : this_len;
965 
966 		retval = access_process_vm(task, (mm->env_start + src),
967 			page, this_len, 0);
968 
969 		if (retval <= 0) {
970 			ret = retval;
971 			break;
972 		}
973 
974 		if (copy_to_user(buf, page, retval)) {
975 			ret = -EFAULT;
976 			break;
977 		}
978 
979 		ret += retval;
980 		src += retval;
981 		buf += retval;
982 		count -= retval;
983 	}
984 	*ppos = src;
985 
986 	mmput(mm);
987 out_free:
988 	free_page((unsigned long) page);
989 out:
990 	put_task_struct(task);
991 out_no_task:
992 	return ret;
993 }
994 
995 static const struct file_operations proc_environ_operations = {
996 	.read		= environ_read,
997 };
998 
999 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1000 				size_t count, loff_t *ppos)
1001 {
1002 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1003 	char buffer[PROC_NUMBUF];
1004 	size_t len;
1005 	int oom_adjust;
1006 
1007 	if (!task)
1008 		return -ESRCH;
1009 	task_lock(task);
1010 	if (task->mm)
1011 		oom_adjust = task->mm->oom_adj;
1012 	else
1013 		oom_adjust = OOM_DISABLE;
1014 	task_unlock(task);
1015 	put_task_struct(task);
1016 
1017 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1018 
1019 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1020 }
1021 
1022 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1023 				size_t count, loff_t *ppos)
1024 {
1025 	struct task_struct *task;
1026 	char buffer[PROC_NUMBUF], *end;
1027 	int oom_adjust;
1028 
1029 	memset(buffer, 0, sizeof(buffer));
1030 	if (count > sizeof(buffer) - 1)
1031 		count = sizeof(buffer) - 1;
1032 	if (copy_from_user(buffer, buf, count))
1033 		return -EFAULT;
1034 	oom_adjust = simple_strtol(buffer, &end, 0);
1035 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1036 	     oom_adjust != OOM_DISABLE)
1037 		return -EINVAL;
1038 	if (*end == '\n')
1039 		end++;
1040 	task = get_proc_task(file->f_path.dentry->d_inode);
1041 	if (!task)
1042 		return -ESRCH;
1043 	task_lock(task);
1044 	if (!task->mm) {
1045 		task_unlock(task);
1046 		put_task_struct(task);
1047 		return -EINVAL;
1048 	}
1049 	if (oom_adjust < task->mm->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1050 		task_unlock(task);
1051 		put_task_struct(task);
1052 		return -EACCES;
1053 	}
1054 	task->mm->oom_adj = oom_adjust;
1055 	task_unlock(task);
1056 	put_task_struct(task);
1057 	if (end - buffer == 0)
1058 		return -EIO;
1059 	return end - buffer;
1060 }
1061 
1062 static const struct file_operations proc_oom_adjust_operations = {
1063 	.read		= oom_adjust_read,
1064 	.write		= oom_adjust_write,
1065 };
1066 
1067 #ifdef CONFIG_AUDITSYSCALL
1068 #define TMPBUFLEN 21
1069 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1070 				  size_t count, loff_t *ppos)
1071 {
1072 	struct inode * inode = file->f_path.dentry->d_inode;
1073 	struct task_struct *task = get_proc_task(inode);
1074 	ssize_t length;
1075 	char tmpbuf[TMPBUFLEN];
1076 
1077 	if (!task)
1078 		return -ESRCH;
1079 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1080 				audit_get_loginuid(task));
1081 	put_task_struct(task);
1082 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1083 }
1084 
1085 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1086 				   size_t count, loff_t *ppos)
1087 {
1088 	struct inode * inode = file->f_path.dentry->d_inode;
1089 	char *page, *tmp;
1090 	ssize_t length;
1091 	uid_t loginuid;
1092 
1093 	if (!capable(CAP_AUDIT_CONTROL))
1094 		return -EPERM;
1095 
1096 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1097 		return -EPERM;
1098 
1099 	if (count >= PAGE_SIZE)
1100 		count = PAGE_SIZE - 1;
1101 
1102 	if (*ppos != 0) {
1103 		/* No partial writes. */
1104 		return -EINVAL;
1105 	}
1106 	page = (char*)__get_free_page(GFP_TEMPORARY);
1107 	if (!page)
1108 		return -ENOMEM;
1109 	length = -EFAULT;
1110 	if (copy_from_user(page, buf, count))
1111 		goto out_free_page;
1112 
1113 	page[count] = '\0';
1114 	loginuid = simple_strtoul(page, &tmp, 10);
1115 	if (tmp == page) {
1116 		length = -EINVAL;
1117 		goto out_free_page;
1118 
1119 	}
1120 	length = audit_set_loginuid(current, loginuid);
1121 	if (likely(length == 0))
1122 		length = count;
1123 
1124 out_free_page:
1125 	free_page((unsigned long) page);
1126 	return length;
1127 }
1128 
1129 static const struct file_operations proc_loginuid_operations = {
1130 	.read		= proc_loginuid_read,
1131 	.write		= proc_loginuid_write,
1132 };
1133 
1134 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1135 				  size_t count, loff_t *ppos)
1136 {
1137 	struct inode * inode = file->f_path.dentry->d_inode;
1138 	struct task_struct *task = get_proc_task(inode);
1139 	ssize_t length;
1140 	char tmpbuf[TMPBUFLEN];
1141 
1142 	if (!task)
1143 		return -ESRCH;
1144 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1145 				audit_get_sessionid(task));
1146 	put_task_struct(task);
1147 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1148 }
1149 
1150 static const struct file_operations proc_sessionid_operations = {
1151 	.read		= proc_sessionid_read,
1152 };
1153 #endif
1154 
1155 #ifdef CONFIG_FAULT_INJECTION
1156 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1157 				      size_t count, loff_t *ppos)
1158 {
1159 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1160 	char buffer[PROC_NUMBUF];
1161 	size_t len;
1162 	int make_it_fail;
1163 
1164 	if (!task)
1165 		return -ESRCH;
1166 	make_it_fail = task->make_it_fail;
1167 	put_task_struct(task);
1168 
1169 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1170 
1171 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1172 }
1173 
1174 static ssize_t proc_fault_inject_write(struct file * file,
1175 			const char __user * buf, size_t count, loff_t *ppos)
1176 {
1177 	struct task_struct *task;
1178 	char buffer[PROC_NUMBUF], *end;
1179 	int make_it_fail;
1180 
1181 	if (!capable(CAP_SYS_RESOURCE))
1182 		return -EPERM;
1183 	memset(buffer, 0, sizeof(buffer));
1184 	if (count > sizeof(buffer) - 1)
1185 		count = sizeof(buffer) - 1;
1186 	if (copy_from_user(buffer, buf, count))
1187 		return -EFAULT;
1188 	make_it_fail = simple_strtol(buffer, &end, 0);
1189 	if (*end == '\n')
1190 		end++;
1191 	task = get_proc_task(file->f_dentry->d_inode);
1192 	if (!task)
1193 		return -ESRCH;
1194 	task->make_it_fail = make_it_fail;
1195 	put_task_struct(task);
1196 	if (end - buffer == 0)
1197 		return -EIO;
1198 	return end - buffer;
1199 }
1200 
1201 static const struct file_operations proc_fault_inject_operations = {
1202 	.read		= proc_fault_inject_read,
1203 	.write		= proc_fault_inject_write,
1204 };
1205 #endif
1206 
1207 
1208 #ifdef CONFIG_SCHED_DEBUG
1209 /*
1210  * Print out various scheduling related per-task fields:
1211  */
1212 static int sched_show(struct seq_file *m, void *v)
1213 {
1214 	struct inode *inode = m->private;
1215 	struct task_struct *p;
1216 
1217 	p = get_proc_task(inode);
1218 	if (!p)
1219 		return -ESRCH;
1220 	proc_sched_show_task(p, m);
1221 
1222 	put_task_struct(p);
1223 
1224 	return 0;
1225 }
1226 
1227 static ssize_t
1228 sched_write(struct file *file, const char __user *buf,
1229 	    size_t count, loff_t *offset)
1230 {
1231 	struct inode *inode = file->f_path.dentry->d_inode;
1232 	struct task_struct *p;
1233 
1234 	p = get_proc_task(inode);
1235 	if (!p)
1236 		return -ESRCH;
1237 	proc_sched_set_task(p);
1238 
1239 	put_task_struct(p);
1240 
1241 	return count;
1242 }
1243 
1244 static int sched_open(struct inode *inode, struct file *filp)
1245 {
1246 	int ret;
1247 
1248 	ret = single_open(filp, sched_show, NULL);
1249 	if (!ret) {
1250 		struct seq_file *m = filp->private_data;
1251 
1252 		m->private = inode;
1253 	}
1254 	return ret;
1255 }
1256 
1257 static const struct file_operations proc_pid_sched_operations = {
1258 	.open		= sched_open,
1259 	.read		= seq_read,
1260 	.write		= sched_write,
1261 	.llseek		= seq_lseek,
1262 	.release	= single_release,
1263 };
1264 
1265 #endif
1266 
1267 /*
1268  * We added or removed a vma mapping the executable. The vmas are only mapped
1269  * during exec and are not mapped with the mmap system call.
