xref: /linux/fs/proc/base.c (revision 4e4d9c72c946b77f0278988d0bf1207fa1b2cd0f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_parser.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched/autogroup.h>
92 #include <linux/sched/mm.h>
93 #include <linux/sched/coredump.h>
94 #include <linux/sched/debug.h>
95 #include <linux/sched/stat.h>
96 #include <linux/posix-timers.h>
97 #include <linux/time_namespace.h>
98 #include <linux/resctrl.h>
99 #include <linux/cn_proc.h>
100 #include <linux/ksm.h>
101 #include <uapi/linux/lsm.h>
102 #include <trace/events/oom.h>
103 #include "internal.h"
104 #include "fd.h"
105 
106 #include "../../lib/kstrtox.h"
107 
108 /* NOTE:
109  *	Implementing inode permission operations in /proc is almost
110  *	certainly an error.  Permission checks need to happen during
111  *	each system call not at open time.  The reason is that most of
112  *	what we wish to check for permissions in /proc varies at runtime.
113  *
114  *	The classic example of a problem is opening file descriptors
115  *	in /proc for a task before it execs a suid executable.
116  */
117 
118 static u8 nlink_tid __ro_after_init;
119 static u8 nlink_tgid __ro_after_init;
120 
121 enum proc_mem_force {
122 	PROC_MEM_FORCE_ALWAYS,
123 	PROC_MEM_FORCE_PTRACE,
124 	PROC_MEM_FORCE_NEVER
125 };
126 
127 static enum proc_mem_force proc_mem_force_override __ro_after_init =
128 	IS_ENABLED(CONFIG_PROC_MEM_NO_FORCE) ? PROC_MEM_FORCE_NEVER :
129 	IS_ENABLED(CONFIG_PROC_MEM_FORCE_PTRACE) ? PROC_MEM_FORCE_PTRACE :
130 	PROC_MEM_FORCE_ALWAYS;
131 
132 static const struct constant_table proc_mem_force_table[] __initconst = {
133 	{ "always", PROC_MEM_FORCE_ALWAYS },
134 	{ "ptrace", PROC_MEM_FORCE_PTRACE },
135 	{ "never", PROC_MEM_FORCE_NEVER },
136 	{ }
137 };
138 
139 static int __init early_proc_mem_force_override(char *buf)
140 {
141 	if (!buf)
142 		return -EINVAL;
143 
144 	/*
145 	 * lookup_constant() defaults to proc_mem_force_override to preseve
146 	 * the initial Kconfig choice in case an invalid param gets passed.
147 	 */
148 	proc_mem_force_override = lookup_constant(proc_mem_force_table,
149 						  buf, proc_mem_force_override);
150 
151 	return 0;
152 }
153 early_param("proc_mem.force_override", early_proc_mem_force_override);
154 
155 struct pid_entry {
156 	const char *name;
157 	unsigned int len;
158 	umode_t mode;
159 	const struct inode_operations *iop;
160 	const struct file_operations *fop;
161 	union proc_op op;
162 };
163 
164 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
165 	.name = (NAME),					\
166 	.len  = sizeof(NAME) - 1,			\
167 	.mode = MODE,					\
168 	.iop  = IOP,					\
169 	.fop  = FOP,					\
170 	.op   = OP,					\
171 }
172 
173 #define DIR(NAME, MODE, iops, fops)	\
174 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
175 #define LNK(NAME, get_link)					\
176 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
177 		&proc_pid_link_inode_operations, NULL,		\
178 		{ .proc_get_link = get_link } )
179 #define REG(NAME, MODE, fops)				\
180 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
181 #define ONE(NAME, MODE, show)				\
182 	NOD(NAME, (S_IFREG|(MODE)),			\
183 		NULL, &proc_single_file_operations,	\
184 		{ .proc_show = show } )
185 #define ATTR(LSMID, NAME, MODE)				\
186 	NOD(NAME, (S_IFREG|(MODE)),			\
187 		NULL, &proc_pid_attr_operations,	\
188 		{ .lsmid = LSMID })
189 
190 /*
191  * Count the number of hardlinks for the pid_entry table, excluding the .
192  * and .. links.
193  */
194 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
195 	unsigned int n)
196 {
197 	unsigned int i;
198 	unsigned int count;
199 
200 	count = 2;
201 	for (i = 0; i < n; ++i) {
202 		if (S_ISDIR(entries[i].mode))
203 			++count;
204 	}
205 
206 	return count;
207 }
208 
209 static int get_task_root(struct task_struct *task, struct path *root)
210 {
211 	int result = -ENOENT;
212 
213 	task_lock(task);
214 	if (task->fs) {
215 		get_fs_root(task->fs, root);
216 		result = 0;
217 	}
218 	task_unlock(task);
219 	return result;
220 }
221 
222 static int proc_cwd_link(struct dentry *dentry, struct path *path)
223 {
224 	struct task_struct *task = get_proc_task(d_inode(dentry));
225 	int result = -ENOENT;
226 
227 	if (task) {
228 		task_lock(task);
229 		if (task->fs) {
230 			get_fs_pwd(task->fs, path);
231 			result = 0;
232 		}
233 		task_unlock(task);
234 		put_task_struct(task);
235 	}
236 	return result;
237 }
238 
239 static int proc_root_link(struct dentry *dentry, struct path *path)
240 {
241 	struct task_struct *task = get_proc_task(d_inode(dentry));
242 	int result = -ENOENT;
243 
244 	if (task) {
245 		result = get_task_root(task, path);
246 		put_task_struct(task);
247 	}
248 	return result;
249 }
250 
251 /*
252  * If the user used setproctitle(), we just get the string from
253  * user space at arg_start, and limit it to a maximum of one page.
254  */
255 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
256 				size_t count, unsigned long pos,
257 				unsigned long arg_start)
258 {
259 	char *page;
260 	int ret, got;
261 
262 	if (pos >= PAGE_SIZE)
263 		return 0;
264 
265 	page = (char *)__get_free_page(GFP_KERNEL);
266 	if (!page)
267 		return -ENOMEM;
268 
269 	ret = 0;
270 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
271 	if (got > 0) {
272 		int len = strnlen(page, got);
273 
274 		/* Include the NUL character if it was found */
275 		if (len < got)
276 			len++;
277 
278 		if (len > pos) {
279 			len -= pos;
280 			if (len > count)
281 				len = count;
282 			len -= copy_to_user(buf, page+pos, len);
283 			if (!len)
284 				len = -EFAULT;
285 			ret = len;
286 		}
287 	}
288 	free_page((unsigned long)page);
289 	return ret;
290 }
291 
292 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
293 			      size_t count, loff_t *ppos)
294 {
295 	unsigned long arg_start, arg_end, env_start, env_end;
296 	unsigned long pos, len;
297 	char *page, c;
298 
299 	/* Check if process spawned far enough to have cmdline. */
300 	if (!mm->env_end)
301 		return 0;
302 
303 	spin_lock(&mm->arg_lock);
304 	arg_start = mm->arg_start;
305 	arg_end = mm->arg_end;
306 	env_start = mm->env_start;
307 	env_end = mm->env_end;
308 	spin_unlock(&mm->arg_lock);
309 
310 	if (arg_start >= arg_end)
311 		return 0;
312 
313 	/*
314 	 * We allow setproctitle() to overwrite the argument
315 	 * strings, and overflow past the original end. But
316 	 * only when it overflows into the environment area.
317 	 */
318 	if (env_start != arg_end || env_end < env_start)
319 		env_start = env_end = arg_end;
320 	len = env_end - arg_start;
321 
322 	/* We're not going to care if "*ppos" has high bits set */
323 	pos = *ppos;
324 	if (pos >= len)
325 		return 0;
326 	if (count > len - pos)
327 		count = len - pos;
328 	if (!count)
329 		return 0;
330 
331 	/*
332 	 * Magical special case: if the argv[] end byte is not
333 	 * zero, the user has overwritten it with setproctitle(3).
334 	 *
335 	 * Possible future enhancement: do this only once when
336 	 * pos is 0, and set a flag in the 'struct file'.
337 	 */
338 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
339 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
340 
341 	/*
342 	 * For the non-setproctitle() case we limit things strictly
343 	 * to the [arg_start, arg_end[ range.
344 	 */
345 	pos += arg_start;
346 	if (pos < arg_start || pos >= arg_end)
347 		return 0;
348 	if (count > arg_end - pos)
349 		count = arg_end - pos;
350 
351 	page = (char *)__get_free_page(GFP_KERNEL);
352 	if (!page)
353 		return -ENOMEM;
354 
355 	len = 0;
356 	while (count) {
357 		int got;
358 		size_t size = min_t(size_t, PAGE_SIZE, count);
359 
360 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
361 		if (got <= 0)
362 			break;
363 		got -= copy_to_user(buf, page, got);
364 		if (unlikely(!got)) {
365 			if (!len)
366 				len = -EFAULT;
367 			break;
368 		}
369 		pos += got;
370 		buf += got;
371 		len += got;
372 		count -= got;
373 	}
374 
375 	free_page((unsigned long)page);
376 	return len;
377 }
378 
379 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
380 				size_t count, loff_t *pos)
381 {
382 	struct mm_struct *mm;
383 	ssize_t ret;
384 
385 	mm = get_task_mm(tsk);
386 	if (!mm)
387 		return 0;
388 
389 	ret = get_mm_cmdline(mm, buf, count, pos);
390 	mmput(mm);
391 	return ret;
392 }
393 
394 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
395 				     size_t count, loff_t *pos)
396 {
397 	struct task_struct *tsk;
398 	ssize_t ret;
399 
400 	BUG_ON(*pos < 0);
401 
402 	tsk = get_proc_task(file_inode(file));
403 	if (!tsk)
404 		return -ESRCH;
405 	ret = get_task_cmdline(tsk, buf, count, pos);
406 	put_task_struct(tsk);
407 	if (ret > 0)
408 		*pos += ret;
409 	return ret;
410 }
411 
412 static const struct file_operations proc_pid_cmdline_ops = {
413 	.read	= proc_pid_cmdline_read,
414 	.llseek	= generic_file_llseek,
415 };
416 
417 #ifdef CONFIG_KALLSYMS
418 /*
419  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
420  * Returns the resolved symbol.  If that fails, simply return the address.
421  */
422 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
423 			  struct pid *pid, struct task_struct *task)
424 {
425 	unsigned long wchan;
426 	char symname[KSYM_NAME_LEN];
427 
428 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
429 		goto print0;
430 
431 	wchan = get_wchan(task);
432 	if (wchan && !lookup_symbol_name(wchan, symname)) {
433 		seq_puts(m, symname);
434 		return 0;
435 	}
436 
437 print0:
438 	seq_putc(m, '0');
439 	return 0;
440 }
441 #endif /* CONFIG_KALLSYMS */
442 
443 static int lock_trace(struct task_struct *task)
444 {
445 	int err = down_read_killable(&task->signal->exec_update_lock);
446 	if (err)
447 		return err;
448 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
449 		up_read(&task->signal->exec_update_lock);
450 		return -EPERM;
451 	}
452 	return 0;
453 }
454 
455 static void unlock_trace(struct task_struct *task)
456 {
457 	up_read(&task->signal->exec_update_lock);
458 }
459 
460 #ifdef CONFIG_STACKTRACE
461 
462 #define MAX_STACK_TRACE_DEPTH	64
463 
464 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
465 			  struct pid *pid, struct task_struct *task)
466 {
467 	unsigned long *entries;
468 	int err;
469 
470 	/*
471 	 * The ability to racily run the kernel stack unwinder on a running task
472 	 * and then observe the unwinder output is scary; while it is useful for
473 	 * debugging kernel issues, it can also allow an attacker to leak kernel
474 	 * stack contents.
475 	 * Doing this in a manner that is at least safe from races would require
476 	 * some work to ensure that the remote task can not be scheduled; and
477 	 * even then, this would still expose the unwinder as local attack
478 	 * surface.
479 	 * Therefore, this interface is restricted to root.
480 	 */
481 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
482 		return -EACCES;
483 
484 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
485 				GFP_KERNEL);
486 	if (!entries)
487 		return -ENOMEM;
488 
489 	err = lock_trace(task);
490 	if (!err) {
491 		unsigned int i, nr_entries;
492 
493 		nr_entries = stack_trace_save_tsk(task, entries,
494 						  MAX_STACK_TRACE_DEPTH, 0);
495 
496 		for (i = 0; i < nr_entries; i++) {
497 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
498 		}
499 
500 		unlock_trace(task);
501 	}
502 	kfree(entries);
503 
504 	return err;
505 }
506 #endif
507 
508 #ifdef CONFIG_SCHED_INFO
509 /*
510  * Provides /proc/PID/schedstat
511  */
512 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
513 			      struct pid *pid, struct task_struct *task)
514 {
515 	if (unlikely(!sched_info_on()))
516 		seq_puts(m, "0 0 0\n");
517 	else
518 		seq_printf(m, "%llu %llu %lu\n",
519 		   (unsigned long long)task->se.sum_exec_runtime,
520 		   (unsigned long long)task->sched_info.run_delay,
521 		   task->sched_info.pcount);
522 
523 	return 0;
524 }
525 #endif
526 
527 #ifdef CONFIG_LATENCYTOP
528 static int lstats_show_proc(struct seq_file *m, void *v)
529 {
530 	int i;
531 	struct inode *inode = m->private;
532 	struct task_struct *task = get_proc_task(inode);
533 
534 	if (!task)
535 		return -ESRCH;
536 	seq_puts(m, "Latency Top version : v0.1\n");
537 	for (i = 0; i < LT_SAVECOUNT; i++) {
538 		struct latency_record *lr = &task->latency_record[i];
539 		if (lr->backtrace[0]) {
540 			int q;
541 			seq_printf(m, "%i %li %li",
542 				   lr->count, lr->time, lr->max);
543 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
544 				unsigned long bt = lr->backtrace[q];
545 
546 				if (!bt)
547 					break;
548 				seq_printf(m, " %ps", (void *)bt);
549 			}
550 			seq_putc(m, '\n');
551 		}
552 
553 	}
554 	put_task_struct(task);
555 	return 0;
556 }
557 
558 static int lstats_open(struct inode *inode, struct file *file)
559 {
560 	return single_open(file, lstats_show_proc, inode);
561 }
562 
563 static ssize_t lstats_write(struct file *file, const char __user *buf,
564 			    size_t count, loff_t *offs)
565 {
566 	struct task_struct *task = get_proc_task(file_inode(file));
567 
568 	if (!task)
569 		return -ESRCH;
570 	clear_tsk_latency_tracing(task);
571 	put_task_struct(task);
572 
573 	return count;
574 }
575 
576 static const struct file_operations proc_lstats_operations = {
577 	.open		= lstats_open,
578 	.read		= seq_read,
579 	.write		= lstats_write,
580 	.llseek		= seq_lseek,
581 	.release	= single_release,
582 };
583 
584 #endif
585 
586 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
587 			  struct pid *pid, struct task_struct *task)
588 {
589 	unsigned long totalpages = totalram_pages() + total_swap_pages;
590 	unsigned long points = 0;
591 	long badness;
592 
593 	badness = oom_badness(task, totalpages);
594 	/*
595 	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
596 	 * badness value into [0, 2000] range which we have been
597 	 * exporting for a long time so userspace might depend on it.
