xref: /linux/fs/proc/base.c (revision 4cf421e55d69016989548e0fb8585e69f54bd283)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <linux/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/sched/autogroup.h>
89 #include <linux/sched/mm.h>
90 #include <linux/sched/coredump.h>
91 #include <linux/flex_array.h>
92 #include <linux/posix-timers.h>
93 #ifdef CONFIG_HARDWALL
94 #include <asm/hardwall.h>
95 #endif
96 #include <trace/events/oom.h>
97 #include "internal.h"
98 #include "fd.h"
99 
100 /* NOTE:
101  *	Implementing inode permission operations in /proc is almost
102  *	certainly an error.  Permission checks need to happen during
103  *	each system call not at open time.  The reason is that most of
104  *	what we wish to check for permissions in /proc varies at runtime.
105  *
106  *	The classic example of a problem is opening file descriptors
107  *	in /proc for a task before it execs a suid executable.
108  */
109 
110 static u8 nlink_tid;
111 static u8 nlink_tgid;
112 
113 struct pid_entry {
114 	const char *name;
115 	unsigned int len;
116 	umode_t mode;
117 	const struct inode_operations *iop;
118 	const struct file_operations *fop;
119 	union proc_op op;
120 };
121 
122 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
123 	.name = (NAME),					\
124 	.len  = sizeof(NAME) - 1,			\
125 	.mode = MODE,					\
126 	.iop  = IOP,					\
127 	.fop  = FOP,					\
128 	.op   = OP,					\
129 }
130 
131 #define DIR(NAME, MODE, iops, fops)	\
132 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
133 #define LNK(NAME, get_link)					\
134 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
135 		&proc_pid_link_inode_operations, NULL,		\
136 		{ .proc_get_link = get_link } )
137 #define REG(NAME, MODE, fops)				\
138 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
139 #define ONE(NAME, MODE, show)				\
140 	NOD(NAME, (S_IFREG|(MODE)), 			\
141 		NULL, &proc_single_file_operations,	\
142 		{ .proc_show = show } )
143 
144 /*
145  * Count the number of hardlinks for the pid_entry table, excluding the .
146  * and .. links.
147  */
148 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
149 	unsigned int n)
150 {
151 	unsigned int i;
152 	unsigned int count;
153 
154 	count = 2;
155 	for (i = 0; i < n; ++i) {
156 		if (S_ISDIR(entries[i].mode))
157 			++count;
158 	}
159 
160 	return count;
161 }
162 
163 static int get_task_root(struct task_struct *task, struct path *root)
164 {
165 	int result = -ENOENT;
166 
167 	task_lock(task);
168 	if (task->fs) {
169 		get_fs_root(task->fs, root);
170 		result = 0;
171 	}
172 	task_unlock(task);
173 	return result;
174 }
175 
176 static int proc_cwd_link(struct dentry *dentry, struct path *path)
177 {
178 	struct task_struct *task = get_proc_task(d_inode(dentry));
179 	int result = -ENOENT;
180 
181 	if (task) {
182 		task_lock(task);
183 		if (task->fs) {
184 			get_fs_pwd(task->fs, path);
185 			result = 0;
186 		}
187 		task_unlock(task);
188 		put_task_struct(task);
189 	}
190 	return result;
191 }
192 
193 static int proc_root_link(struct dentry *dentry, struct path *path)
194 {
195 	struct task_struct *task = get_proc_task(d_inode(dentry));
196 	int result = -ENOENT;
197 
198 	if (task) {
199 		result = get_task_root(task, path);
200 		put_task_struct(task);
201 	}
202 	return result;
203 }
204 
205 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
206 				     size_t _count, loff_t *pos)
207 {
208 	struct task_struct *tsk;
209 	struct mm_struct *mm;
210 	char *page;
211 	unsigned long count = _count;
212 	unsigned long arg_start, arg_end, env_start, env_end;
213 	unsigned long len1, len2, len;
214 	unsigned long p;
215 	char c;
216 	ssize_t rv;
217 
218 	BUG_ON(*pos < 0);
219 
220 	tsk = get_proc_task(file_inode(file));
221 	if (!tsk)
222 		return -ESRCH;
223 	mm = get_task_mm(tsk);
224 	put_task_struct(tsk);
225 	if (!mm)
226 		return 0;
227 	/* Check if process spawned far enough to have cmdline. */
228 	if (!mm->env_end) {
229 		rv = 0;
230 		goto out_mmput;
231 	}
232 
233 	page = (char *)__get_free_page(GFP_TEMPORARY);
234 	if (!page) {
235 		rv = -ENOMEM;
236 		goto out_mmput;
237 	}
238 
239 	down_read(&mm->mmap_sem);
240 	arg_start = mm->arg_start;
241 	arg_end = mm->arg_end;
242 	env_start = mm->env_start;
243 	env_end = mm->env_end;
244 	up_read(&mm->mmap_sem);
245 
246 	BUG_ON(arg_start > arg_end);
247 	BUG_ON(env_start > env_end);
248 
249 	len1 = arg_end - arg_start;
250 	len2 = env_end - env_start;
251 
252 	/* Empty ARGV. */
253 	if (len1 == 0) {
254 		rv = 0;
255 		goto out_free_page;
256 	}
257 	/*
258 	 * Inherently racy -- command line shares address space
259 	 * with code and data.
260 	 */
261 	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
262 	if (rv <= 0)
263 		goto out_free_page;
264 
265 	rv = 0;
266 
267 	if (c == '\0') {
268 		/* Command line (set of strings) occupies whole ARGV. */
269 		if (len1 <= *pos)
270 			goto out_free_page;
271 
272 		p = arg_start + *pos;
273 		len = len1 - *pos;
274 		while (count > 0 && len > 0) {
275 			unsigned int _count;
276 			int nr_read;
277 
278 			_count = min3(count, len, PAGE_SIZE);
279 			nr_read = access_remote_vm(mm, p, page, _count, 0);
280 			if (nr_read < 0)
281 				rv = nr_read;
282 			if (nr_read <= 0)
283 				goto out_free_page;
284 
285 			if (copy_to_user(buf, page, nr_read)) {
286 				rv = -EFAULT;
287 				goto out_free_page;
288 			}
289 
290 			p	+= nr_read;
291 			len	-= nr_read;
292 			buf	+= nr_read;
293 			count	-= nr_read;
294 			rv	+= nr_read;
295 		}
296 	} else {
297 		/*
298 		 * Command line (1 string) occupies ARGV and
299 		 * extends into ENVP.