1270  * Callers must hold down_write() on the mm's mmap_sem for these
1271  */
1272 void added_exe_file_vma(struct mm_struct *mm)
1273 {
1274 	mm->num_exe_file_vmas++;
1275 }
1276 
1277 void removed_exe_file_vma(struct mm_struct *mm)
1278 {
1279 	mm->num_exe_file_vmas--;
1280 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1281 		fput(mm->exe_file);
1282 		mm->exe_file = NULL;
1283 	}
1284 
1285 }
1286 
1287 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1288 {
1289 	if (new_exe_file)
1290 		get_file(new_exe_file);
1291 	if (mm->exe_file)
1292 		fput(mm->exe_file);
1293 	mm->exe_file = new_exe_file;
1294 	mm->num_exe_file_vmas = 0;
1295 }
1296 
1297 struct file *get_mm_exe_file(struct mm_struct *mm)
1298 {
1299 	struct file *exe_file;
1300 
1301 	/* We need mmap_sem to protect against races with removal of
1302 	 * VM_EXECUTABLE vmas */
1303 	down_read(&mm->mmap_sem);
1304 	exe_file = mm->exe_file;
1305 	if (exe_file)
1306 		get_file(exe_file);
1307 	up_read(&mm->mmap_sem);
1308 	return exe_file;
1309 }
1310 
1311 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1312 {
1313 	/* It's safe to write the exe_file pointer without exe_file_lock because
1314 	 * this is called during fork when the task is not yet in /proc */
1315 	newmm->exe_file = get_mm_exe_file(oldmm);
1316 }
1317 
1318 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1319 {
1320 	struct task_struct *task;
1321 	struct mm_struct *mm;
1322 	struct file *exe_file;
1323 
1324 	task = get_proc_task(inode);
1325 	if (!task)
1326 		return -ENOENT;
1327 	mm = get_task_mm(task);
1328 	put_task_struct(task);
1329 	if (!mm)
1330 		return -ENOENT;
1331 	exe_file = get_mm_exe_file(mm);
1332 	mmput(mm);
1333 	if (exe_file) {
1334 		*exe_path = exe_file->f_path;
1335 		path_get(&exe_file->f_path);
1336 		fput(exe_file);
1337 		return 0;
1338 	} else
1339 		return -ENOENT;
1340 }
1341 
1342 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1343 {
1344 	struct inode *inode = dentry->d_inode;
1345 	int error = -EACCES;
1346 
1347 	/* We don't need a base pointer in the /proc filesystem */
1348 	path_put(&nd->path);
1349 
1350 	/* Are we allowed to snoop on the tasks file descriptors? */
1351 	if (!proc_fd_access_allowed(inode))
1352 		goto out;
1353 
1354 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1355 	nd->last_type = LAST_BIND;
1356 out:
1357 	return ERR_PTR(error);
1358 }
1359 
1360 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1361 {
1362 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1363 	char *pathname;
1364 	int len;
1365 
1366 	if (!tmp)
1367 		return -ENOMEM;
1368 
1369 	pathname = d_path(path, tmp, PAGE_SIZE);
1370 	len = PTR_ERR(pathname);
1371 	if (IS_ERR(pathname))
1372 		goto out;
1373 	len = tmp + PAGE_SIZE - 1 - pathname;
1374 
1375 	if (len > buflen)
1376 		len = buflen;
1377 	if (copy_to_user(buffer, pathname, len))
1378 		len = -EFAULT;
1379  out:
1380 	free_page((unsigned long)tmp);
1381 	return len;
1382 }
1383 
1384 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1385 {
1386 	int error = -EACCES;
1387 	struct inode *inode = dentry->d_inode;
1388 	struct path path;
1389 
1390 	/* Are we allowed to snoop on the tasks file descriptors? */
1391 	if (!proc_fd_access_allowed(inode))
1392 		goto out;
1393 
1394 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1395 	if (error)
1396 		goto out;
1397 
1398 	error = do_proc_readlink(&path, buffer, buflen);
1399 	path_put(&path);
1400 out:
1401 	return error;
1402 }
1403 
1404 static const struct inode_operations proc_pid_link_inode_operations = {
1405 	.readlink	= proc_pid_readlink,
1406 	.follow_link	= proc_pid_follow_link,
1407 	.setattr	= proc_setattr,
1408 };
1409 
1410 
1411 /* building an inode */
1412 
1413 static int task_dumpable(struct task_struct *task)
1414 {
1415 	int dumpable = 0;
1416 	struct mm_struct *mm;
1417 
1418 	task_lock(task);
1419 	mm = task->mm;
1420 	if (mm)
1421 		dumpable = get_dumpable(mm);
1422 	task_unlock(task);
1423 	if(dumpable == 1)
1424 		return 1;
1425 	return 0;
1426 }
1427 
1428 
1429 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1430 {
1431 	struct inode * inode;
1432 	struct proc_inode *ei;
1433 	const struct cred *cred;
1434 
1435 	/* We need a new inode */
1436 
1437 	inode = new_inode(sb);
1438 	if (!inode)
1439 		goto out;
1440 
1441 	/* Common stuff */
1442 	ei = PROC_I(inode);
1443 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1444 	inode->i_op = &proc_def_inode_operations;
1445 
1446 	/*
1447 	 * grab the reference to task.
1448 	 */
1449 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1450 	if (!ei->pid)
1451 		goto out_unlock;
1452 
1453 	if (task_dumpable(task)) {
1454 		rcu_read_lock();
1455 		cred = __task_cred(task);
1456 		inode->i_uid = cred->euid;
1457 		inode->i_gid = cred->egid;
1458 		rcu_read_unlock();
1459 	}
1460 	security_task_to_inode(task, inode);
1461 
1462 out:
1463 	return inode;
1464 
1465 out_unlock:
1466 	iput(inode);
1467 	return NULL;
1468 }
1469 
1470 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1471 {
1472 	struct inode *inode = dentry->d_inode;
1473 	struct task_struct *task;
1474 	const struct cred *cred;
1475 
1476 	generic_fillattr(inode, stat);
1477 
1478 	rcu_read_lock();
1479 	stat->uid = 0;
1480 	stat->gid = 0;
1481 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1482 	if (task) {
1483 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1484 		    task_dumpable(task)) {
1485 			cred = __task_cred(task);
1486 			stat->uid = cred->euid;
1487 			stat->gid = cred->egid;
1488 		}
1489 	}
1490 	rcu_read_unlock();
1491 	return 0;
1492 }
1493 
1494 /* dentry stuff */
1495 
1496 /*
1497  *	Exceptional case: normally we are not allowed to unhash a busy
1498  * directory. In this case, however, we can do it - no aliasing problems
1499  * due to the way we treat inodes.
1500  *
1501  * Rewrite the inode's ownerships here because the owning task may have
1502  * performed a setuid(), etc.
1503  *
1504  * Before the /proc/pid/status file was created the only way to read
1505  * the effective uid of a /process was to stat /proc/pid.  Reading
1506  * /proc/pid/status is slow enough that procps and other packages
1507  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1508  * made this apply to all per process world readable and executable
1509  * directories.
1510  */
1511 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1512 {
1513 	struct inode *inode = dentry->d_inode;
1514 	struct task_struct *task = get_proc_task(inode);
1515 	const struct cred *cred;
1516 
1517 	if (task) {
1518 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1519 		    task_dumpable(task)) {
1520 			rcu_read_lock();
1521 			cred = __task_cred(task);
1522 			inode->i_uid = cred->euid;
1523 			inode->i_gid = cred->egid;
1524 			rcu_read_unlock();
1525 		} else {
1526 			inode->i_uid = 0;
1527 			inode->i_gid = 0;
1528 		}
1529 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1530 		security_task_to_inode(task, inode);
1531 		put_task_struct(task);
1532 		return 1;
1533 	}
1534 	d_drop(dentry);
1535 	return 0;
1536 }
1537 
1538 static int pid_delete_dentry(struct dentry * dentry)
1539 {
1540 	/* Is the task we represent dead?
