xref: /linux/fs/proc/base.c (revision 5499b45190237ca90dd2ac86395cf464fe1f4cc7)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
84 #include "internal.h"
85 
86 /* NOTE:
87  *	Implementing inode permission operations in /proc is almost
88  *	certainly an error.  Permission checks need to happen during
89  *	each system call not at open time.  The reason is that most of
90  *	what we wish to check for permissions in /proc varies at runtime.
91  *
92  *	The classic example of a problem is opening file descriptors
93  *	in /proc for a task before it execs a suid executable.
94  */
95 
96 struct pid_entry {
97 	char *name;
98 	int len;
99 	mode_t mode;
100 	const struct inode_operations *iop;
101 	const struct file_operations *fop;
102 	union proc_op op;
103 };
104 
105 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
106 	.name = (NAME),					\
107 	.len  = sizeof(NAME) - 1,			\
108 	.mode = MODE,					\
109 	.iop  = IOP,					\
110 	.fop  = FOP,					\
111 	.op   = OP,					\
112 }
113 
114 #define DIR(NAME, MODE, iops, fops)	\
115 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
116 #define LNK(NAME, get_link)					\
117 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
118 		&proc_pid_link_inode_operations, NULL,		\
119 		{ .proc_get_link = get_link } )
120 #define REG(NAME, MODE, fops)				\
121 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
122 #define INF(NAME, MODE, read)				\
123 	NOD(NAME, (S_IFREG|(MODE)), 			\
124 		NULL, &proc_info_file_operations,	\
125 		{ .proc_read = read } )
126 #define ONE(NAME, MODE, show)				\
127 	NOD(NAME, (S_IFREG|(MODE)), 			\
128 		NULL, &proc_single_file_operations,	\
129 		{ .proc_show = show } )
130 
131 /*
132  * Count the number of hardlinks for the pid_entry table, excluding the .
133  * and .. links.
134  */
135 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
136 	unsigned int n)
137 {
138 	unsigned int i;
139 	unsigned int count;
140 
141 	count = 0;
142 	for (i = 0; i < n; ++i) {
143 		if (S_ISDIR(entries[i].mode))
144 			++count;
145 	}
146 
147 	return count;
148 }
149 
150 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
151 {
152 	struct fs_struct *fs;
153 	int result = -ENOENT;
154 
155 	task_lock(task);
156 	fs = task->fs;
157 	if (fs) {
158 		read_lock(&fs->lock);
159 		*path = root ? fs->root : fs->pwd;
160 		path_get(path);
161 		read_unlock(&fs->lock);
162 		result = 0;
163 	}
164 	task_unlock(task);
165 	return result;
166 }
167 
168 static int get_nr_threads(struct task_struct *tsk)
169 {
170 	unsigned long flags;
171 	int count = 0;
172 
173 	if (lock_task_sighand(tsk, &flags)) {
174 		count = atomic_read(&tsk->signal->count);
175 		unlock_task_sighand(tsk, &flags);
176 	}
177 	return count;
178 }
179 
180 static int proc_cwd_link(struct inode *inode, struct path *path)
181 {
182 	struct task_struct *task = get_proc_task(inode);
183 	int result = -ENOENT;
184 
185 	if (task) {
186 		result = get_fs_path(task, path, 0);
187 		put_task_struct(task);
188 	}
189 	return result;
190 }
191 
192 static int proc_root_link(struct inode *inode, struct path *path)
193 {
194 	struct task_struct *task = get_proc_task(inode);
195 	int result = -ENOENT;
196 
197 	if (task) {
198 		result = get_fs_path(task, path, 1);
199 		put_task_struct(task);
200 	}
201 	return result;
202 }
203 
204 /*
205  * Return zero if current may access user memory in @task, -error if not.
206  */
207 static int check_mem_permission(struct task_struct *task)
208 {
209 	/*
210 	 * A task can always look at itself, in case it chooses
211 	 * to use system calls instead of load instructions.
212 	 */
213 	if (task == current)
214 		return 0;
215 
216 	/*
217 	 * If current is actively ptrace'ing, and would also be
218 	 * permitted to freshly attach with ptrace now, permit it.
219 	 */
220 	if (task_is_stopped_or_traced(task)) {
221 		int match;
222 		rcu_read_lock();
223 		match = (tracehook_tracer_task(task) == current);
224 		rcu_read_unlock();
225 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
226 			return 0;
227 	}
228 
229 	/*
230 	 * Noone else is allowed.
231 	 */
232 	return -EPERM;
233 }
234 
235 struct mm_struct *mm_for_maps(struct task_struct *task)
236 {
237 	struct mm_struct *mm;
238 
239 	if (mutex_lock_killable(&task->cred_guard_mutex))
240 		return NULL;
241 
242 	mm = get_task_mm(task);
243 	if (mm && mm != current->mm &&
244 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
245 		mmput(mm);
246 		mm = NULL;
247 	}
248 	mutex_unlock(&task->cred_guard_mutex);
249 
250 	return mm;
251 }
252 
253 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
254 {
255 	int res = 0;
256 	unsigned int len;
257 	struct mm_struct *mm = get_task_mm(task);
258 	if (!mm)
259 		goto out;
260 	if (!mm->arg_end)
261 		goto out_mm;	/* Shh! No looking before we're done */
262 
263  	len = mm->arg_end - mm->arg_start;
264 
265 	if (len > PAGE_SIZE)
266 		len = PAGE_SIZE;
267 
268 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
269 
270 	// If the nul at the end of args has been overwritten, then
271 	// assume application is using setproctitle(3).
272 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
273 		len = strnlen(buffer, res);
274 		if (len < res) {
275 		    res = len;
276 		} else {
277 			len = mm->env_end - mm->env_start;
278 			if (len > PAGE_SIZE - res)
279 				len = PAGE_SIZE - res;
280 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
281 			res = strnlen(buffer, res);
282 		}
283 	}
284 out_mm:
285 	mmput(mm);
286 out:
287 	return res;
288 }
289 
290 static int proc_pid_auxv(struct task_struct *task, char *buffer)
291 {
292 	int res = 0;
293 	struct mm_struct *mm = get_task_mm(task);
294 	if (mm) {
295 		unsigned int nwords = 0;
296 		do {
297 			nwords += 2;
298 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
299 		res = nwords * sizeof(mm->saved_auxv[0]);
300 		if (res > PAGE_SIZE)
301 			res = PAGE_SIZE;
302 		memcpy(buffer, mm->saved_auxv, res);
303 		mmput(mm);
304 	}
305 	return res;
306 }
307 
308 
309 #ifdef CONFIG_KALLSYMS
310 /*
311  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
312  * Returns the resolved symbol.  If that fails, simply return the address.
313  */
314 static int proc_pid_wchan(struct task_struct *task, char *buffer)
315 {
316 	unsigned long wchan;
317 	char symname[KSYM_NAME_LEN];
318 
319 	wchan = get_wchan(task);
320 
321 	if (lookup_symbol_name(wchan, symname) < 0)
322 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
323 			return 0;
324 		else
325 			return sprintf(buffer, "%lu", wchan);
326 	else
327 		return sprintf(buffer, "%s", symname);
328 }
329 #endif /* CONFIG_KALLSYMS */
330 
331 #ifdef CONFIG_STACKTRACE
332 
333 #define MAX_STACK_TRACE_DEPTH	64
334 
335 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
336 			  struct pid *pid, struct task_struct *task)
337 {
338 	struct stack_trace trace;
339 	unsigned long *entries;
340 	int i;
341 
342 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
343 	if (!entries)
344 		return -ENOMEM;
345 
346 	trace.nr_entries	= 0;
347 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
348 	trace.entries		= entries;
349 	trace.skip		= 0;
350 	save_stack_trace_tsk(task, &trace);
351 
352 	for (i = 0; i < trace.nr_entries; i++) {
353 		seq_printf(m, "[<%p>] %pS\n",
354 			   (void *)entries[i], (void *)entries[i]);
355 	}
356 	kfree(entries);
357 
358 	return 0;
359 }
360 #endif
361 
362 #ifdef CONFIG_SCHEDSTATS
363 /*
364  * Provides /proc/PID/schedstat
365  */
366 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
367 {
368 	return sprintf(buffer, "%llu %llu %lu\n",
369 			(unsigned long long)task->se.sum_exec_runtime,
370 			(unsigned long long)task->sched_info.run_delay,
371 			task->sched_info.pcount);
372 }
373 #endif
374 
375 #ifdef CONFIG_LATENCYTOP
376 static int lstats_show_proc(struct seq_file *m, void *v)
377 {
378 	int i;
379 	struct inode *inode = m->private;
380 	struct task_struct *task = get_proc_task(inode);
381 
382 	if (!task)
383 		return -ESRCH;
384 	seq_puts(m, "Latency Top version : v0.1\n");
385 	for (i = 0; i < 32; i++) {
386 		if (task->latency_record[i].backtrace[0]) {
387 			int q;
388 			seq_printf(m, "%i %li %li ",
389 				task->latency_record[i].count,
390 				task->latency_record[i].time,
391 				task->latency_record[i].max);
392 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
393 				char sym[KSYM_SYMBOL_LEN];
394 				char *c;
395 				if (!task->latency_record[i].backtrace[q])
396 					break;
397 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
398 					break;
399 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
400 				c = strchr(sym, '+');
401 				if (c)
402 					*c = 0;
403 				seq_printf(m, "%s ", sym);
404 			}
405 			seq_printf(m, "\n");
406 		}
407 
408 	}
409 	put_task_struct(task);
410 	return 0;
411 }
412 
413 static int lstats_open(struct inode *inode, struct file *file)
414 {
415 	return single_open(file, lstats_show_proc, inode);
416 }
417 
418 static ssize_t lstats_write(struct file *file, const char __user *buf,
419 			    size_t count, loff_t *offs)
420 {
421 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
422 
423 	if (!task)
424 		return -ESRCH;
425 	clear_all_latency_tracing(task);
426 	put_task_struct(task);
427 
428 	return count;
429 }
430 
431 static const struct file_operations proc_lstats_operations = {
432 	.open		= lstats_open,
433 	.read		= seq_read,
434 	.write		= lstats_write,
435 	.llseek		= seq_lseek,
436 	.release	= single_release,
437 };
438 
439 #endif
440 
441 /* The badness from the OOM killer */
442 unsigned long badness(struct task_struct *p, unsigned long uptime);
443 static int proc_oom_score(struct task_struct *task, char *buffer)
444 {
445 	unsigned long points;
446 	struct timespec uptime;
447 
448 	do_posix_clock_monotonic_gettime(&uptime);
449 	read_lock(&tasklist_lock);
450 	points = badness(task->group_leader, uptime.tv_sec);
451 	read_unlock(&tasklist_lock);
452 	return sprintf(buffer, "%lu\n", points);
453 }
454 
455 struct limit_names {
456 	char *name;
457 	char *unit;
458 };
459 
460 static const struct limit_names lnames[RLIM_NLIMITS] = {
461 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
462 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
463 	[RLIMIT_DATA] = {"Max data size", "bytes"},
464 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
465 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
466 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
467 	[RLIMIT_NPROC] = {"Max processes", "processes"},
468 	[RLIMIT_NOFILE] = {"Max open files", "files"},
469 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
470 	[RLIMIT_AS] = {"Max address space", "bytes"},
471 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
472 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
473 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
474 	[RLIMIT_NICE] = {"Max nice priority", NULL},
475 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
476 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
477 };
478 
479 /* Display limits for a process */
480 static int proc_pid_limits(struct task_struct *task, char *buffer)
481 {
482 	unsigned int i;
483 	int count = 0;
484 	unsigned long flags;
485 	char *bufptr = buffer;
486 
487 	struct rlimit rlim[RLIM_NLIMITS];
488 
489 	if (!lock_task_sighand(task, &flags))
490 		return 0;
491 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
492 	unlock_task_sighand(task, &flags);
493 
494 	/*
495 	 * print the file header
496 	 */
497 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
498 			"Limit", "Soft Limit", "Hard Limit", "Units");
499 
500 	for (i = 0; i < RLIM_NLIMITS; i++) {
501 		if (rlim[i].rlim_cur == RLIM_INFINITY)
502 			count += sprintf(&bufptr[count], "%-25s %-20s ",
503 					 lnames[i].name, "unlimited");
504 		else
505 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
506 					 lnames[i].name, rlim[i].rlim_cur);
507 
508 		if (rlim[i].rlim_max == RLIM_INFINITY)
509 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
510 		else
511 			count += sprintf(&bufptr[count], "%-20lu ",
512 					 rlim[i].rlim_max);
513 
514 		if (lnames[i].unit)
515 			count += sprintf(&bufptr[count], "%-10s\n",
516 					 lnames[i].unit);
517 		else
518 			count += sprintf(&bufptr[count], "\n");
519 	}
520 
521 	return count;
522 }
523 
524 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
525 static int proc_pid_syscall(struct task_struct *task, char *buffer)
526 {
527 	long nr;
528 	unsigned long args[6], sp, pc;
529 
530 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
531 		return sprintf(buffer, "running\n");
532 
533 	if (nr < 0)
534 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
535 
536 	return sprintf(buffer,
537 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
538 		       nr,
539 		       args[0], args[1], args[2], args[3], args[4], args[5],
540 		       sp, pc);
541 }
542 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
543 
544 /************************************************************************/
545 /*                       Here the fs part begins                        */
546 /************************************************************************/
547 
548 /* permission checks */
549 static int proc_fd_access_allowed(struct inode *inode)
550 {
551 	struct task_struct *task;
552 	int allowed = 0;
553 	/* Allow access to a task's file descriptors if it is us or we
554 	 * may use ptrace attach to the process and find out that
555 	 * information.