300 		 */
301 		struct {
302 			unsigned long p;
303 			unsigned long len;
304 		} cmdline[2] = {
305 			{ .p = arg_start, .len = len1 },
306 			{ .p = env_start, .len = len2 },
307 		};
308 		loff_t pos1 = *pos;
309 		unsigned int i;
310 
311 		i = 0;
312 		while (i < 2 && pos1 >= cmdline[i].len) {
313 			pos1 -= cmdline[i].len;
314 			i++;
315 		}
316 		while (i < 2) {
317 			p = cmdline[i].p + pos1;
318 			len = cmdline[i].len - pos1;
319 			while (count > 0 && len > 0) {
320 				unsigned int _count, l;
321 				int nr_read;
322 				bool final;
323 
324 				_count = min3(count, len, PAGE_SIZE);
325 				nr_read = access_remote_vm(mm, p, page, _count, 0);
326 				if (nr_read < 0)
327 					rv = nr_read;
328 				if (nr_read <= 0)
329 					goto out_free_page;
330 
331 				/*
332 				 * Command line can be shorter than whole ARGV
333 				 * even if last "marker" byte says it is not.
334 				 */
335 				final = false;
336 				l = strnlen(page, nr_read);
337 				if (l < nr_read) {
338 					nr_read = l;
339 					final = true;
340 				}
341 
342 				if (copy_to_user(buf, page, nr_read)) {
343 					rv = -EFAULT;
344 					goto out_free_page;
345 				}
346 
347 				p	+= nr_read;
348 				len	-= nr_read;
349 				buf	+= nr_read;
350 				count	-= nr_read;
351 				rv	+= nr_read;
352 
353 				if (final)
354 					goto out_free_page;
355 			}
356 
357 			/* Only first chunk can be read partially. */
358 			pos1 = 0;
359 			i++;
360 		}
361 	}
362 
363 out_free_page:
364 	free_page((unsigned long)page);
365 out_mmput:
366 	mmput(mm);
367 	if (rv > 0)
368 		*pos += rv;
369 	return rv;
370 }
371 
372 static const struct file_operations proc_pid_cmdline_ops = {
373 	.read	= proc_pid_cmdline_read,
374 	.llseek	= generic_file_llseek,
375 };
376 
377 #ifdef CONFIG_KALLSYMS
378 /*
379  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
380  * Returns the resolved symbol.  If that fails, simply return the address.
381  */
382 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
383 			  struct pid *pid, struct task_struct *task)
384 {
385 	unsigned long wchan;
386 	char symname[KSYM_NAME_LEN];
387 
388 	wchan = get_wchan(task);
389 
390 	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
391 			&& !lookup_symbol_name(wchan, symname))
392 		seq_printf(m, "%s", symname);
393 	else
394 		seq_putc(m, '0');
395 
396 	return 0;
397 }
398 #endif /* CONFIG_KALLSYMS */
399 
400 static int lock_trace(struct task_struct *task)
401 {
402 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
403 	if (err)
404 		return err;
405 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
406 		mutex_unlock(&task->signal->cred_guard_mutex);
407 		return -EPERM;
408 	}
409 	return 0;
410 }
411 
412 static void unlock_trace(struct task_struct *task)
413 {
414 	mutex_unlock(&task->signal->cred_guard_mutex);
415 }
416 
417 #ifdef CONFIG_STACKTRACE
418 
419 #define MAX_STACK_TRACE_DEPTH	64
420 
421 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
422 			  struct pid *pid, struct task_struct *task)
423 {
424 	struct stack_trace trace;
425 	unsigned long *entries;
426 	int err;
427 	int i;
428 
429 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
430 	if (!entries)
431 		return -ENOMEM;
432 
433 	trace.nr_entries	= 0;
434 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
435 	trace.entries		= entries;
436 	trace.skip		= 0;
437 
438 	err = lock_trace(task);
439 	if (!err) {
440 		save_stack_trace_tsk(task, &trace);
441 
442 		for (i = 0; i < trace.nr_entries; i++) {
443 			seq_printf(m, "[<%pK>] %pB\n",
444 				   (void *)entries[i], (void *)entries[i]);
445 		}
446 		unlock_trace(task);
447 	}
448 	kfree(entries);
449 
450 	return err;
451 }
452 #endif
453 
454 #ifdef CONFIG_SCHED_INFO
455 /*
456  * Provides /proc/PID/schedstat
457  */
458 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
459 			      struct pid *pid, struct task_struct *task)
460 {
461 	if (unlikely(!sched_info_on()))
462 		seq_printf(m, "0 0 0\n");
463 	else
464 		seq_printf(m, "%llu %llu %lu\n",
465 		   (unsigned long long)task->se.sum_exec_runtime,
466 		   (unsigned long long)task->sched_info.run_delay,
467 		   task->sched_info.pcount);
468 
469 	return 0;
470 }
471 #endif
472 
473 #ifdef CONFIG_LATENCYTOP
474 static int lstats_show_proc(struct seq_file *m, void *v)
475 {
476 	int i;
477 	struct inode *inode = m->private;
478 	struct task_struct *task = get_proc_task(inode);
479 
480 	if (!task)
481 		return -ESRCH;
482 	seq_puts(m, "Latency Top version : v0.1\n");
483 	for (i = 0; i < 32; i++) {
484 		struct latency_record *lr = &task->latency_record[i];
485 		if (lr->backtrace[0]) {
486 			int q;
487 			seq_printf(m, "%i %li %li",
488 				   lr->count, lr->time, lr->max);
489 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
490 				unsigned long bt = lr->backtrace[q];
491 				if (!bt)
492 					break;
493 				if (bt == ULONG_MAX)
494 					break;
495 				seq_printf(m, " %ps", (void *)bt);
496 			}
497 			seq_putc(m, '\n');
498 		}
499 
500 	}
501 	put_task_struct(task);
502 	return 0;
503 }
504 
505 static int lstats_open(struct inode *inode, struct file *file)
506 {
507 	return single_open(file, lstats_show_proc, inode);
508 }
509 
510 static ssize_t lstats_write(struct file *file, const char __user *buf,
511 			    size_t count, loff_t *offs)
512 {
513 	struct task_struct *task = get_proc_task(file_inode(file));
514 
515 	if (!task)
516 		return -ESRCH;
517 	clear_all_latency_tracing(task);
518 	put_task_struct(task);
519 
520 	return count;
521 }
522 
523 static const struct file_operations proc_lstats_operations = {
524 	.open		= lstats_open,
525 	.read		= seq_read,