1541 	 * If so, then don't put the dentry on the lru list,
1542 	 * kill it immediately.
1543 	 */
1544 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1545 }
1546 
1547 static const struct dentry_operations pid_dentry_operations =
1548 {
1549 	.d_revalidate	= pid_revalidate,
1550 	.d_delete	= pid_delete_dentry,
1551 };
1552 
1553 /* Lookups */
1554 
1555 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1556 				struct task_struct *, const void *);
1557 
1558 /*
1559  * Fill a directory entry.
1560  *
1561  * If possible create the dcache entry and derive our inode number and
1562  * file type from dcache entry.
1563  *
1564  * Since all of the proc inode numbers are dynamically generated, the inode
1565  * numbers do not exist until the inode is cache.  This means creating the
1566  * the dcache entry in readdir is necessary to keep the inode numbers
1567  * reported by readdir in sync with the inode numbers reported
1568  * by stat.
1569  */
1570 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1571 	char *name, int len,
1572 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1573 {
1574 	struct dentry *child, *dir = filp->f_path.dentry;
1575 	struct inode *inode;
1576 	struct qstr qname;
1577 	ino_t ino = 0;
1578 	unsigned type = DT_UNKNOWN;
1579 
1580 	qname.name = name;
1581 	qname.len  = len;
1582 	qname.hash = full_name_hash(name, len);
1583 
1584 	child = d_lookup(dir, &qname);
1585 	if (!child) {
1586 		struct dentry *new;
1587 		new = d_alloc(dir, &qname);
1588 		if (new) {
1589 			child = instantiate(dir->d_inode, new, task, ptr);
1590 			if (child)
1591 				dput(new);
1592 			else
1593 				child = new;
1594 		}
1595 	}
1596 	if (!child || IS_ERR(child) || !child->d_inode)
1597 		goto end_instantiate;
1598 	inode = child->d_inode;
1599 	if (inode) {
1600 		ino = inode->i_ino;
1601 		type = inode->i_mode >> 12;
1602 	}
1603 	dput(child);
1604 end_instantiate:
1605 	if (!ino)
1606 		ino = find_inode_number(dir, &qname);
1607 	if (!ino)
1608 		ino = 1;
1609 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1610 }
1611 
1612 static unsigned name_to_int(struct dentry *dentry)
1613 {
1614 	const char *name = dentry->d_name.name;
1615 	int len = dentry->d_name.len;
1616 	unsigned n = 0;
1617 
1618 	if (len > 1 && *name == '0')
1619 		goto out;
1620 	while (len-- > 0) {
1621 		unsigned c = *name++ - '0';
1622 		if (c > 9)
1623 			goto out;
1624 		if (n >= (~0U-9)/10)
1625 			goto out;
1626 		n *= 10;
1627 		n += c;
1628 	}
1629 	return n;
1630 out:
1631 	return ~0U;
1632 }
1633 
1634 #define PROC_FDINFO_MAX 64
1635 
1636 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1637 {
1638 	struct task_struct *task = get_proc_task(inode);
1639 	struct files_struct *files = NULL;
1640 	struct file *file;
1641 	int fd = proc_fd(inode);
1642 
1643 	if (task) {
1644 		files = get_files_struct(task);
1645 		put_task_struct(task);
1646 	}
1647 	if (files) {
1648 		/*
1649 		 * We are not taking a ref to the file structure, so we must
1650 		 * hold ->file_lock.
1651 		 */
1652 		spin_lock(&files->file_lock);
1653 		file = fcheck_files(files, fd);
1654 		if (file) {
1655 			if (path) {
1656 				*path = file->f_path;
1657 				path_get(&file->f_path);
1658 			}
1659 			if (info)
1660 				snprintf(info, PROC_FDINFO_MAX,
1661 					 "pos:\t%lli\n"
1662 					 "flags:\t0%o\n",
1663 					 (long long) file->f_pos,
1664 					 file->f_flags);
1665 			spin_unlock(&files->file_lock);
1666 			put_files_struct(files);
1667 			return 0;
1668 		}
1669 		spin_unlock(&files->file_lock);
1670 		put_files_struct(files);
1671 	}
1672 	return -ENOENT;
1673 }
1674 
1675 static int proc_fd_link(struct inode *inode, struct path *path)
1676 {
1677 	return proc_fd_info(inode, path, NULL);
1678 }
1679 
1680 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1681 {
1682 	struct inode *inode = dentry->d_inode;
1683 	struct task_struct *task = get_proc_task(inode);
1684 	int fd = proc_fd(inode);
1685 	struct files_struct *files;
1686 	const struct cred *cred;
1687 
1688 	if (task) {
1689 		files = get_files_struct(task);
1690 		if (files) {
1691 			rcu_read_lock();
1692 			if (fcheck_files(files, fd)) {
1693 				rcu_read_unlock();
1694 				put_files_struct(files);
1695 				if (task_dumpable(task)) {
1696 					rcu_read_lock();
1697 					cred = __task_cred(task);
1698 					inode->i_uid = cred->euid;
1699 					inode->i_gid = cred->egid;
1700 					rcu_read_unlock();
1701 				} else {
1702 					inode->i_uid = 0;
1703 					inode->i_gid = 0;
1704 				}
1705 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1706 				security_task_to_inode(task, inode);
1707 				put_task_struct(task);
1708 				return 1;
1709 			}
1710 			rcu_read_unlock();
1711 			put_files_struct(files);
1712 		}
1713 		put_task_struct(task);
1714 	}
1715 	d_drop(dentry);
1716 	return 0;
1717 }
1718 
1719 static const struct dentry_operations tid_fd_dentry_operations =
1720 {
1721 	.d_revalidate	= tid_fd_revalidate,
1722 	.d_delete	= pid_delete_dentry,
1723 };
1724 
1725 static struct dentry *proc_fd_instantiate(struct inode *dir,
1726 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1727 {
1728 	unsigned fd = *(const unsigned *)ptr;
1729 	struct file *file;
1730 	struct files_struct *files;
1731  	struct inode *inode;
1732  	struct proc_inode *ei;
1733 	struct dentry *error = ERR_PTR(-ENOENT);
1734 
1735 	inode = proc_pid_make_inode(dir->i_sb, task);
1736 	if (!inode)
1737 		goto out;
1738 	ei = PROC_I(inode);
1739 	ei->fd = fd;
1740 	files = get_files_struct(task);
1741 	if (!files)
1742 		goto out_iput;
1743 	inode->i_mode = S_IFLNK;
1744 
1745 	/*
1746 	 * We are not taking a ref to the file structure, so we must
1747 	 * hold ->file_lock.