556 	 */
557 	task = get_proc_task(inode);
558 	if (task) {
559 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
560 		put_task_struct(task);
561 	}
562 	return allowed;
563 }
564 
565 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
566 {
567 	int error;
568 	struct inode *inode = dentry->d_inode;
569 
570 	if (attr->ia_valid & ATTR_MODE)
571 		return -EPERM;
572 
573 	error = inode_change_ok(inode, attr);
574 	if (!error)
575 		error = inode_setattr(inode, attr);
576 	return error;
577 }
578 
579 static const struct inode_operations proc_def_inode_operations = {
580 	.setattr	= proc_setattr,
581 };
582 
583 static int mounts_open_common(struct inode *inode, struct file *file,
584 			      const struct seq_operations *op)
585 {
586 	struct task_struct *task = get_proc_task(inode);
587 	struct nsproxy *nsp;
588 	struct mnt_namespace *ns = NULL;
589 	struct path root;
590 	struct proc_mounts *p;
591 	int ret = -EINVAL;
592 
593 	if (task) {
594 		rcu_read_lock();
595 		nsp = task_nsproxy(task);
596 		if (nsp) {
597 			ns = nsp->mnt_ns;
598 			if (ns)
599 				get_mnt_ns(ns);
600 		}
601 		rcu_read_unlock();
602 		if (ns && get_fs_path(task, &root, 1) == 0)
603 			ret = 0;
604 		put_task_struct(task);
605 	}
606 
607 	if (!ns)
608 		goto err;
609 	if (ret)
610 		goto err_put_ns;
611 
612 	ret = -ENOMEM;
613 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
614 	if (!p)
615 		goto err_put_path;
616 
617 	file->private_data = &p->m;
618 	ret = seq_open(file, op);
619 	if (ret)
620 		goto err_free;
621 
622 	p->m.private = p;
623 	p->ns = ns;
624 	p->root = root;
625 	p->event = ns->event;
626 
627 	return 0;
628 
629  err_free:
630 	kfree(p);
631  err_put_path:
632 	path_put(&root);
633  err_put_ns:
634 	put_mnt_ns(ns);
635  err:
636 	return ret;
637 }
638 
639 static int mounts_release(struct inode *inode, struct file *file)
640 {
641 	struct proc_mounts *p = file->private_data;
642 	path_put(&p->root);
643 	put_mnt_ns(p->ns);
644 	return seq_release(inode, file);
645 }
646 
647 static unsigned mounts_poll(struct file *file, poll_table *wait)
648 {
649 	struct proc_mounts *p = file->private_data;
650 	struct mnt_namespace *ns = p->ns;
651 	unsigned res = POLLIN | POLLRDNORM;
652 
653 	poll_wait(file, &ns->poll, wait);
654 
655 	spin_lock(&vfsmount_lock);
656 	if (p->event != ns->event) {
657 		p->event = ns->event;
658 		res |= POLLERR | POLLPRI;
659 	}
660 	spin_unlock(&vfsmount_lock);
661 
662 	return res;
663 }
664 
665 static int mounts_open(struct inode *inode, struct file *file)
666 {
667 	return mounts_open_common(inode, file, &mounts_op);
668 }
669 
670 static const struct file_operations proc_mounts_operations = {
671 	.open		= mounts_open,
672 	.read		= seq_read,
673 	.llseek		= seq_lseek,
674 	.release	= mounts_release,
675 	.poll		= mounts_poll,
676 };
677 
678 static int mountinfo_open(struct inode *inode, struct file *file)
679 {
680 	return mounts_open_common(inode, file, &mountinfo_op);
681 }
682 
683 static const struct file_operations proc_mountinfo_operations = {
684 	.open		= mountinfo_open,
685 	.read		= seq_read,
686 	.llseek		= seq_lseek,
687 	.release	= mounts_release,
688 	.poll		= mounts_poll,
689 };
690 
691 static int mountstats_open(struct inode *inode, struct file *file)
692 {
693 	return mounts_open_common(inode, file, &mountstats_op);
694 }
695 
696 static const struct file_operations proc_mountstats_operations = {
697 	.open		= mountstats_open,
698 	.read		= seq_read,
699 	.llseek		= seq_lseek,
700 	.release	= mounts_release,
701 };
702 
703 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
704 
705 static ssize_t proc_info_read(struct file * file, char __user * buf,
706 			  size_t count, loff_t *ppos)
707 {
708 	struct inode * inode = file->f_path.dentry->d_inode;
709 	unsigned long page;
710 	ssize_t length;
711 	struct task_struct *task = get_proc_task(inode);
712 
713 	length = -ESRCH;
714 	if (!task)
715 		goto out_no_task;
716 
717 	if (count > PROC_BLOCK_SIZE)
718 		count = PROC_BLOCK_SIZE;
719 
720 	length = -ENOMEM;
721 	if (!(page = __get_free_page(GFP_TEMPORARY)))
722 		goto out;
723 
724 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
725 
726 	if (length >= 0)
727 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
728 	free_page(page);
729 out:
730 	put_task_struct(task);
731 out_no_task:
732 	return length;
733 }
734 
735 static const struct file_operations proc_info_file_operations = {
736 	.read		= proc_info_read,
737 };
738 
739 static int proc_single_show(struct seq_file *m, void *v)
740 {
741 	struct inode *inode = m->private;
742 	struct pid_namespace *ns;
743 	struct pid *pid;
744 	struct task_struct *task;
745 	int ret;
746 
747 	ns = inode->i_sb->s_fs_info;
748 	pid = proc_pid(inode);
749 	task = get_pid_task(pid, PIDTYPE_PID);
750 	if (!task)
751 		return -ESRCH;
752 
753 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
754 
755 	put_task_struct(task);
756 	return ret;
757 }
758 
759 static int proc_single_open(struct inode *inode, struct file *filp)
760 {
761 	int ret;
762 	ret = single_open(filp, proc_single_show, NULL);
763 	if (!ret) {
764 		struct seq_file *m = filp->private_data;
765 
766 		m->private = inode;
767 	}
768 	return ret;
769 }
770 
771 static const struct file_operations proc_single_file_operations = {
772 	.open		= proc_single_open,
773 	.read		= seq_read,
774 	.llseek		= seq_lseek,
775 	.release	= single_release,
776 };
777 
778 static int mem_open(struct inode* inode, struct file* file)
779 {
780 	file->private_data = (void*)((long)current->self_exec_id);
781 	return 0;
782 }
783 
784 static ssize_t mem_read(struct file * file, char __user * buf,
785 			size_t count, loff_t *ppos)
786 {
787 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
788 	char *page;
789 	unsigned long src = *ppos;
790 	int ret = -ESRCH;
791 	struct mm_struct *mm;
792 
793 	if (!task)
794 		goto out_no_task;
795 
796 	if (check_mem_permission(task))
797 		goto out;
798 
799 	ret = -ENOMEM;
800 	page = (char *)__get_free_page(GFP_TEMPORARY);
801 	if (!page)
802 		goto out;
803 
804 	ret = 0;
805 
806 	mm = get_task_mm(task);
807 	if (!mm)
808 		goto out_free;
809 
810 	ret = -EIO;
811 
812 	if (file->private_data != (void*)((long)current->self_exec_id))
813 		goto out_put;
814 
815 	ret = 0;
816 
817 	while (count > 0) {
818 		int this_len, retval;
819 
820 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
821 		retval = access_process_vm(task, src, page, this_len, 0);
822 		if (!retval || check_mem_permission(task)) {
823 			if (!ret)
824 				ret = -EIO;
825 			break;
826 		}
827 
828 		if (copy_to_user(buf, page, retval)) {
829 			ret = -EFAULT;
830 			break;
831 		}
832 
833 		ret += retval;
834 		src += retval;
835 		buf += retval;
836 		count -= retval;
837 	}
838 	*ppos = src;
839 
840 out_put:
841 	mmput(mm);
842 out_free:
843 	free_page((unsigned long) page);
844 out:
845 	put_task_struct(task);
846 out_no_task:
847 	return ret;
848 }
849 
850 #define mem_write NULL
851 
852 #ifndef mem_write
853 /* This is a security hazard */
854 static ssize_t mem_write(struct file * file, const char __user *buf,
855 			 size_t count, loff_t *ppos)
856 {
857 	int copied;
858 	char *page;
859 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
860 	unsigned long dst = *ppos;
861 
862 	copied = -ESRCH;
863 	if (!task)
864 		goto out_no_task;
865 
866 	if (check_mem_permission(task))
867 		goto out;
868 
869 	copied = -ENOMEM;
870 	page = (char *)__get_free_page(GFP_TEMPORARY);
871 	if (!page)
872 		goto out;
873 
874 	copied = 0;
875 	while (count > 0) {
876 		int this_len, retval;
877 
878 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
879 		if (copy_from_user(page, buf, this_len)) {
880 			copied = -EFAULT;
881 			break;
882 		}
883 		retval = access_process_vm(task, dst, page, this_len, 1);
884 		if (!retval) {
885 			if (!copied)
886 				copied = -EIO;
887 			break;
888 		}
889 		copied += retval;
890 		buf += retval;
891 		dst += retval;
892 		count -= retval;
893 	}
894 	*ppos = dst;
895 	free_page((unsigned long) page);
896 out:
897 	put_task_struct(task);
898 out_no_task:
899 	return copied;
900 }
901 #endif
902 
903 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
904 {
905 	switch (orig) {
906 	case 0:
907 		file->f_pos = offset;
908 		break;
909 	case 1:
910 		file->f_pos += offset;
911 		break;
912 	default:
913 		return -EINVAL;
914 	}
915 	force_successful_syscall_return();
916 	return file->f_pos;
917 }
918 
919 static const struct file_operations proc_mem_operations = {
920 	.llseek		= mem_lseek,
921 	.read		= mem_read,
922 	.write		= mem_write,
923 	.open		= mem_open,
924 };
925 
926 static ssize_t environ_read(struct file *file, char __user *buf,
927 			size_t count, loff_t *ppos)
928 {
929 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
930 	char *page;
931 	unsigned long src = *ppos;
932 	int ret = -ESRCH;
933 	struct mm_struct *mm;
934 
935 	if (!task)
936 		goto out_no_task;
937 
938 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
939 		goto out;
940 
941 	ret = -ENOMEM;
942 	page = (char *)__get_free_page(GFP_TEMPORARY);
943 	if (!page)
944 		goto out;
945 
946 	ret = 0;
947 
948 	mm = get_task_mm(task);
949 	if (!mm)
950 		goto out_free;
951 
952 	while (count > 0) {
953 		int this_len, retval, max_len;
954 
955 		this_len = mm->env_end - (mm->env_start + src);
956 
957 		if (this_len <= 0)
958 			break;
959 
960 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
961 		this_len = (this_len > max_len) ? max_len : this_len;
962 
963 		retval = access_process_vm(task, (mm->env_start + src),
964 			page, this_len, 0);