598 	 */
599 	if (badness != LONG_MIN)
600 		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
601 
602 	seq_printf(m, "%lu\n", points);
603 
604 	return 0;
605 }
606 
607 struct limit_names {
608 	const char *name;
609 	const char *unit;
610 };
611 
612 static const struct limit_names lnames[RLIM_NLIMITS] = {
613 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
614 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
615 	[RLIMIT_DATA] = {"Max data size", "bytes"},
616 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
617 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
618 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
619 	[RLIMIT_NPROC] = {"Max processes", "processes"},
620 	[RLIMIT_NOFILE] = {"Max open files", "files"},
621 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
622 	[RLIMIT_AS] = {"Max address space", "bytes"},
623 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
624 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
625 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
626 	[RLIMIT_NICE] = {"Max nice priority", NULL},
627 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
628 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
629 };
630 
631 /* Display limits for a process */
632 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
633 			   struct pid *pid, struct task_struct *task)
634 {
635 	unsigned int i;
636 	unsigned long flags;
637 
638 	struct rlimit rlim[RLIM_NLIMITS];
639 
640 	if (!lock_task_sighand(task, &flags))
641 		return 0;
642 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
643 	unlock_task_sighand(task, &flags);
644 
645 	/*
646 	 * print the file header
647 	 */
648 	seq_puts(m, "Limit                     "
649 		"Soft Limit           "
650 		"Hard Limit           "
651 		"Units     \n");
652 
653 	for (i = 0; i < RLIM_NLIMITS; i++) {
654 		if (rlim[i].rlim_cur == RLIM_INFINITY)
655 			seq_printf(m, "%-25s %-20s ",
656 				   lnames[i].name, "unlimited");
657 		else
658 			seq_printf(m, "%-25s %-20lu ",
659 				   lnames[i].name, rlim[i].rlim_cur);
660 
661 		if (rlim[i].rlim_max == RLIM_INFINITY)
662 			seq_printf(m, "%-20s ", "unlimited");
663 		else
664 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
665 
666 		if (lnames[i].unit)
667 			seq_printf(m, "%-10s\n", lnames[i].unit);
668 		else
669 			seq_putc(m, '\n');
670 	}
671 
672 	return 0;
673 }
674 
675 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
676 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
677 			    struct pid *pid, struct task_struct *task)
678 {
679 	struct syscall_info info;
680 	u64 *args = &info.data.args[0];
681 	int res;
682 
683 	res = lock_trace(task);
684 	if (res)
685 		return res;
686 
687 	if (task_current_syscall(task, &info))
688 		seq_puts(m, "running\n");
689 	else if (info.data.nr < 0)
690 		seq_printf(m, "%d 0x%llx 0x%llx\n",
691 			   info.data.nr, info.sp, info.data.instruction_pointer);
692 	else
693 		seq_printf(m,
694 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
695 		       info.data.nr,
696 		       args[0], args[1], args[2], args[3], args[4], args[5],
697 		       info.sp, info.data.instruction_pointer);
698 	unlock_trace(task);
699 
700 	return 0;
701 }
702 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
703 
704 /************************************************************************/
705 /*                       Here the fs part begins                        */
706 /************************************************************************/
707 
708 /* permission checks */
709 static bool proc_fd_access_allowed(struct inode *inode)
710 {
711 	struct task_struct *task;
712 	bool allowed = false;
713 	/* Allow access to a task's file descriptors if it is us or we
714 	 * may use ptrace attach to the process and find out that
715 	 * information.
716 	 */
717 	task = get_proc_task(inode);
718 	if (task) {
719 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
720 		put_task_struct(task);
721 	}
722 	return allowed;
723 }
724 
725 int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
726 		 struct iattr *attr)
727 {
728 	int error;
729 	struct inode *inode = d_inode(dentry);
730 
731 	if (attr->ia_valid & ATTR_MODE)
732 		return -EPERM;
733 
734 	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
735 	if (error)
736 		return error;
737 
738 	setattr_copy(&nop_mnt_idmap, inode, attr);
739 	return 0;
740 }
741 
742 /*
743  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
744  * or euid/egid (for hide_pid_min=2)?
745  */
746 static bool has_pid_permissions(struct proc_fs_info *fs_info,
747 				 struct task_struct *task,
748 				 enum proc_hidepid hide_pid_min)
749 {
750 	/*
751 	 * If 'hidpid' mount option is set force a ptrace check,
752 	 * we indicate that we are using a filesystem syscall
753 	 * by passing PTRACE_MODE_READ_FSCREDS
754 	 */
755 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
756 		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
757 
758 	if (fs_info->hide_pid < hide_pid_min)
759 		return true;
760 	if (in_group_p(fs_info->pid_gid))
761 		return true;
762 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
763 }
764 
765 
766 static int proc_pid_permission(struct mnt_idmap *idmap,
767 			       struct inode *inode, int mask)
768 {
769 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
770 	struct task_struct *task;
771 	bool has_perms;
772 
773 	task = get_proc_task(inode);
774 	if (!task)
775 		return -ESRCH;
776 	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
777 	put_task_struct(task);
778 
779 	if (!has_perms) {
780 		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
781 			/*
782 			 * Let's make getdents(), stat(), and open()
783 			 * consistent with each other.  If a process
784 			 * may not stat() a file, it shouldn't be seen
785 			 * in procfs at all.
786 			 */
787 			return -ENOENT;
788 		}
789 
790 		return -EPERM;
791 	}
792 	return generic_permission(&nop_mnt_idmap, inode, mask);
793 }
794 
795 
796 
797 static const struct inode_operations proc_def_inode_operations = {
798 	.setattr	= proc_setattr,
799 };
800 
801 static int proc_single_show(struct seq_file *m, void *v)
802 {
803 	struct inode *inode = m->private;
804 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
805 	struct pid *pid = proc_pid(inode);
806 	struct task_struct *task;
807 	int ret;
808 
809 	task = get_pid_task(pid, PIDTYPE_PID);
810 	if (!task)
811 		return -ESRCH;
812 
813 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
814 
815 	put_task_struct(task);
816 	return ret;
817 }
818 
819 static int proc_single_open(struct inode *inode, struct file *filp)
820 {
821 	return single_open(filp, proc_single_show, inode);
822 }
823 
824 static const struct file_operations proc_single_file_operations = {
825 	.open		= proc_single_open,
826 	.read		= seq_read,
827 	.llseek		= seq_lseek,
828 	.release	= single_release,
829 };
830 
831 
832 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
833 {
834 	struct task_struct *task = get_proc_task(inode);
835 	struct mm_struct *mm;
836 
837 	if (!task)
838 		return ERR_PTR(-ESRCH);
839 
840 	mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
841 	put_task_struct(task);
842 
843 	if (IS_ERR(mm))
844 		return mm == ERR_PTR(-ESRCH) ? NULL : mm;
845 
846 	/* ensure this mm_struct can't be freed */
847 	mmgrab(mm);
848 	/* but do not pin its memory */
849 	mmput(mm);
850 
851 	return mm;
852 }
853 
854 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
855 {
856 	struct mm_struct *mm = proc_mem_open(inode, mode);
857 
858 	if (IS_ERR(mm))
859 		return PTR_ERR(mm);
860 
861 	file->private_data = mm;
862 	return 0;
863 }
864 
865 static int mem_open(struct inode *inode, struct file *file)
866 {
867 	if (WARN_ON_ONCE(!(file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)))
868 		return -EINVAL;
869 	return __mem_open(inode, file, PTRACE_MODE_ATTACH);
870 }
871 
872 static bool proc_mem_foll_force(struct file *file, struct mm_struct *mm)
873 {
874 	struct task_struct *task;
875 	bool ptrace_active = false;
876 
877 	switch (proc_mem_force_override) {
878 	case PROC_MEM_FORCE_NEVER:
879 		return false;
880 	case PROC_MEM_FORCE_PTRACE:
881 		task = get_proc_task(file_inode(file));
882 		if (task) {
883 			ptrace_active =	READ_ONCE(task->ptrace) &&
884 					READ_ONCE(task->mm) == mm &&
885 					READ_ONCE(task->parent) == current;
886 			put_task_struct(task);
887 		}
888 		return ptrace_active;
889 	default:
890 		return true;
891 	}
892 }
893 
894 static ssize_t mem_rw(struct file *file, char __user *buf,
895 			size_t count, loff_t *ppos, int write)
896 {
897 	struct mm_struct *mm = file->private_data;
898 	unsigned long addr = *ppos;
899 	ssize_t copied;
900 	char *page;
901 	unsigned int flags;
902 
903 	if (!mm)
904 		return 0;
905 
906 	page = (char *)__get_free_page(GFP_KERNEL);
907 	if (!page)
908 		return -ENOMEM;
909 
910 	copied = 0;
911 	if (!mmget_not_zero(mm))
912 		goto free;
913 
914 	flags = write ? FOLL_WRITE : 0;
915 	if (proc_mem_foll_force(file, mm))
916 		flags |= FOLL_FORCE;
917 
918 	while (count > 0) {
919 		size_t this_len = min_t(size_t, count, PAGE_SIZE);
920 
921 		if (write && copy_from_user(page, buf, this_len)) {
922 			copied = -EFAULT;
923 			break;
924 		}
925 
926 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
927 		if (!this_len) {
928 			if (!copied)
929 				copied = -EIO;
930 			break;
931 		}
932 
933 		if (!write && copy_to_user(buf, page, this_len)) {
934 			copied = -EFAULT;
935 			break;
936 		}
937 
938 		buf += this_len;
939 		addr += this_len;
940 		copied += this_len;
941 		count -= this_len;
942 	}
943 	*ppos = addr;
944 
945 	mmput(mm);
946 free:
947 	free_page((unsigned long) page);
948 	return copied;
949 }
950 
951 static ssize_t mem_read(struct file *file, char __user *buf,
952 			size_t count, loff_t *ppos)
953 {
954 	return mem_rw(file, buf, count, ppos, 0);
955 }
956 
957 static ssize_t mem_write(struct file *file, const char __user *buf,
958 			 size_t count, loff_t *ppos)
959 {
960 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
961 }
962 
963 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
964 {
965 	switch (orig) {
966 	case 0:
967 		file->f_pos = offset;
968 		break;
969 	case 1:
970 		file->f_pos += offset;
971 		break;
972 	default:
973 		return -EINVAL;
974 	}
975 	force_successful_syscall_return();
976 	return file->f_pos;
977 }
978 
979 static int mem_release(struct inode *inode, struct file *file)
980 {
981 	struct mm_struct *mm = file->private_data;
982 	if (mm)
983 		mmdrop(mm);
984 	return 0;
985 }
986 
987 static const struct file_operations proc_mem_operations = {
988 	.llseek		= mem_lseek,
989 	.read		= mem_read,
990 	.write		= mem_write,
991 	.open		= mem_open,
992 	.release	= mem_release,
993 	.fop_flags	= FOP_UNSIGNED_OFFSET,
994 };
995 
996 static int environ_open(struct inode *inode, struct file *file)
997 {
998 	return __mem_open(inode, file, PTRACE_MODE_READ);
999 }
1000 
1001 static ssize_t environ_read(struct file *file, char __user *buf,
1002 			size_t count, loff_t *ppos)
1003 {
1004 	char *page;
1005 	unsigned long src = *ppos;
1006 	int ret = 0;
1007 	struct mm_struct *mm = file->private_data;
1008 	unsigned long env_start, env_end;
1009 
1010 	/* Ensure the process spawned far enough to have an environment. */
1011 	if (!mm || !mm->env_end)
1012 		return 0;
1013 
1014 	page = (char *)__get_free_page(GFP_KERNEL);
1015 	if (!page)
1016 		return -ENOMEM;
1017 
1018 	ret = 0;
1019 	if (!mmget_not_zero(mm))
1020 		goto free;
1021 
1022 	spin_lock(&mm->arg_lock);
1023 	env_start = mm->env_start;
1024 	env_end = mm->env_end;
1025 	spin_unlock(&mm->arg_lock);
1026 
1027 	while (count > 0) {
1028 		size_t this_len, max_len;
1029 		int retval;
1030 
1031 		if (src >= (env_end - env_start))
1032 			break;
1033 
1034 		this_len = env_end - (env_start + src);
1035 
1036 		max_len = min_t(size_t, PAGE_SIZE, count);
1037 		this_len = min(max_len, this_len);
1038 
1039 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
1040 
1041 		if (retval <= 0) {
1042 			ret = retval;
1043 			break;
1044 		}
1045 
1046 		if (copy_to_user(buf, page, retval)) {
1047 			ret = -EFAULT;
1048 			break;
1049 		}
1050 
1051 		ret += retval;
1052 		src += retval;
1053 		buf += retval;
1054 		count -= retval;
1055 	}
1056 	*ppos = src;
1057 	mmput(mm);
1058 
1059 free:
1060 	free_page((unsigned long) page);
1061 	return ret;
1062 }
1063 
1064 static const struct file_operations proc_environ_operations = {
1065 	.open		= environ_open,
1066 	.read		= environ_read,
1067 	.llseek		= generic_file_llseek,
1068 	.release	= mem_release,
1069 };
1070 
1071 static int auxv_open(struct inode *inode, struct file *file)
1072 {
1073 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1074 }
1075 
1076 static ssize_t auxv_read(struct file *file, char __user *buf,
1077 			size_t count, loff_t *ppos)
1078 {
1079 	struct mm_struct *mm = file->private_data;
1080 	unsigned int nwords = 0;
1081 
1082 	if (!mm)
1083 		return 0;
1084 	do {
1085 		nwords += 2;
1086 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1087 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1088 				       nwords * sizeof(mm->saved_auxv[0]));
1089 }
1090 
1091 static const struct file_operations proc_auxv_operations = {
1092 	.open		= auxv_open,
1093 	.read		= auxv_read,
1094 	.llseek		= generic_file_llseek,
1095 	.release	= mem_release,
1096 };
1097 
1098 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1099 			    loff_t *ppos)
1100 {
1101 	struct task_struct *task = get_proc_task(file_inode(file));
1102 	char buffer[PROC_NUMBUF];
1103 	int oom_adj = OOM_ADJUST_MIN;
1104 	size_t len;
1105 
1106 	if (!task)
1107 		return -ESRCH;
1108 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1109 		oom_adj = OOM_ADJUST_MAX;
1110 	else
1111 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1112 			  OOM_SCORE_ADJ_MAX;
1113 	put_task_struct(task);
1114 	if (oom_adj > OOM_ADJUST_MAX)
1115 		oom_adj = OOM_ADJUST_MAX;
1116 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1117 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1118 }
1119 
1120 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1121 {
1122 	struct mm_struct *mm = NULL;
1123 	struct task_struct *task;
1124 	int err = 0;
1125 
1126 	task = get_proc_task(file_inode(file));
1127 	if (!task)
1128 		return -ESRCH;
1129 
1130 	mutex_lock(&oom_adj_mutex);
1131 	if (legacy) {
1132 		if (oom_adj < task->signal->oom_score_adj &&
1133 				!capable(CAP_SYS_RESOURCE)) {
1134 			err = -EACCES;
1135 			goto err_unlock;
1136 		}
1137 		/*
1138 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1139 		 * /proc/pid/oom_score_adj instead.
