1 /* 2 * linux/fs/proc/base.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * proc base directory handling functions 7 * 8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 9 * Instead of using magical inumbers to determine the kind of object 10 * we allocate and fill in-core inodes upon lookup. They don't even 11 * go into icache. We cache the reference to task_struct upon lookup too. 12 * Eventually it should become a filesystem in its own. We don't use the 13 * rest of procfs anymore. 14 * 15 * 16 * Changelog: 17 * 17-Jan-2005 18 * Allan Bezerra 19 * Bruna Moreira <bruna.moreira@indt.org.br> 20 * Edjard Mota <edjard.mota@indt.org.br> 21 * Ilias Biris <ilias.biris@indt.org.br> 22 * Mauricio Lin <mauricio.lin@indt.org.br> 23 * 24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 25 * 26 * A new process specific entry (smaps) included in /proc. It shows the 27 * size of rss for each memory area. The maps entry lacks information 28 * about physical memory size (rss) for each mapped file, i.e., 29 * rss information for executables and library files. 30 * This additional information is useful for any tools that need to know 31 * about physical memory consumption for a process specific library. 32 * 33 * Changelog: 34 * 21-Feb-2005 35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 36 * Pud inclusion in the page table walking. 37 * 38 * ChangeLog: 39 * 10-Mar-2005 40 * 10LE Instituto Nokia de Tecnologia - INdT: 41 * A better way to walks through the page table as suggested by Hugh Dickins. 42 * 43 * Simo Piiroinen <simo.piiroinen@nokia.com>: 44 * Smaps information related to shared, private, clean and dirty pages. 45 * 46 * Paul Mundt <paul.mundt@nokia.com>: 47 * Overall revision about smaps. 48 */ 49 50 #include <asm/uaccess.h> 51 52 #include <linux/errno.h> 53 #include <linux/time.h> 54 #include <linux/proc_fs.h> 55 #include <linux/stat.h> 56 #include <linux/task_io_accounting_ops.h> 57 #include <linux/init.h> 58 #include <linux/capability.h> 59 #include <linux/file.h> 60 #include <linux/fdtable.h> 61 #include <linux/string.h> 62 #include <linux/seq_file.h> 63 #include <linux/namei.h> 64 #include <linux/mnt_namespace.h> 65 #include <linux/mm.h> 66 #include <linux/rcupdate.h> 67 #include <linux/kallsyms.h> 68 #include <linux/stacktrace.h> 69 #include <linux/resource.h> 70 #include <linux/module.h> 71 #include <linux/mount.h> 72 #include <linux/security.h> 73 #include <linux/ptrace.h> 74 #include <linux/tracehook.h> 75 #include <linux/cgroup.h> 76 #include <linux/cpuset.h> 77 #include <linux/audit.h> 78 #include <linux/poll.h> 79 #include <linux/nsproxy.h> 80 #include <linux/oom.h> 81 #include <linux/elf.h> 82 #include <linux/pid_namespace.h> 83 #include <linux/fs_struct.h> 84 #include "internal.h" 85 86 /* NOTE: 87 * Implementing inode permission operations in /proc is almost 88 * certainly an error. Permission checks need to happen during 89 * each system call not at open time. The reason is that most of 90 * what we wish to check for permissions in /proc varies at runtime. 91 * 92 * The classic example of a problem is opening file descriptors 93 * in /proc for a task before it execs a suid executable. 94 */ 95 96 struct pid_entry { 97 char *name; 98 int len; 99 mode_t mode; 100 const struct inode_operations *iop; 101 const struct file_operations *fop; 102 union proc_op op; 103 }; 104 105 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 106 .name = (NAME), \ 107 .len = sizeof(NAME) - 1, \ 108 .mode = MODE, \ 109 .iop = IOP, \ 110 .fop = FOP, \ 111 .op = OP, \ 112 } 113 114 #define DIR(NAME, MODE, iops, fops) \ 115 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 116 #define LNK(NAME, get_link) \ 117 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 118 &proc_pid_link_inode_operations, NULL, \ 119 { .proc_get_link = get_link } ) 120 #define REG(NAME, MODE, fops) \ 121 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 122 #define INF(NAME, MODE, read) \ 123 NOD(NAME, (S_IFREG|(MODE)), \ 124 NULL, &proc_info_file_operations, \ 125 { .proc_read = read } ) 126 #define ONE(NAME, MODE, show) \ 127 NOD(NAME, (S_IFREG|(MODE)), \ 128 NULL, &proc_single_file_operations, \ 129 { .proc_show = show } ) 130 131 /* 132 * Count the number of hardlinks for the pid_entry table, excluding the . 133 * and .. links. 134 */ 135 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries, 136 unsigned int n) 137 { 138 unsigned int i; 139 unsigned int count; 140 141 count = 0; 142 for (i = 0; i < n; ++i) { 143 if (S_ISDIR(entries[i].mode)) 144 ++count; 145 } 146 147 return count; 148 } 149 150 static int get_fs_path(struct task_struct *task, struct path *path, bool root) 151 { 152 struct fs_struct *fs; 153 int result = -ENOENT; 154 155 task_lock(task); 156 fs = task->fs; 157 if (fs) { 158 read_lock(&fs->lock); 159 *path = root ? fs->root : fs->pwd; 160 path_get(path); 161 read_unlock(&fs->lock); 162 result = 0; 163 } 164 task_unlock(task); 165 return result; 166 } 167 168 static int get_nr_threads(struct task_struct *tsk) 169 { 170 unsigned long flags; 171 int count = 0; 172 173 if (lock_task_sighand(tsk, &flags)) { 174 count = atomic_read(&tsk->signal->count); 175 unlock_task_sighand(tsk, &flags); 176 } 177 return count; 178 } 179 180 static int proc_cwd_link(struct inode *inode, struct path *path) 181 { 182 struct task_struct *task = get_proc_task(inode); 183 int result = -ENOENT; 184 185 if (task) { 186 result = get_fs_path(task, path, 0); 187 put_task_struct(task); 188 } 189 return result; 190 } 191 192 static int proc_root_link(struct inode *inode, struct path *path) 193 { 194 struct task_struct *task = get_proc_task(inode); 195 int result = -ENOENT; 196 197 if (task) { 198 result = get_fs_path(task, path, 1); 199 put_task_struct(task); 200 } 201 return result; 202 } 203 204 /* 205 * Return zero if current may access user memory in @task, -error if not. 206 */ 207 static int check_mem_permission(struct task_struct *task) 208 { 209 /* 210 * A task can always look at itself, in case it chooses 211 * to use system calls instead of load instructions. 212 */ 213 if (task == current) 214 return 0; 215 216 /* 217 * If current is actively ptrace'ing, and would also be 218 * permitted to freshly attach with ptrace now, permit it. 219 */ 220 if (task_is_stopped_or_traced(task)) { 221 int match; 222 rcu_read_lock(); 223 match = (tracehook_tracer_task(task) == current); 224 rcu_read_unlock(); 225 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH)) 226 return 0; 227 } 228 229 /* 230 * Noone else is allowed. 231 */ 232 return -EPERM; 233 } 234 235 struct mm_struct *mm_for_maps(struct task_struct *task) 236 { 237 struct mm_struct *mm; 238 239 if (mutex_lock_killable(&task->cred_guard_mutex)) 240 return NULL; 241 242 mm = get_task_mm(task); 243 if (mm && mm != current->mm && 244 !ptrace_may_access(task, PTRACE_MODE_READ)) { 245 mmput(mm); 246 mm = NULL; 247 } 248 mutex_unlock(&task->cred_guard_mutex); 249 250 return mm; 251 } 252 253 static int proc_pid_cmdline(struct task_struct *task, char * buffer) 254 { 255 int res = 0; 256 unsigned int len; 257 struct mm_struct *mm = get_task_mm(task); 258 if (!mm) 259 goto out; 260 if (!mm->arg_end) 261 goto out_mm; /* Shh! No looking before we're done */ 262 263 len = mm->arg_end - mm->arg_start; 264 265 if (len > PAGE_SIZE) 266 len = PAGE_SIZE; 267 268 res = access_process_vm(task, mm->arg_start, buffer, len, 0); 269 270 // If the nul at the end of args has been overwritten, then 271 // assume application is using setproctitle(3). 272 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) { 273 len = strnlen(buffer, res); 274 if (len < res) { 275 res = len; 276 } else { 277 len = mm->env_end - mm->env_start; 278 if (len > PAGE_SIZE - res) 279 len = PAGE_SIZE - res; 280 res += access_process_vm(task, mm->env_start, buffer+res, len, 0); 281 res = strnlen(buffer, res); 282 } 283 } 284 out_mm: 285 mmput(mm); 286 out: 287 return res; 288 } 289 290 static int proc_pid_auxv(struct task_struct *task, char *buffer) 291 { 292 int res = 0; 293 struct mm_struct *mm = get_task_mm(task); 294 if (mm) { 295 unsigned int nwords = 0; 296 do { 297 nwords += 2; 298 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 299 res = nwords * sizeof(mm->saved_auxv[0]); 300 if (res > PAGE_SIZE) 301 res = PAGE_SIZE; 302 memcpy(buffer, mm->saved_auxv, res); 303 mmput(mm); 304 } 305 return res; 306 } 307 308 309 #ifdef CONFIG_KALLSYMS 310 /* 311 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 312 * Returns the resolved symbol. If that fails, simply return the address. 313 */ 314 static int proc_pid_wchan(struct task_struct *task, char *buffer) 315 { 316 unsigned long wchan; 317 char symname[KSYM_NAME_LEN]; 318 319 wchan = get_wchan(task); 320 321 if (lookup_symbol_name(wchan, symname) < 0) 322 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 323 return 0; 324 else 325 return sprintf(buffer, "%lu", wchan); 326 else 327 return sprintf(buffer, "%s", symname); 328 } 329 #endif /* CONFIG_KALLSYMS */ 330 331 #ifdef CONFIG_STACKTRACE 332 333 #define MAX_STACK_TRACE_DEPTH 64 334 335 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 336 struct pid *pid, struct task_struct *task) 337 { 338 struct stack_trace trace; 339 unsigned long *entries; 340 int i; 341 342 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL); 343 if (!entries) 344 return -ENOMEM; 345 346 trace.nr_entries = 0; 347 trace.max_entries = MAX_STACK_TRACE_DEPTH; 348 trace.entries = entries; 349 trace.skip = 0; 350 save_stack_trace_tsk(task, &trace); 351 352 for (i = 0; i < trace.nr_entries; i++) { 353 seq_printf(m, "[<%p>] %pS\n", 354 (void *)entries[i], (void *)entries[i]); 355 } 356 kfree(entries); 357 358 return 0; 359 } 360 #endif 361 362 #ifdef CONFIG_SCHEDSTATS 363 /* 364 * Provides /proc/PID/schedstat 365 */ 366 static int proc_pid_schedstat(struct task_struct *task, char *buffer) 367 { 368 return sprintf(buffer, "%llu %llu %lu\n", 369 (unsigned long long)task->se.sum_exec_runtime, 370 (unsigned long long)task->sched_info.run_delay, 371 task->sched_info.pcount); 372 } 373 #endif 374 375 #ifdef CONFIG_LATENCYTOP 376 static int lstats_show_proc(struct seq_file *m, void *v) 377 { 378 int i; 379 struct inode *inode = m->private; 380 struct task_struct *task = get_proc_task(inode); 381 382 if (!task) 383 return -ESRCH; 384 seq_puts(m, "Latency Top version : v0.1\n"); 385 for (i = 0; i < 32; i++) { 386 if (task->latency_record[i].backtrace[0]) { 387 int q; 388 seq_printf(m, "%i %li %li ", 389 task->latency_record[i].count, 390 task->latency_record[i].time, 391 task->latency_record[i].max); 392 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 393 char sym[KSYM_SYMBOL_LEN]; 394 char *c; 395 if (!task->latency_record[i].backtrace[q]) 396 break; 397 if (task->latency_record[i].backtrace[q] == ULONG_MAX) 398 break; 399 sprint_symbol(sym, task->latency_record[i].backtrace[q]); 