965 
966 		if (retval <= 0) {
967 			ret = retval;
968 			break;
969 		}
970 
971 		if (copy_to_user(buf, page, retval)) {
972 			ret = -EFAULT;
973 			break;
974 		}
975 
976 		ret += retval;
977 		src += retval;
978 		buf += retval;
979 		count -= retval;
980 	}
981 	*ppos = src;
982 
983 	mmput(mm);
984 out_free:
985 	free_page((unsigned long) page);
986 out:
987 	put_task_struct(task);
988 out_no_task:
989 	return ret;
990 }
991 
992 static const struct file_operations proc_environ_operations = {
993 	.read		= environ_read,
994 };
995 
996 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
997 				size_t count, loff_t *ppos)
998 {
999 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1000 	char buffer[PROC_NUMBUF];
1001 	size_t len;
1002 	int oom_adjust = OOM_DISABLE;
1003 	unsigned long flags;
1004 
1005 	if (!task)
1006 		return -ESRCH;
1007 
1008 	if (lock_task_sighand(task, &flags)) {
1009 		oom_adjust = task->signal->oom_adj;
1010 		unlock_task_sighand(task, &flags);
1011 	}
1012 
1013 	put_task_struct(task);
1014 
1015 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1016 
1017 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1018 }
1019 
1020 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1021 				size_t count, loff_t *ppos)
1022 {
1023 	struct task_struct *task;
1024 	char buffer[PROC_NUMBUF];
1025 	long oom_adjust;
1026 	unsigned long flags;
1027 	int err;
1028 
1029 	memset(buffer, 0, sizeof(buffer));
1030 	if (count > sizeof(buffer) - 1)
1031 		count = sizeof(buffer) - 1;
1032 	if (copy_from_user(buffer, buf, count))
1033 		return -EFAULT;
1034 
1035 	err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1036 	if (err)
1037 		return -EINVAL;
1038 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1039 	     oom_adjust != OOM_DISABLE)
1040 		return -EINVAL;
1041 
1042 	task = get_proc_task(file->f_path.dentry->d_inode);
1043 	if (!task)
1044 		return -ESRCH;
1045 	if (!lock_task_sighand(task, &flags)) {
1046 		put_task_struct(task);
1047 		return -ESRCH;
1048 	}
1049 
1050 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1051 		unlock_task_sighand(task, &flags);
1052 		put_task_struct(task);
1053 		return -EACCES;
1054 	}
1055 
1056 	task->signal->oom_adj = oom_adjust;
1057 
1058 	unlock_task_sighand(task, &flags);
1059 	put_task_struct(task);
1060 
1061 	return count;
1062 }
1063 
1064 static const struct file_operations proc_oom_adjust_operations = {
1065 	.read		= oom_adjust_read,
1066 	.write		= oom_adjust_write,
1067 };
1068 
1069 #ifdef CONFIG_AUDITSYSCALL
1070 #define TMPBUFLEN 21
1071 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1072 				  size_t count, loff_t *ppos)
1073 {
1074 	struct inode * inode = file->f_path.dentry->d_inode;
1075 	struct task_struct *task = get_proc_task(inode);
1076 	ssize_t length;
1077 	char tmpbuf[TMPBUFLEN];
1078 
1079 	if (!task)
1080 		return -ESRCH;
1081 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1082 				audit_get_loginuid(task));
1083 	put_task_struct(task);
1084 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1085 }
1086 
1087 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1088 				   size_t count, loff_t *ppos)
1089 {
1090 	struct inode * inode = file->f_path.dentry->d_inode;
1091 	char *page, *tmp;
1092 	ssize_t length;
1093 	uid_t loginuid;
1094 
1095 	if (!capable(CAP_AUDIT_CONTROL))
1096 		return -EPERM;
1097 
1098 	rcu_read_lock();
1099 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1100 		rcu_read_unlock();
1101 		return -EPERM;
1102 	}
1103 	rcu_read_unlock();
1104 
1105 	if (count >= PAGE_SIZE)
1106 		count = PAGE_SIZE - 1;
1107 
1108 	if (*ppos != 0) {
1109 		/* No partial writes. */
1110 		return -EINVAL;
1111 	}
1112 	page = (char*)__get_free_page(GFP_TEMPORARY);
1113 	if (!page)
1114 		return -ENOMEM;
1115 	length = -EFAULT;
1116 	if (copy_from_user(page, buf, count))
1117 		goto out_free_page;
1118 
1119 	page[count] = '\0';
1120 	loginuid = simple_strtoul(page, &tmp, 10);
1121 	if (tmp == page) {
1122 		length = -EINVAL;
1123 		goto out_free_page;
1124 
1125 	}
1126 	length = audit_set_loginuid(current, loginuid);
1127 	if (likely(length == 0))
1128 		length = count;
1129 
1130 out_free_page:
1131 	free_page((unsigned long) page);
1132 	return length;
1133 }
1134 
1135 static const struct file_operations proc_loginuid_operations = {
1136 	.read		= proc_loginuid_read,
1137 	.write		= proc_loginuid_write,
1138 };
1139 
1140 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1141 				  size_t count, loff_t *ppos)
1142 {
1143 	struct inode * inode = file->f_path.dentry->d_inode;
1144 	struct task_struct *task = get_proc_task(inode);
1145 	ssize_t length;
1146 	char tmpbuf[TMPBUFLEN];
1147 
1148 	if (!task)
1149 		return -ESRCH;
1150 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1151 				audit_get_sessionid(task));
1152 	put_task_struct(task);
1153 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1154 }
1155 
1156 static const struct file_operations proc_sessionid_operations = {
1157 	.read		= proc_sessionid_read,
1158 };
1159 #endif
1160 
1161 #ifdef CONFIG_FAULT_INJECTION
1162 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1163 				      size_t count, loff_t *ppos)
1164 {
1165 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1166 	char buffer[PROC_NUMBUF];
1167 	size_t len;
1168 	int make_it_fail;
1169 
1170 	if (!task)
1171 		return -ESRCH;
1172 	make_it_fail = task->make_it_fail;
1173 	put_task_struct(task);
1174 
1175 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1176 
1177 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1178 }
1179 
1180 static ssize_t proc_fault_inject_write(struct file * file,
1181 			const char __user * buf, size_t count, loff_t *ppos)
1182 {
1183 	struct task_struct *task;
1184 	char buffer[PROC_NUMBUF], *end;
1185 	int make_it_fail;
1186 
1187 	if (!capable(CAP_SYS_RESOURCE))
1188 		return -EPERM;
1189 	memset(buffer, 0, sizeof(buffer));
1190 	if (count > sizeof(buffer) - 1)
1191 		count = sizeof(buffer) - 1;
1192 	if (copy_from_user(buffer, buf, count))
1193 		return -EFAULT;
1194 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1195 	if (*end)
1196 		return -EINVAL;
1197 	task = get_proc_task(file->f_dentry->d_inode);
1198 	if (!task)
1199 		return -ESRCH;
1200 	task->make_it_fail = make_it_fail;
1201 	put_task_struct(task);
1202 
1203 	return count;
1204 }
1205 
1206 static const struct file_operations proc_fault_inject_operations = {
1207 	.read		= proc_fault_inject_read,
1208 	.write		= proc_fault_inject_write,
1209 };
1210 #endif
1211 
1212 
1213 #ifdef CONFIG_SCHED_DEBUG
1214 /*
1215  * Print out various scheduling related per-task fields:
1216  */
1217 static int sched_show(struct seq_file *m, void *v)
1218 {
1219 	struct inode *inode = m->private;
1220 	struct task_struct *p;
1221 
1222 	p = get_proc_task(inode);
1223 	if (!p)
1224 		return -ESRCH;
1225 	proc_sched_show_task(p, m);
1226 
1227 	put_task_struct(p);
1228 
1229 	return 0;
1230 }
1231 
1232 static ssize_t
1233 sched_write(struct file *file, const char __user *buf,
1234 	    size_t count, loff_t *offset)
1235 {
1236 	struct inode *inode = file->f_path.dentry->d_inode;
1237 	struct task_struct *p;
1238 
1239 	p = get_proc_task(inode);
1240 	if (!p)
1241 		return -ESRCH;
1242 	proc_sched_set_task(p);
1243 
1244 	put_task_struct(p);
1245 
1246 	return count;
1247 }
1248 
1249 static int sched_open(struct inode *inode, struct file *filp)
1250 {
1251 	int ret;
1252 
1253 	ret = single_open(filp, sched_show, NULL);
1254 	if (!ret) {
1255 		struct seq_file *m = filp->private_data;
1256 
1257 		m->private = inode;
1258 	}
1259 	return ret;
1260 }
1261 
1262 static const struct file_operations proc_pid_sched_operations = {
1263 	.open		= sched_open,
1264 	.read		= seq_read,
1265 	.write		= sched_write,
1266 	.llseek		= seq_lseek,
1267 	.release	= single_release,
1268 };
1269 
1270 #endif
1271 
1272 static ssize_t comm_write(struct file *file, const char __user *buf,
1273 				size_t count, loff_t *offset)
1274 {
1275 	struct inode *inode = file->f_path.dentry->d_inode;
1276 	struct task_struct *p;
1277 	char buffer[TASK_COMM_LEN];
1278 
1279 	memset(buffer, 0, sizeof(buffer));
1280 	if (count > sizeof(buffer) - 1)
1281 		count = sizeof(buffer) - 1;
1282 	if (copy_from_user(buffer, buf, count))
1283 		return -EFAULT;
1284 
1285 	p = get_proc_task(inode);
1286 	if (!p)
1287 		return -ESRCH;
1288 
1289 	if (same_thread_group(current, p))
1290 		set_task_comm(p, buffer);
1291 	else
1292 		count = -EINVAL;
1293 
1294 	put_task_struct(p);
1295 
1296 	return count;
1297 }
1298 
1299 static int comm_show(struct seq_file *m, void *v)
1300 {
1301 	struct inode *inode = m->private;
1302 	struct task_struct *p;
1303 
1304 	p = get_proc_task(inode);
1305 	if (!p)
1306 		return -ESRCH;
1307 
1308 	task_lock(p);
1309 	seq_printf(m, "%s\n", p->comm);
1310 	task_unlock(p);
1311 
1312 	put_task_struct(p);
1313 
1314 	return 0;
1315 }
1316 
1317 static int comm_open(struct inode *inode, struct file *filp)
1318 {
1319 	int ret;
1320 
1321 	ret = single_open(filp, comm_show, NULL);
1322 	if (!ret) {
1323 		struct seq_file *m = filp->private_data;
1324 
1325 		m->private = inode;
1326 	}
1327 	return ret;
1328 }
1329 
1330 static const struct file_operations proc_pid_set_comm_operations = {
1331 	.open		= comm_open,
1332 	.read		= seq_read,
1333 	.write		= comm_write,
1334 	.llseek		= seq_lseek,
1335 	.release	= single_release,
1336 };
1337 
1338 /*
1339  * We added or removed a vma mapping the executable. The vmas are only mapped
1340  * during exec and are not mapped with the mmap system call.