526 	.write		= lstats_write,
527 	.llseek		= seq_lseek,
528 	.release	= single_release,
529 };
530 
531 #endif
532 
533 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
534 			  struct pid *pid, struct task_struct *task)
535 {
536 	unsigned long totalpages = totalram_pages + total_swap_pages;
537 	unsigned long points = 0;
538 
539 	points = oom_badness(task, NULL, NULL, totalpages) *
540 					1000 / totalpages;
541 	seq_printf(m, "%lu\n", points);
542 
543 	return 0;
544 }
545 
546 struct limit_names {
547 	const char *name;
548 	const char *unit;
549 };
550 
551 static const struct limit_names lnames[RLIM_NLIMITS] = {
552 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
553 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
554 	[RLIMIT_DATA] = {"Max data size", "bytes"},
555 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
556 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
557 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
558 	[RLIMIT_NPROC] = {"Max processes", "processes"},
559 	[RLIMIT_NOFILE] = {"Max open files", "files"},
560 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
561 	[RLIMIT_AS] = {"Max address space", "bytes"},
562 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
563 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
564 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
565 	[RLIMIT_NICE] = {"Max nice priority", NULL},
566 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
567 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
568 };
569 
570 /* Display limits for a process */
571 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
572 			   struct pid *pid, struct task_struct *task)
573 {
574 	unsigned int i;
575 	unsigned long flags;
576 
577 	struct rlimit rlim[RLIM_NLIMITS];
578 
579 	if (!lock_task_sighand(task, &flags))
580 		return 0;
581 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
582 	unlock_task_sighand(task, &flags);
583 
584 	/*
585 	 * print the file header
586 	 */
587        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
588 		  "Limit", "Soft Limit", "Hard Limit", "Units");
589 
590 	for (i = 0; i < RLIM_NLIMITS; i++) {
591 		if (rlim[i].rlim_cur == RLIM_INFINITY)
592 			seq_printf(m, "%-25s %-20s ",
593 				   lnames[i].name, "unlimited");
594 		else
595 			seq_printf(m, "%-25s %-20lu ",
596 				   lnames[i].name, rlim[i].rlim_cur);
597 
598 		if (rlim[i].rlim_max == RLIM_INFINITY)
599 			seq_printf(m, "%-20s ", "unlimited");
600 		else
601 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
602 
603 		if (lnames[i].unit)
604 			seq_printf(m, "%-10s\n", lnames[i].unit);
605 		else
606 			seq_putc(m, '\n');
607 	}
608 
609 	return 0;
610 }
611 
612 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
613 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
614 			    struct pid *pid, struct task_struct *task)
615 {
616 	long nr;
617 	unsigned long args[6], sp, pc;
618 	int res;
619 
620 	res = lock_trace(task);
621 	if (res)
622 		return res;
623 
624 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
625 		seq_puts(m, "running\n");
626 	else if (nr < 0)
627 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
628 	else
629 		seq_printf(m,
630 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
631 		       nr,
632 		       args[0], args[1], args[2], args[3], args[4], args[5],
633 		       sp, pc);
634 	unlock_trace(task);
635 
636 	return 0;
637 }
638 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
639 
640 /************************************************************************/
641 /*                       Here the fs part begins                        */
642 /************************************************************************/
643 
644 /* permission checks */
645 static int proc_fd_access_allowed(struct inode *inode)
646 {
647 	struct task_struct *task;
648 	int allowed = 0;
649 	/* Allow access to a task's file descriptors if it is us or we
650 	 * may use ptrace attach to the process and find out that
651 	 * information.
652 	 */
653 	task = get_proc_task(inode);
654 	if (task) {
655 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
656 		put_task_struct(task);
657 	}
658 	return allowed;
659 }
660 
661 int proc_setattr(struct dentry *dentry, struct iattr *attr)
662 {
663 	int error;
664 	struct inode *inode = d_inode(dentry);
665 
666 	if (attr->ia_valid & ATTR_MODE)
667 		return -EPERM;
668 
669 	error = setattr_prepare(dentry, attr);
670 	if (error)
671 		return error;
672 
673 	setattr_copy(inode, attr);
674 	mark_inode_dirty(inode);
675 	return 0;
676 }
677 
678 /*
679  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
680  * or euid/egid (for hide_pid_min=2)?
681  */
682 static bool has_pid_permissions(struct pid_namespace *pid,
683 				 struct task_struct *task,
684 				 int hide_pid_min)
685 {
686 	if (pid->hide_pid < hide_pid_min)
687 		return true;
688 	if (in_group_p(pid->pid_gid))
689 		return true;
690 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
691 }
692 
693 
694 static int proc_pid_permission(struct inode *inode, int mask)
695 {
696 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
697 	struct task_struct *task;
698 	bool has_perms;
699 
700 	task = get_proc_task(inode);
701 	if (!task)
702 		return -ESRCH;
703 	has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
704 	put_task_struct(task);
705 
706 	if (!has_perms) {
707 		if (pid->hide_pid == HIDEPID_INVISIBLE) {
708 			/*
709 			 * Let's make getdents(), stat(), and open()
710 			 * consistent with each other.  If a process
711 			 * may not stat() a file, it shouldn't be seen
712 			 * in procfs at all.