400 c = strchr(sym, '+'); 401 if (c) 402 *c = 0; 403 seq_printf(m, "%s ", sym); 404 } 405 seq_printf(m, "\n"); 406 } 407 408 } 409 put_task_struct(task); 410 return 0; 411 } 412 413 static int lstats_open(struct inode *inode, struct file *file) 414 { 415 return single_open(file, lstats_show_proc, inode); 416 } 417 418 static ssize_t lstats_write(struct file *file, const char __user *buf, 419 size_t count, loff_t *offs) 420 { 421 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 422 423 if (!task) 424 return -ESRCH; 425 clear_all_latency_tracing(task); 426 put_task_struct(task); 427 428 return count; 429 } 430 431 static const struct file_operations proc_lstats_operations = { 432 .open = lstats_open, 433 .read = seq_read, 434 .write = lstats_write, 435 .llseek = seq_lseek, 436 .release = single_release, 437 }; 438 439 #endif 440 441 /* The badness from the OOM killer */ 442 unsigned long badness(struct task_struct *p, unsigned long uptime); 443 static int proc_oom_score(struct task_struct *task, char *buffer) 444 { 445 unsigned long points; 446 struct timespec uptime; 447 448 do_posix_clock_monotonic_gettime(&uptime); 449 read_lock(&tasklist_lock); 450 points = badness(task->group_leader, uptime.tv_sec); 451 read_unlock(&tasklist_lock); 452 return sprintf(buffer, "%lu\n", points); 453 } 454 455 struct limit_names { 456 char *name; 457 char *unit; 458 }; 459 460 static const struct limit_names lnames[RLIM_NLIMITS] = { 461 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 462 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 463 [RLIMIT_DATA] = {"Max data size", "bytes"}, 464 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 465 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 466 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 467 [RLIMIT_NPROC] = {"Max processes", "processes"}, 468 [RLIMIT_NOFILE] = {"Max open files", "files"}, 469 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 470 [RLIMIT_AS] = {"Max address space", "bytes"}, 471 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 472 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 473 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 474 [RLIMIT_NICE] = {"Max nice priority", NULL}, 475 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 476 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 477 }; 478 479 /* Display limits for a process */ 480 static int proc_pid_limits(struct task_struct *task, char *buffer) 481 { 482 unsigned int i; 483 int count = 0; 484 unsigned long flags; 485 char *bufptr = buffer; 486 487 struct rlimit rlim[RLIM_NLIMITS]; 488 489 if (!lock_task_sighand(task, &flags)) 490 return 0; 491 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 492 unlock_task_sighand(task, &flags); 493 494 /* 495 * print the file header 496 */ 497 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n", 498 "Limit", "Soft Limit", "Hard Limit", "Units"); 499 500 for (i = 0; i < RLIM_NLIMITS; i++) { 501 if (rlim[i].rlim_cur == RLIM_INFINITY) 502 count += sprintf(&bufptr[count], "%-25s %-20s ", 503 lnames[i].name, "unlimited"); 504 else 505 count += sprintf(&bufptr[count], "%-25s %-20lu ", 506 lnames[i].name, rlim[i].rlim_cur); 507 508 if (rlim[i].rlim_max == RLIM_INFINITY) 509 count += sprintf(&bufptr[count], "%-20s ", "unlimited"); 510 else 511 count += sprintf(&bufptr[count], "%-20lu ", 512 rlim[i].rlim_max); 513 514 if (lnames[i].unit) 515 count += sprintf(&bufptr[count], "%-10s\n", 516 lnames[i].unit); 517 else 518 count += sprintf(&bufptr[count], "\n"); 519 } 520 521 return count; 522 } 523 524 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 525 static int proc_pid_syscall(struct task_struct *task, char *buffer) 526 { 527 long nr; 528 unsigned long args[6], sp, pc; 529 530 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 531 return sprintf(buffer, "running\n"); 532 533 if (nr < 0) 534 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 535 536 return sprintf(buffer, 537 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 538 nr, 539 args[0], args[1], args[2], args[3], args[4], args[5], 540 sp, pc); 541 } 542 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 543 544 /************************************************************************/ 545 /* Here the fs part begins */ 546 /************************************************************************/ 547 548 /* permission checks */ 549 static int proc_fd_access_allowed(struct inode *inode) 550 { 551 struct task_struct *task; 552 int allowed = 0; 553 /* Allow access to a task's file descriptors if it is us or we 554 * may use ptrace attach to the process and find out that 555 * information. 556 */ 557 task = get_proc_task(inode); 558 if (task) { 559 allowed = ptrace_may_access(task, PTRACE_MODE_READ); 560 put_task_struct(task); 561 } 562 return allowed; 563 } 564 565 static int proc_setattr(struct dentry *dentry, struct iattr *attr) 566 { 567 int error; 568 struct inode *inode = dentry->d_inode; 569 570 if (attr->ia_valid & ATTR_MODE) 571 return -EPERM; 572 573 error = inode_change_ok(inode, attr); 574 if (!error) 575 error = inode_setattr(inode, attr); 576 return error; 577 } 578 579 static const struct inode_operations proc_def_inode_operations = { 580 .setattr = proc_setattr, 581 }; 582 583 static int mounts_open_common(struct inode *inode, struct file *file, 584 const struct seq_operations *op) 585 { 586 struct task_struct *task = get_proc_task(inode); 587 struct nsproxy *nsp; 588 struct mnt_namespace *ns = NULL; 589 struct path root; 590 struct proc_mounts *p; 591 int ret = -EINVAL; 592 593 if (task) { 594 rcu_read_lock(); 595 nsp = task_nsproxy(task); 596 if (nsp) { 597 ns = nsp->mnt_ns; 598 if (ns) 599 get_mnt_ns(ns); 600 } 601 rcu_read_unlock(); 602 if (ns && get_fs_path(task, &root, 1) == 0) 603 ret = 0; 604 put_task_struct(task); 605 } 606 607 if (!ns) 608 goto err; 609 if (ret) 610 goto err_put_ns; 611 612 ret = -ENOMEM; 613 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL); 614 if (!p) 615 goto err_put_path; 616 617 file->private_data = &p->m; 618 ret = seq_open(file, op); 619 if (ret) 620 goto err_free; 621 622 p->m.private = p; 623 p->ns = ns; 624 p->root = root; 625 p->event = ns->event; 626 627 return 0; 628 629 err_free: 630 kfree(p); 631 err_put_path: 632 path_put(&root); 633 err_put_ns: 634 put_mnt_ns(ns); 635 err: 636 return ret; 637 } 638 639 static int mounts_release(struct inode *inode, struct file *file) 640 { 641 struct proc_mounts *p = file->private_data; 642 path_put(&p->root); 643 put_mnt_ns(p->ns); 644 return seq_release(inode, file); 645 } 646 647 static unsigned mounts_poll(struct file *file, poll_table *wait) 648 { 649 struct proc_mounts *p = file->private_data; 650 struct mnt_namespace *ns = p->ns; 651 unsigned res = POLLIN | POLLRDNORM; 652 653 poll_wait(file, &ns->poll, wait); 654 655 spin_lock(&vfsmount_lock); 656 if (p->event != ns->event) { 657 p->event = ns->event; 658 res |= POLLERR | POLLPRI; 659 } 660 spin_unlock(&vfsmount_lock); 661 662 return res; 663 } 664 665 static int mounts_open(struct inode *inode, struct file *file) 666 { 667 return mounts_open_common(inode, file, &mounts_op); 668 } 669 670 static const struct file_operations proc_mounts_operations = { 671 .open = mounts_open, 672 .read = seq_read, 673 .llseek = seq_lseek, 674 .release = mounts_release, 675 .poll = mounts_poll, 676 }; 677 678 static int mountinfo_open(struct inode *inode, struct file *file) 679 { 680 return mounts_open_common(inode, file, &mountinfo_op); 681 } 682 683 static const struct file_operations proc_mountinfo_operations = { 684 .open = mountinfo_open, 685 .read = seq_read, 686 .llseek = seq_lseek, 687 .release = mounts_release, 688 .poll = mounts_poll, 689 }; 690 691 static int mountstats_open(struct inode *inode, struct file *file) 692 { 693 return mounts_open_common(inode, file, &mountstats_op); 694 } 695 696 static const struct file_operations proc_mountstats_operations = { 697 .open = mountstats_open, 698 .read = seq_read, 699 .llseek = seq_lseek, 700 .release = mounts_release, 701 }; 702 703 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ 704 705 static ssize_t proc_info_read(struct file * file, char __user * buf, 706 size_t count, loff_t *ppos) 707 { 708 struct inode * inode = file->f_path.dentry->d_inode; 709 unsigned long page; 710 ssize_t length; 711 struct task_struct *task = get_proc_task(inode); 712 713 length = -ESRCH; 714 if (!task) 715 goto out_no_task; 716 717 if (count > PROC_BLOCK_SIZE) 718 count = PROC_BLOCK_SIZE; 719 720 length = -ENOMEM; 721 if (!(page = __get_free_page(GFP_TEMPORARY))) 722 goto out; 723 724 length = PROC_I(inode)->op.proc_read(task, (char*)page); 725 726 if (length >= 0) 727 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 728 free_page(page); 729 out: 730 put_task_struct(task); 731 out_no_task: 732 return length; 733 } 734 735 static const struct file_operations proc_info_file_operations = { 736 .read = proc_info_read, 737 }; 738 739 static int proc_single_show(struct seq_file *m, void *v) 740 { 741 struct inode *inode = m->private; 742 struct pid_namespace *ns; 743 struct pid *pid; 744 struct task_struct *task; 745 int ret; 746 747 ns = inode->i_sb->s_fs_info; 748 pid = proc_pid(inode); 749 task = get_pid_task(pid, PIDTYPE_PID); 750 if (!task) 751 return -ESRCH; 752 753 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 754 755 put_task_struct(task); 756 return ret; 757 } 758 759 static int proc_single_open(struct inode *inode, struct file *filp) 760 { 761 int ret; 762 ret = single_open(filp, proc_single_show, NULL); 763 if (!ret) { 764 struct seq_file *m = filp->private_data; 765 766 m->private = inode; 767 } 768 return ret; 769 } 770 771 static const struct file_operations proc_single_file_operations = { 772 .open = proc_single_open, 773 .read = seq_read, 774 .llseek = seq_lseek, 775 .release = single_release, 776 }; 777 778 static int mem_open(struct inode* inode, struct file* file) 779 { 780 file->private_data = (void*)((long)current->self_exec_id); 781 return 0; 782 } 783 784 static ssize_t mem_read(struct file * file, char __user * buf, 785 size_t count, loff_t *ppos) 786 { 787 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 788 char *page; 789 unsigned long src = *ppos; 790 int ret = -ESRCH; 791 struct mm_struct *mm; 792 793 if (!task) 794 goto out_no_task; 795 796 if (check_mem_permission(task)) 797 goto out; 798 799 ret = -ENOMEM; 800 page = (char *)__get_free_page(GFP_TEMPORARY); 801 if (!page) 802 goto out; 803 804 ret = 0; 805 806 mm = get_task_mm(task); 807 if (!mm) 808 goto out_free; 809 810 ret = -EIO; 811 812 if (file->private_data != (void*)((long)current->self_exec_id)) 813 goto out_put; 814 815 ret = 0; 816 817 while (count > 0) { 818 int this_len, retval; 819 820 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 821 retval = access_process_vm(task, src, page, this_len, 