1341  * Callers must hold down_write() on the mm's mmap_sem for these
1342  */
1343 void added_exe_file_vma(struct mm_struct *mm)
1344 {
1345 	mm->num_exe_file_vmas++;
1346 }
1347 
1348 void removed_exe_file_vma(struct mm_struct *mm)
1349 {
1350 	mm->num_exe_file_vmas--;
1351 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1352 		fput(mm->exe_file);
1353 		mm->exe_file = NULL;
1354 	}
1355 
1356 }
1357 
1358 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1359 {
1360 	if (new_exe_file)
1361 		get_file(new_exe_file);
1362 	if (mm->exe_file)
1363 		fput(mm->exe_file);
1364 	mm->exe_file = new_exe_file;
1365 	mm->num_exe_file_vmas = 0;
1366 }
1367 
1368 struct file *get_mm_exe_file(struct mm_struct *mm)
1369 {
1370 	struct file *exe_file;
1371 
1372 	/* We need mmap_sem to protect against races with removal of
1373 	 * VM_EXECUTABLE vmas */
1374 	down_read(&mm->mmap_sem);
1375 	exe_file = mm->exe_file;
1376 	if (exe_file)
1377 		get_file(exe_file);
1378 	up_read(&mm->mmap_sem);
1379 	return exe_file;
1380 }
1381 
1382 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1383 {
1384 	/* It's safe to write the exe_file pointer without exe_file_lock because
1385 	 * this is called during fork when the task is not yet in /proc */
1386 	newmm->exe_file = get_mm_exe_file(oldmm);
1387 }
1388 
1389 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1390 {
1391 	struct task_struct *task;
1392 	struct mm_struct *mm;
1393 	struct file *exe_file;
1394 
1395 	task = get_proc_task(inode);
1396 	if (!task)
1397 		return -ENOENT;
1398 	mm = get_task_mm(task);
1399 	put_task_struct(task);
1400 	if (!mm)
1401 		return -ENOENT;
1402 	exe_file = get_mm_exe_file(mm);
1403 	mmput(mm);
1404 	if (exe_file) {
1405 		*exe_path = exe_file->f_path;
1406 		path_get(&exe_file->f_path);
1407 		fput(exe_file);
1408 		return 0;
1409 	} else
1410 		return -ENOENT;
1411 }
1412 
1413 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1414 {
1415 	struct inode *inode = dentry->d_inode;
1416 	int error = -EACCES;
1417 
1418 	/* We don't need a base pointer in the /proc filesystem */
1419 	path_put(&nd->path);
1420 
1421 	/* Are we allowed to snoop on the tasks file descriptors? */
1422 	if (!proc_fd_access_allowed(inode))
1423 		goto out;
1424 
1425 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1426 out:
1427 	return ERR_PTR(error);
1428 }
1429 
1430 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1431 {
1432 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1433 	char *pathname;
1434 	int len;
1435 
1436 	if (!tmp)
1437 		return -ENOMEM;
1438 
1439 	pathname = d_path(path, tmp, PAGE_SIZE);
1440 	len = PTR_ERR(pathname);
1441 	if (IS_ERR(pathname))
1442 		goto out;
1443 	len = tmp + PAGE_SIZE - 1 - pathname;
1444 
1445 	if (len > buflen)
1446 		len = buflen;
1447 	if (copy_to_user(buffer, pathname, len))
1448 		len = -EFAULT;
1449  out:
1450 	free_page((unsigned long)tmp);
1451 	return len;
1452 }
1453 
1454 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1455 {
1456 	int error = -EACCES;
1457 	struct inode *inode = dentry->d_inode;
1458 	struct path path;
1459 
1460 	/* Are we allowed to snoop on the tasks file descriptors? */
1461 	if (!proc_fd_access_allowed(inode))
1462 		goto out;
1463 
1464 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1465 	if (error)
1466 		goto out;
1467 
1468 	error = do_proc_readlink(&path, buffer, buflen);
1469 	path_put(&path);
1470 out:
1471 	return error;
1472 }
1473 
1474 static const struct inode_operations proc_pid_link_inode_operations = {
1475 	.readlink	= proc_pid_readlink,
1476 	.follow_link	= proc_pid_follow_link,
1477 	.setattr	= proc_setattr,
1478 };
1479 
1480 
1481 /* building an inode */
1482 
1483 static int task_dumpable(struct task_struct *task)
1484 {
1485 	int dumpable = 0;
1486 	struct mm_struct *mm;
1487 
1488 	task_lock(task);
1489 	mm = task->mm;
1490 	if (mm)
1491 		dumpable = get_dumpable(mm);
1492 	task_unlock(task);
1493 	if(dumpable == 1)
1494 		return 1;
1495 	return 0;
1496 }
1497 
1498 
1499 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1500 {
1501 	struct inode * inode;
1502 	struct proc_inode *ei;
1503 	const struct cred *cred;
1504 
1505 	/* We need a new inode */
1506 
1507 	inode = new_inode(sb);
1508 	if (!inode)
1509 		goto out;
1510 
1511 	/* Common stuff */
1512 	ei = PROC_I(inode);
1513 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1514 	inode->i_op = &proc_def_inode_operations;
1515 
1516 	/*
1517 	 * grab the reference to task.
1518 	 */
1519 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1520 	if (!ei->pid)
1521 		goto out_unlock;
1522 
1523 	if (task_dumpable(task)) {
1524 		rcu_read_lock();
1525 		cred = __task_cred(task);
1526 		inode->i_uid = cred->euid;
1527 		inode->i_gid = cred->egid;
1528 		rcu_read_unlock();
1529 	}
1530 	security_task_to_inode(task, inode);
1531 
1532 out:
1533 	return inode;
1534 
1535 out_unlock:
1536 	iput(inode);
1537 	return NULL;
1538 }
1539 
1540 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1541 {
1542 	struct inode *inode = dentry->d_inode;
1543 	struct task_struct *task;
1544 	const struct cred *cred;
1545 
1546 	generic_fillattr(inode, stat);
1547 
1548 	rcu_read_lock();
1549 	stat->uid = 0;
1550 	stat->gid = 0;
1551 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1552 	if (task) {
1553 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1554 		    task_dumpable(task)) {
1555 			cred = __task_cred(task);
1556 			stat->uid = cred->euid;
1557 			stat->gid = cred->egid;
1558 		}
1559 	}
1560 	rcu_read_unlock();
1561 	return 0;
1562 }
1563 
1564 /* dentry stuff */
1565 
1566 /*
1567  *	Exceptional case: normally we are not allowed to unhash a busy
1568  * directory. In this case, however, we can do it - no aliasing problems
1569  * due to the way we treat inodes.
1570  *
1571  * Rewrite the inode's ownerships here because the owning task may have
1572  * performed a setuid(), etc.
1573  *
1574  * Before the /proc/pid/status file was created the only way to read
1575  * the effective uid of a /process was to stat /proc/pid.  Reading
1576  * /proc/pid/status is slow enough that procps and other packages
1577  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1578  * made this apply to all per process world readable and executable
1579  * directories.
1580  */
1581 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1582 {
1583 	struct inode *inode = dentry->d_inode;
1584 	struct task_struct *task = get_proc_task(inode);
1585 	const struct cred *cred;
1586 
1587 	if (task) {
1588 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1589 		    task_dumpable(task)) {
1590 			rcu_read_lock();
1591 			cred = __task_cred(task);
1592 			inode->i_uid = cred->euid;
1593 			inode->i_gid = cred->egid;
1594 			rcu_read_unlock();
1595 		} else {
1596 			inode->i_uid = 0;
1597 			inode->i_gid = 0;
1598 		}
1599 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1600 		security_task_to_inode(task, inode);
1601 		put_task_struct(task);
1602 		return 1;
1603 	}
1604 	d_drop(dentry);
1605 	return 0;
1606 }
1607 
1608 static int pid_delete_dentry(struct dentry * dentry)
1609 {
1610 	/* Is the task we represent dead?
1611 	 * If so, then don't put the dentry on the lru list,
1612 	 * kill it immediately.
1613 	 */
1614 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1615 }
1616 
1617 static const struct dentry_operations pid_dentry_operations =
1618 {
1619 	.d_revalidate	= pid_revalidate,
1620 	.d_delete	= pid_delete_dentry,
1621 };
1622 
1623 /* Lookups */
1624 
1625 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1626 				struct task_struct *, const void *);
1627 
1628 /*
1629  * Fill a directory entry.
1630  *
1631  * If possible create the dcache entry and derive our inode number and
1632  * file type from dcache entry.
1633  *
1634  * Since all of the proc inode numbers are dynamically generated, the inode
1635  * numbers do not exist until the inode is cache.  This means creating the
1636  * the dcache entry in readdir is necessary to keep the inode numbers
1637  * reported by readdir in sync with the inode numbers reported
1638  * by stat.
1639  */
1640 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1641 	char *name, int len,
1642 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1643 {
1644 	struct dentry *child, *dir = filp->f_path.dentry;
1645 	struct inode *inode;
1646 	struct qstr qname;
1647 	ino_t ino = 0;
1648 	unsigned type = DT_UNKNOWN;
1649 
1650 	qname.name = name;
1651 	qname.len  = len;
1652 	qname.hash = full_name_hash(name, len);
1653 
1654 	child = d_lookup(dir, &qname);
1655 	if (!child) {
1656 		struct dentry *new;
1657 		new = d_alloc(dir, &qname);
1658 		if (new) {
1659 			child = instantiate(dir->d_inode, new, task, ptr);
1660 			if (child)
1661 				dput(new);
1662 			else
1663 				child = new;
1664 		}
1665 	}
1666 	if (!child || IS_ERR(child) || !child->d_inode)
1667 		goto end_instantiate;
1668 	inode = child->d_inode;
1669 	if (inode) {
1670 		ino = inode->i_ino;
1671 		type = inode->i_mode >> 12;
1672 	}
1673 	dput(child);
1674 end_instantiate:
1675 	if (!ino)
1676 		ino = find_inode_number(dir, &qname);
1677 	if (!ino)
1678 		ino = 1;
1679 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1680 }
1681 
1682 static unsigned name_to_int(struct dentry *dentry)
1683 {
1684 	const char *name = dentry->d_name.name;
1685 	int len = dentry->d_name.len;
1686 	unsigned n = 0;
1687 
1688 	if (len > 1 && *name == '0')
1689 		goto out;
1690 	while (len-- > 0) {
1691 		unsigned c = *name++ - '0';
1692 		if (c > 9)
1693 			goto out;
1694 		if (n >= (~0U-9)/10)
1695 			goto out;
1696 		n *= 10;
1697 		n += c;
1698 	}
1699 	return n;
1700 out:
1701 	return ~0U;
1702 }
1703 
1704 #define PROC_FDINFO_MAX 64
1705 
1706 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1707 {
1708 	struct task_struct *task = get_proc_task(inode);
1709 	struct files_struct *files = NULL;
1710 	struct file *file;
1711 	int fd = proc_fd(inode);
1712 
1713 	if (task) {
1714 		files = get_files_struct(task);
1715 		put_task_struct(task);
1716 	}
1717 	if (files) {
1718 		/*
1719 		 * We are not taking a ref to the file structure, so we must
1720 		 * hold ->file_lock.