713 			 */
714 			return -ENOENT;
715 		}
716 
717 		return -EPERM;
718 	}
719 	return generic_permission(inode, mask);
720 }
721 
722 
723 
724 static const struct inode_operations proc_def_inode_operations = {
725 	.setattr	= proc_setattr,
726 };
727 
728 static int proc_single_show(struct seq_file *m, void *v)
729 {
730 	struct inode *inode = m->private;
731 	struct pid_namespace *ns;
732 	struct pid *pid;
733 	struct task_struct *task;
734 	int ret;
735 
736 	ns = inode->i_sb->s_fs_info;
737 	pid = proc_pid(inode);
738 	task = get_pid_task(pid, PIDTYPE_PID);
739 	if (!task)
740 		return -ESRCH;
741 
742 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
743 
744 	put_task_struct(task);
745 	return ret;
746 }
747 
748 static int proc_single_open(struct inode *inode, struct file *filp)
749 {
750 	return single_open(filp, proc_single_show, inode);
751 }
752 
753 static const struct file_operations proc_single_file_operations = {
754 	.open		= proc_single_open,
755 	.read		= seq_read,
756 	.llseek		= seq_lseek,
757 	.release	= single_release,
758 };
759 
760 
761 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
762 {
763 	struct task_struct *task = get_proc_task(inode);
764 	struct mm_struct *mm = ERR_PTR(-ESRCH);
765 
766 	if (task) {
767 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
768 		put_task_struct(task);
769 
770 		if (!IS_ERR_OR_NULL(mm)) {
771 			/* ensure this mm_struct can't be freed */
772 			mmgrab(mm);
773 			/* but do not pin its memory */
774 			mmput(mm);
775 		}
776 	}
777 
778 	return mm;
779 }
780 
781 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
782 {
783 	struct mm_struct *mm = proc_mem_open(inode, mode);
784 
785 	if (IS_ERR(mm))
786 		return PTR_ERR(mm);
787 
788 	file->private_data = mm;
789 	return 0;
790 }
791 
792 static int mem_open(struct inode *inode, struct file *file)
793 {
794 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
795 
796 	/* OK to pass negative loff_t, we can catch out-of-range */
797 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
798 
799 	return ret;
800 }
801 
802 static ssize_t mem_rw(struct file *file, char __user *buf,
803 			size_t count, loff_t *ppos, int write)
804 {
805 	struct mm_struct *mm = file->private_data;
806 	unsigned long addr = *ppos;
807 	ssize_t copied;
808 	char *page;
809 	unsigned int flags;
810 
811 	if (!mm)
812 		return 0;
813 
814 	page = (char *)__get_free_page(GFP_TEMPORARY);
815 	if (!page)
816 		return -ENOMEM;
817 
818 	copied = 0;
819 	if (!mmget_not_zero(mm))
820 		goto free;
821 
822 	/* Maybe we should limit FOLL_FORCE to actual ptrace users? */
823 	flags = FOLL_FORCE;
824 	if (write)
825 		flags |= FOLL_WRITE;
826 
827 	while (count > 0) {
828 		int this_len = min_t(int, count, PAGE_SIZE);
829 
830 		if (write && copy_from_user(page, buf, this_len)) {
831 			copied = -EFAULT;
832 			break;
833 		}
834 
835 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
836 		if (!this_len) {
837 			if (!copied)
838 				copied = -EIO;
839 			break;
840 		}
841 
842 		if (!write && copy_to_user(buf, page, this_len)) {
843 			copied = -EFAULT;
844 			break;
845 		}
846 
847 		buf += this_len;
848 		addr += this_len;
849 		copied += this_len;
850 		count -= this_len;
851 	}
852 	*ppos = addr;
853 
854 	mmput(mm);
855 free:
856 	free_page((unsigned long) page);
857 	return copied;
858 }
859 
860 static ssize_t mem_read(struct file *file, char __user *buf,
861 			size_t count, loff_t *ppos)
862 {
863 	return mem_rw(file, buf, count, ppos, 0);
864 }
865 
866 static ssize_t mem_write(struct file *file, const char __user *buf,
867 			 size_t count, loff_t *ppos)
868 {
869 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
870 }
871 
872 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
873 {
874 	switch (orig) {
875 	case 0:
876 		file->f_pos = offset;
877 		break;
878 	case 1:
879 		file->f_pos += offset;
880 		break;
881 	default:
882 		return -EINVAL;
883 	}
884 	force_successful_syscall_return();
885 	return file->f_pos;
886 }
887 
888 static int mem_release(struct inode *inode, struct file *file)
889 {
890 	struct mm_struct *mm = file->private_data;
891 	if (mm)
892 		mmdrop(mm);
893 	return 0;
894 }
895 
896 static const struct file_operations proc_mem_operations = {
897 	.llseek		= mem_lseek,
898 	.read		= mem_read,
899 	.write		= mem_write,
900 	.open		= mem_open,
901 	.release	= mem_release,
902 };
903 
904 static int environ_open(struct inode *inode, struct file *file)
905 {
906 	return __mem_open(inode, file, PTRACE_MODE_READ);
907 }
908 
909 static ssize_t environ_read(struct file *file, char __user *buf,
910 			size_t count, loff_t *ppos)
911 {
912 	char *page;
913 	unsigned long src = *ppos;
914 	int ret = 0;
915 	struct mm_struct *mm = file->private_data;
916 	unsigned long env_start, env_end;
917 
918 	/* Ensure the process spawned far enough to have an environment. */
919 	if (!mm || !mm->env_end)
920 		return 0;
921 
922 	page = (char *)__get_free_page(GFP_TEMPORARY);
923 	if (!page)
924 		return -ENOMEM;
925 
926 	ret = 0;
927 	if (!mmget_not_zero(mm))
928 		goto free;
929 
930 	down_read(&mm->mmap_sem);
931 	env_start = mm->env_start;
932 	env_end = mm->env_end;
933 	up_read(&mm->mmap_sem);
934 
935 	while (count > 0) {