1140 		 */
1141 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1142 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1143 			  task_pid_nr(task));
1144 	} else {
1145 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1146 				!capable(CAP_SYS_RESOURCE)) {
1147 			err = -EACCES;
1148 			goto err_unlock;
1149 		}
1150 	}
1151 
1152 	/*
1153 	 * Make sure we will check other processes sharing the mm if this is
1154 	 * not vfrok which wants its own oom_score_adj.
1155 	 * pin the mm so it doesn't go away and get reused after task_unlock
1156 	 */
1157 	if (!task->vfork_done) {
1158 		struct task_struct *p = find_lock_task_mm(task);
1159 
1160 		if (p) {
1161 			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1162 				mm = p->mm;
1163 				mmgrab(mm);
1164 			}
1165 			task_unlock(p);
1166 		}
1167 	}
1168 
1169 	task->signal->oom_score_adj = oom_adj;
1170 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1171 		task->signal->oom_score_adj_min = (short)oom_adj;
1172 	trace_oom_score_adj_update(task);
1173 
1174 	if (mm) {
1175 		struct task_struct *p;
1176 
1177 		rcu_read_lock();
1178 		for_each_process(p) {
1179 			if (same_thread_group(task, p))
1180 				continue;
1181 
1182 			/* do not touch kernel threads or the global init */
1183 			if (p->flags & PF_KTHREAD || is_global_init(p))
1184 				continue;
1185 
1186 			task_lock(p);
1187 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1188 				p->signal->oom_score_adj = oom_adj;
1189 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1190 					p->signal->oom_score_adj_min = (short)oom_adj;
1191 			}
1192 			task_unlock(p);
1193 		}
1194 		rcu_read_unlock();
1195 		mmdrop(mm);
1196 	}
1197 err_unlock:
1198 	mutex_unlock(&oom_adj_mutex);
1199 	put_task_struct(task);
1200 	return err;
1201 }
1202 
1203 /*
1204  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1205  * kernels.  The effective policy is defined by oom_score_adj, which has a
1206  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1207  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1208  * Processes that become oom disabled via oom_adj will still be oom disabled
1209  * with this implementation.
1210  *
1211  * oom_adj cannot be removed since existing userspace binaries use it.
1212  */
1213 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1214 			     size_t count, loff_t *ppos)
1215 {
1216 	char buffer[PROC_NUMBUF] = {};
1217 	int oom_adj;
1218 	int err;
1219 
1220 	if (count > sizeof(buffer) - 1)
1221 		count = sizeof(buffer) - 1;
1222 	if (copy_from_user(buffer, buf, count)) {
1223 		err = -EFAULT;
1224 		goto out;
1225 	}
1226 
1227 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1228 	if (err)
1229 		goto out;
1230 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1231 	     oom_adj != OOM_DISABLE) {
1232 		err = -EINVAL;
1233 		goto out;
1234 	}
1235 
1236 	/*
1237 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1238 	 * value is always attainable.
1239 	 */
1240 	if (oom_adj == OOM_ADJUST_MAX)
1241 		oom_adj = OOM_SCORE_ADJ_MAX;
1242 	else
1243 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1244 
1245 	err = __set_oom_adj(file, oom_adj, true);
1246 out:
1247 	return err < 0 ? err : count;
1248 }
1249 
1250 static const struct file_operations proc_oom_adj_operations = {
1251 	.read		= oom_adj_read,
1252 	.write		= oom_adj_write,
1253 	.llseek		= generic_file_llseek,
1254 };
1255 
1256 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1257 					size_t count, loff_t *ppos)
1258 {
1259 	struct task_struct *task = get_proc_task(file_inode(file));
1260 	char buffer[PROC_NUMBUF];
1261 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1262 	size_t len;
1263 
1264 	if (!task)
1265 		return -ESRCH;
1266 	oom_score_adj = task->signal->oom_score_adj;
1267 	put_task_struct(task);
1268 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1269 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1270 }
1271 
1272 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1273 					size_t count, loff_t *ppos)
1274 {
1275 	char buffer[PROC_NUMBUF] = {};
1276 	int oom_score_adj;
1277 	int err;
1278 
1279 	if (count > sizeof(buffer) - 1)
1280 		count = sizeof(buffer) - 1;
1281 	if (copy_from_user(buffer, buf, count)) {
1282 		err = -EFAULT;
1283 		goto out;
1284 	}
1285 
1286 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1287 	if (err)
1288 		goto out;
1289 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1290 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1291 		err = -EINVAL;
1292 		goto out;
1293 	}
1294 
1295 	err = __set_oom_adj(file, oom_score_adj, false);
1296 out:
1297 	return err < 0 ? err : count;
1298 }
1299 
1300 static const struct file_operations proc_oom_score_adj_operations = {
1301 	.read		= oom_score_adj_read,
1302 	.write		= oom_score_adj_write,
1303 	.llseek		= default_llseek,
1304 };
1305 
1306 #ifdef CONFIG_AUDIT
1307 #define TMPBUFLEN 11
1308 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1309 				  size_t count, loff_t *ppos)
1310 {
1311 	struct inode * inode = file_inode(file);
1312 	struct task_struct *task = get_proc_task(inode);
1313 	ssize_t length;
1314 	char tmpbuf[TMPBUFLEN];
1315 
1316 	if (!task)
1317 		return -ESRCH;
1318 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1319 			   from_kuid(file->f_cred->user_ns,
1320 				     audit_get_loginuid(task)));
1321 	put_task_struct(task);
1322 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1323 }
1324 
1325 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1326 				   size_t count, loff_t *ppos)
1327 {
1328 	struct inode * inode = file_inode(file);
1329 	uid_t loginuid;
1330 	kuid_t kloginuid;
1331 	int rv;
1332 
1333 	/* Don't let kthreads write their own loginuid */
1334 	if (current->flags & PF_KTHREAD)
1335 		return -EPERM;
1336 
1337 	rcu_read_lock();
1338 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1339 		rcu_read_unlock();
1340 		return -EPERM;
1341 	}
1342 	rcu_read_unlock();
1343 
1344 	if (*ppos != 0) {
1345 		/* No partial writes. */
1346 		return -EINVAL;
1347 	}
1348 
1349 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1350 	if (rv < 0)
1351 		return rv;
1352 
1353 	/* is userspace tring to explicitly UNSET the loginuid? */
1354 	if (loginuid == AUDIT_UID_UNSET) {
1355 		kloginuid = INVALID_UID;
1356 	} else {
1357 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1358 		if (!uid_valid(kloginuid))
1359 			return -EINVAL;
1360 	}
1361 
1362 	rv = audit_set_loginuid(kloginuid);
1363 	if (rv < 0)
1364 		return rv;
1365 	return count;
1366 }
1367 
1368 static const struct file_operations proc_loginuid_operations = {
1369 	.read		= proc_loginuid_read,
1370 	.write		= proc_loginuid_write,
1371 	.llseek		= generic_file_llseek,
1372 };
1373 
1374 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1375 				  size_t count, loff_t *ppos)
1376 {
1377 	struct inode * inode = file_inode(file);
1378 	struct task_struct *task = get_proc_task(inode);
1379 	ssize_t length;
1380 	char tmpbuf[TMPBUFLEN];
1381 
1382 	if (!task)
1383 		return -ESRCH;
1384 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1385 				audit_get_sessionid(task));
1386 	put_task_struct(task);
1387 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1388 }
1389 
1390 static const struct file_operations proc_sessionid_operations = {
1391 	.read		= proc_sessionid_read,
1392 	.llseek		= generic_file_llseek,
1393 };
1394 #endif
1395 
1396 #ifdef CONFIG_FAULT_INJECTION
1397 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1398 				      size_t count, loff_t *ppos)
1399 {
1400 	struct task_struct *task = get_proc_task(file_inode(file));
1401 	char buffer[PROC_NUMBUF];
1402 	size_t len;
1403 	int make_it_fail;
1404 
1405 	if (!task)
1406 		return -ESRCH;
1407 	make_it_fail = task->make_it_fail;
1408 	put_task_struct(task);
1409 
1410 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1411 
1412 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1413 }
1414 
1415 static ssize_t proc_fault_inject_write(struct file * file,
1416 			const char __user * buf, size_t count, loff_t *ppos)
1417 {
1418 	struct task_struct *task;
1419 	char buffer[PROC_NUMBUF] = {};
1420 	int make_it_fail;
1421 	int rv;
1422 
1423 	if (!capable(CAP_SYS_RESOURCE))
1424 		return -EPERM;
1425 
1426 	if (count > sizeof(buffer) - 1)
1427 		count = sizeof(buffer) - 1;
1428 	if (copy_from_user(buffer, buf, count))
1429 		return -EFAULT;
1430 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1431 	if (rv < 0)
1432 		return rv;
1433 	if (make_it_fail < 0 || make_it_fail > 1)
1434 		return -EINVAL;
1435 
1436 	task = get_proc_task(file_inode(file));
1437 	if (!task)
1438 		return -ESRCH;
1439 	task->make_it_fail = make_it_fail;
1440 	put_task_struct(task);
1441 
1442 	return count;
1443 }
1444 
1445 static const struct file_operations proc_fault_inject_operations = {
1446 	.read		= proc_fault_inject_read,
1447 	.write		= proc_fault_inject_write,
1448 	.llseek		= generic_file_llseek,
1449 };
1450 
1451 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1452 				   size_t count, loff_t *ppos)
1453 {
1454 	struct task_struct *task;
1455 	int err;
1456 	unsigned int n;
1457 
1458 	err = kstrtouint_from_user(buf, count, 0, &n);
1459 	if (err)
1460 		return err;
1461 
1462 	task = get_proc_task(file_inode(file));
1463 	if (!task)
1464 		return -ESRCH;
1465 	task->fail_nth = n;
1466 	put_task_struct(task);
1467 
1468 	return count;
1469 }
1470 
1471 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1472 				  size_t count, loff_t *ppos)
1473 {
1474 	struct task_struct *task;
1475 	char numbuf[PROC_NUMBUF];
1476 	ssize_t len;
1477 
1478 	task = get_proc_task(file_inode(file));
1479 	if (!task)
1480 		return -ESRCH;
1481 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1482 	put_task_struct(task);
1483 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1484 }
1485 
1486 static const struct file_operations proc_fail_nth_operations = {
1487 	.read		= proc_fail_nth_read,
1488 	.write		= proc_fail_nth_write,
1489 };
1490 #endif
1491 
1492 
1493 #ifdef CONFIG_SCHED_DEBUG
1494 /*
1495  * Print out various scheduling related per-task fields:
1496  */
1497 static int sched_show(struct seq_file *m, void *v)
1498 {
1499 	struct inode *inode = m->private;
1500 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1501 	struct task_struct *p;
1502 
1503 	p = get_proc_task(inode);
1504 	if (!p)
1505 		return -ESRCH;
1506 	proc_sched_show_task(p, ns, m);
1507 
1508 	put_task_struct(p);
1509 
1510 	return 0;
1511 }
1512 
1513 static ssize_t
1514 sched_write(struct file *file, const char __user *buf,
1515 	    size_t count, loff_t *offset)
1516 {
1517 	struct inode *inode = file_inode(file);
1518 	struct task_struct *p;
1519 
1520 	p = get_proc_task(inode);
1521 	if (!p)
1522 		return -ESRCH;
1523 	proc_sched_set_task(p);
1524 
1525 	put_task_struct(p);
1526 
1527 	return count;
1528 }
1529 
1530 static int sched_open(struct inode *inode, struct file *filp)
1531 {
1532 	return single_open(filp, sched_show, inode);
1533 }
1534 
1535 static const struct file_operations proc_pid_sched_operations = {
1536 	.open		= sched_open,
1537 	.read		= seq_read,
1538 	.write		= sched_write,
1539 	.llseek		= seq_lseek,
1540 	.release	= single_release,
1541 };
1542 
1543 #endif
1544 
1545 #ifdef CONFIG_SCHED_AUTOGROUP
1546 /*
1547  * Print out autogroup related information:
1548  */
1549 static int sched_autogroup_show(struct seq_file *m, void *v)
1550 {
1551 	struct inode *inode = m->private;
1552 	struct task_struct *p;
1553 
1554 	p = get_proc_task(inode);
1555 	if (!p)
1556 		return -ESRCH;
1557 	proc_sched_autogroup_show_task(p, m);
1558 
1559 	put_task_struct(p);
1560 
1561 	return 0;
1562 }
1563 
1564 static ssize_t
1565 sched_autogroup_write(struct file *file, const char __user *buf,
1566 	    size_t count, loff_t *offset)
1567 {
1568 	struct inode *inode = file_inode(file);
1569 	struct task_struct *p;
1570 	char buffer[PROC_NUMBUF] = {};
1571 	int nice;
1572 	int err;
1573 
1574 	if (count > sizeof(buffer) - 1)
1575 		count = sizeof(buffer) - 1;
1576 	if (copy_from_user(buffer, buf, count))
1577 		return -EFAULT;
1578 
1579 	err = kstrtoint(strstrip(buffer), 0, &nice);
1580 	if (err < 0)
1581 		return err;
1582 
1583 	p = get_proc_task(inode);
1584 	if (!p)
1585 		return -ESRCH;
1586 
1587 	err = proc_sched_autogroup_set_nice(p, nice);
1588 	if (err)
1589 		count = err;
1590 
1591 	put_task_struct(p);
1592 
1593 	return count;
1594 }
1595 
1596 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1597 {
1598 	int ret;
1599 
1600 	ret = single_open(filp, sched_autogroup_show, NULL);
1601 	if (!ret) {
1602 		struct seq_file *m = filp->private_data;
1603 
1604 		m->private = inode;
1605 	}
1606 	return ret;
1607 }
1608 
1609 static const struct file_operations proc_pid_sched_autogroup_operations = {
1610 	.open		= sched_autogroup_open,
1611 	.read		= seq_read,
1612 	.write		= sched_autogroup_write,
1613 	.llseek		= seq_lseek,