1721 		 */
1722 		spin_lock(&files->file_lock);
1723 		file = fcheck_files(files, fd);
1724 		if (file) {
1725 			if (path) {
1726 				*path = file->f_path;
1727 				path_get(&file->f_path);
1728 			}
1729 			if (info)
1730 				snprintf(info, PROC_FDINFO_MAX,
1731 					 "pos:\t%lli\n"
1732 					 "flags:\t0%o\n",
1733 					 (long long) file->f_pos,
1734 					 file->f_flags);
1735 			spin_unlock(&files->file_lock);
1736 			put_files_struct(files);
1737 			return 0;
1738 		}
1739 		spin_unlock(&files->file_lock);
1740 		put_files_struct(files);
1741 	}
1742 	return -ENOENT;
1743 }
1744 
1745 static int proc_fd_link(struct inode *inode, struct path *path)
1746 {
1747 	return proc_fd_info(inode, path, NULL);
1748 }
1749 
1750 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1751 {
1752 	struct inode *inode = dentry->d_inode;
1753 	struct task_struct *task = get_proc_task(inode);
1754 	int fd = proc_fd(inode);
1755 	struct files_struct *files;
1756 	const struct cred *cred;
1757 
1758 	if (task) {
1759 		files = get_files_struct(task);
1760 		if (files) {
1761 			rcu_read_lock();
1762 			if (fcheck_files(files, fd)) {
1763 				rcu_read_unlock();
1764 				put_files_struct(files);
1765 				if (task_dumpable(task)) {
1766 					rcu_read_lock();
1767 					cred = __task_cred(task);
1768 					inode->i_uid = cred->euid;
1769 					inode->i_gid = cred->egid;
1770 					rcu_read_unlock();
1771 				} else {
1772 					inode->i_uid = 0;
1773 					inode->i_gid = 0;
1774 				}
1775 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1776 				security_task_to_inode(task, inode);
1777 				put_task_struct(task);
1778 				return 1;
1779 			}
1780 			rcu_read_unlock();
1781 			put_files_struct(files);
1782 		}
1783 		put_task_struct(task);
1784 	}
1785 	d_drop(dentry);
1786 	return 0;
1787 }
1788 
1789 static const struct dentry_operations tid_fd_dentry_operations =
1790 {
1791 	.d_revalidate	= tid_fd_revalidate,
1792 	.d_delete	= pid_delete_dentry,
1793 };
1794 
1795 static struct dentry *proc_fd_instantiate(struct inode *dir,
1796 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1797 {
1798 	unsigned fd = *(const unsigned *)ptr;
1799 	struct file *file;
1800 	struct files_struct *files;
1801  	struct inode *inode;
1802  	struct proc_inode *ei;
1803 	struct dentry *error = ERR_PTR(-ENOENT);
1804 
1805 	inode = proc_pid_make_inode(dir->i_sb, task);
1806 	if (!inode)
1807 		goto out;
1808 	ei = PROC_I(inode);
1809 	ei->fd = fd;
1810 	files = get_files_struct(task);
1811 	if (!files)
1812 		goto out_iput;
1813 	inode->i_mode = S_IFLNK;
1814 
1815 	/*
1816 	 * We are not taking a ref to the file structure, so we must
1817 	 * hold ->file_lock.
1818 	 */
1819 	spin_lock(&files->file_lock);
1820 	file = fcheck_files(files, fd);
1821 	if (!file)
1822 		goto out_unlock;
1823 	if (file->f_mode & FMODE_READ)
1824 		inode->i_mode |= S_IRUSR | S_IXUSR;
1825 	if (file->f_mode & FMODE_WRITE)
1826 		inode->i_mode |= S_IWUSR | S_IXUSR;
1827 	spin_unlock(&files->file_lock);
1828 	put_files_struct(files);
1829 
1830 	inode->i_op = &proc_pid_link_inode_operations;
1831 	inode->i_size = 64;
1832 	ei->op.proc_get_link = proc_fd_link;
1833 	dentry->d_op = &tid_fd_dentry_operations;
1834 	d_add(dentry, inode);
1835 	/* Close the race of the process dying before we return the dentry */
1836 	if (tid_fd_revalidate(dentry, NULL))
1837 		error = NULL;
1838 
1839  out:
1840 	return error;
1841 out_unlock:
1842 	spin_unlock(&files->file_lock);
1843 	put_files_struct(files);
1844 out_iput:
1845 	iput(inode);
1846 	goto out;
1847 }
1848 
1849 static struct dentry *proc_lookupfd_common(struct inode *dir,
1850 					   struct dentry *dentry,
1851 					   instantiate_t instantiate)
1852 {
1853 	struct task_struct *task = get_proc_task(dir);
1854 	unsigned fd = name_to_int(dentry);
1855 	struct dentry *result = ERR_PTR(-ENOENT);
1856 
1857 	if (!task)
1858 		goto out_no_task;
1859 	if (fd == ~0U)
1860 		goto out;
1861 
1862 	result = instantiate(dir, dentry, task, &fd);
1863 out:
1864 	put_task_struct(task);
1865 out_no_task:
1866 	return result;
1867 }
1868 
1869 static int proc_readfd_common(struct file * filp, void * dirent,
1870 			      filldir_t filldir, instantiate_t instantiate)
1871 {
1872 	struct dentry *dentry = filp->f_path.dentry;
1873 	struct inode *inode = dentry->d_inode;
1874 	struct task_struct *p = get_proc_task(inode);
1875 	unsigned int fd, ino;
1876 	int retval;
1877 	struct files_struct * files;
1878 
1879 	retval = -ENOENT;
1880 	if (!p)
1881 		goto out_no_task;
1882 	retval = 0;
1883 
1884 	fd = filp->f_pos;
1885 	switch (fd) {
1886 		case 0:
1887 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1888 				goto out;
1889 			filp->f_pos++;
1890 		case 1:
1891 			ino = parent_ino(dentry);
1892 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1893 				goto out;
1894 			filp->f_pos++;
1895 		default:
1896 			files = get_files_struct(p);
1897 			if (!files)
1898 				goto out;
1899 			rcu_read_lock();
1900 			for (fd = filp->f_pos-2;
1901 			     fd < files_fdtable(files)->max_fds;
1902 			     fd++, filp->f_pos++) {
1903 				char name[PROC_NUMBUF];
1904 				int len;
1905 
1906 				if (!fcheck_files(files, fd))
1907 					continue;
1908 				rcu_read_unlock();
1909 
1910 				len = snprintf(name, sizeof(name), "%d", fd);
1911 				if (proc_fill_cache(filp, dirent, filldir,
1912 						    name, len, instantiate,
1913 						    p, &fd) < 0) {
1914 					rcu_read_lock();
1915 					break;
1916 				}
1917 				rcu_read_lock();
1918 			}
1919 			rcu_read_unlock();
1920 			put_files_struct(files);
1921 	}
1922 out:
1923 	put_task_struct(p);
1924 out_no_task:
1925 	return retval;
1926 }
1927 
1928 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1929 				    struct nameidata *nd)
1930 {
1931 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1932 }
1933 
1934 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1935 {
1936 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1937 }
1938 
1939 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1940 				      size_t len, loff_t *ppos)
1941 {
1942 	char tmp[PROC_FDINFO_MAX];
1943 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1944 	if (!err)
1945 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1946 	return err;
1947 }
1948 
1949 static const struct file_operations proc_fdinfo_file_operations = {
1950 	.open		= nonseekable_open,
1951 	.read		= proc_fdinfo_read,
1952 };
1953 
1954 static const struct file_operations proc_fd_operations = {
1955 	.read		= generic_read_dir,
1956 	.readdir	= proc_readfd,
1957 };
1958 
1959 /*
1960  * /proc/pid/fd needs a special permission handler so that a process can still
1961  * access /proc/self/fd after it has executed a setuid().
1962  */
1963 static int proc_fd_permission(struct inode *inode, int mask)
1964 {
1965 	int rv;
1966 
1967 	rv = generic_permission(inode, mask, NULL);
1968 	if (rv == 0)
1969 		return 0;
1970 	if (task_pid(current) == proc_pid(inode))
1971 		rv = 0;
1972 	return rv;
1973 }
1974 
1975 /*
1976  * proc directories can do almost nothing..
1977  */
1978 static const struct inode_operations proc_fd_inode_operations = {
1979 	.lookup		= proc_lookupfd,
1980 	.permission	= proc_fd_permission,
1981 	.setattr	= proc_setattr,
1982 };
1983 
1984 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1985 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1986 {
1987 	unsigned fd = *(unsigned *)ptr;
1988  	struct inode *inode;
1989  	struct proc_inode *ei;
1990 	struct dentry *error = ERR_PTR(-ENOENT);
1991 
1992 	inode = proc_pid_make_inode(dir->i_sb, task);
1993 	if (!inode)
1994 		goto out;
1995 	ei = PROC_I(inode);
1996 	ei->fd = fd;
1997 	inode->i_mode = S_IFREG | S_IRUSR;
1998 	inode->i_fop = &proc_fdinfo_file_operations;
1999 	dentry->d_op = &tid_fd_dentry_operations;
2000 	d_add(dentry, inode);
2001 	/* Close the race of the process dying before we return the dentry */
2002 	if (tid_fd_revalidate(dentry, NULL))
2003 		error = NULL;
2004 
2005  out:
2006 	return error;
2007 }
2008 
2009 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2010 					struct dentry *dentry,
2011 					struct nameidata *nd)
2012 {
2013 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2014 }
2015 
2016 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2017 {
2018 	return proc_readfd_common(filp, dirent, filldir,
2019 				  proc_fdinfo_instantiate);
2020 }
2021 
2022 static const struct file_operations proc_fdinfo_operations = {
2023 	.read		= generic_read_dir,
2024 	.readdir	= proc_readfdinfo,
2025 };
2026 
2027 /*
2028  * proc directories can do almost nothing..
2029  */
2030 static const struct inode_operations proc_fdinfo_inode_operations = {
2031 	.lookup		= proc_lookupfdinfo,
2032 	.setattr	= proc_setattr,
2033 };
2034 
2035 
2036 static struct dentry *proc_pident_instantiate(struct inode *dir,
2037 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2038 {
2039 	const struct pid_entry *p = ptr;
2040 	struct inode *inode;
2041 	struct proc_inode *ei;
2042 	struct dentry *error = ERR_PTR(-ENOENT);
2043 
2044 	inode = proc_pid_make_inode(dir->i_sb, task);
2045 	if (!inode)
2046 		goto out;
2047 
2048 	ei = PROC_I(inode);
2049 	inode->i_mode = p->mode;
2050 	if (S_ISDIR(inode->i_mode))
2051 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2052 	if (p->iop)
2053 		inode->i_op = p->iop;
2054 	if (p->fop)
2055 		inode->i_fop = p->fop;
2056 	ei->op = p->op;
2057 	dentry->d_op = &pid_dentry_operations;
2058 	d_add(dentry, inode);
2059 	/* Close the race of the process dying before we return the dentry */
2060 	if (pid_revalidate(dentry, NULL))
2061 		error = NULL;
2062 out:
2063 	return error;
2064 }
2065 
2066 static struct dentry *proc_pident_lookup(struct inode *dir,
2067 					 struct dentry *dentry,
2068 					 const struct pid_entry *ents,
2069 					 unsigned int nents)
2070 {
2071 	struct dentry *error;
2072 	struct task_struct *task = get_proc_task(dir);
2073 	const struct pid_entry *p, *last;
2074 
2075 	error = ERR_PTR(-ENOENT);
2076 
2077 	if (!task)
2078 		goto out_no_task;
2079 
2080 	/*
2081 	 * Yes, it does not scale. And it should not. Don't add
2082 	 * new entries into /proc/<tgid>/ without very good reasons.