936 		size_t this_len, max_len;
937 		int retval;
938 
939 		if (src >= (env_end - env_start))
940 			break;
941 
942 		this_len = env_end - (env_start + src);
943 
944 		max_len = min_t(size_t, PAGE_SIZE, count);
945 		this_len = min(max_len, this_len);
946 
947 		retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
948 
949 		if (retval <= 0) {
950 			ret = retval;
951 			break;
952 		}
953 
954 		if (copy_to_user(buf, page, retval)) {
955 			ret = -EFAULT;
956 			break;
957 		}
958 
959 		ret += retval;
960 		src += retval;
961 		buf += retval;
962 		count -= retval;
963 	}
964 	*ppos = src;
965 	mmput(mm);
966 
967 free:
968 	free_page((unsigned long) page);
969 	return ret;
970 }
971 
972 static const struct file_operations proc_environ_operations = {
973 	.open		= environ_open,
974 	.read		= environ_read,
975 	.llseek		= generic_file_llseek,
976 	.release	= mem_release,
977 };
978 
979 static int auxv_open(struct inode *inode, struct file *file)
980 {
981 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
982 }
983 
984 static ssize_t auxv_read(struct file *file, char __user *buf,
985 			size_t count, loff_t *ppos)
986 {
987 	struct mm_struct *mm = file->private_data;
988 	unsigned int nwords = 0;
989 
990 	if (!mm)
991 		return 0;
992 	do {
993 		nwords += 2;
994 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
995 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
996 				       nwords * sizeof(mm->saved_auxv[0]));
997 }
998 
999 static const struct file_operations proc_auxv_operations = {
1000 	.open		= auxv_open,
1001 	.read		= auxv_read,
1002 	.llseek		= generic_file_llseek,
1003 	.release	= mem_release,
1004 };
1005 
1006 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1007 			    loff_t *ppos)
1008 {
1009 	struct task_struct *task = get_proc_task(file_inode(file));
1010 	char buffer[PROC_NUMBUF];
1011 	int oom_adj = OOM_ADJUST_MIN;
1012 	size_t len;
1013 
1014 	if (!task)
1015 		return -ESRCH;
1016 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1017 		oom_adj = OOM_ADJUST_MAX;
1018 	else
1019 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1020 			  OOM_SCORE_ADJ_MAX;
1021 	put_task_struct(task);
1022 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1023 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1024 }
1025 
1026 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1027 {
1028 	static DEFINE_MUTEX(oom_adj_mutex);
1029 	struct mm_struct *mm = NULL;
1030 	struct task_struct *task;
1031 	int err = 0;
1032 
1033 	task = get_proc_task(file_inode(file));
1034 	if (!task)
1035 		return -ESRCH;
1036 
1037 	mutex_lock(&oom_adj_mutex);
1038 	if (legacy) {
1039 		if (oom_adj < task->signal->oom_score_adj &&
1040 				!capable(CAP_SYS_RESOURCE)) {
1041 			err = -EACCES;
1042 			goto err_unlock;
1043 		}
1044 		/*
1045 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1046 		 * /proc/pid/oom_score_adj instead.
1047 		 */
1048 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1049 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1050 			  task_pid_nr(task));
1051 	} else {
1052 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1053 				!capable(CAP_SYS_RESOURCE)) {
1054 			err = -EACCES;
1055 			goto err_unlock;
1056 		}
1057 	}
1058 
1059 	/*
1060 	 * Make sure we will check other processes sharing the mm if this is
1061 	 * not vfrok which wants its own oom_score_adj.
1062 	 * pin the mm so it doesn't go away and get reused after task_unlock
1063 	 */
1064 	if (!task->vfork_done) {
1065 		struct task_struct *p = find_lock_task_mm(task);
1066 
1067 		if (p) {
1068 			if (atomic_read(&p->mm->mm_users) > 1) {
1069 				mm = p->mm;
1070 				mmgrab(mm);
1071 			}
1072 			task_unlock(p);
1073 		}
1074 	}
1075 
1076 	task->signal->oom_score_adj = oom_adj;
1077 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1078 		task->signal->oom_score_adj_min = (short)oom_adj;
1079 	trace_oom_score_adj_update(task);
1080 
1081 	if (mm) {
1082 		struct task_struct *p;
1083 
1084 		rcu_read_lock();
1085 		for_each_process(p) {
1086 			if (same_thread_group(task, p))
1087 				continue;
1088 
1089 			/* do not touch kernel threads or the global init */
1090 			if (p->flags & PF_KTHREAD || is_global_init(p))
1091 				continue;
1092 
1093 			task_lock(p);
1094 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1095 				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1096 						task_pid_nr(p), p->comm,
1097 						p->signal->oom_score_adj, oom_adj,
1098 						task_pid_nr(task), task->comm);
1099 				p->signal->oom_score_adj = oom_adj;
1100 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1101 					p->signal->oom_score_adj_min = (short)oom_adj;
1102 			}
1103 			task_unlock(p);
1104 		}
1105 		rcu_read_unlock();
1106 		mmdrop(mm);
1107 	}
1108 err_unlock:
1109 	mutex_unlock(&oom_adj_mutex);
1110 	put_task_struct(task);
1111 	return err;
1112 }
1113 
1114 /*
1115  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1116  * kernels.  The effective policy is defined by oom_score_adj, which has a
1117  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1118  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1119  * Processes that become oom disabled via oom_adj will still be oom disabled
1120  * with this implementation.