0); 822 if (!retval || check_mem_permission(task)) { 823 if (!ret) 824 ret = -EIO; 825 break; 826 } 827 828 if (copy_to_user(buf, page, retval)) { 829 ret = -EFAULT; 830 break; 831 } 832 833 ret += retval; 834 src += retval; 835 buf += retval; 836 count -= retval; 837 } 838 *ppos = src; 839 840 out_put: 841 mmput(mm); 842 out_free: 843 free_page((unsigned long) page); 844 out: 845 put_task_struct(task); 846 out_no_task: 847 return ret; 848 } 849 850 #define mem_write NULL 851 852 #ifndef mem_write 853 /* This is a security hazard */ 854 static ssize_t mem_write(struct file * file, const char __user *buf, 855 size_t count, loff_t *ppos) 856 { 857 int copied; 858 char *page; 859 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 860 unsigned long dst = *ppos; 861 862 copied = -ESRCH; 863 if (!task) 864 goto out_no_task; 865 866 if (check_mem_permission(task)) 867 goto out; 868 869 copied = -ENOMEM; 870 page = (char *)__get_free_page(GFP_TEMPORARY); 871 if (!page) 872 goto out; 873 874 copied = 0; 875 while (count > 0) { 876 int this_len, retval; 877 878 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 879 if (copy_from_user(page, buf, this_len)) { 880 copied = -EFAULT; 881 break; 882 } 883 retval = access_process_vm(task, dst, page, this_len, 1); 884 if (!retval) { 885 if (!copied) 886 copied = -EIO; 887 break; 888 } 889 copied += retval; 890 buf += retval; 891 dst += retval; 892 count -= retval; 893 } 894 *ppos = dst; 895 free_page((unsigned long) page); 896 out: 897 put_task_struct(task); 898 out_no_task: 899 return copied; 900 } 901 #endif 902 903 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 904 { 905 switch (orig) { 906 case 0: 907 file->f_pos = offset; 908 break; 909 case 1: 910 file->f_pos += offset; 911 break; 912 default: 913 return -EINVAL; 914 } 915 force_successful_syscall_return(); 916 return file->f_pos; 917 } 918 919 static const struct file_operations proc_mem_operations = { 920 .llseek = mem_lseek, 921 .read = mem_read, 922 .write = mem_write, 923 .open = mem_open, 924 }; 925 926 static ssize_t environ_read(struct file *file, char __user *buf, 927 size_t count, loff_t *ppos) 928 { 929 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 930 char *page; 931 unsigned long src = *ppos; 932 int ret = -ESRCH; 933 struct mm_struct *mm; 934 935 if (!task) 936 goto out_no_task; 937 938 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 939 goto out; 940 941 ret = -ENOMEM; 942 page = (char *)__get_free_page(GFP_TEMPORARY); 943 if (!page) 944 goto out; 945 946 ret = 0; 947 948 mm = get_task_mm(task); 949 if (!mm) 950 goto out_free; 951 952 while (count > 0) { 953 int this_len, retval, max_len; 954 955 this_len = mm->env_end - (mm->env_start + src); 956 957 if (this_len <= 0) 958 break; 959 960 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 961 this_len = (this_len > max_len) ? max_len : this_len; 962 963 retval = access_process_vm(task, (mm->env_start + src), 964 page, this_len, 0); 965 966 if (retval <= 0) { 967 ret = retval; 968 break; 969 } 970 971 if (copy_to_user(buf, page, retval)) { 972 ret = -EFAULT; 973 break; 974 } 975 976 ret += retval; 977 src += retval; 978 buf += retval; 979 count -= retval; 980 } 981 *ppos = src; 982 983 mmput(mm); 984 out_free: 985 free_page((unsigned long) page); 986 out: 987 put_task_struct(task); 988 out_no_task: 989 return ret; 990 } 991 992 static const struct file_operations proc_environ_operations = { 993 .read = environ_read, 994 }; 995 996 static ssize_t oom_adjust_read(struct file *file, char __user *buf, 997 size_t count, loff_t *ppos) 998 { 999 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 1000 char buffer[PROC_NUMBUF]; 1001 size_t len; 1002 int oom_adjust = OOM_DISABLE; 1003 unsigned long flags; 1004 1005 if (!task) 1006 return -ESRCH; 1007 1008 if (lock_task_sighand(task, &flags)) { 1009 oom_adjust = task->signal->oom_adj; 1010 unlock_task_sighand(task, &flags); 1011 } 1012 1013 put_task_struct(task); 1014 1015 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust); 1016 1017 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1018 } 1019 1020 static ssize_t oom_adjust_write(struct file *file, const char __user *buf, 1021 size_t count, loff_t *ppos) 1022 { 1023 struct task_struct *task; 1024 char buffer[PROC_NUMBUF]; 1025 long oom_adjust; 1026 unsigned long flags; 1027 int err; 1028 1029 memset(buffer, 0, sizeof(buffer)); 1030 if (count > sizeof(buffer) - 1) 1031 count = sizeof(buffer) - 1; 1032 if (copy_from_user(buffer, buf, count)) 1033 return -EFAULT; 1034 1035 err = strict_strtol(strstrip(buffer), 0, &oom_adjust); 1036 if (err) 1037 return -EINVAL; 1038 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) && 1039 oom_adjust != OOM_DISABLE) 1040 return -EINVAL; 1041 1042 task = get_proc_task(file->f_path.dentry->d_inode); 1043 if (!task) 1044 return -ESRCH; 1045 if (!lock_task_sighand(task, &flags)) { 1046 put_task_struct(task); 1047 return -ESRCH; 1048 } 1049 1050 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) { 1051 unlock_task_sighand(task, &flags); 1052 put_task_struct(task); 1053 return -EACCES; 1054 } 1055 1056 task->signal->oom_adj = oom_adjust; 1057 1058 unlock_task_sighand(task, &flags); 1059 put_task_struct(task); 1060 1061 return count; 1062 } 1063 1064 static const struct file_operations proc_oom_adjust_operations = { 1065 .read = oom_adjust_read, 1066 .write = oom_adjust_write, 1067 }; 1068 1069 #ifdef CONFIG_AUDITSYSCALL 1070 #define TMPBUFLEN 21 1071 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1072 size_t count, loff_t *ppos) 1073 { 1074 struct inode * inode = file->f_path.dentry->d_inode; 1075 struct task_struct *task = get_proc_task(inode); 1076 ssize_t length; 1077 char tmpbuf[TMPBUFLEN]; 1078 1079 if (!task) 1080 return -ESRCH; 1081 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1082 audit_get_loginuid(task)); 1083 put_task_struct(task); 1084 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1085 } 1086 1087 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1088 size_t count, loff_t *ppos) 1089 { 1090 struct inode * inode = file->f_path.dentry->d_inode; 1091 char *page, *tmp; 1092 ssize_t length; 1093 uid_t loginuid; 1094 1095 if (!capable(CAP_AUDIT_CONTROL)) 1096 return -EPERM; 1097 1098 rcu_read_lock(); 1099 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1100 rcu_read_unlock(); 1101 return -EPERM; 1102 } 1103 rcu_read_unlock(); 1104 1105 if (count >= PAGE_SIZE) 1106 count = PAGE_SIZE - 1; 1107 1108 if (*ppos != 0) { 1109 /* No partial writes. */ 1110 return -EINVAL; 1111 } 1112 page = (char*)__get_free_page(GFP_TEMPORARY); 1113 if (!page) 1114 return -ENOMEM; 1115 length = -EFAULT; 1116 if (copy_from_user(page, buf, count)) 1117 goto out_free_page; 1118 1119 page[count] = '\0'; 1120 loginuid = simple_strtoul(page, &tmp, 10); 1121 if (tmp == page) { 1122 length = -EINVAL; 1123 goto out_free_page; 1124 1125 } 1126 length = audit_set_loginuid(current, loginuid); 1127 if (likely(length == 0)) 1128 length = count; 1129 1130 out_free_page: 1131 free_page((unsigned long) page); 1132 return length; 1133 } 1134 1135 static const struct file_operations proc_loginuid_operations = { 1136 .read = proc_loginuid_read, 1137 .write = proc_loginuid_write, 1138 }; 1139 1140 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1141 size_t count, loff_t *ppos) 1142 { 1143 struct inode * inode = file->f_path.dentry->d_inode; 1144 struct task_struct *task = get_proc_task(inode); 1145 ssize_t length; 1146 char tmpbuf[TMPBUFLEN]; 1147 1148 if (!task) 1149 return -ESRCH; 1150 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1151 audit_get_sessionid(task)); 1152 put_task_struct(task); 1153 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1154 } 1155 1156 static const struct file_operations proc_sessionid_operations = { 1157 .read = proc_sessionid_read, 1158 }; 1159 #endif 1160 1161 #ifdef CONFIG_FAULT_INJECTION 1162 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1163 size_t count, loff_t *ppos) 1164 { 1165 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 1166 char buffer[PROC_NUMBUF]; 1167 size_t len; 1168 int make_it_fail; 1169 1170 if (!task) 1171 return -ESRCH; 1172 make_it_fail = task->make_it_fail; 1173 put_task_struct(task); 1174 1175 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1176 1177 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1178 } 1179 1180 static ssize_t proc_fault_inject_write(struct file * file, 1181 const char __user * buf, size_t count, loff_t *ppos) 1182 { 1183 struct task_struct *task; 1184 char buffer[PROC_NUMBUF], *end; 1185 int make_it_fail; 1186 1187 if (!capable(CAP_SYS_RESOURCE)) 1188 return -EPERM; 1189 memset(buffer, 0, sizeof(buffer)); 1190 if (count > sizeof(buffer) - 1) 1191 count = sizeof(buffer) - 1; 1192 if (copy_from_user(buffer, buf, count)) 1193 return -EFAULT; 1194 make_it_fail = simple_strtol(strstrip(buffer), &end, 0); 1195 if (*end) 1196 return -EINVAL; 1197 task = get_proc_task(file->f_dentry->d_inode); 1198 if (!task) 1199 return -ESRCH; 1200 task->make_it_fail = make_it_fail; 1201 put_task_struct(task); 1202 1203 return count; 1204 } 1205 1206 static const struct file_operations proc_fault_inject_operations = { 1207 .read = proc_fault_inject_read, 1208 .write = proc_fault_inject_write, 1209 }; 1210 #endif 1211 1212 1213 #ifdef CONFIG_SCHED_DEBUG 1214 /* 1215 * Print out various scheduling related per-task fields: 1216 */ 1217 static int sched_show(struct seq_file *m, void *v) 1218 { 1219 struct inode *inode = m->private; 1220 struct task_struct *p; 1221 1222 p = get_proc_task(inode); 1223 if (!p) 1224 return -ESRCH; 1225 proc_sched_show_task(p, m); 1226 1227 put_task_struct(p); 1228 1229 return 0; 1230 } 1231 1232 static ssize_t 1233 sched_write(struct file *file, const char __user *buf, 1234 size_t count, loff_t *offset) 1235 { 1236 struct inode *inode = file->f_path.dentry->d_inode; 1237 struct task_struct *p; 1238 1239 p = get_proc_task(inode); 1240 if (!p) 1241 return -ESRCH; 1242 proc_sched_set_task(p); 1243 1244 put_task_struct(p); 1245 1246 return count; 1247 } 1248 1249 static int sched_open(struct inode *inode, struct file *filp) 1250 { 1251 int ret; 1252 1253 ret = single_open(filp, sched_show, NULL); 1254 if (!ret) { 1255 struct seq_file *m = filp->private_data; 1256 1257 m->private = inode; 1258 } 1259 return ret; 1260 } 1261 1262 static const struct file_operations proc_pid_sched_operations = { 1263 .open = sched_open, 1264 .read = seq_read, 1265 .write = sched_write, 1266 .llseek = seq_lseek, 1267 .release = single_release, 1268 }; 1269 1270 #endif 1271 1272 static ssize_t comm_write(struct file *file, const char __user *buf, 1273 size_t count, loff_t *offset) 1274 { 1275 struct inode *inode = file->f_path.dentry->d_inode; 1276 struct task_struct *p; 1277 char buffer[TASK_COMM_LEN]; 1278 1279 memset(buffer, 