2083 	 */
2084 	last = &ents[nents - 1];
2085 	for (p = ents; p <= last; p++) {
2086 		if (p->len != dentry->d_name.len)
2087 			continue;
2088 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2089 			break;
2090 	}
2091 	if (p > last)
2092 		goto out;
2093 
2094 	error = proc_pident_instantiate(dir, dentry, task, p);
2095 out:
2096 	put_task_struct(task);
2097 out_no_task:
2098 	return error;
2099 }
2100 
2101 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2102 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2103 {
2104 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2105 				proc_pident_instantiate, task, p);
2106 }
2107 
2108 static int proc_pident_readdir(struct file *filp,
2109 		void *dirent, filldir_t filldir,
2110 		const struct pid_entry *ents, unsigned int nents)
2111 {
2112 	int i;
2113 	struct dentry *dentry = filp->f_path.dentry;
2114 	struct inode *inode = dentry->d_inode;
2115 	struct task_struct *task = get_proc_task(inode);
2116 	const struct pid_entry *p, *last;
2117 	ino_t ino;
2118 	int ret;
2119 
2120 	ret = -ENOENT;
2121 	if (!task)
2122 		goto out_no_task;
2123 
2124 	ret = 0;
2125 	i = filp->f_pos;
2126 	switch (i) {
2127 	case 0:
2128 		ino = inode->i_ino;
2129 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2130 			goto out;
2131 		i++;
2132 		filp->f_pos++;
2133 		/* fall through */
2134 	case 1:
2135 		ino = parent_ino(dentry);
2136 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2137 			goto out;
2138 		i++;
2139 		filp->f_pos++;
2140 		/* fall through */
2141 	default:
2142 		i -= 2;
2143 		if (i >= nents) {
2144 			ret = 1;
2145 			goto out;
2146 		}
2147 		p = ents + i;
2148 		last = &ents[nents - 1];
2149 		while (p <= last) {
2150 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2151 				goto out;
2152 			filp->f_pos++;
2153 			p++;
2154 		}
2155 	}
2156 
2157 	ret = 1;
2158 out:
2159 	put_task_struct(task);
2160 out_no_task:
2161 	return ret;
2162 }
2163 
2164 #ifdef CONFIG_SECURITY
2165 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2166 				  size_t count, loff_t *ppos)
2167 {
2168 	struct inode * inode = file->f_path.dentry->d_inode;
2169 	char *p = NULL;
2170 	ssize_t length;
2171 	struct task_struct *task = get_proc_task(inode);
2172 
2173 	if (!task)
2174 		return -ESRCH;
2175 
2176 	length = security_getprocattr(task,
2177 				      (char*)file->f_path.dentry->d_name.name,
2178 				      &p);
2179 	put_task_struct(task);
2180 	if (length > 0)
2181 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2182 	kfree(p);
2183 	return length;
2184 }
2185 
2186 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2187 				   size_t count, loff_t *ppos)
2188 {
2189 	struct inode * inode = file->f_path.dentry->d_inode;
2190 	char *page;
2191 	ssize_t length;
2192 	struct task_struct *task = get_proc_task(inode);
2193 
2194 	length = -ESRCH;
2195 	if (!task)
2196 		goto out_no_task;
2197 	if (count > PAGE_SIZE)
2198 		count = PAGE_SIZE;
2199 
2200 	/* No partial writes. */
2201 	length = -EINVAL;
2202 	if (*ppos != 0)
2203 		goto out;
2204 
2205 	length = -ENOMEM;
2206 	page = (char*)__get_free_page(GFP_TEMPORARY);
2207 	if (!page)
2208 		goto out;
2209 
2210 	length = -EFAULT;
2211 	if (copy_from_user(page, buf, count))
2212 		goto out_free;
2213 
2214 	/* Guard against adverse ptrace interaction */
2215 	length = mutex_lock_interruptible(&task->cred_guard_mutex);
2216 	if (length < 0)
2217 		goto out_free;
2218 
2219 	length = security_setprocattr(task,
2220 				      (char*)file->f_path.dentry->d_name.name,
2221 				      (void*)page, count);
2222 	mutex_unlock(&task->cred_guard_mutex);
2223 out_free:
2224 	free_page((unsigned long) page);
2225 out:
2226 	put_task_struct(task);
2227 out_no_task:
2228 	return length;
2229 }
2230 
2231 static const struct file_operations proc_pid_attr_operations = {
2232 	.read		= proc_pid_attr_read,
2233 	.write		= proc_pid_attr_write,
2234 };
2235 
2236 static const struct pid_entry attr_dir_stuff[] = {
2237 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2238 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2239 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2240 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2241 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2242 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2243 };
2244 
2245 static int proc_attr_dir_readdir(struct file * filp,
2246 			     void * dirent, filldir_t filldir)
2247 {
2248 	return proc_pident_readdir(filp,dirent,filldir,
2249 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2250 }
2251 
2252 static const struct file_operations proc_attr_dir_operations = {
2253 	.read		= generic_read_dir,
2254 	.readdir	= proc_attr_dir_readdir,
2255 };
2256 
2257 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2258 				struct dentry *dentry, struct nameidata *nd)
2259 {
2260 	return proc_pident_lookup(dir, dentry,
2261 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2262 }
2263 
2264 static const struct inode_operations proc_attr_dir_inode_operations = {
2265 	.lookup		= proc_attr_dir_lookup,
2266 	.getattr	= pid_getattr,
2267 	.setattr	= proc_setattr,
2268 };
2269 
2270 #endif
2271 
2272 #ifdef CONFIG_ELF_CORE
2273 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2274 					 size_t count, loff_t *ppos)
2275 {
2276 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2277 	struct mm_struct *mm;
2278 	char buffer[PROC_NUMBUF];
2279 	size_t len;
2280 	int ret;
2281 
2282 	if (!task)
2283 		return -ESRCH;
2284 
2285 	ret = 0;
2286 	mm = get_task_mm(task);
2287 	if (mm) {
2288 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2289 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2290 				MMF_DUMP_FILTER_SHIFT));
2291 		mmput(mm);
2292 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2293 	}
2294 
2295 	put_task_struct(task);
2296 
2297 	return ret;
2298 }
2299 
2300 static ssize_t proc_coredump_filter_write(struct file *file,
2301 					  const char __user *buf,
2302 					  size_t count,
2303 					  loff_t *ppos)
2304 {
2305 	struct task_struct *task;
2306 	struct mm_struct *mm;
2307 	char buffer[PROC_NUMBUF], *end;
2308 	unsigned int val;
2309 	int ret;
2310 	int i;
2311 	unsigned long mask;
2312 
2313 	ret = -EFAULT;
2314 	memset(buffer, 0, sizeof(buffer));
2315 	if (count > sizeof(buffer) - 1)
2316 		count = sizeof(buffer) - 1;
2317 	if (copy_from_user(buffer, buf, count))
2318 		goto out_no_task;
2319 
2320 	ret = -EINVAL;
2321 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2322 	if (*end == '\n')
2323 		end++;
2324 	if (end - buffer == 0)
2325 		goto out_no_task;
2326 
2327 	ret = -ESRCH;
2328 	task = get_proc_task(file->f_dentry->d_inode);
2329 	if (!task)
2330 		goto out_no_task;
2331 
2332 	ret = end - buffer;
2333 	mm = get_task_mm(task);
2334 	if (!mm)
2335 		goto out_no_mm;
2336 
2337 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2338 		if (val & mask)
2339 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2340 		else
2341 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2342 	}
2343 
2344 	mmput(mm);
2345  out_no_mm:
2346 	put_task_struct(task);
2347  out_no_task:
2348 	return ret;
2349 }
2350 
2351 static const struct file_operations proc_coredump_filter_operations = {
2352 	.read		= proc_coredump_filter_read,
2353 	.write		= proc_coredump_filter_write,
2354 };
2355 #endif
2356 
2357 /*
2358  * /proc/self:
2359  */
2360 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2361 			      int buflen)
2362 {
2363 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2364 	pid_t tgid = task_tgid_nr_ns(current, ns);
2365 	char tmp[PROC_NUMBUF];
2366 	if (!tgid)
2367 		return -ENOENT;
2368 	sprintf(tmp, "%d", tgid);
2369 	return vfs_readlink(dentry,buffer,buflen,tmp);
2370 }
2371 
2372 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2373 {
2374 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2375 	pid_t tgid = task_tgid_nr_ns(current, ns);
2376 	char *name = ERR_PTR(-ENOENT);
2377 	if (tgid) {
2378 		name = __getname();
2379 		if (!name)
2380 			name = ERR_PTR(-ENOMEM);
2381 		else
2382 			sprintf(name, "%d", tgid);
2383 	}
2384 	nd_set_link(nd, name);
2385 	return NULL;
2386 }
2387 
2388 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2389 				void *cookie)
2390 {
2391 	char *s = nd_get_link(nd);
2392 	if (!IS_ERR(s))
2393 		__putname(s);
2394 }
2395 
2396 static const struct inode_operations proc_self_inode_operations = {
2397 	.readlink	= proc_self_readlink,
2398 	.follow_link	= proc_self_follow_link,
2399 	.put_link	= proc_self_put_link,
2400 };
2401 
2402 /*
2403  * proc base
2404  *
2405  * These are the directory entries in the root directory of /proc
2406  * that properly belong to the /proc filesystem, as they describe
2407  * describe something that is process related.
2408  */
2409 static const struct pid_entry proc_base_stuff[] = {
2410 	NOD("self", S_IFLNK|S_IRWXUGO,
2411 		&proc_self_inode_operations, NULL, {}),
2412 };
2413 
2414 /*
2415  *	Exceptional case: normally we are not allowed to unhash a busy
2416  * directory. In this case, however, we can do it - no aliasing problems
2417  * due to the way we treat inodes.
2418  */
2419 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2420 {
2421 	struct inode *inode = dentry->d_inode;
2422 	struct task_struct *task = get_proc_task(inode);
2423 	if (task) {
2424 		put_task_struct(task);
2425 		return 1;
2426 	}
2427 	d_drop(dentry);
2428 	return 0;
2429 }
2430 
2431 static const struct dentry_operations proc_base_dentry_operations =
2432 {
2433 	.d_revalidate	= proc_base_revalidate,
2434 	.d_delete	= pid_delete_dentry,
2435 };
2436 
2437 static struct dentry *proc_base_instantiate(struct inode *dir,
2438 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2439 {
2440 	const struct pid_entry *p = ptr;
2441 	struct inode *inode;
2442 	struct proc_inode *ei;
2443 	struct dentry *error = ERR_PTR(-EINVAL);
2444 
2445 	/* Allocate the inode */
2446 	error = ERR_PTR(-ENOMEM);
2447 	inode = new_inode(dir->i_sb);
2448 	if (!inode)
2449 		goto out;
2450 
2451 	/* Initialize the inode */
2452 	ei = PROC_I(inode);
2453 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2454 
2455 	/*
2456 	 * grab the reference to the task.