1121  *
1122  * oom_adj cannot be removed since existing userspace binaries use it.
1123  */
1124 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1125 			     size_t count, loff_t *ppos)
1126 {
1127 	char buffer[PROC_NUMBUF];
1128 	int oom_adj;
1129 	int err;
1130 
1131 	memset(buffer, 0, sizeof(buffer));
1132 	if (count > sizeof(buffer) - 1)
1133 		count = sizeof(buffer) - 1;
1134 	if (copy_from_user(buffer, buf, count)) {
1135 		err = -EFAULT;
1136 		goto out;
1137 	}
1138 
1139 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1140 	if (err)
1141 		goto out;
1142 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1143 	     oom_adj != OOM_DISABLE) {
1144 		err = -EINVAL;
1145 		goto out;
1146 	}
1147 
1148 	/*
1149 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1150 	 * value is always attainable.
1151 	 */
1152 	if (oom_adj == OOM_ADJUST_MAX)
1153 		oom_adj = OOM_SCORE_ADJ_MAX;
1154 	else
1155 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1156 
1157 	err = __set_oom_adj(file, oom_adj, true);
1158 out:
1159 	return err < 0 ? err : count;
1160 }
1161 
1162 static const struct file_operations proc_oom_adj_operations = {
1163 	.read		= oom_adj_read,
1164 	.write		= oom_adj_write,
1165 	.llseek		= generic_file_llseek,
1166 };
1167 
1168 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1169 					size_t count, loff_t *ppos)
1170 {
1171 	struct task_struct *task = get_proc_task(file_inode(file));
1172 	char buffer[PROC_NUMBUF];
1173 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1174 	size_t len;
1175 
1176 	if (!task)
1177 		return -ESRCH;
1178 	oom_score_adj = task->signal->oom_score_adj;
1179 	put_task_struct(task);
1180 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1181 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1182 }
1183 
1184 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1185 					size_t count, loff_t *ppos)
1186 {
1187 	char buffer[PROC_NUMBUF];
1188 	int oom_score_adj;
1189 	int err;
1190 
1191 	memset(buffer, 0, sizeof(buffer));
1192 	if (count > sizeof(buffer) - 1)
1193 		count = sizeof(buffer) - 1;
1194 	if (copy_from_user(buffer, buf, count)) {
1195 		err = -EFAULT;
1196 		goto out;
1197 	}
1198 
1199 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1200 	if (err)
1201 		goto out;
1202 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1203 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1204 		err = -EINVAL;
1205 		goto out;
1206 	}
1207 
1208 	err = __set_oom_adj(file, oom_score_adj, false);
1209 out:
1210 	return err < 0 ? err : count;
1211 }
1212 
1213 static const struct file_operations proc_oom_score_adj_operations = {
1214 	.read		= oom_score_adj_read,
1215 	.write		= oom_score_adj_write,
1216 	.llseek		= default_llseek,
1217 };
1218 
1219 #ifdef CONFIG_AUDITSYSCALL
1220 #define TMPBUFLEN 11
1221 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1222 				  size_t count, loff_t *ppos)
1223 {
1224 	struct inode * inode = file_inode(file);
1225 	struct task_struct *task = get_proc_task(inode);
1226 	ssize_t length;
1227 	char tmpbuf[TMPBUFLEN];
1228 
1229 	if (!task)
1230 		return -ESRCH;
1231 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1232 			   from_kuid(file->f_cred->user_ns,
1233 				     audit_get_loginuid(task)));
1234 	put_task_struct(task);
1235 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1236 }
1237 
1238 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1239 				   size_t count, loff_t *ppos)
1240 {
1241 	struct inode * inode = file_inode(file);
1242 	uid_t loginuid;
1243 	kuid_t kloginuid;
1244 	int rv;
1245 
1246 	rcu_read_lock();
1247 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1248 		rcu_read_unlock();
1249 		return -EPERM;
1250 	}
1251 	rcu_read_unlock();
1252 
1253 	if (*ppos != 0) {
1254 		/* No partial writes. */
1255 		return -EINVAL;
1256 	}
1257 
1258 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1259 	if (rv < 0)
1260 		return rv;
1261 
1262 	/* is userspace tring to explicitly UNSET the loginuid? */
1263 	if (loginuid == AUDIT_UID_UNSET) {
1264 		kloginuid = INVALID_UID;
1265 	} else {
1266 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1267 		if (!uid_valid(kloginuid))
1268 			return -EINVAL;
1269 	}
1270 
1271 	rv = audit_set_loginuid(kloginuid);
1272 	if (rv < 0)
1273 		return rv;
1274 	return count;
1275 }
1276 
1277 static const struct file_operations proc_loginuid_operations = {
1278 	.read		= proc_loginuid_read,
1279 	.write		= proc_loginuid_write,
1280 	.llseek		= generic_file_llseek,
1281 };
1282 
1283 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1284 				  size_t count, loff_t *ppos)
1285 {
1286 	struct inode * inode = file_inode(file);
1287 	struct task_struct *task = get_proc_task(inode);
1288 	ssize_t length;
1289 	char tmpbuf[TMPBUFLEN];
1290 
1291 	if (!task)
1292 		return -ESRCH;
1293 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1294 				audit_get_sessionid(task));
1295 	put_task_struct(task);
1296 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1297 }
1298 
1299 static const struct file_operations proc_sessionid_operations = {
1300 	.read		= proc_sessionid_read,