1748 	 */
1749 	spin_lock(&files->file_lock);
1750 	file = fcheck_files(files, fd);
1751 	if (!file)
1752 		goto out_unlock;
1753 	if (file->f_mode & FMODE_READ)
1754 		inode->i_mode |= S_IRUSR | S_IXUSR;
1755 	if (file->f_mode & FMODE_WRITE)
1756 		inode->i_mode |= S_IWUSR | S_IXUSR;
1757 	spin_unlock(&files->file_lock);
1758 	put_files_struct(files);
1759 
1760 	inode->i_op = &proc_pid_link_inode_operations;
1761 	inode->i_size = 64;
1762 	ei->op.proc_get_link = proc_fd_link;
1763 	dentry->d_op = &tid_fd_dentry_operations;
1764 	d_add(dentry, inode);
1765 	/* Close the race of the process dying before we return the dentry */
1766 	if (tid_fd_revalidate(dentry, NULL))
1767 		error = NULL;
1768 
1769  out:
1770 	return error;
1771 out_unlock:
1772 	spin_unlock(&files->file_lock);
1773 	put_files_struct(files);
1774 out_iput:
1775 	iput(inode);
1776 	goto out;
1777 }
1778 
1779 static struct dentry *proc_lookupfd_common(struct inode *dir,
1780 					   struct dentry *dentry,
1781 					   instantiate_t instantiate)
1782 {
1783 	struct task_struct *task = get_proc_task(dir);
1784 	unsigned fd = name_to_int(dentry);
1785 	struct dentry *result = ERR_PTR(-ENOENT);
1786 
1787 	if (!task)
1788 		goto out_no_task;
1789 	if (fd == ~0U)
1790 		goto out;
1791 
1792 	result = instantiate(dir, dentry, task, &fd);
1793 out:
1794 	put_task_struct(task);
1795 out_no_task:
1796 	return result;
1797 }
1798 
1799 static int proc_readfd_common(struct file * filp, void * dirent,
1800 			      filldir_t filldir, instantiate_t instantiate)
1801 {
1802 	struct dentry *dentry = filp->f_path.dentry;
1803 	struct inode *inode = dentry->d_inode;
1804 	struct task_struct *p = get_proc_task(inode);
1805 	unsigned int fd, ino;
1806 	int retval;
1807 	struct files_struct * files;
1808 
1809 	retval = -ENOENT;
1810 	if (!p)
1811 		goto out_no_task;
1812 	retval = 0;
1813 
1814 	fd = filp->f_pos;
1815 	switch (fd) {
1816 		case 0:
1817 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1818 				goto out;
1819 			filp->f_pos++;
1820 		case 1:
1821 			ino = parent_ino(dentry);
1822 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1823 				goto out;
1824 			filp->f_pos++;
1825 		default:
1826 			files = get_files_struct(p);
1827 			if (!files)
1828 				goto out;
1829 			rcu_read_lock();
1830 			for (fd = filp->f_pos-2;
1831 			     fd < files_fdtable(files)->max_fds;
1832 			     fd++, filp->f_pos++) {
1833 				char name[PROC_NUMBUF];
1834 				int len;
1835 
1836 				if (!fcheck_files(files, fd))
1837 					continue;
1838 				rcu_read_unlock();
1839 
1840 				len = snprintf(name, sizeof(name), "%d", fd);
1841 				if (proc_fill_cache(filp, dirent, filldir,
1842 						    name, len, instantiate,
1843 						    p, &fd) < 0) {
1844 					rcu_read_lock();
1845 					break;
1846 				}
1847 				rcu_read_lock();
1848 			}
1849 			rcu_read_unlock();
1850 			put_files_struct(files);
1851 	}
1852 out:
1853 	put_task_struct(p);
1854 out_no_task:
1855 	return retval;
1856 }
1857 
1858 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1859 				    struct nameidata *nd)
1860 {
1861 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1862 }
1863 
1864 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1865 {
1866 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1867 }
1868 
1869 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1870 				      size_t len, loff_t *ppos)
1871 {
1872 	char tmp[PROC_FDINFO_MAX];
1873 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1874 	if (!err)
1875 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1876 	return err;
1877 }
1878 
1879 static const struct file_operations proc_fdinfo_file_operations = {
1880 	.open		= nonseekable_open,
1881 	.read		= proc_fdinfo_read,
1882 };
1883 
1884 static const struct file_operations proc_fd_operations = {
1885 	.read		= generic_read_dir,
1886 	.readdir	= proc_readfd,
1887 };
1888 
1889 /*
1890  * /proc/pid/fd needs a special permission handler so that a process can still
1891  * access /proc/self/fd after it has executed a setuid().
1892  */
1893 static int proc_fd_permission(struct inode *inode, int mask)
1894 {
1895 	int rv;
1896 
1897 	rv = generic_permission(inode, mask, NULL);
1898 	if (rv == 0)
1899 		return 0;
1900 	if (task_pid(current) == proc_pid(inode))
1901 		rv = 0;
1902 	return rv;
1903 }
1904 
1905 /*
1906  * proc directories can do almost nothing..
1907  */
1908 static const struct inode_operations proc_fd_inode_operations = {
1909 	.lookup		= proc_lookupfd,
1910 	.permission	= proc_fd_permission,
1911 	.setattr	= proc_setattr,
1912 };
1913 
1914 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1915 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1916 {
1917 	unsigned fd = *(unsigned *)ptr;
1918  	struct inode *inode;
1919  	struct proc_inode *ei;
1920 	struct dentry *error = ERR_PTR(-ENOENT);
1921 
1922 	inode = proc_pid_make_inode(dir->i_sb, task);
1923 	if (!inode)
1924 		goto out;
1925 	ei = PROC_I(inode);
1926 	ei->fd = fd;
1927 	inode->i_mode = S_IFREG | S_IRUSR;
1928 	inode->i_fop = &proc_fdinfo_file_operations;
1929 	dentry->d_op = &tid_fd_dentry_operations;
1930 	d_add(dentry, inode);
1931 	/* Close the race of the process dying before we return the dentry */
1932 	if (tid_fd_revalidate(dentry, NULL))
1933 		error = NULL;
1934 
1935  out:
1936 	return error;
1937 }
1938 
1939 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1940 					struct dentry *dentry,
1941 					struct nameidata *nd)
1942 {
1943 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1944 }
1945 
1946 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1947 {
1948 	return proc_readfd_common(filp, dirent, filldir,
1949 				  proc_fdinfo_instantiate);
1950 }
1951 
1952 static const struct file_operations proc_fdinfo_operations = {
1953 	.read		= generic_read_dir,
1954 	.readdir	= proc_readfdinfo,
1955 };
1956 
1957 /*
1958  * proc directories can do almost nothing..
1959  */
1960 static const struct inode_operations proc_fdinfo_inode_operations = {
1961 	.lookup		= proc_lookupfdinfo,
1962 	.setattr	= proc_setattr,
1963 };
1964 
1965 
1966 static struct dentry *proc_pident_instantiate(struct inode *dir,
1967 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1968 {
1969 	const struct pid_entry *p = ptr;
1970 	struct inode *inode;
1971 	struct proc_inode *ei;
1972 	struct dentry *error = ERR_PTR(-ENOENT);
1973 
1974 	inode = proc_pid_make_inode(dir->i_sb, task);
1975 	if (!inode)
1976 		goto out;
1977 
1978 	ei = PROC_I(inode);
1979 	inode->i_mode = p->mode;
1980 	if (S_ISDIR(inode->i_mode))
1981 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
1982 	if (p->iop)
1983 		inode->i_op = p->iop;
1984 	if (p->fop)
1985 		inode->i_fop = p->fop;
1986 	ei->op = p->op;
1987 	dentry->d_op = &pid_dentry_operations;
1988 	d_add(dentry, inode);
1989 	/* Close the race of the process dying before we return the dentry */
1990 	if (pid_revalidate(dentry, NULL))
1991 		error = NULL;
1992 out:
1993 	return error;
1994 }
1995 
1996 static struct dentry *proc_pident_lookup(struct inode *dir,
1997 					 struct dentry *dentry,
1998 					 const struct pid_entry *ents,
1999 					 unsigned int nents)
2000 {
2001 	struct dentry *error;
2002 	struct task_struct *task = get_proc_task(dir);
2003 	const struct pid_entry *p, *last;
2004 
2005 	error = ERR_PTR(-ENOENT);
2006 
2007 	if (!task)
2008 		goto out_no_task;
2009 
2010 	/*
2011 	 * Yes, it does not scale. And it should not. Don't add
2012 	 * new entries into /proc/<tgid>/ without very good reasons.