0, sizeof(buffer)); 1280 if (count > sizeof(buffer) - 1) 1281 count = sizeof(buffer) - 1; 1282 if (copy_from_user(buffer, buf, count)) 1283 return -EFAULT; 1284 1285 p = get_proc_task(inode); 1286 if (!p) 1287 return -ESRCH; 1288 1289 if (same_thread_group(current, p)) 1290 set_task_comm(p, buffer); 1291 else 1292 count = -EINVAL; 1293 1294 put_task_struct(p); 1295 1296 return count; 1297 } 1298 1299 static int comm_show(struct seq_file *m, void *v) 1300 { 1301 struct inode *inode = m->private; 1302 struct task_struct *p; 1303 1304 p = get_proc_task(inode); 1305 if (!p) 1306 return -ESRCH; 1307 1308 task_lock(p); 1309 seq_printf(m, "%s\n", p->comm); 1310 task_unlock(p); 1311 1312 put_task_struct(p); 1313 1314 return 0; 1315 } 1316 1317 static int comm_open(struct inode *inode, struct file *filp) 1318 { 1319 int ret; 1320 1321 ret = single_open(filp, comm_show, NULL); 1322 if (!ret) { 1323 struct seq_file *m = filp->private_data; 1324 1325 m->private = inode; 1326 } 1327 return ret; 1328 } 1329 1330 static const struct file_operations proc_pid_set_comm_operations = { 1331 .open = comm_open, 1332 .read = seq_read, 1333 .write = comm_write, 1334 .llseek = seq_lseek, 1335 .release = single_release, 1336 }; 1337 1338 /* 1339 * We added or removed a vma mapping the executable. The vmas are only mapped 1340 * during exec and are not mapped with the mmap system call. 1341 * Callers must hold down_write() on the mm's mmap_sem for these 1342 */ 1343 void added_exe_file_vma(struct mm_struct *mm) 1344 { 1345 mm->num_exe_file_vmas++; 1346 } 1347 1348 void removed_exe_file_vma(struct mm_struct *mm) 1349 { 1350 mm->num_exe_file_vmas--; 1351 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){ 1352 fput(mm->exe_file); 1353 mm->exe_file = NULL; 1354 } 1355 1356 } 1357 1358 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1359 { 1360 if (new_exe_file) 1361 get_file(new_exe_file); 1362 if (mm->exe_file) 1363 fput(mm->exe_file); 1364 mm->exe_file = new_exe_file; 1365 mm->num_exe_file_vmas = 0; 1366 } 1367 1368 struct file *get_mm_exe_file(struct mm_struct *mm) 1369 { 1370 struct file *exe_file; 1371 1372 /* We need mmap_sem to protect against races with removal of 1373 * VM_EXECUTABLE vmas */ 1374 down_read(&mm->mmap_sem); 1375 exe_file = mm->exe_file; 1376 if (exe_file) 1377 get_file(exe_file); 1378 up_read(&mm->mmap_sem); 1379 return exe_file; 1380 } 1381 1382 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 1383 { 1384 /* It's safe to write the exe_file pointer without exe_file_lock because 1385 * this is called during fork when the task is not yet in /proc */ 1386 newmm->exe_file = get_mm_exe_file(oldmm); 1387 } 1388 1389 static int proc_exe_link(struct inode *inode, struct path *exe_path) 1390 { 1391 struct task_struct *task; 1392 struct mm_struct *mm; 1393 struct file *exe_file; 1394 1395 task = get_proc_task(inode); 1396 if (!task) 1397 return -ENOENT; 1398 mm = get_task_mm(task); 1399 put_task_struct(task); 1400 if (!mm) 1401 return -ENOENT; 1402 exe_file = get_mm_exe_file(mm); 1403 mmput(mm); 1404 if (exe_file) { 1405 *exe_path = exe_file->f_path; 1406 path_get(&exe_file->f_path); 1407 fput(exe_file); 1408 return 0; 1409 } else 1410 return -ENOENT; 1411 } 1412 1413 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) 1414 { 1415 struct inode *inode = dentry->d_inode; 1416 int error = -EACCES; 1417 1418 /* We don't need a base pointer in the /proc filesystem */ 1419 path_put(&nd->path); 1420 1421 /* Are we allowed to snoop on the tasks file descriptors? */ 1422 if (!proc_fd_access_allowed(inode)) 1423 goto out; 1424 1425 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path); 1426 out: 1427 return ERR_PTR(error); 1428 } 1429 1430 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1431 { 1432 char *tmp = (char*)__get_free_page(GFP_TEMPORARY); 1433 char *pathname; 1434 int len; 1435 1436 if (!tmp) 1437 return -ENOMEM; 1438 1439 pathname = d_path(path, tmp, PAGE_SIZE); 1440 len = PTR_ERR(pathname); 1441 if (IS_ERR(pathname)) 1442 goto out; 1443 len = tmp + PAGE_SIZE - 1 - pathname; 1444 1445 if (len > buflen) 1446 len = buflen; 1447 if (copy_to_user(buffer, pathname, len)) 1448 len = -EFAULT; 1449 out: 1450 free_page((unsigned long)tmp); 1451 return len; 1452 } 1453 1454 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1455 { 1456 int error = -EACCES; 1457 struct inode *inode = dentry->d_inode; 1458 struct path path; 1459 1460 /* Are we allowed to snoop on the tasks file descriptors? */ 1461 if (!proc_fd_access_allowed(inode)) 1462 goto out; 1463 1464 error = PROC_I(inode)->op.proc_get_link(inode, &path); 1465 if (error) 1466 goto out; 1467 1468 error = do_proc_readlink(&path, buffer, buflen); 1469 path_put(&path); 1470 out: 1471 return error; 1472 } 1473 1474 static const struct inode_operations proc_pid_link_inode_operations = { 1475 .readlink = proc_pid_readlink, 1476 .follow_link = proc_pid_follow_link, 1477 .setattr = proc_setattr, 1478 }; 1479 1480 1481 /* building an inode */ 1482 1483 static int task_dumpable(struct task_struct *task) 1484 { 1485 int dumpable = 0; 1486 struct mm_struct *mm; 1487 1488 task_lock(task); 1489 mm = task->mm; 1490 if (mm) 1491 dumpable = get_dumpable(mm); 1492 task_unlock(task); 1493 if(dumpable == 1) 1494 return 1; 1495 return 0; 1496 } 1497 1498 1499 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) 1500 { 1501 struct inode * inode; 1502 struct proc_inode *ei; 1503 const struct cred *cred; 1504 1505 /* We need a new inode */ 1506 1507 inode = new_inode(sb); 1508 if (!inode) 1509 goto out; 1510 1511 /* Common stuff */ 1512 ei = PROC_I(inode); 1513 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1514 inode->i_op = &proc_def_inode_operations; 1515 1516 /* 1517 * grab the reference to task. 1518 */ 1519 ei->pid = get_task_pid(task, PIDTYPE_PID); 1520 if (!ei->pid) 1521 goto out_unlock; 1522 1523 if (task_dumpable(task)) { 1524 rcu_read_lock(); 1525 cred = __task_cred(task); 1526 inode->i_uid = cred->euid; 1527 inode->i_gid = cred->egid; 1528 rcu_read_unlock(); 1529 } 1530 security_task_to_inode(task, inode); 1531 1532 out: 1533 return inode; 1534 1535 out_unlock: 1536 iput(inode); 1537 return NULL; 1538 } 1539 1540 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 1541 { 1542 struct inode *inode = dentry->d_inode; 1543 struct task_struct *task; 1544 const struct cred *cred; 1545 1546 generic_fillattr(inode, stat); 1547 1548 rcu_read_lock(); 1549 stat->uid = 0; 1550 stat->gid = 0; 1551 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1552 if (task) { 1553 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1554 task_dumpable(task)) { 1555 cred = __task_cred(task); 1556 stat->uid = cred->euid; 1557 stat->gid = cred->egid; 1558 } 1559 } 1560 rcu_read_unlock(); 1561 return 0; 1562 } 1563 1564 /* dentry stuff */ 1565 1566 /* 1567 * Exceptional case: normally we are not allowed to unhash a busy 1568 * directory. In this case, however, we can do it - no aliasing problems 1569 * due to the way we treat inodes. 1570 * 1571 * Rewrite the inode's ownerships here because the owning task may have 1572 * performed a setuid(), etc. 1573 * 1574 * Before the /proc/pid/status file was created the only way to read 1575 * the effective uid of a /process was to stat /proc/pid. Reading 1576 * /proc/pid/status is slow enough that procps and other packages 1577 * kept stating /proc/pid. To keep the rules in /proc simple I have 1578 * made this apply to all per process world readable and executable 1579 * directories. 1580 */ 1581 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd) 1582 { 1583 struct inode *inode = dentry->d_inode; 1584 struct task_struct *task = get_proc_task(inode); 1585 const struct cred *cred; 1586 1587 if (task) { 1588 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1589 task_dumpable(task)) { 1590 rcu_read_lock(); 1591 cred = __task_cred(task); 1592 inode->i_uid = cred->euid; 1593 inode->i_gid = cred->egid; 1594 rcu_read_unlock(); 1595 } else { 1596 inode->i_uid = 0; 1597 inode->i_gid = 0; 1598 } 1599 inode->i_mode &= ~(S_ISUID | S_ISGID); 1600 security_task_to_inode(task, inode); 1601 put_task_struct(task); 1602 return 1; 1603 } 1604 d_drop(dentry); 1605 return 0; 1606 } 1607 1608 static int pid_delete_dentry(struct dentry * dentry) 1609 { 1610 /* Is the task we represent dead? 1611 * If so, then don't put the dentry on the lru list, 1612 * kill it immediately. 1613 */ 1614 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first; 1615 } 1616 1617 static const struct dentry_operations pid_dentry_operations = 1618 { 1619 .d_revalidate = pid_revalidate, 1620 .d_delete = pid_delete_dentry, 1621 }; 1622 1623 /* Lookups */ 1624 1625 typedef struct dentry *instantiate_t(struct inode *, struct dentry *, 1626 struct task_struct *, const void *); 1627 1628 /* 1629 * Fill a directory entry. 1630 * 1631 * If possible create the dcache entry and derive our inode number and 1632 * file type from dcache entry. 1633 * 1634 * Since all of the proc inode numbers are dynamically generated, the inode 1635 * numbers do not exist until the inode is cache. This means creating the 1636 * the dcache entry in readdir is necessary to keep the inode numbers 1637 * reported by readdir in sync with the inode numbers reported 1638 * by stat. 1639 */ 1640 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1641 char *name, int len, 1642 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1643 { 1644 struct dentry *child, *dir = filp->f_path.dentry; 1645 struct inode *inode; 1646 struct qstr qname; 1647 ino_t ino = 0; 1648 unsigned type = DT_UNKNOWN; 1649 1650 qname.name = name; 1651 qname.len = len; 1652 qname.hash = full_name_hash(name, len); 1653 1654 child = d_lookup(dir, &qname); 1655 if (!child) { 1656 struct dentry *new; 1657 new = d_alloc(dir, &qname); 1658 if (new) { 1659 child = instantiate(dir->d_inode, new, task, ptr); 1660 if (child) 1661 dput(new); 1662 else 1663 child = new; 1664 } 1665 } 1666 if (!child || IS_ERR(child) || !child->d_inode) 1667 goto end_instantiate; 1668 inode = child->d_inode; 1669 if (inode) { 1670 ino = inode->i_ino; 1671 type = inode->i_mode >> 12; 1672 } 1673 dput(child); 1674 end_instantiate: 1675 if (!ino) 1676 ino = find_inode_number(dir, &qname); 1677 if (!ino) 1678 ino = 1; 1679 return filldir(dirent, name, len, filp->f_pos, ino, type); 1680 } 1681 1682 static unsigned name_to_int(struct dentry *dentry) 1683 { 1684 const char *name = dentry->d_name.name; 1685 int len = dentry->d_name.len; 1686 unsigned n = 0; 1687 1688 if (len > 1 && *name == '0') 1689 goto out; 1690 while (len-- > 0) { 1691 unsigned c = *name++ - '0'; 1692 if (c > 9) 1693 goto out; 1694 if (n >= (~0U-9)/10) 1695 goto out; 1696 n *= 10; 1697 n += c; 1698 } 1699 return n; 1700 out: 1701 return ~0U; 1702 } 1703 1704 #define PROC_FDINFO_MAX 64 1705 1706 static int proc_fd_info(struct inode *inode, struct