1301 	.llseek		= generic_file_llseek,
1302 };
1303 #endif
1304 
1305 #ifdef CONFIG_FAULT_INJECTION
1306 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1307 				      size_t count, loff_t *ppos)
1308 {
1309 	struct task_struct *task = get_proc_task(file_inode(file));
1310 	char buffer[PROC_NUMBUF];
1311 	size_t len;
1312 	int make_it_fail;
1313 
1314 	if (!task)
1315 		return -ESRCH;
1316 	make_it_fail = task->make_it_fail;
1317 	put_task_struct(task);
1318 
1319 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1320 
1321 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1322 }
1323 
1324 static ssize_t proc_fault_inject_write(struct file * file,
1325 			const char __user * buf, size_t count, loff_t *ppos)
1326 {
1327 	struct task_struct *task;
1328 	char buffer[PROC_NUMBUF];
1329 	int make_it_fail;
1330 	int rv;
1331 
1332 	if (!capable(CAP_SYS_RESOURCE))
1333 		return -EPERM;
1334 	memset(buffer, 0, sizeof(buffer));
1335 	if (count > sizeof(buffer) - 1)
1336 		count = sizeof(buffer) - 1;
1337 	if (copy_from_user(buffer, buf, count))
1338 		return -EFAULT;
1339 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1340 	if (rv < 0)
1341 		return rv;
1342 	if (make_it_fail < 0 || make_it_fail > 1)
1343 		return -EINVAL;
1344 
1345 	task = get_proc_task(file_inode(file));
1346 	if (!task)
1347 		return -ESRCH;
1348 	task->make_it_fail = make_it_fail;
1349 	put_task_struct(task);
1350 
1351 	return count;
1352 }
1353 
1354 static const struct file_operations proc_fault_inject_operations = {
1355 	.read		= proc_fault_inject_read,
1356 	.write		= proc_fault_inject_write,
1357 	.llseek		= generic_file_llseek,
1358 };
1359 #endif
1360 
1361 
1362 #ifdef CONFIG_SCHED_DEBUG
1363 /*
1364  * Print out various scheduling related per-task fields:
1365  */
1366 static int sched_show(struct seq_file *m, void *v)
1367 {
1368 	struct inode *inode = m->private;
1369 	struct task_struct *p;
1370 
1371 	p = get_proc_task(inode);
1372 	if (!p)
1373 		return -ESRCH;
1374 	proc_sched_show_task(p, m);
1375 
1376 	put_task_struct(p);
1377 
1378 	return 0;
1379 }
1380 
1381 static ssize_t
1382 sched_write(struct file *file, const char __user *buf,
1383 	    size_t count, loff_t *offset)
1384 {
1385 	struct inode *inode = file_inode(file);
1386 	struct task_struct *p;
1387 
1388 	p = get_proc_task(inode);
1389 	if (!p)
1390 		return -ESRCH;
1391 	proc_sched_set_task(p);
1392 
1393 	put_task_struct(p);
1394 
1395 	return count;
1396 }
1397 
1398 static int sched_open(struct inode *inode, struct file *filp)
1399 {
1400 	return single_open(filp, sched_show, inode);
1401 }
1402 
1403 static const struct file_operations proc_pid_sched_operations = {
1404 	.open		= sched_open,
1405 	.read		= seq_read,
1406 	.write		= sched_write,
1407 	.llseek		= seq_lseek,
1408 	.release	= single_release,
1409 };
1410 
1411 #endif
1412 
1413 #ifdef CONFIG_SCHED_AUTOGROUP
1414 /*
1415  * Print out autogroup related information:
1416  */
1417 static int sched_autogroup_show(struct seq_file *m, void *v)
1418 {
1419 	struct inode *inode = m->private;
1420 	struct task_struct *p;
1421 
1422 	p = get_proc_task(inode);
1423 	if (!p)
1424 		return -ESRCH;
1425 	proc_sched_autogroup_show_task(p, m);
1426 
1427 	put_task_struct(p);
1428 
1429 	return 0;
1430 }
1431 
1432 static ssize_t
1433 sched_autogroup_write(struct file *file, const char __user *buf,
1434 	    size_t count, loff_t *offset)
1435 {
1436 	struct inode *inode = file_inode(file);
1437 	struct task_struct *p;
1438 	char buffer[PROC_NUMBUF];
1439 	int nice;
1440 	int err;
1441 
1442 	memset(buffer, 0, sizeof(buffer));
1443 	if (count > sizeof(buffer) - 1)
1444 		count = sizeof(buffer) - 1;
1445 	if (copy_from_user(buffer, buf, count))
1446 		return -EFAULT;
1447 
1448 	err = kstrtoint(strstrip(buffer), 0, &nice);
1449 	if (err < 0)
1450 		return err;
1451 
1452 	p = get_proc_task(inode);
1453 	if (!p)
1454 		return -ESRCH;
1455 
1456 	err = proc_sched_autogroup_set_nice(p, nice);
1457 	if (err)
1458 		count = err;
1459 
1460 	put_task_struct(p);
1461 
1462 	return count;
1463 }
1464 
1465 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1466 {
1467 	int ret;
1468 
1469 	ret = single_open(filp, sched_autogroup_show, NULL);
1470 	if (!ret) {
1471 		struct seq_file *m = filp->private_data;
1472 
1473 		m->private = inode;
1474 	}
1475 	return ret;
1476 }
1477 
1478 static const struct file_operations proc_pid_sched_autogroup_operations = {
1479 	.open		= sched_autogroup_open,
1480 	.read		= seq_read,
1481 	.write		= sched_autogroup_write,
1482 	.llseek		= seq_lseek,
1483 	.release	= single_release,
1484 };
1485 
1486 #endif /* CONFIG_SCHED_AUTOGROUP */
1487 
1488 static ssize_t comm_write(struct file *file, const char __user *buf,
1489 				size_t count, loff_t *offset)
1490 {
1491 	struct inode *inode = file_inode(file);
1492 	struct task_struct *p;
1493 	char buffer[TASK_COMM_LEN];
1494 	const size_t maxlen = sizeof(buffer) - 1;
1495 
1496 	memset(buffer, 0, sizeof(buffer));
1497 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1498 		return -EFAULT;
1499 
1500 	p = get_proc_task(inode);
1501 	if (!p)
1502 		return -ESRCH;
1503 
1504 	if (same_thread_group(current, p))