1614 	.release	= single_release,
1615 };
1616 
1617 #endif /* CONFIG_SCHED_AUTOGROUP */
1618 
1619 #ifdef CONFIG_TIME_NS
1620 static int timens_offsets_show(struct seq_file *m, void *v)
1621 {
1622 	struct task_struct *p;
1623 
1624 	p = get_proc_task(file_inode(m->file));
1625 	if (!p)
1626 		return -ESRCH;
1627 	proc_timens_show_offsets(p, m);
1628 
1629 	put_task_struct(p);
1630 
1631 	return 0;
1632 }
1633 
1634 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1635 				    size_t count, loff_t *ppos)
1636 {
1637 	struct inode *inode = file_inode(file);
1638 	struct proc_timens_offset offsets[2];
1639 	char *kbuf = NULL, *pos, *next_line;
1640 	struct task_struct *p;
1641 	int ret, noffsets;
1642 
1643 	/* Only allow < page size writes at the beginning of the file */
1644 	if ((*ppos != 0) || (count >= PAGE_SIZE))
1645 		return -EINVAL;
1646 
1647 	/* Slurp in the user data */
1648 	kbuf = memdup_user_nul(buf, count);
1649 	if (IS_ERR(kbuf))
1650 		return PTR_ERR(kbuf);
1651 
1652 	/* Parse the user data */
1653 	ret = -EINVAL;
1654 	noffsets = 0;
1655 	for (pos = kbuf; pos; pos = next_line) {
1656 		struct proc_timens_offset *off = &offsets[noffsets];
1657 		char clock[10];
1658 		int err;
1659 
1660 		/* Find the end of line and ensure we don't look past it */
1661 		next_line = strchr(pos, '\n');
1662 		if (next_line) {
1663 			*next_line = '\0';
1664 			next_line++;
1665 			if (*next_line == '\0')
1666 				next_line = NULL;
1667 		}
1668 
1669 		err = sscanf(pos, "%9s %lld %lu", clock,
1670 				&off->val.tv_sec, &off->val.tv_nsec);
1671 		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1672 			goto out;
1673 
1674 		clock[sizeof(clock) - 1] = 0;
1675 		if (strcmp(clock, "monotonic") == 0 ||
1676 		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1677 			off->clockid = CLOCK_MONOTONIC;
1678 		else if (strcmp(clock, "boottime") == 0 ||
1679 			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1680 			off->clockid = CLOCK_BOOTTIME;
1681 		else
1682 			goto out;
1683 
1684 		noffsets++;
1685 		if (noffsets == ARRAY_SIZE(offsets)) {
1686 			if (next_line)
1687 				count = next_line - kbuf;
1688 			break;
1689 		}
1690 	}
1691 
1692 	ret = -ESRCH;
1693 	p = get_proc_task(inode);
1694 	if (!p)
1695 		goto out;
1696 	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1697 	put_task_struct(p);
1698 	if (ret)
1699 		goto out;
1700 
1701 	ret = count;
1702 out:
1703 	kfree(kbuf);
1704 	return ret;
1705 }
1706 
1707 static int timens_offsets_open(struct inode *inode, struct file *filp)
1708 {
1709 	return single_open(filp, timens_offsets_show, inode);
1710 }
1711 
1712 static const struct file_operations proc_timens_offsets_operations = {
1713 	.open		= timens_offsets_open,
1714 	.read		= seq_read,
1715 	.write		= timens_offsets_write,
1716 	.llseek		= seq_lseek,
1717 	.release	= single_release,
1718 };
1719 #endif /* CONFIG_TIME_NS */
1720 
1721 static ssize_t comm_write(struct file *file, const char __user *buf,
1722 				size_t count, loff_t *offset)
1723 {
1724 	struct inode *inode = file_inode(file);
1725 	struct task_struct *p;
1726 	char buffer[TASK_COMM_LEN] = {};
1727 	const size_t maxlen = sizeof(buffer) - 1;
1728 
1729 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1730 		return -EFAULT;
1731 
1732 	p = get_proc_task(inode);
1733 	if (!p)
1734 		return -ESRCH;
1735 
1736 	if (same_thread_group(current, p)) {
1737 		set_task_comm(p, buffer);
1738 		proc_comm_connector(p);
1739 	}
1740 	else
1741 		count = -EINVAL;
1742 
1743 	put_task_struct(p);
1744 
1745 	return count;
1746 }
1747 
1748 static int comm_show(struct seq_file *m, void *v)
1749 {
1750 	struct inode *inode = m->private;
1751 	struct task_struct *p;
1752 
1753 	p = get_proc_task(inode);
1754 	if (!p)
1755 		return -ESRCH;
1756 
1757 	proc_task_name(m, p, false);
1758 	seq_putc(m, '\n');
1759 
1760 	put_task_struct(p);
1761 
1762 	return 0;
1763 }
1764 
1765 static int comm_open(struct inode *inode, struct file *filp)
1766 {
1767 	return single_open(filp, comm_show, inode);
1768 }
1769 
1770 static const struct file_operations proc_pid_set_comm_operations = {
1771 	.open		= comm_open,
1772 	.read		= seq_read,
1773 	.write		= comm_write,
1774 	.llseek		= seq_lseek,
1775 	.release	= single_release,
1776 };
1777 
1778 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1779 {
1780 	struct task_struct *task;
1781 	struct file *exe_file;
1782 
1783 	task = get_proc_task(d_inode(dentry));
1784 	if (!task)
1785 		return -ENOENT;
1786 	exe_file = get_task_exe_file(task);
1787 	put_task_struct(task);
1788 	if (exe_file) {
1789 		*exe_path = exe_file->f_path;
1790 		path_get(&exe_file->f_path);
1791 		fput(exe_file);
1792 		return 0;
1793 	} else
1794 		return -ENOENT;
1795 }
1796 
1797 static const char *proc_pid_get_link(struct dentry *dentry,
1798 				     struct inode *inode,
1799 				     struct delayed_call *done)
1800 {
1801 	struct path path;
1802 	int error = -EACCES;
1803 
1804 	if (!dentry)
1805 		return ERR_PTR(-ECHILD);
1806 
1807 	/* Are we allowed to snoop on the tasks file descriptors? */
1808 	if (!proc_fd_access_allowed(inode))
1809 		goto out;
1810 
1811 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1812 	if (error)
1813 		goto out;
1814 
1815 	error = nd_jump_link(&path);
1816 out:
1817 	return ERR_PTR(error);
1818 }
1819 
1820 static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1821 {
1822 	char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1823 	char *pathname;
1824 	int len;
1825 
1826 	if (!tmp)
1827 		return -ENOMEM;
1828 
1829 	pathname = d_path(path, tmp, PATH_MAX);
1830 	len = PTR_ERR(pathname);
1831 	if (IS_ERR(pathname))
1832 		goto out;
1833 	len = tmp + PATH_MAX - 1 - pathname;
1834 
1835 	if (len > buflen)
1836 		len = buflen;
1837 	if (copy_to_user(buffer, pathname, len))
1838 		len = -EFAULT;
1839  out:
1840 	kfree(tmp);
1841 	return len;
1842 }
1843 
1844 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1845 {
1846 	int error = -EACCES;
1847 	struct inode *inode = d_inode(dentry);
1848 	struct path path;
1849 
1850 	/* Are we allowed to snoop on the tasks file descriptors? */
1851 	if (!proc_fd_access_allowed(inode))
1852 		goto out;
1853 
1854 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1855 	if (error)
1856 		goto out;
1857 
1858 	error = do_proc_readlink(&path, buffer, buflen);
1859 	path_put(&path);
1860 out:
1861 	return error;
1862 }
1863 
1864 const struct inode_operations proc_pid_link_inode_operations = {
1865 	.readlink	= proc_pid_readlink,
1866 	.get_link	= proc_pid_get_link,
1867 	.setattr	= proc_setattr,
1868 };
1869 
1870 
1871 /* building an inode */
1872 
1873 void task_dump_owner(struct task_struct *task, umode_t mode,
1874 		     kuid_t *ruid, kgid_t *rgid)
1875 {
1876 	/* Depending on the state of dumpable compute who should own a
1877 	 * proc file for a task.
1878 	 */
1879 	const struct cred *cred;
1880 	kuid_t uid;
1881 	kgid_t gid;
1882 
1883 	if (unlikely(task->flags & PF_KTHREAD)) {
1884 		*ruid = GLOBAL_ROOT_UID;
1885 		*rgid = GLOBAL_ROOT_GID;
1886 		return;
1887 	}
1888 
1889 	/* Default to the tasks effective ownership */
1890 	rcu_read_lock();
1891 	cred = __task_cred(task);
1892 	uid = cred->euid;
1893 	gid = cred->egid;
1894 	rcu_read_unlock();
1895 
1896 	/*
1897 	 * Before the /proc/pid/status file was created the only way to read
1898 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1899 	 * /proc/pid/status is slow enough that procps and other packages
1900 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1901 	 * made this apply to all per process world readable and executable
1902 	 * directories.
1903 	 */
1904 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1905 		struct mm_struct *mm;
1906 		task_lock(task);
1907 		mm = task->mm;
1908 		/* Make non-dumpable tasks owned by some root */
1909 		if (mm) {
1910 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1911 				struct user_namespace *user_ns = mm->user_ns;
1912 
1913 				uid = make_kuid(user_ns, 0);
1914 				if (!uid_valid(uid))
1915 					uid = GLOBAL_ROOT_UID;
1916 
1917 				gid = make_kgid(user_ns, 0);
1918 				if (!gid_valid(gid))
1919 					gid = GLOBAL_ROOT_GID;
1920 			}
1921 		} else {
1922 			uid = GLOBAL_ROOT_UID;
1923 			gid = GLOBAL_ROOT_GID;
1924 		}
1925 		task_unlock(task);
1926 	}
1927 	*ruid = uid;
1928 	*rgid = gid;
1929 }
1930 
1931 void proc_pid_evict_inode(struct proc_inode *ei)
1932 {
1933 	struct pid *pid = ei->pid;
1934 
1935 	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1936 		spin_lock(&pid->lock);
1937 		hlist_del_init_rcu(&ei->sibling_inodes);
1938 		spin_unlock(&pid->lock);
1939 	}
1940 }
1941 
1942 struct inode *proc_pid_make_inode(struct super_block *sb,
1943 				  struct task_struct *task, umode_t mode)
1944 {
1945 	struct inode * inode;
1946 	struct proc_inode *ei;
1947 	struct pid *pid;
1948 
1949 	/* We need a new inode */
1950 
1951 	inode = new_inode(sb);
1952 	if (!inode)
1953 		goto out;
1954 
1955 	/* Common stuff */
1956 	ei = PROC_I(inode);
1957 	inode->i_mode = mode;
1958 	inode->i_ino = get_next_ino();
1959 	simple_inode_init_ts(inode);
1960 	inode->i_op = &proc_def_inode_operations;
1961 
1962 	/*
1963 	 * grab the reference to task.
1964 	 */
1965 	pid = get_task_pid(task, PIDTYPE_PID);
1966 	if (!pid)
1967 		goto out_unlock;
1968 
1969 	/* Let the pid remember us for quick removal */
1970 	ei->pid = pid;
1971 
1972 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1973 	security_task_to_inode(task, inode);
1974 
1975 out:
1976 	return inode;
1977 
1978 out_unlock:
1979 	iput(inode);
1980 	return NULL;
1981 }
1982 
1983 /*
1984  * Generating an inode and adding it into @pid->inodes, so that task will
1985  * invalidate inode's dentry before being released.
1986  *
1987  * This helper is used for creating dir-type entries under '/proc' and
1988  * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1989  * can be released by invalidating '/proc/<tgid>' dentry.
1990  * In theory, dentries under '/proc/<tgid>/task' can also be released by
1991  * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1992  * thread exiting situation: Any one of threads should invalidate its
1993  * '/proc/<tgid>/task/<pid>' dentry before released.
1994  */
1995 static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1996 				struct task_struct *task, umode_t mode)
1997 {
1998 	struct inode *inode;
1999 	struct proc_inode *ei;
2000 	struct pid *pid;
2001 
2002 	inode = proc_pid_make_inode(sb, task, mode);
2003 	if (!inode)
2004 		return NULL;
2005 
2006 	/* Let proc_flush_pid find this directory inode */
2007 	ei = PROC_I(inode);
2008 	pid = ei->pid;
2009 	spin_lock(&pid->lock);
2010 	hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
2011 	spin_unlock(&pid->lock);
2012 
2013 	return inode;
2014 }
2015 
2016 int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
2017 		struct kstat *stat, u32 request_mask, unsigned int query_flags)
2018 {
2019 	struct inode *inode = d_inode(path->dentry);
2020 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
2021 	struct task_struct *task;
2022 
2023 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
2024 
2025 	stat->uid = GLOBAL_ROOT_UID;
2026 	stat->gid = GLOBAL_ROOT_GID;
2027 	rcu_read_lock();
2028 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2029 	if (task) {
2030 		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
2031 			rcu_read_unlock();
2032 			/*
2033 			 * This doesn't prevent learning whether PID exists,
2034 			 * it only makes getattr() consistent with readdir().
2035 			 */
2036 			return -ENOENT;
2037 		}
2038 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
2039 	}
2040 	rcu_read_unlock();
2041 	return 0;
2042 }
2043 
2044 /* dentry stuff */
2045 
2046 /*
2047  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
2048  */
2049 void pid_update_inode(struct task_struct *task, struct inode *inode)
2050 {
2051 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
2052 
2053 	inode->i_mode &= ~(S_ISUID | S_ISGID);
2054 	security_task_to_inode(task, inode);
2055 }
2056 
2057 /*
2058  * Rewrite the inode's ownerships here because the owning task may have
2059  * performed a setuid(), etc.
2060  *
2061  */
2062 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2063 {
2064 	struct inode *inode;
2065 	struct task_struct *task;
2066 	int ret = 0;
2067 
2068 	rcu_read_lock();
2069 	inode = d_inode_rcu(dentry);
2070 	if (!inode)
2071 		goto out;
2072 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2073 
2074 	if (task) {
2075 		pid_update_inode(task, inode);
2076 		ret = 1;
2077 	}
2078 out:
2079 	rcu_read_unlock();
2080 	return ret;
2081 }
2082 
2083 static inline bool proc_inode_is_dead(struct inode *inode)
2084 {
2085 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2086 }
2087 
2088 int pid_delete_dentry(const struct dentry *dentry)
2089 {
2090 	/* Is the task we represent dead?
2091 	 * If so, then don't put the dentry on the lru list,
2092 	 * kill it immediately.