path *path, char *info) 1707 { 1708 struct task_struct *task = get_proc_task(inode); 1709 struct files_struct *files = NULL; 1710 struct file *file; 1711 int fd = proc_fd(inode); 1712 1713 if (task) { 1714 files = get_files_struct(task); 1715 put_task_struct(task); 1716 } 1717 if (files) { 1718 /* 1719 * We are not taking a ref to the file structure, so we must 1720 * hold ->file_lock. 1721 */ 1722 spin_lock(&files->file_lock); 1723 file = fcheck_files(files, fd); 1724 if (file) { 1725 if (path) { 1726 *path = file->f_path; 1727 path_get(&file->f_path); 1728 } 1729 if (info) 1730 snprintf(info, PROC_FDINFO_MAX, 1731 "pos:\t%lli\n" 1732 "flags:\t0%o\n", 1733 (long long) file->f_pos, 1734 file->f_flags); 1735 spin_unlock(&files->file_lock); 1736 put_files_struct(files); 1737 return 0; 1738 } 1739 spin_unlock(&files->file_lock); 1740 put_files_struct(files); 1741 } 1742 return -ENOENT; 1743 } 1744 1745 static int proc_fd_link(struct inode *inode, struct path *path) 1746 { 1747 return proc_fd_info(inode, path, NULL); 1748 } 1749 1750 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd) 1751 { 1752 struct inode *inode = dentry->d_inode; 1753 struct task_struct *task = get_proc_task(inode); 1754 int fd = proc_fd(inode); 1755 struct files_struct *files; 1756 const struct cred *cred; 1757 1758 if (task) { 1759 files = get_files_struct(task); 1760 if (files) { 1761 rcu_read_lock(); 1762 if (fcheck_files(files, fd)) { 1763 rcu_read_unlock(); 1764 put_files_struct(files); 1765 if (task_dumpable(task)) { 1766 rcu_read_lock(); 1767 cred = __task_cred(task); 1768 inode->i_uid = cred->euid; 1769 inode->i_gid = cred->egid; 1770 rcu_read_unlock(); 1771 } else { 1772 inode->i_uid = 0; 1773 inode->i_gid = 0; 1774 } 1775 inode->i_mode &= ~(S_ISUID | S_ISGID); 1776 security_task_to_inode(task, inode); 1777 put_task_struct(task); 1778 return 1; 1779 } 1780 rcu_read_unlock(); 1781 put_files_struct(files); 1782 } 1783 put_task_struct(task); 1784 } 1785 d_drop(dentry); 1786 return 0; 1787 } 1788 1789 static const struct dentry_operations tid_fd_dentry_operations = 1790 { 1791 .d_revalidate = tid_fd_revalidate, 1792 .d_delete = pid_delete_dentry, 1793 }; 1794 1795 static struct dentry *proc_fd_instantiate(struct inode *dir, 1796 struct dentry *dentry, struct task_struct *task, const void *ptr) 1797 { 1798 unsigned fd = *(const unsigned *)ptr; 1799 struct file *file; 1800 struct files_struct *files; 1801 struct inode *inode; 1802 struct proc_inode *ei; 1803 struct dentry *error = ERR_PTR(-ENOENT); 1804 1805 inode = proc_pid_make_inode(dir->i_sb, task); 1806 if (!inode) 1807 goto out; 1808 ei = PROC_I(inode); 1809 ei->fd = fd; 1810 files = get_files_struct(task); 1811 if (!files) 1812 goto out_iput; 1813 inode->i_mode = S_IFLNK; 1814 1815 /* 1816 * We are not taking a ref to the file structure, so we must 1817 * hold ->file_lock. 1818 */ 1819 spin_lock(&files->file_lock); 1820 file = fcheck_files(files, fd); 1821 if (!file) 1822 goto out_unlock; 1823 if (file->f_mode & FMODE_READ) 1824 inode->i_mode |= S_IRUSR | S_IXUSR; 1825 if (file->f_mode & FMODE_WRITE) 1826 inode->i_mode |= S_IWUSR | S_IXUSR; 1827 spin_unlock(&files->file_lock); 1828 put_files_struct(files); 1829 1830 inode->i_op = &proc_pid_link_inode_operations; 1831 inode->i_size = 64; 1832 ei->op.proc_get_link = proc_fd_link; 1833 dentry->d_op = &tid_fd_dentry_operations; 1834 d_add(dentry, inode); 1835 /* Close the race of the process dying before we return the dentry */ 1836 if (tid_fd_revalidate(dentry, NULL)) 1837 error = NULL; 1838 1839 out: 1840 return error; 1841 out_unlock: 1842 spin_unlock(&files->file_lock); 1843 put_files_struct(files); 1844 out_iput: 1845 iput(inode); 1846 goto out; 1847 } 1848 1849 static struct dentry *proc_lookupfd_common(struct inode *dir, 1850 struct dentry *dentry, 1851 instantiate_t instantiate) 1852 { 1853 struct task_struct *task = get_proc_task(dir); 1854 unsigned fd = name_to_int(dentry); 1855 struct dentry *result = ERR_PTR(-ENOENT); 1856 1857 if (!task) 1858 goto out_no_task; 1859 if (fd == ~0U) 1860 goto out; 1861 1862 result = instantiate(dir, dentry, task, &fd); 1863 out: 1864 put_task_struct(task); 1865 out_no_task: 1866 return result; 1867 } 1868 1869 static int proc_readfd_common(struct file * filp, void * dirent, 1870 filldir_t filldir, instantiate_t instantiate) 1871 { 1872 struct dentry *dentry = filp->f_path.dentry; 1873 struct inode *inode = dentry->d_inode; 1874 struct task_struct *p = get_proc_task(inode); 1875 unsigned int fd, ino; 1876 int retval; 1877 struct files_struct * files; 1878 1879 retval = -ENOENT; 1880 if (!p) 1881 goto out_no_task; 1882 retval = 0; 1883 1884 fd = filp->f_pos; 1885 switch (fd) { 1886 case 0: 1887 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0) 1888 goto out; 1889 filp->f_pos++; 1890 case 1: 1891 ino = parent_ino(dentry); 1892 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 1893 goto out; 1894 filp->f_pos++; 1895 default: 1896 files = get_files_struct(p); 1897 if (!files) 1898 goto out; 1899 rcu_read_lock(); 1900 for (fd = filp->f_pos-2; 1901 fd < files_fdtable(files)->max_fds; 1902 fd++, filp->f_pos++) { 1903 char name[PROC_NUMBUF]; 1904 int len; 1905 1906 if (!fcheck_files(files, fd)) 1907 continue; 1908 rcu_read_unlock(); 1909 1910 len = snprintf(name, sizeof(name), "%d", fd); 1911 if (proc_fill_cache(filp, dirent, filldir, 1912 name, len, instantiate, 1913 p, &fd) < 0) { 1914 rcu_read_lock(); 1915 break; 1916 } 1917 rcu_read_lock(); 1918 } 1919 rcu_read_unlock(); 1920 put_files_struct(files); 1921 } 1922 out: 1923 put_task_struct(p); 1924 out_no_task: 1925 return retval; 1926 } 1927 1928 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry, 1929 struct nameidata *nd) 1930 { 1931 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate); 1932 } 1933 1934 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir) 1935 { 1936 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate); 1937 } 1938 1939 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf, 1940 size_t len, loff_t *ppos) 1941 { 1942 char tmp[PROC_FDINFO_MAX]; 1943 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp); 1944 if (!err) 1945 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp)); 1946 return err; 1947 } 1948 1949 static const struct file_operations proc_fdinfo_file_operations = { 1950 .open = nonseekable_open, 1951 .read = proc_fdinfo_read, 1952 }; 1953 1954 static const struct file_operations proc_fd_operations = { 1955 .read = generic_read_dir, 1956 .readdir = proc_readfd, 1957 }; 1958 1959 /* 1960 * /proc/pid/fd needs a special permission handler so that a process can still 1961 * access /proc/self/fd after it has executed a setuid(). 1962 */ 1963 static int proc_fd_permission(struct inode *inode, int mask) 1964 { 1965 int rv; 1966 1967 rv = generic_permission(inode, mask, NULL); 1968 if (rv == 0) 1969 return 0; 1970 if (task_pid(current) == proc_pid(inode)) 1971 rv = 0; 1972 return rv; 1973 } 1974 1975 /* 1976 * proc directories can do almost nothing.. 1977 */ 1978 static const struct inode_operations proc_fd_inode_operations = { 1979 .lookup = proc_lookupfd, 1980 .permission = proc_fd_permission, 1981 .setattr = proc_setattr, 1982 }; 1983 1984 static struct dentry *proc_fdinfo_instantiate(struct inode *dir, 1985 struct dentry *dentry, struct task_struct *task, const void *ptr) 1986 { 1987 unsigned fd = *(unsigned *)ptr; 1988 struct inode *inode; 1989 struct proc_inode *ei; 1990 struct dentry *error = ERR_PTR(-ENOENT); 1991 1992 inode = proc_pid_make_inode(dir->i_sb, task); 1993 if (!inode) 1994 goto out; 1995 ei = PROC_I(inode); 1996 ei->fd = fd; 1997 inode->i_mode = S_IFREG | S_IRUSR; 1998 inode->i_fop = &proc_fdinfo_file_operations; 1999 dentry->d_op = &tid_fd_dentry_operations; 2000 d_add(dentry, inode); 2001 /* Close the race of the process dying before we return the dentry */ 2002 if (tid_fd_revalidate(dentry, NULL)) 2003 error = NULL; 2004 2005 out: 2006 return error; 2007 } 2008 2009 static struct dentry *proc_lookupfdinfo(struct inode *dir, 2010 struct dentry *dentry, 2011 struct nameidata *nd) 2012 { 2013 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate); 2014 } 2015 2016 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir) 2017 { 2018 return proc_readfd_common(filp, dirent, filldir, 2019 proc_fdinfo_instantiate); 2020 } 2021 2022 static const struct file_operations proc_fdinfo_operations = { 2023 .read = generic_read_dir, 2024 .readdir = proc_readfdinfo, 2025 }; 2026 2027 /* 2028 * proc directories can do almost nothing.. 2029 */ 2030 static const struct inode_operations proc_fdinfo_inode_operations = { 2031 .lookup = proc_lookupfdinfo, 2032 .setattr = proc_setattr, 2033 }; 2034 2035 2036 static struct dentry *proc_pident_instantiate(struct inode *dir, 2037 struct dentry *dentry, struct task_struct *task, const void *ptr) 2038 { 2039 const struct pid_entry *p = ptr; 2040 struct inode *inode; 2041 struct proc_inode *ei; 2042 struct dentry *error = ERR_PTR(-ENOENT); 2043 2044 inode = proc_pid_make_inode(dir->i_sb, task); 2045 if (!inode) 2046 goto out; 2047 2048 ei = PROC_I(inode); 2049 inode->i_mode = p->mode; 2050 if (S_ISDIR(inode->i_mode)) 2051 inode->i_nlink = 2; /* Use getattr to fix if necessary */ 2052 if (p->iop) 2053 inode->i_op = p->iop; 2054 if (p->fop) 2055 inode->i_fop = p->fop; 2056 ei->op = p->op; 2057 dentry->d_op = &pid_dentry_operations; 2058 d_add(dentry, inode); 2059 /* Close the race of the process dying before we return the dentry */ 2060 if (pid_revalidate(dentry, NULL)) 2061 error = NULL; 2062 out: 2063 return error; 2064 } 2065 2066 static struct dentry *proc_pident_lookup(struct inode *dir, 2067 struct dentry *dentry, 2068 const struct pid_entry *ents, 2069 unsigned int nents) 2070 { 2071 struct dentry *error; 2072 struct task_struct *task = get_proc_task(dir); 2073 const struct pid_entry *p, *last; 2074 2075 error = ERR_PTR(-ENOENT); 2076 2077 if (!task) 2078 goto out_no_task; 2079 2080 /* 2081 * Yes, it does not scale. And it should not. Don't add 2082 * new entries into /proc/<tgid>/ without very good reasons. 