2457 	 */
2458 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2459 	if (!ei->pid)
2460 		goto out_iput;
2461 
2462 	inode->i_mode = p->mode;
2463 	if (S_ISDIR(inode->i_mode))
2464 		inode->i_nlink = 2;
2465 	if (S_ISLNK(inode->i_mode))
2466 		inode->i_size = 64;
2467 	if (p->iop)
2468 		inode->i_op = p->iop;
2469 	if (p->fop)
2470 		inode->i_fop = p->fop;
2471 	ei->op = p->op;
2472 	dentry->d_op = &proc_base_dentry_operations;
2473 	d_add(dentry, inode);
2474 	error = NULL;
2475 out:
2476 	return error;
2477 out_iput:
2478 	iput(inode);
2479 	goto out;
2480 }
2481 
2482 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2483 {
2484 	struct dentry *error;
2485 	struct task_struct *task = get_proc_task(dir);
2486 	const struct pid_entry *p, *last;
2487 
2488 	error = ERR_PTR(-ENOENT);
2489 
2490 	if (!task)
2491 		goto out_no_task;
2492 
2493 	/* Lookup the directory entry */
2494 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2495 	for (p = proc_base_stuff; p <= last; p++) {
2496 		if (p->len != dentry->d_name.len)
2497 			continue;
2498 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2499 			break;
2500 	}
2501 	if (p > last)
2502 		goto out;
2503 
2504 	error = proc_base_instantiate(dir, dentry, task, p);
2505 
2506 out:
2507 	put_task_struct(task);
2508 out_no_task:
2509 	return error;
2510 }
2511 
2512 static int proc_base_fill_cache(struct file *filp, void *dirent,
2513 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2514 {
2515 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2516 				proc_base_instantiate, task, p);
2517 }
2518 
2519 #ifdef CONFIG_TASK_IO_ACCOUNTING
2520 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2521 {
2522 	struct task_io_accounting acct = task->ioac;
2523 	unsigned long flags;
2524 
2525 	if (whole && lock_task_sighand(task, &flags)) {
2526 		struct task_struct *t = task;
2527 
2528 		task_io_accounting_add(&acct, &task->signal->ioac);
2529 		while_each_thread(task, t)
2530 			task_io_accounting_add(&acct, &t->ioac);
2531 
2532 		unlock_task_sighand(task, &flags);
2533 	}
2534 	return sprintf(buffer,
2535 			"rchar: %llu\n"
2536 			"wchar: %llu\n"
2537 			"syscr: %llu\n"
2538 			"syscw: %llu\n"
2539 			"read_bytes: %llu\n"
2540 			"write_bytes: %llu\n"
2541 			"cancelled_write_bytes: %llu\n",
2542 			(unsigned long long)acct.rchar,
2543 			(unsigned long long)acct.wchar,
2544 			(unsigned long long)acct.syscr,
2545 			(unsigned long long)acct.syscw,
2546 			(unsigned long long)acct.read_bytes,
2547 			(unsigned long long)acct.write_bytes,
2548 			(unsigned long long)acct.cancelled_write_bytes);
2549 }
2550 
2551 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2552 {
2553 	return do_io_accounting(task, buffer, 0);
2554 }
2555 
2556 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2557 {
2558 	return do_io_accounting(task, buffer, 1);
2559 }
2560 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2561 
2562 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2563 				struct pid *pid, struct task_struct *task)
2564 {
2565 	seq_printf(m, "%08x\n", task->personality);
2566 	return 0;
2567 }
2568 
2569 /*
2570  * Thread groups
2571  */
2572 static const struct file_operations proc_task_operations;
2573 static const struct inode_operations proc_task_inode_operations;
2574 
2575 static const struct pid_entry tgid_base_stuff[] = {
2576 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2577 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2578 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2579 #ifdef CONFIG_NET
2580 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2581 #endif
2582 	REG("environ",    S_IRUSR, proc_environ_operations),
2583 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2584 	ONE("status",     S_IRUGO, proc_pid_status),
2585 	ONE("personality", S_IRUSR, proc_pid_personality),
2586 	INF("limits",	  S_IRUSR, proc_pid_limits),
2587 #ifdef CONFIG_SCHED_DEBUG
2588 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2589 #endif
2590 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2591 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2592 	INF("syscall",    S_IRUSR, proc_pid_syscall),
2593 #endif
2594 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2595 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2596 	ONE("statm",      S_IRUGO, proc_pid_statm),
2597 	REG("maps",       S_IRUGO, proc_maps_operations),
2598 #ifdef CONFIG_NUMA
2599 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2600 #endif
2601 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2602 	LNK("cwd",        proc_cwd_link),
2603 	LNK("root",       proc_root_link),
2604 	LNK("exe",        proc_exe_link),
2605 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2606 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2607 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2608 #ifdef CONFIG_PROC_PAGE_MONITOR
2609 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2610 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2611 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2612 #endif
2613 #ifdef CONFIG_SECURITY
2614 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2615 #endif
2616 #ifdef CONFIG_KALLSYMS
2617 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2618 #endif
2619 #ifdef CONFIG_STACKTRACE
2620 	ONE("stack",      S_IRUSR, proc_pid_stack),
2621 #endif
2622 #ifdef CONFIG_SCHEDSTATS
2623 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2624 #endif
2625 #ifdef CONFIG_LATENCYTOP
2626 	REG("latency",  S_IRUGO, proc_lstats_operations),
2627 #endif
2628 #ifdef CONFIG_PROC_PID_CPUSET
2629 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2630 #endif
2631 #ifdef CONFIG_CGROUPS
2632 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2633 #endif
2634 	INF("oom_score",  S_IRUGO, proc_oom_score),
2635 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2636 #ifdef CONFIG_AUDITSYSCALL
2637 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2638 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2639 #endif
2640 #ifdef CONFIG_FAULT_INJECTION
2641 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2642 #endif
2643 #ifdef CONFIG_ELF_CORE
2644 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2645 #endif
2646 #ifdef CONFIG_TASK_IO_ACCOUNTING
2647 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2648 #endif
2649 };
2650 
2651 static int proc_tgid_base_readdir(struct file * filp,
2652 			     void * dirent, filldir_t filldir)
2653 {
2654 	return proc_pident_readdir(filp,dirent,filldir,
2655 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2656 }
2657 
2658 static const struct file_operations proc_tgid_base_operations = {
2659 	.read		= generic_read_dir,
2660 	.readdir	= proc_tgid_base_readdir,
2661 };
2662 
2663 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2664 	return proc_pident_lookup(dir, dentry,
2665 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2666 }
2667 
2668 static const struct inode_operations proc_tgid_base_inode_operations = {
2669 	.lookup		= proc_tgid_base_lookup,
2670 	.getattr	= pid_getattr,
2671 	.setattr	= proc_setattr,
2672 };
2673 
2674 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2675 {
2676 	struct dentry *dentry, *leader, *dir;
2677 	char buf[PROC_NUMBUF];
2678 	struct qstr name;
2679 
2680 	name.name = buf;
2681 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2682 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2683 	if (dentry) {
2684 		shrink_dcache_parent(dentry);
2685 		d_drop(dentry);
2686 		dput(dentry);
2687 	}
2688 
2689 	name.name = buf;
2690 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2691 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2692 	if (!leader)
2693 		goto out;
2694 
2695 	name.name = "task";
2696 	name.len = strlen(name.name);
2697 	dir = d_hash_and_lookup(leader, &name);
2698 	if (!dir)
2699 		goto out_put_leader;
2700 
2701 	name.name = buf;
2702 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2703 	dentry = d_hash_and_lookup(dir, &name);
2704 	if (dentry) {
2705 		shrink_dcache_parent(dentry);
2706 		d_drop(dentry);
2707 		dput(dentry);
2708 	}
2709 
2710 	dput(dir);
2711 out_put_leader:
2712 	dput(leader);
2713 out:
2714 	return;
2715 }
2716 
2717 /**
2718  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2719  * @task: task that should be flushed.
2720  *
2721  * When flushing dentries from proc, one needs to flush them from global
2722  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2723  * in. This call is supposed to do all of this job.
2724  *
2725  * Looks in the dcache for
2726  * /proc/@pid
2727  * /proc/@tgid/task/@pid
2728  * if either directory is present flushes it and all of it'ts children
2729  * from the dcache.
2730  *
2731  * It is safe and reasonable to cache /proc entries for a task until
2732  * that task exits.  After that they just clog up the dcache with
2733  * useless entries, possibly causing useful dcache entries to be
2734  * flushed instead.  This routine is proved to flush those useless
2735  * dcache entries at process exit time.
2736  *
2737  * NOTE: This routine is just an optimization so it does not guarantee
2738  *       that no dcache entries will exist at process exit time it
2739  *       just makes it very unlikely that any will persist.
2740  */
2741 
2742 void proc_flush_task(struct task_struct *task)
2743 {
2744 	int i;
2745 	struct pid *pid, *tgid;
2746 	struct upid *upid;
2747 
2748 	pid = task_pid(task);
2749 	tgid = task_tgid(task);
2750 
2751 	for (i = 0; i <= pid->level; i++) {
2752 		upid = &pid->numbers[i];
2753 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2754 					tgid->numbers[i].nr);
2755 	}
2756 
2757 	upid = &pid->numbers[pid->level];
2758 	if (upid->nr == 1)
2759 		pid_ns_release_proc(upid->ns);
2760 }
2761 
2762 static struct dentry *proc_pid_instantiate(struct inode *dir,
2763 					   struct dentry * dentry,
2764 					   struct task_struct *task, const void *ptr)
2765 {
2766 	struct dentry *error = ERR_PTR(-ENOENT);
2767 	struct inode *inode;
2768 
2769 	inode = proc_pid_make_inode(dir->i_sb, task);
2770 	if (!inode)
2771 		goto out;
2772 
2773 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2774 	inode->i_op = &proc_tgid_base_inode_operations;
2775 	inode->i_fop = &proc_tgid_base_operations;
2776 	inode->i_flags|=S_IMMUTABLE;
2777 
2778 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2779 		ARRAY_SIZE(tgid_base_stuff));
2780 
2781 	dentry->d_op = &pid_dentry_operations;
2782 
2783 	d_add(dentry, inode);
2784 	/* Close the race of the process dying before we return the dentry */
2785 	if (pid_revalidate(dentry, NULL))
2786 		error = NULL;
2787 out:
2788 	return error;
2789 }
2790 
2791 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2792 {
2793 	struct dentry *result = ERR_PTR(-ENOENT);
2794 	struct task_struct *task;
2795 	unsigned tgid;
2796 	struct pid_namespace *ns;
2797 
2798 	result = proc_base_lookup(dir, dentry);
2799 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2800 		goto out;
2801 
2802 	tgid = name_to_int(dentry);
2803 	if (tgid == ~0U)
2804 		goto out;
2805 
2806 	ns = dentry->d_sb->s_fs_info;
2807 	rcu_read_lock();
2808 	task = find_task_by_pid_ns(tgid, ns);
2809 	if (task)
2810 		get_task_struct(task);
2811 	rcu_read_unlock();
2812 	if (!task)
2813 		goto out;
2814 
2815 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2816 	put_task_struct(task);
2817 out:
2818 	return result;
2819 }
2820 
2821 /*
2822  * Find the first task with tgid >= tgid
2823  *
2824  */
2825 struct tgid_iter {
2826 	unsigned int tgid;
2827 	struct task_struct *task;
2828 };
2829 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2830 {
2831 	struct pid *pid;
2832 
2833 	if (iter.task)
2834 		put_task_struct(iter.task);
2835 	rcu_read_lock();
2836 retry:
2837 	iter.task = NULL;
2838 	pid = find_ge_pid(iter.tgid, ns);
2839 	if (pid) {
2840 		iter.tgid = pid_nr_ns(pid, ns);
2841 		iter.task = pid_task(pid, PIDTYPE_PID);
2842 		/* What we to know is if the pid we have find is the
2843 		 * pid of a thread_group_leader.  Testing for task
2844 		 * being a thread_group_leader is the obvious thing
2845 		 * todo but there is a window when it fails, due to
2846 		 * the pid transfer logic in de_thread.
2847 		 *
2848 		 * So we perform the straight forward test of seeing
2849 		 * if the pid we have found is the pid of a thread
2850 		 * group leader, and don't worry if the task we have
2851 		 * found doesn't happen to be a thread group leader.
2852 		 * As we don't care in the case of readdir.