2093 	 */
2094 	return proc_inode_is_dead(d_inode(dentry));
2095 }
2096 
2097 const struct dentry_operations pid_dentry_operations =
2098 {
2099 	.d_revalidate	= pid_revalidate,
2100 	.d_delete	= pid_delete_dentry,
2101 };
2102 
2103 /* Lookups */
2104 
2105 /*
2106  * Fill a directory entry.
2107  *
2108  * If possible create the dcache entry and derive our inode number and
2109  * file type from dcache entry.
2110  *
2111  * Since all of the proc inode numbers are dynamically generated, the inode
2112  * numbers do not exist until the inode is cache.  This means creating
2113  * the dcache entry in readdir is necessary to keep the inode numbers
2114  * reported by readdir in sync with the inode numbers reported
2115  * by stat.
2116  */
2117 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2118 	const char *name, unsigned int len,
2119 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2120 {
2121 	struct dentry *child, *dir = file->f_path.dentry;
2122 	struct qstr qname = QSTR_INIT(name, len);
2123 	struct inode *inode;
2124 	unsigned type = DT_UNKNOWN;
2125 	ino_t ino = 1;
2126 
2127 	child = d_hash_and_lookup(dir, &qname);
2128 	if (!child) {
2129 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2130 		child = d_alloc_parallel(dir, &qname, &wq);
2131 		if (IS_ERR(child))
2132 			goto end_instantiate;
2133 		if (d_in_lookup(child)) {
2134 			struct dentry *res;
2135 			res = instantiate(child, task, ptr);
2136 			d_lookup_done(child);
2137 			if (unlikely(res)) {
2138 				dput(child);
2139 				child = res;
2140 				if (IS_ERR(child))
2141 					goto end_instantiate;
2142 			}
2143 		}
2144 	}
2145 	inode = d_inode(child);
2146 	ino = inode->i_ino;
2147 	type = inode->i_mode >> 12;
2148 	dput(child);
2149 end_instantiate:
2150 	return dir_emit(ctx, name, len, ino, type);
2151 }
2152 
2153 /*
2154  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2155  * which represent vma start and end addresses.
2156  */
2157 static int dname_to_vma_addr(struct dentry *dentry,
2158 			     unsigned long *start, unsigned long *end)
2159 {
2160 	const char *str = dentry->d_name.name;
2161 	unsigned long long sval, eval;
2162 	unsigned int len;
2163 
2164 	if (str[0] == '0' && str[1] != '-')
2165 		return -EINVAL;
2166 	len = _parse_integer(str, 16, &sval);
2167 	if (len & KSTRTOX_OVERFLOW)
2168 		return -EINVAL;
2169 	if (sval != (unsigned long)sval)
2170 		return -EINVAL;
2171 	str += len;
2172 
2173 	if (*str != '-')
2174 		return -EINVAL;
2175 	str++;
2176 
2177 	if (str[0] == '0' && str[1])
2178 		return -EINVAL;
2179 	len = _parse_integer(str, 16, &eval);
2180 	if (len & KSTRTOX_OVERFLOW)
2181 		return -EINVAL;
2182 	if (eval != (unsigned long)eval)
2183 		return -EINVAL;
2184 	str += len;
2185 
2186 	if (*str != '\0')
2187 		return -EINVAL;
2188 
2189 	*start = sval;
2190 	*end = eval;
2191 
2192 	return 0;
2193 }
2194 
2195 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2196 {
2197 	unsigned long vm_start, vm_end;
2198 	bool exact_vma_exists = false;
2199 	struct mm_struct *mm = NULL;
2200 	struct task_struct *task;
2201 	struct inode *inode;
2202 	int status = 0;
2203 
2204 	if (flags & LOOKUP_RCU)
2205 		return -ECHILD;
2206 
2207 	inode = d_inode(dentry);
2208 	task = get_proc_task(inode);
2209 	if (!task)
2210 		goto out_notask;
2211 
2212 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2213 	if (IS_ERR(mm))
2214 		goto out;
2215 
2216 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2217 		status = mmap_read_lock_killable(mm);
2218 		if (!status) {
2219 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2220 							    vm_end);
2221 			mmap_read_unlock(mm);
2222 		}
2223 	}
2224 
2225 	mmput(mm);
2226 
2227 	if (exact_vma_exists) {
2228 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2229 
2230 		security_task_to_inode(task, inode);
2231 		status = 1;
2232 	}
2233 
2234 out:
2235 	put_task_struct(task);
2236 
2237 out_notask:
2238 	return status;
2239 }
2240 
2241 static const struct dentry_operations tid_map_files_dentry_operations = {
2242 	.d_revalidate	= map_files_d_revalidate,
2243 	.d_delete	= pid_delete_dentry,
2244 };
2245 
2246 static int map_files_get_link(struct dentry *dentry, struct path *path)
2247 {
2248 	unsigned long vm_start, vm_end;
2249 	struct vm_area_struct *vma;
2250 	struct task_struct *task;
2251 	struct mm_struct *mm;
2252 	int rc;
2253 
2254 	rc = -ENOENT;
2255 	task = get_proc_task(d_inode(dentry));
2256 	if (!task)
2257 		goto out;
2258 
2259 	mm = get_task_mm(task);
2260 	put_task_struct(task);
2261 	if (!mm)
2262 		goto out;
2263 
2264 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2265 	if (rc)
2266 		goto out_mmput;
2267 
2268 	rc = mmap_read_lock_killable(mm);
2269 	if (rc)
2270 		goto out_mmput;
2271 
2272 	rc = -ENOENT;
2273 	vma = find_exact_vma(mm, vm_start, vm_end);
2274 	if (vma && vma->vm_file) {
2275 		*path = *file_user_path(vma->vm_file);
2276 		path_get(path);
2277 		rc = 0;
2278 	}
2279 	mmap_read_unlock(mm);
2280 
2281 out_mmput:
2282 	mmput(mm);
2283 out:
2284 	return rc;
2285 }
2286 
2287 struct map_files_info {
2288 	unsigned long	start;
2289 	unsigned long	end;
2290 	fmode_t		mode;
2291 };
2292 
2293 /*
2294  * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2295  * to concerns about how the symlinks may be used to bypass permissions on
2296  * ancestor directories in the path to the file in question.
2297  */
2298 static const char *
2299 proc_map_files_get_link(struct dentry *dentry,
2300 			struct inode *inode,
2301 		        struct delayed_call *done)
2302 {
2303 	if (!checkpoint_restore_ns_capable(&init_user_ns))
2304 		return ERR_PTR(-EPERM);
2305 
2306 	return proc_pid_get_link(dentry, inode, done);
2307 }
2308 
2309 /*
2310  * Identical to proc_pid_link_inode_operations except for get_link()
2311  */
2312 static const struct inode_operations proc_map_files_link_inode_operations = {
2313 	.readlink	= proc_pid_readlink,
2314 	.get_link	= proc_map_files_get_link,
2315 	.setattr	= proc_setattr,
2316 };
2317 
2318 static struct dentry *
2319 proc_map_files_instantiate(struct dentry *dentry,
2320 			   struct task_struct *task, const void *ptr)
2321 {
2322 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2323 	struct proc_inode *ei;
2324 	struct inode *inode;
2325 
2326 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2327 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2328 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2329 	if (!inode)
2330 		return ERR_PTR(-ENOENT);
2331 
2332 	ei = PROC_I(inode);
2333 	ei->op.proc_get_link = map_files_get_link;
2334 
2335 	inode->i_op = &proc_map_files_link_inode_operations;
2336 	inode->i_size = 64;
2337 
2338 	return proc_splice_unmountable(inode, dentry,
2339 				       &tid_map_files_dentry_operations);
2340 }
2341 
2342 static struct dentry *proc_map_files_lookup(struct inode *dir,
2343 		struct dentry *dentry, unsigned int flags)
2344 {
2345 	unsigned long vm_start, vm_end;
2346 	struct vm_area_struct *vma;
2347 	struct task_struct *task;
2348 	struct dentry *result;
2349 	struct mm_struct *mm;
2350 
2351 	result = ERR_PTR(-ENOENT);
2352 	task = get_proc_task(dir);
2353 	if (!task)
2354 		goto out;
2355 
2356 	result = ERR_PTR(-EACCES);
2357 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2358 		goto out_put_task;
2359 
2360 	result = ERR_PTR(-ENOENT);
2361 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2362 		goto out_put_task;
2363 
2364 	mm = get_task_mm(task);
2365 	if (!mm)
2366 		goto out_put_task;
2367 
2368 	result = ERR_PTR(-EINTR);
2369 	if (mmap_read_lock_killable(mm))
2370 		goto out_put_mm;
2371 
2372 	result = ERR_PTR(-ENOENT);
2373 	vma = find_exact_vma(mm, vm_start, vm_end);
2374 	if (!vma)
2375 		goto out_no_vma;
2376 
2377 	if (vma->vm_file)
2378 		result = proc_map_files_instantiate(dentry, task,
2379 				(void *)(unsigned long)vma->vm_file->f_mode);
2380 
2381 out_no_vma:
2382 	mmap_read_unlock(mm);
2383 out_put_mm:
2384 	mmput(mm);
2385 out_put_task:
2386 	put_task_struct(task);
2387 out:
2388 	return result;
2389 }
2390 
2391 static const struct inode_operations proc_map_files_inode_operations = {
2392 	.lookup		= proc_map_files_lookup,
2393 	.permission	= proc_fd_permission,
2394 	.setattr	= proc_setattr,
2395 };
2396 
2397 static int
2398 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2399 {
2400 	struct vm_area_struct *vma;
2401 	struct task_struct *task;
2402 	struct mm_struct *mm;
2403 	unsigned long nr_files, pos, i;
2404 	GENRADIX(struct map_files_info) fa;
2405 	struct map_files_info *p;
2406 	int ret;
2407 	struct vma_iterator vmi;
2408 
2409 	genradix_init(&fa);
2410 
2411 	ret = -ENOENT;
2412 	task = get_proc_task(file_inode(file));
2413 	if (!task)
2414 		goto out;
2415 
2416 	ret = -EACCES;
2417 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2418 		goto out_put_task;
2419 
2420 	ret = 0;
2421 	if (!dir_emit_dots(file, ctx))
2422 		goto out_put_task;
2423 
2424 	mm = get_task_mm(task);
2425 	if (!mm)
2426 		goto out_put_task;
2427 
2428 	ret = mmap_read_lock_killable(mm);
2429 	if (ret) {
2430 		mmput(mm);
2431 		goto out_put_task;
2432 	}
2433 
2434 	nr_files = 0;
2435 
2436 	/*
2437 	 * We need two passes here:
2438 	 *
2439 	 *  1) Collect vmas of mapped files with mmap_lock taken
2440 	 *  2) Release mmap_lock and instantiate entries
2441 	 *
2442 	 * otherwise we get lockdep complained, since filldir()
2443 	 * routine might require mmap_lock taken in might_fault().