2083 */ 2084 last = &ents[nents - 1]; 2085 for (p = ents; p <= last; p++) { 2086 if (p->len != dentry->d_name.len) 2087 continue; 2088 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2089 break; 2090 } 2091 if (p > last) 2092 goto out; 2093 2094 error = proc_pident_instantiate(dir, dentry, task, p); 2095 out: 2096 put_task_struct(task); 2097 out_no_task: 2098 return error; 2099 } 2100 2101 static int proc_pident_fill_cache(struct file *filp, void *dirent, 2102 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2103 { 2104 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2105 proc_pident_instantiate, task, p); 2106 } 2107 2108 static int proc_pident_readdir(struct file *filp, 2109 void *dirent, filldir_t filldir, 2110 const struct pid_entry *ents, unsigned int nents) 2111 { 2112 int i; 2113 struct dentry *dentry = filp->f_path.dentry; 2114 struct inode *inode = dentry->d_inode; 2115 struct task_struct *task = get_proc_task(inode); 2116 const struct pid_entry *p, *last; 2117 ino_t ino; 2118 int ret; 2119 2120 ret = -ENOENT; 2121 if (!task) 2122 goto out_no_task; 2123 2124 ret = 0; 2125 i = filp->f_pos; 2126 switch (i) { 2127 case 0: 2128 ino = inode->i_ino; 2129 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 2130 goto out; 2131 i++; 2132 filp->f_pos++; 2133 /* fall through */ 2134 case 1: 2135 ino = parent_ino(dentry); 2136 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 2137 goto out; 2138 i++; 2139 filp->f_pos++; 2140 /* fall through */ 2141 default: 2142 i -= 2; 2143 if (i >= nents) { 2144 ret = 1; 2145 goto out; 2146 } 2147 p = ents + i; 2148 last = &ents[nents - 1]; 2149 while (p <= last) { 2150 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0) 2151 goto out; 2152 filp->f_pos++; 2153 p++; 2154 } 2155 } 2156 2157 ret = 1; 2158 out: 2159 put_task_struct(task); 2160 out_no_task: 2161 return ret; 2162 } 2163 2164 #ifdef CONFIG_SECURITY 2165 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2166 size_t count, loff_t *ppos) 2167 { 2168 struct inode * inode = file->f_path.dentry->d_inode; 2169 char *p = NULL; 2170 ssize_t length; 2171 struct task_struct *task = get_proc_task(inode); 2172 2173 if (!task) 2174 return -ESRCH; 2175 2176 length = security_getprocattr(task, 2177 (char*)file->f_path.dentry->d_name.name, 2178 &p); 2179 put_task_struct(task); 2180 if (length > 0) 2181 length = simple_read_from_buffer(buf, count, ppos, p, length); 2182 kfree(p); 2183 return length; 2184 } 2185 2186 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2187 size_t count, loff_t *ppos) 2188 { 2189 struct inode * inode = file->f_path.dentry->d_inode; 2190 char *page; 2191 ssize_t length; 2192 struct task_struct *task = get_proc_task(inode); 2193 2194 length = -ESRCH; 2195 if (!task) 2196 goto out_no_task; 2197 if (count > PAGE_SIZE) 2198 count = PAGE_SIZE; 2199 2200 /* No partial writes. */ 2201 length = -EINVAL; 2202 if (*ppos != 0) 2203 goto out; 2204 2205 length = -ENOMEM; 2206 page = (char*)__get_free_page(GFP_TEMPORARY); 2207 if (!page) 2208 goto out; 2209 2210 length = -EFAULT; 2211 if (copy_from_user(page, buf, count)) 2212 goto out_free; 2213 2214 /* Guard against adverse ptrace interaction */ 2215 length = mutex_lock_interruptible(&task->cred_guard_mutex); 2216 if (length < 0) 2217 goto out_free; 2218 2219 length = security_setprocattr(task, 2220 (char*)file->f_path.dentry->d_name.name, 2221 (void*)page, count); 2222 mutex_unlock(&task->cred_guard_mutex); 2223 out_free: 2224 free_page((unsigned long) page); 2225 out: 2226 put_task_struct(task); 2227 out_no_task: 2228 return length; 2229 } 2230 2231 static const struct file_operations proc_pid_attr_operations = { 2232 .read = proc_pid_attr_read, 2233 .write = proc_pid_attr_write, 2234 }; 2235 2236 static const struct pid_entry attr_dir_stuff[] = { 2237 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2238 REG("prev", S_IRUGO, proc_pid_attr_operations), 2239 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2240 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2241 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2242 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2243 }; 2244 2245 static int proc_attr_dir_readdir(struct file * filp, 2246 void * dirent, filldir_t filldir) 2247 { 2248 return proc_pident_readdir(filp,dirent,filldir, 2249 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff)); 2250 } 2251 2252 static const struct file_operations proc_attr_dir_operations = { 2253 .read = generic_read_dir, 2254 .readdir = proc_attr_dir_readdir, 2255 }; 2256 2257 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2258 struct dentry *dentry, struct nameidata *nd) 2259 { 2260 return proc_pident_lookup(dir, dentry, 2261 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2262 } 2263 2264 static const struct inode_operations proc_attr_dir_inode_operations = { 2265 .lookup = proc_attr_dir_lookup, 2266 .getattr = pid_getattr, 2267 .setattr = proc_setattr, 2268 }; 2269 2270 #endif 2271 2272 #ifdef CONFIG_ELF_CORE 2273 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2274 size_t count, loff_t *ppos) 2275 { 2276 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 2277 struct mm_struct *mm; 2278 char buffer[PROC_NUMBUF]; 2279 size_t len; 2280 int ret; 2281 2282 if (!task) 2283 return -ESRCH; 2284 2285 ret = 0; 2286 mm = get_task_mm(task); 2287 if (mm) { 2288 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2289 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2290 MMF_DUMP_FILTER_SHIFT)); 2291 mmput(mm); 2292 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2293 } 2294 2295 put_task_struct(task); 2296 2297 return ret; 2298 } 2299 2300 static ssize_t proc_coredump_filter_write(struct file *file, 2301 const char __user *buf, 2302 size_t count, 2303 loff_t *ppos) 2304 { 2305 struct task_struct *task; 2306 struct mm_struct *mm; 2307 char buffer[PROC_NUMBUF], *end; 2308 unsigned int val; 2309 int ret; 2310 int i; 2311 unsigned long mask; 2312 2313 ret = -EFAULT; 2314 memset(buffer, 0, sizeof(buffer)); 2315 if (count > sizeof(buffer) - 1) 2316 count = sizeof(buffer) - 1; 2317 if (copy_from_user(buffer, buf, count)) 2318 goto out_no_task; 2319 2320 ret = -EINVAL; 2321 val = (unsigned int)simple_strtoul(buffer, &end, 0); 2322 if (*end == '\n') 2323 end++; 2324 if (end - buffer == 0) 2325 goto out_no_task; 2326 2327 ret = -ESRCH; 2328 task = get_proc_task(file->f_dentry->d_inode); 2329 if (!task) 2330 goto out_no_task; 2331 2332 ret = end - buffer; 2333 mm = get_task_mm(task); 2334 if (!mm) 2335 goto out_no_mm; 2336 2337 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2338 if (val & mask) 2339 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2340 else 2341 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2342 } 2343 2344 mmput(mm); 2345 out_no_mm: 2346 put_task_struct(task); 2347 out_no_task: 2348 return ret; 2349 } 2350 2351 static const struct file_operations proc_coredump_filter_operations = { 2352 .read = proc_coredump_filter_read, 2353 .write = proc_coredump_filter_write, 2354 }; 2355 #endif 2356 2357 /* 2358 * /proc/self: 2359 */ 2360 static int proc_self_readlink(struct dentry *dentry, char __user *buffer, 2361 int buflen) 2362 { 2363 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2364 pid_t tgid = task_tgid_nr_ns(current, ns); 2365 char tmp[PROC_NUMBUF]; 2366 if (!tgid) 2367 return -ENOENT; 2368 sprintf(tmp, "%d", tgid); 2369 return vfs_readlink(dentry,buffer,buflen,tmp); 2370 } 2371 2372 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd) 2373 { 2374 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2375 pid_t tgid = task_tgid_nr_ns(current, ns); 2376 char *name = ERR_PTR(-ENOENT); 2377 if (tgid) { 2378 name = __getname(); 2379 if (!name) 2380 name = ERR_PTR(-ENOMEM); 2381 else 2382 sprintf(name, "%d", tgid); 2383 } 2384 nd_set_link(nd, name); 2385 return NULL; 2386 } 2387 2388 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd, 2389 void *cookie) 2390 { 2391 char *s = nd_get_link(nd); 2392 if (!IS_ERR(s)) 2393 __putname(s); 2394 } 2395 2396 static const struct inode_operations proc_self_inode_operations = { 2397 .readlink = proc_self_readlink, 2398 .follow_link = proc_self_follow_link, 2399 .put_link = proc_self_put_link, 2400 }; 2401 2402 /* 2403 * proc base 2404 * 2405 * These are the directory entries in the root directory of /proc 2406 * that properly belong to the /proc filesystem, as they describe 2407 * describe something that is process related. 2408 */ 2409 static const struct pid_entry proc_base_stuff[] = { 2410 NOD("self", S_IFLNK|S_IRWXUGO, 2411 &proc_self_inode_operations, NULL, {}), 2412 }; 2413 2414 /* 2415 * Exceptional case: normally we are not allowed to unhash a busy 2416 * directory. In this case, however, we can do it - no aliasing problems 2417 * due to the way we treat inodes. 2418 */ 2419 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd) 2420 { 2421 struct inode *inode = dentry->d_inode; 2422 struct task_struct *task = get_proc_task(inode); 2423 if (task) { 2424 put_task_struct(task); 2425 return 1; 2426 } 2427 d_drop(dentry); 2428 return 0; 2429 } 2430 2431 static const struct dentry_operations proc_base_dentry_operations = 2432 { 2433 .d_revalidate = proc_base_revalidate, 2434 .d_delete = pid_delete_dentry, 2435 }; 2436 2437 static struct dentry *proc_base_instantiate(struct inode *dir, 2438 struct dentry *dentry, struct task_struct *task, const void *ptr) 2439 { 2440 const struct pid_entry *p = ptr; 2441 struct inode *inode; 2442 struct proc_inode *ei; 2443 struct dentry *error = ERR_PTR(-EINVAL); 2444 2445 /* Allocate the inode */ 2446 error = ERR_PTR(-ENOMEM); 2447 inode = new_inode(dir->i_sb); 2448 if (!inode) 2449 goto out; 2450 2451 /* Initialize the inode */ 2452 ei = PROC_I(inode); 2453 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 2454 2455 /* 2456 * grab the reference to the task. 2457 */ 2458 ei->pid = get_task_pid(task, PIDTYPE_PID); 2459 if (!ei->pid) 2460 goto out_iput; 2461 2462 inode->i_mode = p->mode; 2463 if (S_ISDIR(inode->i_mode)) 2464 inode->i_nlink = 2; 2465 if (S_ISLNK(inode->i_mode)) 2466 inode->i_size = 64; 2467 if (p->iop) 2468 inode->i_op = p->iop; 2469 if (p->fop) 2470 inode->i_fop = p->fop; 2471 ei->op = p->op; 2472 dentry->d_op = &proc_base_dentry_operations; 2473 d_add(dentry, inode); 2474 error = NULL; 2475 out: 2476 return error; 2477 out_iput: 2478 iput(inode); 2479 goto out; 2480 } 2481 2482 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry) 2483 { 2484 struct dentry *error; 2485 struct task_struct *task = get_proc_task(dir); 2486 const struct pid_entry *p, *last; 2487 2488 error = ERR_PTR(-ENOENT); 2489 2490 if (!task) 2491 goto out_no_task; 2492 2493 /* Lookup the directory entry */ 2494 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1]; 2495 for (p = proc_base_stuff; p <= last; p++) { 2496 if (p->len != dentry->d_name.len) 2497 continue; 2498 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2499 break; 2500 } 2501 if (p > last) 2502 goto out; 2503 2504 error = proc_base_instantiate(dir, dentry, task, p); 2505 2506 out: 2507 put_task_struct(task); 2508 out_no_task: 2509 return error; 2510 } 2511 2512 static int proc_base_fill_cache(struct file *filp, void *dirent, 2513 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2514 { 2515 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2516 proc_base_instantiate, task, p); 2517 } 2518 2519 #ifdef CONFIG_TASK_IO_ACCOUNTING 2520 static int do_io_accounting(struct task_struct *task, char *buffer, int whole) 2521 { 2522 struct task_io_accounting acct = task->ioac; 2523 unsigned long flags; 2524 2525 if (whole && lock_task_sighand(task, &flags)) { 2526 