2853 		 */
2854 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2855 			iter.tgid += 1;
2856 			goto retry;
2857 		}
2858 		get_task_struct(iter.task);
2859 	}
2860 	rcu_read_unlock();
2861 	return iter;
2862 }
2863 
2864 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2865 
2866 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2867 	struct tgid_iter iter)
2868 {
2869 	char name[PROC_NUMBUF];
2870 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2871 	return proc_fill_cache(filp, dirent, filldir, name, len,
2872 				proc_pid_instantiate, iter.task, NULL);
2873 }
2874 
2875 /* for the /proc/ directory itself, after non-process stuff has been done */
2876 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2877 {
2878 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2879 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2880 	struct tgid_iter iter;
2881 	struct pid_namespace *ns;
2882 
2883 	if (!reaper)
2884 		goto out_no_task;
2885 
2886 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2887 		const struct pid_entry *p = &proc_base_stuff[nr];
2888 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2889 			goto out;
2890 	}
2891 
2892 	ns = filp->f_dentry->d_sb->s_fs_info;
2893 	iter.task = NULL;
2894 	iter.tgid = filp->f_pos - TGID_OFFSET;
2895 	for (iter = next_tgid(ns, iter);
2896 	     iter.task;
2897 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2898 		filp->f_pos = iter.tgid + TGID_OFFSET;
2899 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2900 			put_task_struct(iter.task);
2901 			goto out;
2902 		}
2903 	}
2904 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2905 out:
2906 	put_task_struct(reaper);
2907 out_no_task:
2908 	return 0;
2909 }
2910 
2911 /*
2912  * Tasks
2913  */
2914 static const struct pid_entry tid_base_stuff[] = {
2915 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2916 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
2917 	REG("environ",   S_IRUSR, proc_environ_operations),
2918 	INF("auxv",      S_IRUSR, proc_pid_auxv),
2919 	ONE("status",    S_IRUGO, proc_pid_status),
2920 	ONE("personality", S_IRUSR, proc_pid_personality),
2921 	INF("limits",	 S_IRUSR, proc_pid_limits),
2922 #ifdef CONFIG_SCHED_DEBUG
2923 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2924 #endif
2925 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2926 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2927 	INF("syscall",   S_IRUSR, proc_pid_syscall),
2928 #endif
2929 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2930 	ONE("stat",      S_IRUGO, proc_tid_stat),
2931 	ONE("statm",     S_IRUGO, proc_pid_statm),
2932 	REG("maps",      S_IRUGO, proc_maps_operations),
2933 #ifdef CONFIG_NUMA
2934 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2935 #endif
2936 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2937 	LNK("cwd",       proc_cwd_link),
2938 	LNK("root",      proc_root_link),
2939 	LNK("exe",       proc_exe_link),
2940 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2941 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2942 #ifdef CONFIG_PROC_PAGE_MONITOR
2943 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2944 	REG("smaps",     S_IRUGO, proc_smaps_operations),
2945 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2946 #endif
2947 #ifdef CONFIG_SECURITY
2948 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2949 #endif
2950 #ifdef CONFIG_KALLSYMS
2951 	INF("wchan",     S_IRUGO, proc_pid_wchan),
2952 #endif
2953 #ifdef CONFIG_STACKTRACE
2954 	ONE("stack",      S_IRUSR, proc_pid_stack),
2955 #endif
2956 #ifdef CONFIG_SCHEDSTATS
2957 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
2958 #endif
2959 #ifdef CONFIG_LATENCYTOP
2960 	REG("latency",  S_IRUGO, proc_lstats_operations),
2961 #endif
2962 #ifdef CONFIG_PROC_PID_CPUSET
2963 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2964 #endif
2965 #ifdef CONFIG_CGROUPS
2966 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2967 #endif
2968 	INF("oom_score", S_IRUGO, proc_oom_score),
2969 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2970 #ifdef CONFIG_AUDITSYSCALL
2971 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2972 	REG("sessionid",  S_IRUSR, proc_sessionid_operations),
2973 #endif
2974 #ifdef CONFIG_FAULT_INJECTION
2975 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2976 #endif
2977 #ifdef CONFIG_TASK_IO_ACCOUNTING
2978 	INF("io",	S_IRUGO, proc_tid_io_accounting),
2979 #endif
2980 };
2981 
2982 static int proc_tid_base_readdir(struct file * filp,
2983 			     void * dirent, filldir_t filldir)
2984 {
2985 	return proc_pident_readdir(filp,dirent,filldir,
2986 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2987 }
2988 
2989 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2990 	return proc_pident_lookup(dir, dentry,
2991 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2992 }
2993 
2994 static const struct file_operations proc_tid_base_operations = {
2995 	.read		= generic_read_dir,
2996 	.readdir	= proc_tid_base_readdir,
2997 };
2998 
2999 static const struct inode_operations proc_tid_base_inode_operations = {
3000 	.lookup		= proc_tid_base_lookup,
3001 	.getattr	= pid_getattr,
3002 	.setattr	= proc_setattr,
3003 };
3004 
3005 static struct dentry *proc_task_instantiate(struct inode *dir,
3006 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3007 {
3008 	struct dentry *error = ERR_PTR(-ENOENT);
3009 	struct inode *inode;
3010 	inode = proc_pid_make_inode(dir->i_sb, task);
3011 
3012 	if (!inode)
3013 		goto out;
3014 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3015 	inode->i_op = &proc_tid_base_inode_operations;
3016 	inode->i_fop = &proc_tid_base_operations;
3017 	inode->i_flags|=S_IMMUTABLE;
3018 
3019 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3020 		ARRAY_SIZE(tid_base_stuff));
3021 
3022 	dentry->d_op = &pid_dentry_operations;
3023 
3024 	d_add(dentry, inode);
3025 	/* Close the race of the process dying before we return the dentry */
3026 	if (pid_revalidate(dentry, NULL))
3027 		error = NULL;
3028 out:
3029 	return error;
3030 }
3031 
3032 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3033 {
3034 	struct dentry *result = ERR_PTR(-ENOENT);
3035 	struct task_struct *task;
3036 	struct task_struct *leader = get_proc_task(dir);
3037 	unsigned tid;
3038 	struct pid_namespace *ns;
3039 
3040 	if (!leader)
3041 		goto out_no_task;
3042 
3043 	tid = name_to_int(dentry);
3044 	if (tid == ~0U)
3045 		goto out;
3046 
3047 	ns = dentry->d_sb->s_fs_info;
3048 	rcu_read_lock();
3049 	task = find_task_by_pid_ns(tid, ns);
3050 	if (task)
3051 		get_task_struct(task);
3052 	rcu_read_unlock();
3053 	if (!task)
3054 		goto out;
3055 	if (!same_thread_group(leader, task))
3056 		goto out_drop_task;
3057 
3058 	result = proc_task_instantiate(dir, dentry, task, NULL);
3059 out_drop_task:
3060 	put_task_struct(task);
3061 out:
3062 	put_task_struct(leader);
3063 out_no_task:
3064 	return result;
3065 }
3066 
3067 /*
3068  * Find the first tid of a thread group to return to user space.
3069  *
3070  * Usually this is just the thread group leader, but if the users
3071  * buffer was too small or there was a seek into the middle of the
3072  * directory we have more work todo.
3073  *
3074  * In the case of a short read we start with find_task_by_pid.
3075  *
3076  * In the case of a seek we start with the leader and walk nr
3077  * threads past it.
3078  */
3079 static struct task_struct *first_tid(struct task_struct *leader,
3080 		int tid, int nr, struct pid_namespace *ns)
3081 {
3082 	struct task_struct *pos;
3083 
3084 	rcu_read_lock();
3085 	/* Attempt to start with the pid of a thread */
3086 	if (tid && (nr > 0)) {
3087 		pos = find_task_by_pid_ns(tid, ns);
3088 		if (pos && (pos->group_leader == leader))
3089 			goto found;
3090 	}
3091 
3092 	/* If nr exceeds the number of threads there is nothing todo */
3093 	pos = NULL;
3094 	if (nr && nr >= get_nr_threads(leader))
3095 		goto out;
3096 
3097 	/* If we haven't found our starting place yet start
3098 	 * with the leader and walk nr threads forward.
3099 	 */
3100 	for (pos = leader; nr > 0; --nr) {
3101 		pos = next_thread(pos);
3102 		if (pos == leader) {
3103 			pos = NULL;
3104 			goto out;
3105 		}
3106 	}
3107 found:
3108 	get_task_struct(pos);
3109 out:
3110 	rcu_read_unlock();
3111 	return pos;
3112 }
3113 
3114 /*
3115  * Find the next thread in the thread list.
3116  * Return NULL if there is an error or no next thread.
3117  *
3118  * The reference to the input task_struct is released.
3119  */
3120 static struct task_struct *next_tid(struct task_struct *start)
3121 {
3122 	struct task_struct *pos = NULL;
3123 	rcu_read_lock();
3124 	if (pid_alive(start)) {
3125 		pos = next_thread(start);
3126 		if (thread_group_leader(pos))
3127 			pos = NULL;
3128 		else
3129 			get_task_struct(pos);
3130 	}
3131 	rcu_read_unlock();
3132 	put_task_struct(start);
3133 	return pos;
3134 }
3135 
3136 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3137 	struct task_struct *task, int tid)
3138 {
3139 	char name[PROC_NUMBUF];
3140 	int len = snprintf(name, sizeof(name), "%d", tid);
3141 	return proc_fill_cache(filp, dirent, filldir, name, len,
3142 				proc_task_instantiate, task, NULL);
3143 }
3144 
3145 /* for the /proc/TGID/task/ directories */
3146 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3147 {
3148 	struct dentry *dentry = filp->f_path.dentry;
3149 	struct inode *inode = dentry->d_inode;
3150 	struct task_struct *leader = NULL;
3151 	struct task_struct *task;
3152 	int retval = -ENOENT;
3153 	ino_t ino;
3154 	int tid;
3155 	struct pid_namespace *ns;
3156 
3157 	task = get_proc_task(inode);
3158 	if (!task)
3159 		goto out_no_task;
3160 	rcu_read_lock();
3161 	if (pid_alive(task)) {
3162 		leader = task->group_leader;
3163 		get_task_struct(leader);
3164 	}
3165 	rcu_read_unlock();
3166 	put_task_struct(task);
3167 	if (!leader)
3168 		goto out_no_task;
3169 	retval = 0;
3170 
3171 	switch ((unsigned long)filp->f_pos) {
3172 	case 0:
3173 		ino = inode->i_ino;
3174 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3175 			goto out;
3176 		filp->f_pos++;
3177 		/* fall through */
3178 	case 1:
3179 		ino = parent_ino(dentry);
3180 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3181 			goto out;
3182 		filp->f_pos++;
3183 		/* fall through */
3184 	}
3185 
3186 	/* f_version caches the tgid value that the last readdir call couldn't
3187 	 * return. lseek aka telldir automagically resets f_version to 0.
3188 	 */
3189 	ns = filp->f_dentry->d_sb->s_fs_info;
3190 	tid = (int)filp->f_version;
3191 	filp->f_version = 0;
3192 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3193 	     task;
3194 	     task = next_tid(task), filp->f_pos++) {
3195 		tid = task_pid_nr_ns(task, ns);
3196 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3197 			/* returning this tgid failed, save it as the first
3198 			 * pid for the next readir call */
3199 			filp->f_version = (u64)tid;
3200 			put_task_struct(task);
3201 			break;
3202 		}
3203 	}
3204 out:
3205 	put_task_struct(leader);
3206 out_no_task:
3207 	return retval;
3208 }
3209 
3210 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3211 {
3212 	struct inode *inode = dentry->d_inode;
3213 	struct task_struct *p = get_proc_task(inode);
3214 	generic_fillattr(inode, stat);
3215 
3216 	if (p) {
3217 		stat->nlink += get_nr_threads(p);
3218 		put_task_struct(p);
3219 	}
3220 
3221 	return 0;
3222 }
3223 
3224 static const struct inode_operations proc_task_inode_operations = {
3225 	.lookup		= proc_task_lookup,
3226 	.getattr	= proc_task_getattr,
3227 	.setattr	= proc_setattr,
3228 };
3229 
3230 static const struct file_operations proc_task_operations = {
3231 	.read		= generic_read_dir,
3232 	.readdir	= proc_task_readdir,
3233 };
3234