2444 	 */
2445 
2446 	pos = 2;
2447 	vma_iter_init(&vmi, mm, 0);
2448 	for_each_vma(vmi, vma) {
2449 		if (!vma->vm_file)
2450 			continue;
2451 		if (++pos <= ctx->pos)
2452 			continue;
2453 
2454 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2455 		if (!p) {
2456 			ret = -ENOMEM;
2457 			mmap_read_unlock(mm);
2458 			mmput(mm);
2459 			goto out_put_task;
2460 		}
2461 
2462 		p->start = vma->vm_start;
2463 		p->end = vma->vm_end;
2464 		p->mode = vma->vm_file->f_mode;
2465 	}
2466 	mmap_read_unlock(mm);
2467 	mmput(mm);
2468 
2469 	for (i = 0; i < nr_files; i++) {
2470 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2471 		unsigned int len;
2472 
2473 		p = genradix_ptr(&fa, i);
2474 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2475 		if (!proc_fill_cache(file, ctx,
2476 				      buf, len,
2477 				      proc_map_files_instantiate,
2478 				      task,
2479 				      (void *)(unsigned long)p->mode))
2480 			break;
2481 		ctx->pos++;
2482 	}
2483 
2484 out_put_task:
2485 	put_task_struct(task);
2486 out:
2487 	genradix_free(&fa);
2488 	return ret;
2489 }
2490 
2491 static const struct file_operations proc_map_files_operations = {
2492 	.read		= generic_read_dir,
2493 	.iterate_shared	= proc_map_files_readdir,
2494 	.llseek		= generic_file_llseek,
2495 };
2496 
2497 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2498 struct timers_private {
2499 	struct pid *pid;
2500 	struct task_struct *task;
2501 	struct sighand_struct *sighand;
2502 	struct pid_namespace *ns;
2503 	unsigned long flags;
2504 };
2505 
2506 static void *timers_start(struct seq_file *m, loff_t *pos)
2507 {
2508 	struct timers_private *tp = m->private;
2509 
2510 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2511 	if (!tp->task)
2512 		return ERR_PTR(-ESRCH);
2513 
2514 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2515 	if (!tp->sighand)
2516 		return ERR_PTR(-ESRCH);
2517 
2518 	return seq_hlist_start(&tp->task->signal->posix_timers, *pos);
2519 }
2520 
2521 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2522 {
2523 	struct timers_private *tp = m->private;
2524 	return seq_hlist_next(v, &tp->task->signal->posix_timers, pos);
2525 }
2526 
2527 static void timers_stop(struct seq_file *m, void *v)
2528 {
2529 	struct timers_private *tp = m->private;
2530 
2531 	if (tp->sighand) {
2532 		unlock_task_sighand(tp->task, &tp->flags);
2533 		tp->sighand = NULL;
2534 	}
2535 
2536 	if (tp->task) {
2537 		put_task_struct(tp->task);
2538 		tp->task = NULL;
2539 	}
2540 }
2541 
2542 static int show_timer(struct seq_file *m, void *v)
2543 {
2544 	struct k_itimer *timer;
2545 	struct timers_private *tp = m->private;
2546 	int notify;
2547 	static const char * const nstr[] = {
2548 		[SIGEV_SIGNAL] = "signal",
2549 		[SIGEV_NONE] = "none",
2550 		[SIGEV_THREAD] = "thread",
2551 	};
2552 
2553 	timer = hlist_entry((struct hlist_node *)v, struct k_itimer, list);
2554 	notify = timer->it_sigev_notify;
2555 
2556 	seq_printf(m, "ID: %d\n", timer->it_id);
2557 	seq_printf(m, "signal: %d/%px\n",
2558 		   timer->sigq->info.si_signo,
2559 		   timer->sigq->info.si_value.sival_ptr);
2560 	seq_printf(m, "notify: %s/%s.%d\n",
2561 		   nstr[notify & ~SIGEV_THREAD_ID],
2562 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2563 		   pid_nr_ns(timer->it_pid, tp->ns));
2564 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2565 
2566 	return 0;
2567 }
2568 
2569 static const struct seq_operations proc_timers_seq_ops = {
2570 	.start	= timers_start,
2571 	.next	= timers_next,
2572 	.stop	= timers_stop,
2573 	.show	= show_timer,
2574 };
2575 
2576 static int proc_timers_open(struct inode *inode, struct file *file)
2577 {
2578 	struct timers_private *tp;
2579 
2580 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2581 			sizeof(struct timers_private));
2582 	if (!tp)
2583 		return -ENOMEM;
2584 
2585 	tp->pid = proc_pid(inode);
2586 	tp->ns = proc_pid_ns(inode->i_sb);
2587 	return 0;
2588 }
2589 
2590 static const struct file_operations proc_timers_operations = {
2591 	.open		= proc_timers_open,
2592 	.read		= seq_read,
2593 	.llseek		= seq_lseek,
2594 	.release	= seq_release_private,
2595 };
2596 #endif
2597 
2598 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2599 					size_t count, loff_t *offset)
2600 {
2601 	struct inode *inode = file_inode(file);
2602 	struct task_struct *p;
2603 	u64 slack_ns;
2604 	int err;
2605 
2606 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2607 	if (err < 0)
2608 		return err;
2609 
2610 	p = get_proc_task(inode);
2611 	if (!p)
2612 		return -ESRCH;
2613 
2614 	if (p != current) {
2615 		rcu_read_lock();
2616 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2617 			rcu_read_unlock();
2618 			count = -EPERM;
2619 			goto out;
2620 		}
2621 		rcu_read_unlock();
2622 
2623 		err = security_task_setscheduler(p);
2624 		if (err) {
2625 			count = err;
2626 			goto out;
2627 		}
2628 	}
2629 
2630 	task_lock(p);
2631 	if (rt_or_dl_task_policy(p))
2632 		slack_ns = 0;
2633 	else if (slack_ns == 0)
2634 		slack_ns = p->default_timer_slack_ns;
2635 	p->timer_slack_ns = slack_ns;
2636 	task_unlock(p);
2637 
2638 out:
2639 	put_task_struct(p);
2640 
2641 	return count;
2642 }
2643 
2644 static int timerslack_ns_show(struct seq_file *m, void *v)
2645 {
2646 	struct inode *inode = m->private;
2647 	struct task_struct *p;
2648 	int err = 0;
2649 
2650 	p = get_proc_task(inode);
2651 	if (!p)
2652 		return -ESRCH;
2653 
2654 	if (p != current) {
2655 		rcu_read_lock();
2656 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2657 			rcu_read_unlock();
2658 			err = -EPERM;
2659 			goto out;
2660 		}
2661 		rcu_read_unlock();
2662 
2663 		err = security_task_getscheduler(p);
2664 		if (err)
2665 			goto out;
2666 	}
2667 
2668 	task_lock(p);
2669 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2670 	task_unlock(p);
2671 
2672 out:
2673 	put_task_struct(p);
2674 
2675 	return err;
2676 }
2677 
2678 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2679 {
2680 	return single_open(filp, timerslack_ns_show, inode);
2681 }
2682 
2683 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2684 	.open		= timerslack_ns_open,
2685 	.read		= seq_read,
2686 	.write		= timerslack_ns_write,
2687 	.llseek		= seq_lseek,
2688 	.release	= single_release,
2689 };
2690 
2691 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2692 	struct task_struct *task, const void *ptr)
2693 {
2694 	const struct pid_entry *p = ptr;
2695 	struct inode *inode;
2696 	struct proc_inode *ei;
2697 
2698 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2699 	if (!inode)
2700 		return ERR_PTR(-ENOENT);
2701 
2702 	ei = PROC_I(inode);
2703 	if (S_ISDIR(inode->i_mode))
2704 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2705 	if (p->iop)
2706 		inode->i_op = p->iop;
2707 	if (p->fop)
2708 		inode->i_fop = p->fop;
2709 	ei->op = p->op;
2710 	pid_update_inode(task, inode);
2711 	d_set_d_op(dentry, &pid_dentry_operations);
2712 	return d_splice_alias(inode, dentry);
2713 }
2714 
2715 static struct dentry *proc_pident_lookup(struct inode *dir,
2716 					 struct dentry *dentry,
2717 					 const struct pid_entry *p,
2718 					 const struct pid_entry *end)
2719 {
2720 	struct task_struct *task = get_proc_task(dir);
2721 	struct dentry *res = ERR_PTR(-ENOENT);
2722 
2723 	if (!task)
2724 		goto out_no_task;
2725 
2726 	/*
2727 	 * Yes, it does not scale. And it should not. Don't add
2728 	 * new entries into /proc/<tgid>/ without very good reasons.
2729 	 */
2730 	for (; p < end; p++) {
2731 		if (p->len != dentry->d_name.len)
2732 			continue;
2733 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2734 			res = proc_pident_instantiate(dentry, task, p);
2735 			break;
2736 		}
2737 	}
2738 	put_task_struct(task);
2739 out_no_task:
2740 	return res;
2741 }
2742 
2743 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2744 		const struct pid_entry *ents, unsigned int nents)
2745 {
2746 	struct task_struct *task = get_proc_task(file_inode(file));
2747 	const struct pid_entry *p;
2748 
2749 	if (!task)
2750 		return -ENOENT;
2751 
2752 	if (!dir_emit_dots(file, ctx))
2753 		goto out;
2754 
2755 	if (ctx->pos >= nents + 2)
2756 		goto out;
2757 
2758 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2759 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2760 				proc_pident_instantiate, task, p))
2761 			break;
2762 		ctx->pos++;
2763 	}
2764 out:
2765 	put_task_struct(task);
2766 	return 0;
2767 }
2768 
2769 #ifdef CONFIG_SECURITY
2770 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2771 {
2772 	file->private_data = NULL;
2773 	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2774 	return 0;
2775 }
2776 
2777 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2778 				  size_t count, loff_t *ppos)
2779 {
2780 	struct inode * inode = file_inode(file);
2781 	char *p = NULL;
2782 	ssize_t length;
2783 	struct task_struct *task = get_proc_task(inode);
2784 
2785 	if (!task)
2786 		return -ESRCH;
2787 
2788 	length = security_getprocattr(task, PROC_I(inode)->op.lsmid,
2789 				      file->f_path.dentry->d_name.name,
2790 				      &p);
2791 	put_task_struct(task);
2792 	if (length > 0)
2793 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2794 	kfree(p);
2795 	return length;
2796 }
2797 
2798 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2799 				   size_t count, loff_t *ppos)
2800 {
2801 	struct inode * inode = file_inode(file);
2802 	struct task_struct *task;
2803 	void *page;
2804 	int rv;
2805 
2806 	/* A task may only write when it was the opener. */
2807 	if (file->private_data != current->mm)
2808 		return -EPERM;
2809 
2810 	rcu_read_lock();
2811 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2812 	if (!task) {
2813 		rcu_read_unlock();
2814 		return -ESRCH;
2815 	}
2816 	/* A task may only write its own attributes. */
2817 	if (current != task) {
2818 		rcu_read_unlock();
2819 		return -EACCES;
2820 	}
2821 	/* Prevent changes to overridden credentials. */
2822 	if (current_cred() != current_real_cred()) {
2823 		rcu_read_unlock();
2824 		return -EBUSY;
2825 	}
2826 	rcu_read_unlock();
2827 
2828 	if (count > PAGE_SIZE)
2829 		count = PAGE_SIZE;
2830 
2831 	/* No partial writes. */
2832 	if (*ppos != 0)
2833 		return -EINVAL;
2834 
2835 	page = memdup_user(buf, count);
2836 	if (IS_ERR(page)) {
2837 		rv = PTR_ERR(page);
2838 		goto out;
2839 	}
2840 
2841 	/* Guard against adverse ptrace interaction */
2842 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2843 	if (rv < 0)
2844 		goto out_free;
2845 
2846 	rv = security_setprocattr(PROC_I(inode)->op.lsmid,
2847 				  file->f_path.dentry->d_name.name, page,
2848 				  count);
2849 	mutex_unlock(&current->signal->cred_guard_mutex);
2850 out_free:
2851 	kfree(page);
2852 out:
2853 	return rv;
2854 }
2855 
2856 static const struct file_operations proc_pid_attr_operations = {
2857 	.open		= proc_pid_attr_open,
2858 	.read		= proc_pid_attr_read,
2859 	.write		= proc_pid_attr_write,
2860 	.llseek		= generic_file_llseek,
2861 	.release	= mem_release,
2862 };
2863 
2864 #define LSM_DIR_OPS(LSM) \
2865 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2866 			     struct dir_context *ctx) \
2867 { \
2868 	return proc_pident_readdir(filp, ctx, \
2869 				   LSM##_attr_dir_stuff, \
2870 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2871 } \
2872 \
2873 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2874 	.read		= generic_read_dir, \
2875 	.iterate_shared	= proc_##LSM##_attr_dir_iterate, \
2876 	.llseek		= default_llseek, \
2877 }; \
2878 \
2879 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2880 				struct dentry *dentry, unsigned int flags) \
2881 { \
2882 	return proc_pident_lookup(dir, dentry, \
2883 				  LSM##_attr_dir_stuff, \
2884 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2885 } \
2886 \
2887 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2888 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2889 	.getattr	= pid_getattr, \
2890 	.setattr	= proc_setattr, \
2891 }
2892 
2893 #ifdef CONFIG_SECURITY_SMACK
2894 static const struct pid_entry smack_attr_dir_stuff[] = {
2895 	ATTR(LSM_ID_SMACK, "current",	0666),
2896 };
2897 LSM_DIR_OPS(smack);
2898 #endif
2899 
2900 #ifdef CONFIG_SECURITY_APPARMOR
2901 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2902 	ATTR(LSM_ID_APPARMOR, "current",	0666),
2903 	ATTR(LSM_ID_APPARMOR, "prev",		0444),
2904 	ATTR(LSM_ID_APPARMOR, "exec",		0666),
2905 };
2906 LSM_DIR_OPS(apparmor);
2907 #endif
2908 
2909 static const struct pid_entry attr_dir_stuff[] = {
2910 	ATTR(LSM_ID_UNDEF, "current",	0666),
2911 	ATTR(LSM_ID_UNDEF, "prev",		0444),
2912 	ATTR(LSM_ID_UNDEF, "exec",		0666),
2913 	ATTR(LSM_ID_UNDEF, "fscreate",	0666),
2914 	ATTR(LSM_ID_UNDEF, "keycreate",	0666),
2915 	ATTR(LSM_ID_UNDEF, "sockcreate",	0666),
2916 #ifdef CONFIG_SECURITY_SMACK
2917 	DIR("smack",			0555,
2918 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2919 #endif
2920 #ifdef CONFIG_SECURITY_APPARMOR
2921 	DIR("apparmor",			0555,
2922 	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2923 #endif
2924 };
2925 
2926 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2927 {
2928 	return proc_pident_readdir(file, ctx,
2929 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2930 }
2931 
2932 static const struct file_operations proc_attr_dir_operations = {
2933 	.read		= generic_read_dir,
2934 	.iterate_shared	= proc_attr_dir_readdir,
2935 	.llseek		= generic_file_llseek,
2936 };
2937 
2938 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2939 				struct dentry *dentry, unsigned int flags)
2940 {
2941 	return proc_pident_lookup(dir, dentry,
2942 				  attr_dir_stuff,
2943 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2944 }
2945 
2946 static const struct inode_operations proc_attr_dir_inode_operations = {
2947 	.lookup		= proc_attr_dir_lookup,
2948 	.getattr	= pid_getattr,
2949 	.setattr	= proc_setattr,
2950 };
2951 
2952 #endif
2953 
2954 #ifdef CONFIG_ELF_CORE
2955 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2956 					 size_t count, loff_t *ppos)
2957 {
2958 	struct task_struct *task = get_proc_task(file_inode(file));
2959 	struct mm_struct *mm;
2960 	char buffer[PROC_NUMBUF];
2961 	size_t len;
2962 	int ret;
2963 
2964 	if (!task)
2965 		return -ESRCH;
2966 
2967 	ret = 0;
2968 	mm = get_task_mm(task);
2969 	if (mm) {
2970 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2971 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2972 				MMF_DUMP_FILTER_SHIFT));
2973 		mmput(mm);
2974 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2975 	}
2976 
2977 	put_task_struct(task);
2978 
2979 	return ret;
2980 }
2981 
2982 static ssize_t proc_coredump_filter_write(struct file *file,
2983 					  const char __user *buf,
2984 					  size_t count,
2985 					  loff_t *ppos)
2986 {
2987 	struct task_struct *task;
2988 	struct mm_struct *mm;
2989 	unsigned int val;
2990 	int ret;
2991 	int i;
2992 	unsigned long mask;
2993 
2994 	ret = kstrtouint_from_user(buf, count, 0, &val);
2995 	if (ret < 0)
2996 		return ret;
2997 
2998 	ret = -ESRCH;
2999 	task = get_proc_task(file_inode(file));
3000 	if (!task)
3001 		goto out_no_task;
3002 
3003 	mm = get_task_mm(task);
3004 	if (!mm)
3005 		goto out_no_mm;
3006 	ret = 0;
3007 
3008 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
3009 		if (val & mask)
3010 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3011 		else
3012 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3013 	}
3014 
3015 	mmput(mm);
3016  out_no_mm:
3017 	put_task_struct(task);
3018  out_no_task:
3019 	if (ret < 0)
3020 		return ret;
3021 	return count;
3022 }
3023 
3024 static const struct file_operations proc_coredump_filter_operations = {
3025 	.read		= proc_coredump_filter_read,
3026 	.write		= proc_coredump_filter_write,
3027 	.llseek		= generic_file_llseek,
3028 };
3029 #endif
3030 
3031 #ifdef CONFIG_TASK_IO_ACCOUNTING
3032 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
3033 {
3034 	struct task_io_accounting acct;
3035 	int result;
3036 
3037 	result = down_read_killable(&task->signal->exec_update_lock);
3038 	if (result)
3039 		return result;
3040 
3041 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
3042 		result = -EACCES;
3043 		goto out_unlock;
3044 	}
3045 
3046 	if (whole) {
3047 		struct signal_struct *sig = task->signal;
3048 		struct task_struct *t;
3049 		unsigned int seq = 1;
3050 		unsigned long flags;
3051 
3052 		rcu_read_lock();
3053 		do {
3054 			seq++; /* 2 on the 1st/lockless path, otherwise odd */
3055 			flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
3056 
3057 			acct = sig->ioac;
3058 			__for_each_thread(sig, t)
3059 				task_io_accounting_add(&acct, &t->ioac);
3060 
3061 		} while (need_seqretry(&sig->stats_lock, seq));
3062 		done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
3063 		rcu_read_unlock();
3064 	} else {
3065 		acct = task->ioac;
3066 	}
3067 
3068 	seq_printf(m,
3069 		   "rchar: %llu\n"
3070 		   "wchar: %llu\n"
3071 		   "syscr: %llu\n"
3072 		   "syscw: %llu\n"
3073 		   "read_bytes: %llu\n"
3074 		   "write_bytes: %llu\n"
3075 		   "cancelled_write_bytes: %llu\n",
3076 		   (unsigned long long)acct.rchar,
3077 		   (unsigned long long)acct.wchar,