struct task_struct *t = task; 2527 2528 task_io_accounting_add(&acct, &task->signal->ioac); 2529 while_each_thread(task, t) 2530 task_io_accounting_add(&acct, &t->ioac); 2531 2532 unlock_task_sighand(task, &flags); 2533 } 2534 return sprintf(buffer, 2535 "rchar: %llu\n" 2536 "wchar: %llu\n" 2537 "syscr: %llu\n" 2538 "syscw: %llu\n" 2539 "read_bytes: %llu\n" 2540 "write_bytes: %llu\n" 2541 "cancelled_write_bytes: %llu\n", 2542 (unsigned long long)acct.rchar, 2543 (unsigned long long)acct.wchar, 2544 (unsigned long long)acct.syscr, 2545 (unsigned long long)acct.syscw, 2546 (unsigned long long)acct.read_bytes, 2547 (unsigned long long)acct.write_bytes, 2548 (unsigned long long)acct.cancelled_write_bytes); 2549 } 2550 2551 static int proc_tid_io_accounting(struct task_struct *task, char *buffer) 2552 { 2553 return do_io_accounting(task, buffer, 0); 2554 } 2555 2556 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer) 2557 { 2558 return do_io_accounting(task, buffer, 1); 2559 } 2560 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2561 2562 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2563 struct pid *pid, struct task_struct *task) 2564 { 2565 seq_printf(m, "%08x\n", task->personality); 2566 return 0; 2567 } 2568 2569 /* 2570 * Thread groups 2571 */ 2572 static const struct file_operations proc_task_operations; 2573 static const struct inode_operations proc_task_inode_operations; 2574 2575 static const struct pid_entry tgid_base_stuff[] = { 2576 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 2577 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2578 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2579 #ifdef CONFIG_NET 2580 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 2581 #endif 2582 REG("environ", S_IRUSR, proc_environ_operations), 2583 INF("auxv", S_IRUSR, proc_pid_auxv), 2584 ONE("status", S_IRUGO, proc_pid_status), 2585 ONE("personality", S_IRUSR, proc_pid_personality), 2586 INF("limits", S_IRUSR, proc_pid_limits), 2587 #ifdef CONFIG_SCHED_DEBUG 2588 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2589 #endif 2590 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2591 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2592 INF("syscall", S_IRUSR, proc_pid_syscall), 2593 #endif 2594 INF("cmdline", S_IRUGO, proc_pid_cmdline), 2595 ONE("stat", S_IRUGO, proc_tgid_stat), 2596 ONE("statm", S_IRUGO, proc_pid_statm), 2597 REG("maps", S_IRUGO, proc_maps_operations), 2598 #ifdef CONFIG_NUMA 2599 REG("numa_maps", S_IRUGO, proc_numa_maps_operations), 2600 #endif 2601 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2602 LNK("cwd", proc_cwd_link), 2603 LNK("root", proc_root_link), 2604 LNK("exe", proc_exe_link), 2605 REG("mounts", S_IRUGO, proc_mounts_operations), 2606 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2607 REG("mountstats", S_IRUSR, proc_mountstats_operations), 2608 #ifdef CONFIG_PROC_PAGE_MONITOR 2609 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2610 REG("smaps", S_IRUGO, proc_smaps_operations), 2611 REG("pagemap", S_IRUSR, proc_pagemap_operations), 2612 #endif 2613 #ifdef CONFIG_SECURITY 2614 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2615 #endif 2616 #ifdef CONFIG_KALLSYMS 2617 INF("wchan", S_IRUGO, proc_pid_wchan), 2618 #endif 2619 #ifdef CONFIG_STACKTRACE 2620 ONE("stack", S_IRUSR, proc_pid_stack), 2621 #endif 2622 #ifdef CONFIG_SCHEDSTATS 2623 INF("schedstat", S_IRUGO, proc_pid_schedstat), 2624 #endif 2625 #ifdef CONFIG_LATENCYTOP 2626 REG("latency", S_IRUGO, proc_lstats_operations), 2627 #endif 2628 #ifdef CONFIG_PROC_PID_CPUSET 2629 REG("cpuset", S_IRUGO, proc_cpuset_operations), 2630 #endif 2631 #ifdef CONFIG_CGROUPS 2632 REG("cgroup", S_IRUGO, proc_cgroup_operations), 2633 #endif 2634 INF("oom_score", S_IRUGO, proc_oom_score), 2635 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 2636 #ifdef CONFIG_AUDITSYSCALL 2637 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 2638 REG("sessionid", S_IRUGO, proc_sessionid_operations), 2639 #endif 2640 #ifdef CONFIG_FAULT_INJECTION 2641 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 2642 #endif 2643 #ifdef CONFIG_ELF_CORE 2644 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 2645 #endif 2646 #ifdef CONFIG_TASK_IO_ACCOUNTING 2647 INF("io", S_IRUGO, proc_tgid_io_accounting), 2648 #endif 2649 }; 2650 2651 static int proc_tgid_base_readdir(struct file * filp, 2652 void * dirent, filldir_t filldir) 2653 { 2654 return proc_pident_readdir(filp,dirent,filldir, 2655 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff)); 2656 } 2657 2658 static const struct file_operations proc_tgid_base_operations = { 2659 .read = generic_read_dir, 2660 .readdir = proc_tgid_base_readdir, 2661 }; 2662 2663 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 2664 return proc_pident_lookup(dir, dentry, 2665 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 2666 } 2667 2668 static const struct inode_operations proc_tgid_base_inode_operations = { 2669 .lookup = proc_tgid_base_lookup, 2670 .getattr = pid_getattr, 2671 .setattr = proc_setattr, 2672 }; 2673 2674 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 2675 { 2676 struct dentry *dentry, *leader, *dir; 2677 char buf[PROC_NUMBUF]; 2678 struct qstr name; 2679 2680 name.name = buf; 2681 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2682 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 2683 if (dentry) { 2684 shrink_dcache_parent(dentry); 2685 d_drop(dentry); 2686 dput(dentry); 2687 } 2688 2689 name.name = buf; 2690 name.len = snprintf(buf, sizeof(buf), "%d", tgid); 2691 leader = d_hash_and_lookup(mnt->mnt_root, &name); 2692 if (!leader) 2693 goto out; 2694 2695 name.name = "task"; 2696 name.len = strlen(name.name); 2697 dir = d_hash_and_lookup(leader, &name); 2698 if (!dir) 2699 goto out_put_leader; 2700 2701 name.name = buf; 2702 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2703 dentry = d_hash_and_lookup(dir, &name); 2704 if (dentry) { 2705 shrink_dcache_parent(dentry); 2706 d_drop(dentry); 2707 dput(dentry); 2708 } 2709 2710 dput(dir); 2711 out_put_leader: 2712 dput(leader); 2713 out: 2714 return; 2715 } 2716 2717 /** 2718 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 2719 * @task: task that should be flushed. 2720 * 2721 * When flushing dentries from proc, one needs to flush them from global 2722 * proc (proc_mnt) and from all the namespaces' procs this task was seen 2723 * in. This call is supposed to do all of this job. 2724 * 2725 * Looks in the dcache for 2726 * /proc/@pid 2727 * /proc/@tgid/task/@pid 2728 * if either directory is present flushes it and all of it'ts children 2729 * from the dcache. 2730 * 2731 * It is safe and reasonable to cache /proc entries for a task until 2732 * that task exits. After that they just clog up the dcache with 2733 * useless entries, possibly causing useful dcache entries to be 2734 * flushed instead. This routine is proved to flush those useless 2735 * dcache entries at process exit time. 2736 * 2737 * NOTE: This routine is just an optimization so it does not guarantee 2738 * that no dcache entries will exist at process exit time it 2739 * just makes it very unlikely that any will persist. 2740 */ 2741 2742 void proc_flush_task(struct task_struct *task) 2743 { 2744 int i; 2745 struct pid *pid, *tgid; 2746 struct upid *upid; 2747 2748 pid = task_pid(task); 2749 tgid = task_tgid(task); 2750 2751 for (i = 0; i <= pid->level; i++) { 2752 upid = &pid->numbers[i]; 2753 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 2754 tgid->numbers[i].nr); 2755 } 2756 2757 upid = &pid->numbers[pid->level]; 2758 if (upid->nr == 1) 2759 pid_ns_release_proc(upid->ns); 2760 } 2761 2762 static struct dentry *proc_pid_instantiate(struct inode *dir, 2763 struct dentry * dentry, 2764 struct task_struct *task, const void *ptr) 2765 { 2766 struct dentry *error = ERR_PTR(-ENOENT); 2767 struct inode *inode; 2768 2769 inode = proc_pid_make_inode(dir->i_sb, task); 2770 if (!inode) 2771 goto out; 2772 2773 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 2774 inode->i_op = &proc_tgid_base_inode_operations; 2775 inode->i_fop = &proc_tgid_base_operations; 2776 inode->i_flags|=S_IMMUTABLE; 2777 2778 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff, 2779 ARRAY_SIZE(tgid_base_stuff)); 2780 2781 dentry->d_op = &pid_dentry_operations; 2782 2783 d_add(dentry, inode); 2784 /* Close the race of the process dying before we return the dentry */ 2785 if (pid_revalidate(dentry, NULL)) 2786 error = NULL; 2787 out: 2788 return error; 2789 } 2790 2791 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 2792 { 2793 struct dentry *result = ERR_PTR(-ENOENT); 2794 struct task_struct *task; 2795 unsigned tgid; 2796 struct pid_namespace *ns; 2797 2798 result = proc_base_lookup(dir, dentry); 2799 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT) 2800 goto out; 2801 2802 tgid = name_to_int(dentry); 2803 if (tgid == ~0U) 2804 goto out; 2805 2806 ns = dentry->d_sb->s_fs_info; 2807 rcu_read_lock(); 2808 task = find_task_by_pid_ns(tgid, ns); 2809 if (task) 2810 get_task_struct(task); 2811 rcu_read_unlock(); 2812 if (!task) 2813 goto out; 2814 2815 result = proc_pid_instantiate(dir, dentry, task, NULL); 2816 put_task_struct(task); 2817 out: 2818 return result; 2819 } 2820 2821 /* 2822 * Find the first task with tgid >= tgid 2823 * 2824 */ 2825 struct tgid_iter { 2826 unsigned int tgid; 2827 struct task_struct *task; 2828 }; 2829 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 2830 { 2831 struct pid *pid; 2832 2833 if (iter.task) 2834 put_task_struct(iter.task); 2835 rcu_read_lock(); 2836 retry: 2837 iter.task = NULL; 2838 pid = find_ge_pid(iter.tgid, ns); 2839 if (pid) { 2840 iter.tgid = pid_nr_ns(pid, ns); 2841 iter.task = pid_task(pid, PIDTYPE_PID); 2842 /* What we to know is if the pid we have find is the 2843 * pid of a thread_group_leader. Testing for task 2844 * being a thread_group_leader is the obvious thing 2845 * todo but there is a window when it fails, due to 2846 * the pid transfer logic in de_thread. 2847 * 2848 * So we perform the straight forward test of seeing 2849 * if the pid we have found is the pid of a thread 2850 * group leader, and don't worry if the task we have 2851 * found doesn't happen to be a thread group leader. 2852 * As we don't care in the case of readdir. 