2013 	 */
2014 	last = &ents[nents - 1];
2015 	for (p = ents; p <= last; p++) {
2016 		if (p->len != dentry->d_name.len)
2017 			continue;
2018 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2019 			break;
2020 	}
2021 	if (p > last)
2022 		goto out;
2023 
2024 	error = proc_pident_instantiate(dir, dentry, task, p);
2025 out:
2026 	put_task_struct(task);
2027 out_no_task:
2028 	return error;
2029 }
2030 
2031 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2032 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2033 {
2034 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2035 				proc_pident_instantiate, task, p);
2036 }
2037 
2038 static int proc_pident_readdir(struct file *filp,
2039 		void *dirent, filldir_t filldir,
2040 		const struct pid_entry *ents, unsigned int nents)
2041 {
2042 	int i;
2043 	struct dentry *dentry = filp->f_path.dentry;
2044 	struct inode *inode = dentry->d_inode;
2045 	struct task_struct *task = get_proc_task(inode);
2046 	const struct pid_entry *p, *last;
2047 	ino_t ino;
2048 	int ret;
2049 
2050 	ret = -ENOENT;
2051 	if (!task)
2052 		goto out_no_task;
2053 
2054 	ret = 0;
2055 	i = filp->f_pos;
2056 	switch (i) {
2057 	case 0:
2058 		ino = inode->i_ino;
2059 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2060 			goto out;
2061 		i++;
2062 		filp->f_pos++;
2063 		/* fall through */
2064 	case 1:
2065 		ino = parent_ino(dentry);
2066 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2067 			goto out;
2068 		i++;
2069 		filp->f_pos++;
2070 		/* fall through */
2071 	default:
2072 		i -= 2;
2073 		if (i >= nents) {
2074 			ret = 1;
2075 			goto out;
2076 		}
2077 		p = ents + i;
2078 		last = &ents[nents - 1];
2079 		while (p <= last) {
2080 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2081 				goto out;
2082 			filp->f_pos++;
2083 			p++;
2084 		}
2085 	}
2086 
2087 	ret = 1;
2088 out:
2089 	put_task_struct(task);
2090 out_no_task:
2091 	return ret;
2092 }
2093 
2094 #ifdef CONFIG_SECURITY
2095 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2096 				  size_t count, loff_t *ppos)
2097 {
2098 	struct inode * inode = file->f_path.dentry->d_inode;
2099 	char *p = NULL;
2100 	ssize_t length;
2101 	struct task_struct *task = get_proc_task(inode);
2102 
2103 	if (!task)
2104 		return -ESRCH;
2105 
2106 	length = security_getprocattr(task,
2107 				      (char*)file->f_path.dentry->d_name.name,
2108 				      &p);
2109 	put_task_struct(task);
2110 	if (length > 0)
2111 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2112 	kfree(p);
2113 	return length;
2114 }
2115 
2116 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2117 				   size_t count, loff_t *ppos)
2118 {
2119 	struct inode * inode = file->f_path.dentry->d_inode;
2120 	char *page;
2121 	ssize_t length;
2122 	struct task_struct *task = get_proc_task(inode);
2123 
2124 	length = -ESRCH;
2125 	if (!task)
2126 		goto out_no_task;
2127 	if (count > PAGE_SIZE)
2128 		count = PAGE_SIZE;
2129 
2130 	/* No partial writes. */
2131 	length = -EINVAL;
2132 	if (*ppos != 0)
2133 		goto out;
2134 
2135 	length = -ENOMEM;
2136 	page = (char*)__get_free_page(GFP_TEMPORARY);
2137 	if (!page)
2138 		goto out;
2139 
2140 	length = -EFAULT;
2141 	if (copy_from_user(page, buf, count))
2142 		goto out_free;
2143 
2144 	/* Guard against adverse ptrace interaction */
2145 	length = mutex_lock_interruptible(&task->cred_guard_mutex);
2146 	if (length < 0)
2147 		goto out_free;
2148 
2149 	length = security_setprocattr(task,
2150 				      (char*)file->f_path.dentry->d_name.name,
2151 				      (void*)page, count);
2152 	mutex_unlock(&task->cred_guard_mutex);
2153 out_free:
2154 	free_page((unsigned long) page);
2155 out:
2156 	put_task_struct(task);
2157 out_no_task:
2158 	return length;
2159 }
2160 
2161 static const struct file_operations proc_pid_attr_operations = {
2162 	.read		= proc_pid_attr_read,
2163 	.write		= proc_pid_attr_write,
2164 };
2165 
2166 static const struct pid_entry attr_dir_stuff[] = {
2167 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2168 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2169 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2170 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2171 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2172 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2173 };
2174 
2175 static int proc_attr_dir_readdir(struct file * filp,
2176 			     void * dirent, filldir_t filldir)
2177 {
2178 	return proc_pident_readdir(filp,dirent,filldir,
2179 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2180 }
2181 
2182 static const struct file_operations proc_attr_dir_operations = {
2183 	.read		= generic_read_dir,
2184 	.readdir	= proc_attr_dir_readdir,
2185 };
2186 
2187 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2188 				struct dentry *dentry, struct nameidata *nd)
2189 {
2190 	return proc_pident_lookup(dir, dentry,
2191 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2192 }
2193 
2194 static const struct inode_operations proc_attr_dir_inode_operations = {
2195 	.lookup		= proc_attr_dir_lookup,
2196 	.getattr	= pid_getattr,
2197 	.setattr	= proc_setattr,
2198 };
2199 
2200 #endif
2201 
2202 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2203 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2204 					 size_t count, loff_t *ppos)
2205 {
2206 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2207 	struct mm_struct *mm;
2208 	char buffer[PROC_NUMBUF];
2209 	size_t len;
2210 	int ret;
2211 
2212 	if (!task)
2213 		return -ESRCH;
2214 
2215 	ret = 0;
2216 	mm = get_task_mm(task);
2217 	if (mm) {
2218 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2219 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2220 				MMF_DUMP_FILTER_SHIFT));
2221 		mmput(mm);
2222 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2223 	}
2224 
2225 	put_task_struct(task);
2226 
2227 	return ret;
2228 }
2229 
2230 static ssize_t proc_coredump_filter_write(struct file *file,
2231 					  const char __user *buf,
2232 					  size_t count,
2233 					  loff_t *ppos)
2234 {
2235 	struct task_struct *task;
2236 	struct mm_struct *mm;
2237 	char buffer[PROC_NUMBUF], *end;
2238 	unsigned int val;
2239 	int ret;
2240 	int i;
2241 	unsigned long mask;
2242 
2243 	ret = -EFAULT;
2244 	memset(buffer, 0, sizeof(buffer));
2245 	if (count > sizeof(buffer) - 1)
2246 		count = sizeof(buffer) - 1;
2247 	if (copy_from_user(buffer, buf, count))
2248 		goto out_no_task;
2249 
2250 	ret = -EINVAL;
2251 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2252 	if (*end == '\n')
2253 		end++;
2254 	if (end - buffer == 0)
2255 		goto out_no_task;
2256 
2257 	ret = -ESRCH;
2258 	task = get_proc_task(file->f_dentry->d_inode);
2259 	if (!task)
2260 		goto out_no_task;
2261 
2262 	ret = end - buffer;
2263 	mm = get_task_mm(task);
2264 	if (!mm)
2265 		goto out_no_mm;
2266 
2267 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2268 		if (val & mask)
2269 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2270 		else
2271 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2272 	}
2273 
2274 	mmput(mm);
2275  out_no_mm:
2276 	put_task_struct(task);
2277  out_no_task:
2278 	return ret;
2279 }
2280 
2281 static const struct file_operations proc_coredump_filter_operations = {
2282 	.read		= proc_coredump_filter_read,
2283 	.write		= proc_coredump_filter_write,
2284 };
2285 #endif
2286 
2287 /*
2288  * /proc/self:
2289  */
2290 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2291 			      int buflen)
2292 {
2293 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2294 	pid_t tgid = task_tgid_nr_ns(current, ns);
2295 	char tmp[PROC_NUMBUF];
2296 	if (!tgid)
2297 		return -ENOENT;
2298 	sprintf(tmp, "%d", tgid);
2299 	return vfs_readlink(dentry,buffer,buflen,tmp);
2300 }
2301 
2302 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2303 {
2304 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2305 	pid_t tgid = task_tgid_nr_ns(current, ns);
2306 	char tmp[PROC_NUMBUF];
2307 	if (!tgid)
2308 		return ERR_PTR(-ENOENT);
2309 	sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2310 	return ERR_PTR(vfs_follow_link(nd,tmp));
2311 }
2312 
2313 static const struct inode_operations proc_self_inode_operations = {
2314 	.readlink	= proc_self_readlink,
2315 	.follow_link	= proc_self_follow_link,
2316 };
2317 
2318 /*
2319  * proc base
2320  *
2321  * These are the directory entries in the root directory of /proc
2322  * that properly belong to the /proc filesystem, as they describe
2323  * describe something that is process related.
2324  */
2325 static const struct pid_entry proc_base_stuff[] = {
2326 	NOD("self", S_IFLNK|S_IRWXUGO,
2327 		&proc_self_inode_operations, NULL, {}),
2328 };
2329 
2330 /*
2331  *	Exceptional case: normally we are not allowed to unhash a busy
2332  * directory. In this case, however, we can do it - no aliasing problems
2333  * due to the way we treat inodes.
2334  */
2335 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2336 {
2337 	struct inode *inode = dentry->d_inode;
2338 	struct task_struct *task = get_proc_task(inode);
2339 	if (task) {
2340 		put_task_struct(task);
2341 		return 1;
2342 	}
2343 	d_drop(dentry);
2344 	return 0;
2345 }
2346 
2347 static const struct dentry_operations proc_base_dentry_operations =
2348 {
2349 	.d_revalidate	= proc_base_revalidate,
2350 	.d_delete	= pid_delete_dentry,
2351 };
2352 
2353 static struct dentry *proc_base_instantiate(struct inode *dir,
2354 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2355 {
2356 	const struct pid_entry *p = ptr;
2357 	struct inode *inode;
2358 	struct proc_inode *ei;
2359 	struct dentry *error = ERR_PTR(-EINVAL);
2360 
2361 	/* Allocate the inode */
2362 	error = ERR_PTR(-ENOMEM);
2363 	inode = new_inode(dir->i_sb);
2364 	if (!inode)
2365 		goto out;
2366 
2367 	/* Initialize the inode */
2368 	ei = PROC_I(inode);
2369 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2370 
2371 	/*
2372 	 * grab the reference to the task.