3078 		   (unsigned long long)acct.syscr,
3079 		   (unsigned long long)acct.syscw,
3080 		   (unsigned long long)acct.read_bytes,
3081 		   (unsigned long long)acct.write_bytes,
3082 		   (unsigned long long)acct.cancelled_write_bytes);
3083 	result = 0;
3084 
3085 out_unlock:
3086 	up_read(&task->signal->exec_update_lock);
3087 	return result;
3088 }
3089 
3090 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3091 				  struct pid *pid, struct task_struct *task)
3092 {
3093 	return do_io_accounting(task, m, 0);
3094 }
3095 
3096 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3097 				   struct pid *pid, struct task_struct *task)
3098 {
3099 	return do_io_accounting(task, m, 1);
3100 }
3101 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3102 
3103 #ifdef CONFIG_USER_NS
3104 static int proc_id_map_open(struct inode *inode, struct file *file,
3105 	const struct seq_operations *seq_ops)
3106 {
3107 	struct user_namespace *ns = NULL;
3108 	struct task_struct *task;
3109 	struct seq_file *seq;
3110 	int ret = -EINVAL;
3111 
3112 	task = get_proc_task(inode);
3113 	if (task) {
3114 		rcu_read_lock();
3115 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3116 		rcu_read_unlock();
3117 		put_task_struct(task);
3118 	}
3119 	if (!ns)
3120 		goto err;
3121 
3122 	ret = seq_open(file, seq_ops);
3123 	if (ret)
3124 		goto err_put_ns;
3125 
3126 	seq = file->private_data;
3127 	seq->private = ns;
3128 
3129 	return 0;
3130 err_put_ns:
3131 	put_user_ns(ns);
3132 err:
3133 	return ret;
3134 }
3135 
3136 static int proc_id_map_release(struct inode *inode, struct file *file)
3137 {
3138 	struct seq_file *seq = file->private_data;
3139 	struct user_namespace *ns = seq->private;
3140 	put_user_ns(ns);
3141 	return seq_release(inode, file);
3142 }
3143 
3144 static int proc_uid_map_open(struct inode *inode, struct file *file)
3145 {
3146 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3147 }
3148 
3149 static int proc_gid_map_open(struct inode *inode, struct file *file)
3150 {
3151 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3152 }
3153 
3154 static int proc_projid_map_open(struct inode *inode, struct file *file)
3155 {
3156 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3157 }
3158 
3159 static const struct file_operations proc_uid_map_operations = {
3160 	.open		= proc_uid_map_open,
3161 	.write		= proc_uid_map_write,
3162 	.read		= seq_read,
3163 	.llseek		= seq_lseek,
3164 	.release	= proc_id_map_release,
3165 };
3166 
3167 static const struct file_operations proc_gid_map_operations = {
3168 	.open		= proc_gid_map_open,
3169 	.write		= proc_gid_map_write,
3170 	.read		= seq_read,
3171 	.llseek		= seq_lseek,
3172 	.release	= proc_id_map_release,
3173 };
3174 
3175 static const struct file_operations proc_projid_map_operations = {
3176 	.open		= proc_projid_map_open,
3177 	.write		= proc_projid_map_write,
3178 	.read		= seq_read,
3179 	.llseek		= seq_lseek,
3180 	.release	= proc_id_map_release,
3181 };
3182 
3183 static int proc_setgroups_open(struct inode *inode, struct file *file)
3184 {
3185 	struct user_namespace *ns = NULL;
3186 	struct task_struct *task;
3187 	int ret;
3188 
3189 	ret = -ESRCH;
3190 	task = get_proc_task(inode);
3191 	if (task) {
3192 		rcu_read_lock();
3193 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3194 		rcu_read_unlock();
3195 		put_task_struct(task);
3196 	}
3197 	if (!ns)
3198 		goto err;
3199 
3200 	if (file->f_mode & FMODE_WRITE) {
3201 		ret = -EACCES;
3202 		if (!ns_capable(ns, CAP_SYS_ADMIN))
3203 			goto err_put_ns;
3204 	}
3205 
3206 	ret = single_open(file, &proc_setgroups_show, ns);
3207 	if (ret)
3208 		goto err_put_ns;
3209 
3210 	return 0;
3211 err_put_ns:
3212 	put_user_ns(ns);
3213 err:
3214 	return ret;
3215 }
3216 
3217 static int proc_setgroups_release(struct inode *inode, struct file *file)
3218 {
3219 	struct seq_file *seq = file->private_data;
3220 	struct user_namespace *ns = seq->private;
3221 	int ret = single_release(inode, file);
3222 	put_user_ns(ns);
3223 	return ret;
3224 }
3225 
3226 static const struct file_operations proc_setgroups_operations = {
3227 	.open		= proc_setgroups_open,
3228 	.write		= proc_setgroups_write,
3229 	.read		= seq_read,
3230 	.llseek		= seq_lseek,
3231 	.release	= proc_setgroups_release,
3232 };
3233 #endif /* CONFIG_USER_NS */
3234 
3235 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3236 				struct pid *pid, struct task_struct *task)
3237 {
3238 	int err = lock_trace(task);
3239 	if (!err) {
3240 		seq_printf(m, "%08x\n", task->personality);
3241 		unlock_trace(task);
3242 	}
3243 	return err;
3244 }
3245 
3246 #ifdef CONFIG_LIVEPATCH
3247 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3248 				struct pid *pid, struct task_struct *task)
3249 {
3250 	seq_printf(m, "%d\n", task->patch_state);
3251 	return 0;
3252 }
3253 #endif /* CONFIG_LIVEPATCH */
3254 
3255 #ifdef CONFIG_KSM
3256 static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3257 				struct pid *pid, struct task_struct *task)
3258 {
3259 	struct mm_struct *mm;
3260 
3261 	mm = get_task_mm(task);
3262 	if (mm) {
3263 		seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3264 		mmput(mm);
3265 	}
3266 
3267 	return 0;
3268 }
3269 static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3270 				struct pid *pid, struct task_struct *task)
3271 {
3272 	struct mm_struct *mm;
3273 
3274 	mm = get_task_mm(task);
3275 	if (mm) {
3276 		seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3277 		seq_printf(m, "ksm_zero_pages %ld\n", mm_ksm_zero_pages(mm));
3278 		seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages);
3279 		seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm));
3280 		mmput(mm);
3281 	}
3282 
3283 	return 0;
3284 }
3285 #endif /* CONFIG_KSM */
3286 
3287 #ifdef CONFIG_STACKLEAK_METRICS
3288 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3289 				struct pid *pid, struct task_struct *task)
3290 {
3291 	unsigned long prev_depth = THREAD_SIZE -
3292 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3293 	unsigned long depth = THREAD_SIZE -
3294 				(task->lowest_stack & (THREAD_SIZE - 1));
3295 
3296 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3297 							prev_depth, depth);
3298 	return 0;
3299 }
3300 #endif /* CONFIG_STACKLEAK_METRICS */
3301 
3302 /*
3303  * Thread groups
3304  */
3305 static const struct file_operations proc_task_operations;
3306 static const struct inode_operations proc_task_inode_operations;
3307 
3308 static const struct pid_entry tgid_base_stuff[] = {
3309 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3310 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3311 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3312 	DIR("fdinfo",     S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3313 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3314 #ifdef CONFIG_NET
3315 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3316 #endif
3317 	REG("environ",    S_IRUSR, proc_environ_operations),
3318 	REG("auxv",       S_IRUSR, proc_auxv_operations),
3319 	ONE("status",     S_IRUGO, proc_pid_status),
3320 	ONE("personality", S_IRUSR, proc_pid_personality),
3321 	ONE("limits",	  S_IRUGO, proc_pid_limits),
3322 #ifdef CONFIG_SCHED_DEBUG
3323 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3324 #endif
3325 #ifdef CONFIG_SCHED_AUTOGROUP
3326 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3327 #endif
3328 #ifdef CONFIG_TIME_NS
3329 	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3330 #endif
3331 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3332 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3333 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3334 #endif
3335 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3336 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3337 	ONE("statm",      S_IRUGO, proc_pid_statm),
3338 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3339 #ifdef CONFIG_NUMA
3340 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3341 #endif
3342 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3343 	LNK("cwd",        proc_cwd_link),
3344 	LNK("root",       proc_root_link),
3345 	LNK("exe",        proc_exe_link),
3346 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3347 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3348 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3349 #ifdef CONFIG_PROC_PAGE_MONITOR
3350 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3351 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3352 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3353 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3354 #endif
3355 #ifdef CONFIG_SECURITY
3356 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3357 #endif
3358 #ifdef CONFIG_KALLSYMS
3359 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3360 #endif
3361 #ifdef CONFIG_STACKTRACE
3362 	ONE("stack",      S_IRUSR, proc_pid_stack),
3363 #endif
3364 #ifdef CONFIG_SCHED_INFO
3365 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3366 #endif
3367 #ifdef CONFIG_LATENCYTOP
3368 	REG("latency",  S_IRUGO, proc_lstats_operations),
3369 #endif
3370 #ifdef CONFIG_PROC_PID_CPUSET
3371 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3372 #endif
3373 #ifdef CONFIG_CGROUPS
3374 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3375 #endif
3376 #ifdef CONFIG_PROC_CPU_RESCTRL
3377 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3378 #endif
3379 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3380 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3381 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3382 #ifdef CONFIG_AUDIT
3383 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3384 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3385 #endif
3386 #ifdef CONFIG_FAULT_INJECTION
3387 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3388 	REG("fail-nth", 0644, proc_fail_nth_operations),
3389 #endif
3390 #ifdef CONFIG_ELF_CORE
3391 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3392 #endif
3393 #ifdef CONFIG_TASK_IO_ACCOUNTING
3394 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3395 #endif
3396 #ifdef CONFIG_USER_NS
3397 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3398 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3399 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3400 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3401 #endif
3402 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3403 	REG("timers",	  S_IRUGO, proc_timers_operations),
3404 #endif
3405 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3406 #ifdef CONFIG_LIVEPATCH
3407 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3408 #endif
3409 #ifdef CONFIG_STACKLEAK_METRICS
3410 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3411 #endif
3412 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3413 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3414 #endif
3415 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3416 	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3417 #endif
3418 #ifdef CONFIG_KSM
3419 	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3420 	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3421 #endif
3422 };
3423 
3424 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3425 {
3426 	return proc_pident_readdir(file, ctx,
3427 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3428 }
3429 
3430 static const struct file_operations proc_tgid_base_operations = {
3431 	.read		= generic_read_dir,
3432 	.iterate_shared	= proc_tgid_base_readdir,
3433 	.llseek		= generic_file_llseek,
3434 };
3435 
3436 struct pid *tgid_pidfd_to_pid(const struct file *file)
3437 {
3438 	if (file->f_op != &proc_tgid_base_operations)
3439 		return ERR_PTR(-EBADF);
3440 
3441 	return proc_pid(file_inode(file));
3442 }
3443 
3444 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3445 {
3446 	return proc_pident_lookup(dir, dentry,
3447 				  tgid_base_stuff,
3448 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3449 }
3450 
3451 static const struct inode_operations proc_tgid_base_inode_operations = {
3452 	.lookup		= proc_tgid_base_lookup,
3453 	.getattr	= pid_getattr,
3454 	.setattr	= proc_setattr,
3455 	.permission	= proc_pid_permission,
3456 };
3457 
3458 /**
3459  * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3460  * @pid: pid that should be flushed.
3461  *
3462  * This function walks a list of inodes (that belong to any proc
3463  * filesystem) that are attached to the pid and flushes them from
3464  * the dentry cache.
3465  *
3466  * It is safe and reasonable to cache /proc entries for a task until
3467  * that task exits.  After that they just clog up the dcache with
3468  * useless entries, possibly causing useful dcache entries to be
3469  * flushed instead.  This routine is provided to flush those useless
3470  * dcache entries when a process is reaped.
3471  *
3472  * NOTE: This routine is just an optimization so it does not guarantee
3473  *       that no dcache entries will exist after a process is reaped
3474  *       it just makes it very unlikely that any will persist.
3475  */
3476 
3477 void proc_flush_pid(struct pid *pid)
3478 {
3479 	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3480 }
3481 
3482 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3483 				   struct task_struct *task, const void *ptr)
3484 {
3485 	struct inode *inode;
3486 
3487 	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3488 					 S_IFDIR | S_IRUGO | S_IXUGO);
3489 	if (!inode)
3490 		return ERR_PTR(-ENOENT);
3491 
3492 	inode->i_op = &proc_tgid_base_inode_operations;
3493 	inode->i_fop = &proc_tgid_base_operations;
3494 	inode->i_flags|=S_IMMUTABLE;
3495 
3496 	set_nlink(inode, nlink_tgid);
3497 	pid_update_inode(task, inode);
3498 
3499 	d_set_d_op(dentry, &pid_dentry_operations);
3500 	return d_splice_alias(inode, dentry);
3501 }
3502 
3503 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3504 {
3505 	struct task_struct *task;
3506 	unsigned tgid;
3507 	struct proc_fs_info *fs_info;
3508 	struct pid_namespace *ns;
3509 	struct dentry *result = ERR_PTR(-ENOENT);
3510 
3511 	tgid = name_to_int(&dentry->d_name);
3512 	if (tgid == ~0U)
3513 		goto out;
3514 
3515 	fs_info = proc_sb_info(dentry->d_sb);
3516 	ns = fs_info->pid_ns;
3517 	rcu_read_lock();
3518 	task = find_task_by_pid_ns(tgid, ns);
3519 	if (task)
3520 		get_task_struct(task);
3521 	rcu_read_unlock();
3522 	if (!task)
3523 		goto out;
3524 
3525 	/* Limit procfs to only ptraceable tasks */
3526 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3527 		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3528 			goto out_put_task;
3529 	}
3530 
3531 	result = proc_pid_instantiate(dentry, task, NULL);
3532 out_put_task:
3533 	put_task_struct(task);
3534 out:
3535 	return result;
3536 }
3537 
3538 /*
3539  * Find the first task with tgid >= tgid
3540  *
3541  */
3542 struct tgid_iter {
3543 	unsigned int tgid;
3544 	struct task_struct *task;
3545 };
3546 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3547 {
3548 	struct pid *pid;
3549 
3550 	if (iter.task)
3551 		put_task_struct(iter.task);
3552 	rcu_read_lock();
3553 retry:
3554 	iter.task = NULL;
3555 	pid = find_ge_pid(iter.tgid, ns);
3556 	if (pid) {
3557 		iter.tgid = pid_nr_ns(pid, ns);
3558 		iter.task = pid_task(pid, PIDTYPE_TGID);
3559 		if (!iter.task) {
3560 			iter.tgid += 1;
3561 			goto retry;
3562 		}
3563 		get_task_struct(iter.task);
3564 	}
3565 	rcu_read_unlock();
3566 	return iter;
3567 }
3568 
3569 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3570 
3571 /* for the /proc/ directory itself, after non-process stuff has been done */
3572 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3573 {
3574 	struct tgid_iter iter;
3575 	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3576 	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3577 	loff_t pos = ctx->pos;
3578 
3579 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3580 		return 0;
3581 
3582 	if (pos == TGID_OFFSET - 2) {
3583 		struct inode *inode = d_inode(fs_info->proc_self);
3584 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3585 			return 0;
3586 		ctx->pos = pos = pos + 1;
3587 	}
3588 	if (pos == TGID_OFFSET - 1) {
3589 		struct inode *inode = d_inode(fs_info->proc_thread_self);
3590 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3591 			return 0;
3592 		ctx->pos = pos = pos + 1;
3593 	}
3594 	iter.tgid = pos - TGID_OFFSET;
3595 	iter.task = NULL;
3596 	for (iter = next_tgid(ns, iter);
3597 	     iter.task;
3598 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3599 		char name[10 + 1];
3600 		unsigned int len;
3601 
3602 		cond_resched();
3603 		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3604 			continue;
3605 
3606 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3607 		ctx->pos = iter.tgid + TGID_OFFSET;
3608 		if (!proc_fill_cache(file, ctx, name, len,
3609 				     proc_pid_instantiate, iter.task, NULL)) {
3610 			put_task_struct(iter.task);
3611 			return 0;
3612 		}
3613 	}
3614 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3615 	return 0;
3616 }
3617 
3618 /*
3619  * proc_tid_comm_permission is a special permission function exclusively
3620  * used for the node /proc/<pid>/task/<tid>/comm.