2853 */ 2854 if (!iter.task || !has_group_leader_pid(iter.task)) { 2855 iter.tgid += 1; 2856 goto retry; 2857 } 2858 get_task_struct(iter.task); 2859 } 2860 rcu_read_unlock(); 2861 return iter; 2862 } 2863 2864 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff)) 2865 2866 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 2867 struct tgid_iter iter) 2868 { 2869 char name[PROC_NUMBUF]; 2870 int len = snprintf(name, sizeof(name), "%d", iter.tgid); 2871 return proc_fill_cache(filp, dirent, filldir, name, len, 2872 proc_pid_instantiate, iter.task, NULL); 2873 } 2874 2875 /* for the /proc/ directory itself, after non-process stuff has been done */ 2876 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) 2877 { 2878 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY; 2879 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode); 2880 struct tgid_iter iter; 2881 struct pid_namespace *ns; 2882 2883 if (!reaper) 2884 goto out_no_task; 2885 2886 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) { 2887 const struct pid_entry *p = &proc_base_stuff[nr]; 2888 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0) 2889 goto out; 2890 } 2891 2892 ns = filp->f_dentry->d_sb->s_fs_info; 2893 iter.task = NULL; 2894 iter.tgid = filp->f_pos - TGID_OFFSET; 2895 for (iter = next_tgid(ns, iter); 2896 iter.task; 2897 iter.tgid += 1, iter = next_tgid(ns, iter)) { 2898 filp->f_pos = iter.tgid + TGID_OFFSET; 2899 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) { 2900 put_task_struct(iter.task); 2901 goto out; 2902 } 2903 } 2904 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET; 2905 out: 2906 put_task_struct(reaper); 2907 out_no_task: 2908 return 0; 2909 } 2910 2911 /* 2912 * Tasks 2913 */ 2914 static const struct pid_entry tid_base_stuff[] = { 2915 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2916 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations), 2917 REG("environ", S_IRUSR, proc_environ_operations), 2918 INF("auxv", S_IRUSR, proc_pid_auxv), 2919 ONE("status", S_IRUGO, proc_pid_status), 2920 ONE("personality", S_IRUSR, proc_pid_personality), 2921 INF("limits", S_IRUSR, proc_pid_limits), 2922 #ifdef CONFIG_SCHED_DEBUG 2923 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2924 #endif 2925 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2926 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2927 INF("syscall", S_IRUSR, proc_pid_syscall), 2928 #endif 2929 INF("cmdline", S_IRUGO, proc_pid_cmdline), 2930 ONE("stat", S_IRUGO, proc_tid_stat), 2931 ONE("statm", S_IRUGO, proc_pid_statm), 2932 REG("maps", S_IRUGO, proc_maps_operations), 2933 #ifdef CONFIG_NUMA 2934 REG("numa_maps", S_IRUGO, proc_numa_maps_operations), 2935 #endif 2936 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2937 LNK("cwd", proc_cwd_link), 2938 LNK("root", proc_root_link), 2939 LNK("exe", proc_exe_link), 2940 REG("mounts", S_IRUGO, proc_mounts_operations), 2941 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2942 #ifdef CONFIG_PROC_PAGE_MONITOR 2943 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2944 REG("smaps", S_IRUGO, proc_smaps_operations), 2945 REG("pagemap", S_IRUSR, proc_pagemap_operations), 2946 #endif 2947 #ifdef CONFIG_SECURITY 2948 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2949 #endif 2950 #ifdef CONFIG_KALLSYMS 2951 INF("wchan", S_IRUGO, proc_pid_wchan), 2952 #endif 2953 #ifdef CONFIG_STACKTRACE 2954 ONE("stack", S_IRUSR, proc_pid_stack), 2955 #endif 2956 #ifdef CONFIG_SCHEDSTATS 2957 INF("schedstat", S_IRUGO, proc_pid_schedstat), 2958 #endif 2959 #ifdef CONFIG_LATENCYTOP 2960 REG("latency", S_IRUGO, proc_lstats_operations), 2961 #endif 2962 #ifdef CONFIG_PROC_PID_CPUSET 2963 REG("cpuset", S_IRUGO, proc_cpuset_operations), 2964 #endif 2965 #ifdef CONFIG_CGROUPS 2966 REG("cgroup", S_IRUGO, proc_cgroup_operations), 2967 #endif 2968 INF("oom_score", S_IRUGO, proc_oom_score), 2969 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 2970 #ifdef CONFIG_AUDITSYSCALL 2971 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 2972 REG("sessionid", S_IRUSR, proc_sessionid_operations), 2973 #endif 2974 #ifdef CONFIG_FAULT_INJECTION 2975 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 2976 #endif 2977 #ifdef CONFIG_TASK_IO_ACCOUNTING 2978 INF("io", S_IRUGO, proc_tid_io_accounting), 2979 #endif 2980 }; 2981 2982 static int proc_tid_base_readdir(struct file * filp, 2983 void * dirent, filldir_t filldir) 2984 { 2985 return proc_pident_readdir(filp,dirent,filldir, 2986 tid_base_stuff,ARRAY_SIZE(tid_base_stuff)); 2987 } 2988 2989 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 2990 return proc_pident_lookup(dir, dentry, 2991 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 2992 } 2993 2994 static const struct file_operations proc_tid_base_operations = { 2995 .read = generic_read_dir, 2996 .readdir = proc_tid_base_readdir, 2997 }; 2998 2999 static const struct inode_operations proc_tid_base_inode_operations = { 3000 .lookup = proc_tid_base_lookup, 3001 .getattr = pid_getattr, 3002 .setattr = proc_setattr, 3003 }; 3004 3005 static struct dentry *proc_task_instantiate(struct inode *dir, 3006 struct dentry *dentry, struct task_struct *task, const void *ptr) 3007 { 3008 struct dentry *error = ERR_PTR(-ENOENT); 3009 struct inode *inode; 3010 inode = proc_pid_make_inode(dir->i_sb, task); 3011 3012 if (!inode) 3013 goto out; 3014 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 3015 inode->i_op = &proc_tid_base_inode_operations; 3016 inode->i_fop = &proc_tid_base_operations; 3017 inode->i_flags|=S_IMMUTABLE; 3018 3019 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff, 3020 ARRAY_SIZE(tid_base_stuff)); 3021 3022 dentry->d_op = &pid_dentry_operations; 3023 3024 d_add(dentry, inode); 3025 /* Close the race of the process dying before we return the dentry */ 3026 if (pid_revalidate(dentry, NULL)) 3027 error = NULL; 3028 out: 3029 return error; 3030 } 3031 3032 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 3033 { 3034 struct dentry *result = ERR_PTR(-ENOENT); 3035 struct task_struct *task; 3036 struct task_struct *leader = get_proc_task(dir); 3037 unsigned tid; 3038 struct pid_namespace *ns; 3039 3040 if (!leader) 3041 goto out_no_task; 3042 3043 tid = name_to_int(dentry); 3044 if (tid == ~0U) 3045 goto out; 3046 3047 ns = dentry->d_sb->s_fs_info; 3048 rcu_read_lock(); 3049 task = find_task_by_pid_ns(tid, ns); 3050 if (task) 3051 get_task_struct(task); 3052 rcu_read_unlock(); 3053 if (!task) 3054 goto out; 3055 if (!same_thread_group(leader, task)) 3056 goto out_drop_task; 3057 3058 result = proc_task_instantiate(dir, dentry, task, NULL); 3059 out_drop_task: 3060 put_task_struct(task); 3061 out: 3062 put_task_struct(leader); 3063 out_no_task: 3064 return result; 3065 } 3066 3067 /* 3068 * Find the first tid of a thread group to return to user space. 3069 * 3070 * Usually this is just the thread group leader, but if the users 3071 * buffer was too small or there was a seek into the middle of the 3072 * directory we have more work todo. 3073 * 3074 * In the case of a short read we start with find_task_by_pid. 3075 * 3076 * In the case of a seek we start with the leader and walk nr 3077 * threads past it. 3078 */ 3079 static struct task_struct *first_tid(struct task_struct *leader, 3080 int tid, int nr, struct pid_namespace *ns) 3081 { 3082 struct task_struct *pos; 3083 3084 rcu_read_lock(); 3085 /* Attempt to start with the pid of a thread */ 3086 if (tid && (nr > 0)) { 3087 pos = find_task_by_pid_ns(tid, ns); 3088 if (pos && (pos->group_leader == leader)) 3089 goto found; 3090 } 3091 3092 /* If nr exceeds the number of threads there is nothing todo */ 3093 pos = NULL; 3094 if (nr && nr >= get_nr_threads(leader)) 3095 goto out; 3096 3097 /* If we haven't found our starting place yet start 3098 * with the leader and walk nr threads forward. 3099 */ 3100 for (pos = leader; nr > 0; --nr) { 3101 pos = next_thread(pos); 3102 if (pos == leader) { 3103 pos = NULL; 3104 goto out; 3105 } 3106 } 3107 found: 3108 get_task_struct(pos); 3109 out: 3110 rcu_read_unlock(); 3111 return pos; 3112 } 3113 3114 /* 3115 * Find the next thread in the thread list. 3116 * Return NULL if there is an error or no next thread. 3117 * 3118 * The reference to the input task_struct is released. 3119 */ 3120 static struct task_struct *next_tid(struct task_struct *start) 3121 { 3122 struct task_struct *pos = NULL; 3123 rcu_read_lock(); 3124 if (pid_alive(start)) { 3125 pos = next_thread(start); 3126 if (thread_group_leader(pos)) 3127 pos = NULL; 3128 else 3129 get_task_struct(pos); 3130 } 3131 rcu_read_unlock(); 3132 put_task_struct(start); 3133 return pos; 3134 } 3135 3136 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 3137 struct task_struct *task, int tid) 3138 { 3139 char name[PROC_NUMBUF]; 3140 int len = snprintf(name, sizeof(name), "%d", tid); 3141 return proc_fill_cache(filp, dirent, filldir, name, len, 3142 proc_task_instantiate, task, NULL); 3143 } 3144 3145 /* for the /proc/TGID/task/ directories */ 3146 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir) 3147 { 3148 struct dentry *dentry = filp->f_path.dentry; 3149 struct inode *inode = dentry->d_inode; 3150 struct task_struct *leader = NULL; 3151 struct task_struct *task; 3152 int retval = -ENOENT; 3153 ino_t ino; 3154 int tid; 3155 struct pid_namespace *ns; 3156 3157 task = get_proc_task(inode); 3158 if (!task) 3159 goto out_no_task; 3160 rcu_read_lock(); 3161 if (pid_alive(task)) { 3162 leader = task->group_leader; 3163 get_task_struct(leader); 3164 } 3165 rcu_read_unlock(); 3166 put_task_struct(task); 3167 if (!leader) 3168 goto out_no_task; 3169 retval = 0; 3170 3171 switch ((unsigned long)filp->f_pos) { 3172 case 0: 3173 ino = inode->i_ino; 3174 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0) 3175 goto out; 3176 filp->f_pos++; 3177 /* fall through */ 3178 case 1: 3179 ino = parent_ino(dentry); 3180 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0) 3181 goto out; 3182 filp->f_pos++; 3183 /* fall through */ 3184 } 3185 3186 /* f_version caches the tgid value that the last readdir call couldn't 3187 * return. lseek aka telldir automagically resets f_version to 0. 3188 */ 3189 ns = filp->f_dentry->d_sb->s_fs_info; 3190 tid = (int)filp->f_version; 3191 filp->f_version = 0; 3192 for (task = first_tid(leader, tid, filp->f_pos - 2, ns); 3193 task; 3194 task = next_tid(task), filp->f_pos++) { 3195 tid = task_pid_nr_ns(task, ns); 3196 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) { 3197 /* returning this tgid failed, save it as the first 3198 * pid for the next readir call */ 3199 filp->f_version = (u64)tid; 3200 put_task_struct(task); 3201 break; 3202 } 3203 } 3204 out: 3205 put_task_struct(leader); 3206 out_no_task: 3207 return retval; 3208 } 3209 3210 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 3211 { 3212 struct inode *inode = dentry->d_inode; 3213 struct task_struct *p = get_proc_task(inode); 3214 generic_fillattr(inode, stat); 3215 3216 if (p) { 3217 stat->nlink += get_nr_threads(p); 3218 put_task_struct(p); 3219 } 3220 3221 return 0; 3222 } 3223 3224 static const struct inode_operations proc_task_inode_operations = { 3225 .lookup = proc_task_lookup, 3226 .getattr = proc_task_getattr, 3227 .setattr = proc_setattr, 3228 }; 3229 3230 static const struct file_operations proc_task_operations = { 3231 .read = generic_read_dir, 3232 .readdir = proc_task_readdir, 3233 }; 3234