2373 	 */
2374 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2375 	if (!ei->pid)
2376 		goto out_iput;
2377 
2378 	inode->i_mode = p->mode;
2379 	if (S_ISDIR(inode->i_mode))
2380 		inode->i_nlink = 2;
2381 	if (S_ISLNK(inode->i_mode))
2382 		inode->i_size = 64;
2383 	if (p->iop)
2384 		inode->i_op = p->iop;
2385 	if (p->fop)
2386 		inode->i_fop = p->fop;
2387 	ei->op = p->op;
2388 	dentry->d_op = &proc_base_dentry_operations;
2389 	d_add(dentry, inode);
2390 	error = NULL;
2391 out:
2392 	return error;
2393 out_iput:
2394 	iput(inode);
2395 	goto out;
2396 }
2397 
2398 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2399 {
2400 	struct dentry *error;
2401 	struct task_struct *task = get_proc_task(dir);
2402 	const struct pid_entry *p, *last;
2403 
2404 	error = ERR_PTR(-ENOENT);
2405 
2406 	if (!task)
2407 		goto out_no_task;
2408 
2409 	/* Lookup the directory entry */
2410 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2411 	for (p = proc_base_stuff; p <= last; p++) {
2412 		if (p->len != dentry->d_name.len)
2413 			continue;
2414 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2415 			break;
2416 	}
2417 	if (p > last)
2418 		goto out;
2419 
2420 	error = proc_base_instantiate(dir, dentry, task, p);
2421 
2422 out:
2423 	put_task_struct(task);
2424 out_no_task:
2425 	return error;
2426 }
2427 
2428 static int proc_base_fill_cache(struct file *filp, void *dirent,
2429 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2430 {
2431 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2432 				proc_base_instantiate, task, p);
2433 }
2434 
2435 #ifdef CONFIG_TASK_IO_ACCOUNTING
2436 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2437 {
2438 	struct task_io_accounting acct = task->ioac;
2439 	unsigned long flags;
2440 
2441 	if (whole && lock_task_sighand(task, &flags)) {
2442 		struct task_struct *t = task;
2443 
2444 		task_io_accounting_add(&acct, &task->signal->ioac);
2445 		while_each_thread(task, t)
2446 			task_io_accounting_add(&acct, &t->ioac);
2447 
2448 		unlock_task_sighand(task, &flags);
2449 	}
2450 	return sprintf(buffer,
2451 			"rchar: %llu\n"
2452 			"wchar: %llu\n"
2453 			"syscr: %llu\n"
2454 			"syscw: %llu\n"
2455 			"read_bytes: %llu\n"
2456 			"write_bytes: %llu\n"
2457 			"cancelled_write_bytes: %llu\n",
2458 			(unsigned long long)acct.rchar,
2459 			(unsigned long long)acct.wchar,
2460 			(unsigned long long)acct.syscr,
2461 			(unsigned long long)acct.syscw,
2462 			(unsigned long long)acct.read_bytes,
2463 			(unsigned long long)acct.write_bytes,
2464 			(unsigned long long)acct.cancelled_write_bytes);
2465 }
2466 
2467 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2468 {
2469 	return do_io_accounting(task, buffer, 0);
2470 }
2471 
2472 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2473 {
2474 	return do_io_accounting(task, buffer, 1);
2475 }
2476 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2477 
2478 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2479 				struct pid *pid, struct task_struct *task)
2480 {
2481 	seq_printf(m, "%08x\n", task->personality);
2482 	return 0;
2483 }
2484 
2485 /*
2486  * Thread groups
2487  */
2488 static const struct file_operations proc_task_operations;
2489 static const struct inode_operations proc_task_inode_operations;
2490 
2491 static const struct pid_entry tgid_base_stuff[] = {
2492 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2493 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2494 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2495 #ifdef CONFIG_NET
2496 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2497 #endif
2498 	REG("environ",    S_IRUSR, proc_environ_operations),
2499 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2500 	ONE("status",     S_IRUGO, proc_pid_status),
2501 	ONE("personality", S_IRUSR, proc_pid_personality),
2502 	INF("limits",	  S_IRUSR, proc_pid_limits),
2503 #ifdef CONFIG_SCHED_DEBUG
2504 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2505 #endif
2506 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2507 	INF("syscall",    S_IRUSR, proc_pid_syscall),
2508 #endif
2509 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2510 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2511 	ONE("statm",      S_IRUGO, proc_pid_statm),
2512 	REG("maps",       S_IRUGO, proc_maps_operations),
2513 #ifdef CONFIG_NUMA
2514 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2515 #endif
2516 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2517 	LNK("cwd",        proc_cwd_link),
2518 	LNK("root",       proc_root_link),
2519 	LNK("exe",        proc_exe_link),
2520 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2521 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2522 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2523 #ifdef CONFIG_PROC_PAGE_MONITOR
2524 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2525 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2526 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2527 #endif
2528 #ifdef CONFIG_SECURITY
2529 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2530 #endif
2531 #ifdef CONFIG_KALLSYMS
2532 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2533 #endif
2534 #ifdef CONFIG_STACKTRACE
2535 	ONE("stack",      S_IRUSR, proc_pid_stack),
2536 #endif
2537 #ifdef CONFIG_SCHEDSTATS
2538 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2539 #endif
2540 #ifdef CONFIG_LATENCYTOP
2541 	REG("latency",  S_IRUGO, proc_lstats_operations),
2542 #endif
2543 #ifdef CONFIG_PROC_PID_CPUSET
2544 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2545 #endif
2546 #ifdef CONFIG_CGROUPS
2547 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2548 #endif
2549 	INF("oom_score",  S_IRUGO, proc_oom_score),
2550 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2551 #ifdef CONFIG_AUDITSYSCALL
2552 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2553 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2554 #endif
2555 #ifdef CONFIG_FAULT_INJECTION
2556 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2557 #endif
2558 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2559 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2560 #endif
2561 #ifdef CONFIG_TASK_IO_ACCOUNTING
2562 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2563 #endif
2564 };
2565 
2566 static int proc_tgid_base_readdir(struct file * filp,
2567 			     void * dirent, filldir_t filldir)
2568 {
2569 	return proc_pident_readdir(filp,dirent,filldir,
2570 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2571 }
2572 
2573 static const struct file_operations proc_tgid_base_operations = {
2574 	.read		= generic_read_dir,
2575 	.readdir	= proc_tgid_base_readdir,
2576 };
2577 
2578 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2579 	return proc_pident_lookup(dir, dentry,
2580 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2581 }
2582 
2583 static const struct inode_operations proc_tgid_base_inode_operations = {
2584 	.lookup		= proc_tgid_base_lookup,
2585 	.getattr	= pid_getattr,
2586 	.setattr	= proc_setattr,
2587 };
2588 
2589 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2590 {
2591 	struct dentry *dentry, *leader, *dir;
2592 	char buf[PROC_NUMBUF];
2593 	struct qstr name;
2594 
2595 	name.name = buf;
2596 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2597 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2598 	if (dentry) {
2599 		if (!(current->flags & PF_EXITING))
2600 			shrink_dcache_parent(dentry);
2601 		d_drop(dentry);
2602 		dput(dentry);
2603 	}
2604 
2605 	if (tgid == 0)
2606 		goto out;
2607 
2608 	name.name = buf;
2609 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2610 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2611 	if (!leader)
2612 		goto out;
2613 
2614 	name.name = "task";
2615 	name.len = strlen(name.name);
2616 	dir = d_hash_and_lookup(leader, &name);
2617 	if (!dir)
2618 		goto out_put_leader;
2619 
2620 	name.name = buf;
2621 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2622 	dentry = d_hash_and_lookup(dir, &name);
2623 	if (dentry) {
2624 		shrink_dcache_parent(dentry);
2625 		d_drop(dentry);
2626 		dput(dentry);
2627 	}
2628 
2629 	dput(dir);
2630 out_put_leader:
2631 	dput(leader);
2632 out:
2633 	return;
2634 }
2635 
2636 /**
2637  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2638  * @task: task that should be flushed.