3621  * It bypasses generic permission checks in the case where a task of the same
3622  * task group attempts to access the node.
3623  * The rationale behind this is that glibc and bionic access this node for
3624  * cross thread naming (pthread_set/getname_np(!self)). However, if
3625  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3626  * which locks out the cross thread naming implementation.
3627  * This function makes sure that the node is always accessible for members of
3628  * same thread group.
3629  */
3630 static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3631 				    struct inode *inode, int mask)
3632 {
3633 	bool is_same_tgroup;
3634 	struct task_struct *task;
3635 
3636 	task = get_proc_task(inode);
3637 	if (!task)
3638 		return -ESRCH;
3639 	is_same_tgroup = same_thread_group(current, task);
3640 	put_task_struct(task);
3641 
3642 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3643 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3644 		 * read or written by the members of the corresponding
3645 		 * thread group.
3646 		 */
3647 		return 0;
3648 	}
3649 
3650 	return generic_permission(&nop_mnt_idmap, inode, mask);
3651 }
3652 
3653 static const struct inode_operations proc_tid_comm_inode_operations = {
3654 		.setattr	= proc_setattr,
3655 		.permission	= proc_tid_comm_permission,
3656 };
3657 
3658 /*
3659  * Tasks
3660  */
3661 static const struct pid_entry tid_base_stuff[] = {
3662 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3663 	DIR("fdinfo",    S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3664 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3665 #ifdef CONFIG_NET
3666 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3667 #endif
3668 	REG("environ",   S_IRUSR, proc_environ_operations),
3669 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3670 	ONE("status",    S_IRUGO, proc_pid_status),
3671 	ONE("personality", S_IRUSR, proc_pid_personality),
3672 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3673 #ifdef CONFIG_SCHED_DEBUG
3674 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3675 #endif
3676 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3677 			 &proc_tid_comm_inode_operations,
3678 			 &proc_pid_set_comm_operations, {}),
3679 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3680 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3681 #endif
3682 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3683 	ONE("stat",      S_IRUGO, proc_tid_stat),
3684 	ONE("statm",     S_IRUGO, proc_pid_statm),
3685 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3686 #ifdef CONFIG_PROC_CHILDREN
3687 	REG("children",  S_IRUGO, proc_tid_children_operations),
3688 #endif
3689 #ifdef CONFIG_NUMA
3690 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3691 #endif
3692 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3693 	LNK("cwd",       proc_cwd_link),
3694 	LNK("root",      proc_root_link),
3695 	LNK("exe",       proc_exe_link),
3696 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3697 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3698 #ifdef CONFIG_PROC_PAGE_MONITOR
3699 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3700 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3701 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3702 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3703 #endif
3704 #ifdef CONFIG_SECURITY
3705 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3706 #endif
3707 #ifdef CONFIG_KALLSYMS
3708 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3709 #endif
3710 #ifdef CONFIG_STACKTRACE
3711 	ONE("stack",      S_IRUSR, proc_pid_stack),
3712 #endif
3713 #ifdef CONFIG_SCHED_INFO
3714 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3715 #endif
3716 #ifdef CONFIG_LATENCYTOP
3717 	REG("latency",  S_IRUGO, proc_lstats_operations),
3718 #endif
3719 #ifdef CONFIG_PROC_PID_CPUSET
3720 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3721 #endif
3722 #ifdef CONFIG_CGROUPS
3723 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3724 #endif
3725 #ifdef CONFIG_PROC_CPU_RESCTRL
3726 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3727 #endif
3728 	ONE("oom_score", S_IRUGO, proc_oom_score),
3729 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3730 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3731 #ifdef CONFIG_AUDIT
3732 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3733 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3734 #endif
3735 #ifdef CONFIG_FAULT_INJECTION
3736 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3737 	REG("fail-nth", 0644, proc_fail_nth_operations),
3738 #endif
3739 #ifdef CONFIG_TASK_IO_ACCOUNTING
3740 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3741 #endif
3742 #ifdef CONFIG_USER_NS
3743 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3744 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3745 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3746 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3747 #endif
3748 #ifdef CONFIG_LIVEPATCH
3749 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3750 #endif
3751 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3752 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3753 #endif
3754 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3755 	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3756 #endif
3757 #ifdef CONFIG_KSM
3758 	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3759 	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3760 #endif
3761 };
3762 
3763 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3764 {
3765 	return proc_pident_readdir(file, ctx,
3766 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3767 }
3768 
3769 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3770 {
3771 	return proc_pident_lookup(dir, dentry,
3772 				  tid_base_stuff,
3773 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3774 }
3775 
3776 static const struct file_operations proc_tid_base_operations = {
3777 	.read		= generic_read_dir,
3778 	.iterate_shared	= proc_tid_base_readdir,
3779 	.llseek		= generic_file_llseek,
3780 };
3781 
3782 static const struct inode_operations proc_tid_base_inode_operations = {
3783 	.lookup		= proc_tid_base_lookup,
3784 	.getattr	= pid_getattr,
3785 	.setattr	= proc_setattr,
3786 };
3787 
3788 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3789 	struct task_struct *task, const void *ptr)
3790 {
3791 	struct inode *inode;
3792 	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3793 					 S_IFDIR | S_IRUGO | S_IXUGO);
3794 	if (!inode)
3795 		return ERR_PTR(-ENOENT);
3796 
3797 	inode->i_op = &proc_tid_base_inode_operations;
3798 	inode->i_fop = &proc_tid_base_operations;
3799 	inode->i_flags |= S_IMMUTABLE;
3800 
3801 	set_nlink(inode, nlink_tid);
3802 	pid_update_inode(task, inode);
3803 
3804 	d_set_d_op(dentry, &pid_dentry_operations);
3805 	return d_splice_alias(inode, dentry);
3806 }
3807 
3808 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3809 {
3810 	struct task_struct *task;
3811 	struct task_struct *leader = get_proc_task(dir);
3812 	unsigned tid;
3813 	struct proc_fs_info *fs_info;
3814 	struct pid_namespace *ns;
3815 	struct dentry *result = ERR_PTR(-ENOENT);
3816 
3817 	if (!leader)
3818 		goto out_no_task;
3819 
3820 	tid = name_to_int(&dentry->d_name);
3821 	if (tid == ~0U)
3822 		goto out;
3823 
3824 	fs_info = proc_sb_info(dentry->d_sb);
3825 	ns = fs_info->pid_ns;
3826 	rcu_read_lock();
3827 	task = find_task_by_pid_ns(tid, ns);
3828 	if (task)
3829 		get_task_struct(task);
3830 	rcu_read_unlock();
3831 	if (!task)
3832 		goto out;
3833 	if (!same_thread_group(leader, task))
3834 		goto out_drop_task;
3835 
3836 	result = proc_task_instantiate(dentry, task, NULL);
3837 out_drop_task:
3838 	put_task_struct(task);
3839 out:
3840 	put_task_struct(leader);
3841 out_no_task:
3842 	return result;
3843 }
3844 
3845 /*
3846  * Find the first tid of a thread group to return to user space.
3847  *
3848  * Usually this is just the thread group leader, but if the users
3849  * buffer was too small or there was a seek into the middle of the
3850  * directory we have more work todo.
3851  *
3852  * In the case of a short read we start with find_task_by_pid.
3853  *
3854  * In the case of a seek we start with the leader and walk nr
3855  * threads past it.
3856  */
3857 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3858 					struct pid_namespace *ns)
3859 {
3860 	struct task_struct *pos, *task;
3861 	unsigned long nr = f_pos;
3862 
3863 	if (nr != f_pos)	/* 32bit overflow? */
3864 		return NULL;
3865 
3866 	rcu_read_lock();
3867 	task = pid_task(pid, PIDTYPE_PID);
3868 	if (!task)
3869 		goto fail;
3870 
3871 	/* Attempt to start with the tid of a thread */
3872 	if (tid && nr) {
3873 		pos = find_task_by_pid_ns(tid, ns);
3874 		if (pos && same_thread_group(pos, task))
3875 			goto found;
3876 	}
3877 
3878 	/* If nr exceeds the number of threads there is nothing todo */
3879 	if (nr >= get_nr_threads(task))
3880 		goto fail;
3881 
3882 	/* If we haven't found our starting place yet start
3883 	 * with the leader and walk nr threads forward.
3884 	 */
3885 	for_each_thread(task, pos) {
3886 		if (!nr--)
3887 			goto found;
3888 	}
3889 fail:
3890 	pos = NULL;
3891 	goto out;
3892 found:
3893 	get_task_struct(pos);
3894 out:
3895 	rcu_read_unlock();
3896 	return pos;
3897 }
3898 
3899 /*
3900  * Find the next thread in the thread list.
3901  * Return NULL if there is an error or no next thread.
3902  *
3903  * The reference to the input task_struct is released.
3904  */
3905 static struct task_struct *next_tid(struct task_struct *start)
3906 {
3907 	struct task_struct *pos = NULL;
3908 	rcu_read_lock();
3909 	if (pid_alive(start)) {
3910 		pos = __next_thread(start);
3911 		if (pos)
3912 			get_task_struct(pos);
3913 	}
3914 	rcu_read_unlock();
3915 	put_task_struct(start);
3916 	return pos;
3917 }
3918 
3919 /* for the /proc/TGID/task/ directories */
3920 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3921 {
3922 	struct inode *inode = file_inode(file);
3923 	struct task_struct *task;
3924 	struct pid_namespace *ns;
3925 	int tid;
3926 
3927 	if (proc_inode_is_dead(inode))
3928 		return -ENOENT;
3929 
3930 	if (!dir_emit_dots(file, ctx))
3931 		return 0;
3932 
3933 	/* We cache the tgid value that the last readdir call couldn't
3934 	 * return and lseek resets it to 0.
3935 	 */
3936 	ns = proc_pid_ns(inode->i_sb);
3937 	tid = (int)(intptr_t)file->private_data;
3938 	file->private_data = NULL;
3939 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3940 	     task;
3941 	     task = next_tid(task), ctx->pos++) {
3942 		char name[10 + 1];
3943 		unsigned int len;
3944 
3945 		tid = task_pid_nr_ns(task, ns);
3946 		if (!tid)
3947 			continue;	/* The task has just exited. */
3948 		len = snprintf(name, sizeof(name), "%u", tid);
3949 		if (!proc_fill_cache(file, ctx, name, len,
3950 				proc_task_instantiate, task, NULL)) {
3951 			/* returning this tgid failed, save it as the first
3952 			 * pid for the next readir call */
3953 			file->private_data = (void *)(intptr_t)tid;
3954 			put_task_struct(task);
3955 			break;
3956 		}
3957 	}
3958 
3959 	return 0;
3960 }
3961 
3962 static int proc_task_getattr(struct mnt_idmap *idmap,
3963 			     const struct path *path, struct kstat *stat,
3964 			     u32 request_mask, unsigned int query_flags)
3965 {
3966 	struct inode *inode = d_inode(path->dentry);
3967 	struct task_struct *p = get_proc_task(inode);
3968 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
3969 
3970 	if (p) {
3971 		stat->nlink += get_nr_threads(p);
3972 		put_task_struct(p);
3973 	}
3974 
3975 	return 0;
3976 }
3977 
3978 /*
3979  * proc_task_readdir() set @file->private_data to a positive integer
3980  * value, so casting that to u64 is safe. generic_llseek_cookie() will
3981  * set @cookie to 0, so casting to an int is safe. The WARN_ON_ONCE() is
3982  * here to catch any unexpected change in behavior either in
3983  * proc_task_readdir() or generic_llseek_cookie().
3984  */
3985 static loff_t proc_dir_llseek(struct file *file, loff_t offset, int whence)
3986 {
3987 	u64 cookie = (u64)(intptr_t)file->private_data;
3988 	loff_t off;
3989 
3990 	off = generic_llseek_cookie(file, offset, whence, &cookie);
3991 	WARN_ON_ONCE(cookie > INT_MAX);
3992 	file->private_data = (void *)(intptr_t)cookie; /* serialized by f_pos_lock */
3993 	return off;
3994 }
3995 
3996 static const struct inode_operations proc_task_inode_operations = {
3997 	.lookup		= proc_task_lookup,
3998 	.getattr	= proc_task_getattr,
3999 	.setattr	= proc_setattr,
4000 	.permission	= proc_pid_permission,
4001 };
4002 
4003 static const struct file_operations proc_task_operations = {
4004 	.read		= generic_read_dir,
4005 	.iterate_shared	= proc_task_readdir,
4006 	.llseek		= proc_dir_llseek,
4007 };
4008 
4009 void __init set_proc_pid_nlink(void)
4010 {
4011 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
4012 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
4013 }
4014