2639  *
2640  * When flushing dentries from proc, one needs to flush them from global
2641  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2642  * in. This call is supposed to do all of this job.
2643  *
2644  * Looks in the dcache for
2645  * /proc/@pid
2646  * /proc/@tgid/task/@pid
2647  * if either directory is present flushes it and all of it'ts children
2648  * from the dcache.
2649  *
2650  * It is safe and reasonable to cache /proc entries for a task until
2651  * that task exits.  After that they just clog up the dcache with
2652  * useless entries, possibly causing useful dcache entries to be
2653  * flushed instead.  This routine is proved to flush those useless
2654  * dcache entries at process exit time.
2655  *
2656  * NOTE: This routine is just an optimization so it does not guarantee
2657  *       that no dcache entries will exist at process exit time it
2658  *       just makes it very unlikely that any will persist.
2659  */
2660 
2661 void proc_flush_task(struct task_struct *task)
2662 {
2663 	int i;
2664 	struct pid *pid, *tgid = NULL;
2665 	struct upid *upid;
2666 
2667 	pid = task_pid(task);
2668 	if (thread_group_leader(task))
2669 		tgid = task_tgid(task);
2670 
2671 	for (i = 0; i <= pid->level; i++) {
2672 		upid = &pid->numbers[i];
2673 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2674 			tgid ? tgid->numbers[i].nr : 0);
2675 	}
2676 
2677 	upid = &pid->numbers[pid->level];
2678 	if (upid->nr == 1)
2679 		pid_ns_release_proc(upid->ns);
2680 }
2681 
2682 static struct dentry *proc_pid_instantiate(struct inode *dir,
2683 					   struct dentry * dentry,
2684 					   struct task_struct *task, const void *ptr)
2685 {
2686 	struct dentry *error = ERR_PTR(-ENOENT);
2687 	struct inode *inode;
2688 
2689 	inode = proc_pid_make_inode(dir->i_sb, task);
2690 	if (!inode)
2691 		goto out;
2692 
2693 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2694 	inode->i_op = &proc_tgid_base_inode_operations;
2695 	inode->i_fop = &proc_tgid_base_operations;
2696 	inode->i_flags|=S_IMMUTABLE;
2697 
2698 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2699 		ARRAY_SIZE(tgid_base_stuff));
2700 
2701 	dentry->d_op = &pid_dentry_operations;
2702 
2703 	d_add(dentry, inode);
2704 	/* Close the race of the process dying before we return the dentry */
2705 	if (pid_revalidate(dentry, NULL))
2706 		error = NULL;
2707 out:
2708 	return error;
2709 }
2710 
2711 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2712 {
2713 	struct dentry *result = ERR_PTR(-ENOENT);
2714 	struct task_struct *task;
2715 	unsigned tgid;
2716 	struct pid_namespace *ns;
2717 
2718 	result = proc_base_lookup(dir, dentry);
2719 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2720 		goto out;
2721 
2722 	tgid = name_to_int(dentry);
2723 	if (tgid == ~0U)
2724 		goto out;
2725 
2726 	ns = dentry->d_sb->s_fs_info;
2727 	rcu_read_lock();
2728 	task = find_task_by_pid_ns(tgid, ns);
2729 	if (task)
2730 		get_task_struct(task);
2731 	rcu_read_unlock();
2732 	if (!task)
2733 		goto out;
2734 
2735 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2736 	put_task_struct(task);
2737 out:
2738 	return result;
2739 }
2740 
2741 /*
2742  * Find the first task with tgid >= tgid
2743  *
2744  */
2745 struct tgid_iter {
2746 	unsigned int tgid;
2747 	struct task_struct *task;
2748 };
2749 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2750 {
2751 	struct pid *pid;
2752 
2753 	if (iter.task)
2754 		put_task_struct(iter.task);
2755 	rcu_read_lock();
2756 retry:
2757 	iter.task = NULL;
2758 	pid = find_ge_pid(iter.tgid, ns);
2759 	if (pid) {
2760 		iter.tgid = pid_nr_ns(pid, ns);
2761 		iter.task = pid_task(pid, PIDTYPE_PID);
2762 		/* What we to know is if the pid we have find is the
2763 		 * pid of a thread_group_leader.  Testing for task
2764 		 * being a thread_group_leader is the obvious thing
2765 		 * todo but there is a window when it fails, due to
2766 		 * the pid transfer logic in de_thread.
2767 		 *
2768 		 * So we perform the straight forward test of seeing
2769 		 * if the pid we have found is the pid of a thread
2770 		 * group leader, and don't worry if the task we have
2771 		 * found doesn't happen to be a thread group leader.
2772 		 * As we don't care in the case of readdir.
2773 		 */
2774 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2775 			iter.tgid += 1;
2776 			goto retry;
2777 		}
2778 		get_task_struct(iter.task);
2779 	}
2780 	rcu_read_unlock();
2781 	return iter;
2782 }
2783 
2784 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2785 
2786 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2787 	struct tgid_iter iter)
2788 {
2789 	char name[PROC_NUMBUF];
2790 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2791 	return proc_fill_cache(filp, dirent, filldir, name, len,
2792 				proc_pid_instantiate, iter.task, NULL);
2793 }
2794 
2795 /* for the /proc/ directory itself, after non-process stuff has been done */
2796 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2797 {
2798 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2799 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2800 	struct tgid_iter iter;
2801 	struct pid_namespace *ns;
2802 
2803 	if (!reaper)
2804 		goto out_no_task;
2805 
2806 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2807 		const struct pid_entry *p = &proc_base_stuff[nr];
2808 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2809 			goto out;
2810 	}
2811 
2812 	ns = filp->f_dentry->d_sb->s_fs_info;
2813 	iter.task = NULL;
2814 	iter.tgid = filp->f_pos - TGID_OFFSET;
2815 	for (iter = next_tgid(ns, iter);
2816 	     iter.task;
2817 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2818 		filp->f_pos = iter.tgid + TGID_OFFSET;
2819 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2820 			put_task_struct(iter.task);
2821 			goto out;
2822 		}
2823 	}
2824 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2825 out:
2826 	put_task_struct(reaper);
2827 out_no_task:
2828 	return 0;
2829 }
2830 
2831 /*
2832  * Tasks
2833  */
2834 static const struct pid_entry tid_base_stuff[] = {
2835 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2836 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
2837 	REG("environ",   S_IRUSR, proc_environ_operations),
2838 	INF("auxv",      S_IRUSR, proc_pid_auxv),
2839 	ONE("status",    S_IRUGO, proc_pid_status),
2840 	ONE("personality", S_IRUSR, proc_pid_personality),
2841 	INF("limits",	 S_IRUSR, proc_pid_limits),
2842 #ifdef CONFIG_SCHED_DEBUG
2843 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2844 #endif
2845 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2846 	INF("syscall",   S_IRUSR, proc_pid_syscall),
2847 #endif
2848 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2849 	ONE("stat",      S_IRUGO, proc_tid_stat),
2850 	ONE("statm",     S_IRUGO, proc_pid_statm),
2851 	REG("maps",      S_IRUGO, proc_maps_operations),
2852 #ifdef CONFIG_NUMA
2853 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2854 #endif
2855 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2856 	LNK("cwd",       proc_cwd_link),
2857 	LNK("root",      proc_root_link),
2858 	LNK("exe",       proc_exe_link),
2859 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2860 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2861 #ifdef CONFIG_PROC_PAGE_MONITOR
2862 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2863 	REG("smaps",     S_IRUGO, proc_smaps_operations),
2864 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2865 #endif
2866 #ifdef CONFIG_SECURITY
2867 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2868 #endif
2869 #ifdef CONFIG_KALLSYMS
2870 	INF("wchan",     S_IRUGO, proc_pid_wchan),
2871 #endif
2872 #ifdef CONFIG_STACKTRACE
2873 	ONE("stack",      S_IRUSR, proc_pid_stack),
2874 #endif
2875 #ifdef CONFIG_SCHEDSTATS
2876 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
2877 #endif
2878 #ifdef CONFIG_LATENCYTOP
2879 	REG("latency",  S_IRUGO, proc_lstats_operations),
2880 #endif
2881 #ifdef CONFIG_PROC_PID_CPUSET
2882 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2883 #endif
2884 #ifdef CONFIG_CGROUPS
2885 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2886 #endif
2887 	INF("oom_score", S_IRUGO, proc_oom_score),
2888 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2889 #ifdef CONFIG_AUDITSYSCALL
2890 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2891 	REG("sessionid",  S_IRUSR, proc_sessionid_operations),
2892 #endif
2893 #ifdef CONFIG_FAULT_INJECTION
2894 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2895 #endif
2896 #ifdef CONFIG_TASK_IO_ACCOUNTING
2897 	INF("io",	S_IRUGO, proc_tid_io_accounting),
2898 #endif
2899 };
2900 
2901 static int proc_tid_base_readdir(struct file * filp,
2902 			     void * dirent, filldir_t filldir)
2903 {
2904 	return proc_pident_readdir(filp,dirent,filldir,
2905 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2906 }
2907 
2908 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2909 	return proc_pident_lookup(dir, dentry,
2910 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2911 }
2912 
2913 static const struct file_operations proc_tid_base_operations = {
2914 	.read		= generic_read_dir,
2915 	.readdir	= proc_tid_base_readdir,
2916 };
2917 
2918 static const struct inode_operations proc_tid_base_inode_operations = {
2919 	.lookup		= proc_tid_base_lookup,
2920 	.getattr	= pid_getattr,
2921 	.setattr	= proc_setattr,
2922 };
2923 
2924 static struct dentry *proc_task_instantiate(struct inode *dir,
2925 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2926 {
2927 	struct dentry *error = ERR_PTR(-ENOENT);
2928 	struct inode *inode;
2929 	inode = proc_pid_make_inode(dir->i_sb, task);
2930 
2931 	if (!inode)
2932 		goto out;
2933 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2934 	inode->i_op = &proc_tid_base_inode_operations;
2935 	inode->i_fop = &proc_tid_base_operations;
2936 	inode->i_flags|=S_IMMUTABLE;
2937 
2938 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2939 		ARRAY_SIZE(tid_base_stuff));
2940 
2941 	dentry->d_op = &pid_dentry_operations;
2942 
2943 	d_add(dentry, inode);
2944 	/* Close the race of the process dying before we return the dentry */
2945 	if (pid_revalidate(dentry, NULL))
2946 		error = NULL;
2947 out:
2948 	return error;
2949 }
2950 
2951 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2952 {
2953 	struct dentry *result = ERR_PTR(-ENOENT);
2954 	struct task_struct *task;
2955 	struct task_struct *leader = get_proc_task(dir);
2956 	unsigned tid;
2957 	struct pid_namespace *ns;
2958 
2959 	if (!leader)
2960 		goto out_no_task;
2961 
2962 	tid = name_to_int(dentry);
2963 	if (tid == ~0U)
2964 		goto out;
2965 
2966 	ns = dentry->d_sb->s_fs_info;
2967 	rcu_read_lock();
2968 	task = find_task_by_pid_ns(tid, ns);
2969 	if (task)
2970 		get_task_struct(task);
2971 	rcu_read_unlock();
2972 	if (!task)
2973 		goto out;
2974 	if (!same_thread_group(leader, task))
2975 		goto out_drop_task;
2976 
2977 	result = proc_task_instantiate(dir, dentry, task, NULL);
2978 out_drop_task:
2979 	put_task_struct(task);
2980 out:
2981 	put_task_struct(leader);
2982 out_no_task:
2983 	return result;
2984 }
2985 
2986 /*
2987  * Find the first tid of a thread group to return to user space.
2988  *
2989  * Usually this is just the thread group leader, but if the users
2990  * buffer was too small or there was a seek into the middle of the
2991  * directory we have more work todo.
2992  *
2993  * In the case of a short read we start with find_task_by_pid.
2994  *
2995  * In the case of a seek we start with the leader and walk nr
2996  * threads past it.
2997  */
2998 static struct task_struct *first_tid(struct task_struct *leader,
2999 		int tid, int nr, struct pid_namespace *ns)
3000 {
3001 	struct task_struct *pos;
3002 
3003 	rcu_read_lock();
3004 	/* Attempt to start with the pid of a thread */
3005 	if (tid && (nr > 0)) {
3006 		pos = find_task_by_pid_ns(tid, ns);
3007 		if (pos && (pos->group_leader == leader))
3008 			goto found;
3009 	}
3010 
3011 	/* If nr exceeds the number of threads there is nothing todo */
3012 	pos = NULL;
3013 	if (nr && nr >= get_nr_threads(leader))
3014 		goto out;
3015 
3016 	/* If we haven't found our starting place yet start
3017 	 * with the leader and walk nr threads forward.
3018 	 */
3019 	for (pos = leader; nr > 0; --nr) {
3020 		pos = next_thread(pos);
3021 		if (pos == leader) {
3022 			pos = NULL;
3023 			goto out;
3024 		}
3025 	}
3026 found:
3027 	get_task_struct(pos);
3028 out:
3029 	rcu_read_unlock();
3030 	return pos;
3031 }
3032 
3033 /*
3034  * Find the next thread in the thread list.
3035  * Return NULL if there is an error or no next thread.
3036  *
3037  * The reference to the input task_struct is released.
3038  */
3039 static struct task_struct *next_tid(struct task_struct *start)
3040 {
3041 	struct task_struct *pos = NULL;
3042 	rcu_read_lock();
3043 	if (pid_alive(start)) {
3044 		pos = next_thread(start);
3045 		if (thread_group_leader(pos))
3046 			pos = NULL;
3047 		else
3048 			get_task_struct(pos);
3049 	}
3050 	rcu_read_unlock();
3051 	put_task_struct(start);
3052 	return pos;
3053 }
3054 
3055 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3056 	struct task_struct *task, int tid)
3057 {
3058 	char name[PROC_NUMBUF];
3059 	int len = snprintf(name, sizeof(name), "%d", tid);
3060 	return proc_fill_cache(filp, dirent, filldir, name, len,
3061 				proc_task_instantiate, task, NULL);
3062 }
3063 
3064 /* for the /proc/TGID/task/ directories */
3065 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3066 {
3067 	struct dentry *dentry = filp->f_path.dentry;
3068 	struct inode *inode = dentry->d_inode;
3069 	struct task_struct *leader = NULL;
3070 	struct task_struct *task;
3071 	int retval = -ENOENT;
3072 	ino_t ino;
3073 	int tid;
3074 	struct pid_namespace *ns;
3075 
3076 	task = get_proc_task(inode);
3077 	if (!task)
3078 		goto out_no_task;
3079 	rcu_read_lock();
3080 	if (pid_alive(task)) {
3081 		leader = task->group_leader;
3082 		get_task_struct(leader);
3083 	}
3084 	rcu_read_unlock();
3085 	put_task_struct(task);
3086 	if (!leader)
3087 		goto out_no_task;
3088 	retval = 0;
3089 
3090 	switch ((unsigned long)filp->f_pos) {
3091 	case 0:
3092 		ino = inode->i_ino;
3093 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3094 			goto out;
3095 		filp->f_pos++;
3096 		/* fall through */
3097 	case 1:
3098 		ino = parent_ino(dentry);
3099 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3100 			goto out;
3101 		filp->f_pos++;
3102 		/* fall through */
3103 	}
3104 
3105 	/* f_version caches the tgid value that the last readdir call couldn't
3106 	 * return. lseek aka telldir automagically resets f_version to 0.
3107 	 */
3108 	ns = filp->f_dentry->d_sb->s_fs_info;
3109 	tid = (int)filp->f_version;
3110 	filp->f_version = 0;
3111 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3112 	     task;
3113 	     task = next_tid(task), filp->f_pos++) {
3114 		tid = task_pid_nr_ns(task, ns);
3115 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3116 			/* returning this tgid failed, save it as the first
3117 			 * pid for the next readir call */
3118 			filp->f_version = (u64)tid;
3119 			put_task_struct(task);
3120 			break;
3121 		}
3122 	}
3123 out:
3124 	put_task_struct(leader);
3125 out_no_task:
3126 	return retval;
3127 }
3128 
3129 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3130 {
3131 	struct inode *inode = dentry->d_inode;
3132 	struct task_struct *p = get_proc_task(inode);
3133 	generic_fillattr(inode, stat);
3134 
3135 	if (p) {
3136 		stat->nlink += get_nr_threads(p);
3137 		put_task_struct(p);
3138 	}
3139 
3140 	return 0;
3141 }
3142 
3143 static const struct inode_operations proc_task_inode_operations = {
3144 	.lookup		= proc_task_lookup,
3145 	.getattr	= proc_task_getattr,
3146 	.setattr	= proc_setattr,
3147 };
3148 
3149 static const struct file_operations proc_task_operations = {
3150 	.read		= generic_read_dir,
3151 	.readdir	= proc_task_readdir,
3152 };
3153