1505 		set_task_comm(p, buffer);
1506 	else
1507 		count = -EINVAL;
1508 
1509 	put_task_struct(p);
1510 
1511 	return count;
1512 }
1513 
1514 static int comm_show(struct seq_file *m, void *v)
1515 {
1516 	struct inode *inode = m->private;
1517 	struct task_struct *p;
1518 
1519 	p = get_proc_task(inode);
1520 	if (!p)
1521 		return -ESRCH;
1522 
1523 	task_lock(p);
1524 	seq_printf(m, "%s\n", p->comm);
1525 	task_unlock(p);
1526 
1527 	put_task_struct(p);
1528 
1529 	return 0;
1530 }
1531 
1532 static int comm_open(struct inode *inode, struct file *filp)
1533 {
1534 	return single_open(filp, comm_show, inode);
1535 }
1536 
1537 static const struct file_operations proc_pid_set_comm_operations = {
1538 	.open		= comm_open,
1539 	.read		= seq_read,
1540 	.write		= comm_write,
1541 	.llseek		= seq_lseek,
1542 	.release	= single_release,
1543 };
1544 
1545 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1546 {
1547 	struct task_struct *task;
1548 	struct file *exe_file;
1549 
1550 	task = get_proc_task(d_inode(dentry));
1551 	if (!task)
1552 		return -ENOENT;
1553 	exe_file = get_task_exe_file(task);
1554 	put_task_struct(task);
1555 	if (exe_file) {
1556 		*exe_path = exe_file->f_path;
1557 		path_get(&exe_file->f_path);
1558 		fput(exe_file);
1559 		return 0;
1560 	} else
1561 		return -ENOENT;
1562 }
1563 
1564 static const char *proc_pid_get_link(struct dentry *dentry,
1565 				     struct inode *inode,
1566 				     struct delayed_call *done)
1567 {
1568 	struct path path;
1569 	int error = -EACCES;
1570 
1571 	if (!dentry)
1572 		return ERR_PTR(-ECHILD);
1573 
1574 	/* Are we allowed to snoop on the tasks file descriptors? */
1575 	if (!proc_fd_access_allowed(inode))
1576 		goto out;
1577 
1578 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1579 	if (error)
1580 		goto out;
1581 
1582 	nd_jump_link(&path);
1583 	return NULL;
1584 out:
1585 	return ERR_PTR(error);
1586 }
1587 
1588 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1589 {
1590 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1591 	char *pathname;
1592 	int len;
1593 
1594 	if (!tmp)
1595 		return -ENOMEM;
1596 
1597 	pathname = d_path(path, tmp, PAGE_SIZE);
1598 	len = PTR_ERR(pathname);
1599 	if (IS_ERR(pathname))
1600 		goto out;
1601 	len = tmp + PAGE_SIZE - 1 - pathname;
1602 
1603 	if (len > buflen)
1604 		len = buflen;
1605 	if (copy_to_user(buffer, pathname, len))
1606 		len = -EFAULT;
1607  out:
1608 	free_page((unsigned long)tmp);
1609 	return len;
1610 }
1611 
1612 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1613 {
1614 	int error = -EACCES;
1615 	struct inode *inode = d_inode(dentry);
1616 	struct path path;
1617 
1618 	/* Are we allowed to snoop on the tasks file descriptors? */
1619 	if (!proc_fd_access_allowed(inode))
1620 		goto out;
1621 
1622 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1623 	if (error)
1624 		goto out;
1625 
1626 	error = do_proc_readlink(&path, buffer, buflen);
1627 	path_put(&path);
1628 out:
1629 	return error;
1630 }
1631 
1632 const struct inode_operations proc_pid_link_inode_operations = {
1633 	.readlink	= proc_pid_readlink,
1634 	.get_link	= proc_pid_get_link,
1635 	.setattr	= proc_setattr,
1636 };
1637 
1638 
1639 /* building an inode */
1640 
1641 void task_dump_owner(struct task_struct *task, mode_t mode,
1642 		     kuid_t *ruid, kgid_t *rgid)
1643 {
1644 	/* Depending on the state of dumpable compute who should own a
1645 	 * proc file for a task.
1646 	 */
1647 	const struct cred *cred;
1648 	kuid_t uid;
1649 	kgid_t gid;
1650 
1651 	/* Default to the tasks effective ownership */
1652 	rcu_read_lock();
1653 	cred = __task_cred(task);
1654 	uid = cred->euid;
1655 	gid = cred->egid;
1656 	rcu_read_unlock();
1657 
1658 	/*
1659 	 * Before the /proc/pid/status file was created the only way to read
1660 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1661 	 * /proc/pid/status is slow enough that procps and other packages
1662 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1663 	 * made this apply to all per process world readable and executable
1664 	 * directories.
1665 	 */
1666 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1667 		struct mm_struct *mm;
1668 		task_lock(task);
1669 		mm = task->mm;
1670 		/* Make non-dumpable tasks owned by some root */
1671 		if (mm) {
1672 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1673 				struct user_namespace *user_ns = mm->user_ns;
1674 
1675 				uid = make_kuid(user_ns, 0);
1676 				if (!uid_valid(uid))
1677 					uid = GLOBAL_ROOT_UID;
1678 
1679 				gid = make_kgid(user_ns, 0);
1680 				if (!gid_valid(gid))
1681 					gid = GLOBAL_ROOT_GID;
1682 			}
1683 		} else {
1684 			uid = GLOBAL_ROOT_UID;
1685 			gid = GLOBAL_ROOT_GID;
1686 		}
1687 		task_unlock(task);
1688 	}
1689 	*ruid = uid;
1690 	*rgid = gid;
1691 }
1692 
1693 struct inode *proc_pid_make_inode(struct super_block * sb,
1694 				  struct task_struct *task, umode_t mode)
1695 {
1696 	struct inode * inode;
1697 	struct proc_inode *ei;
1698 
1699 	/* We need a new inode */
1700 
1701 	inode = new_inode(sb);
1702 	if (!inode)
1703 		goto out;
1704 
1705 	/* Common stuff */
1706 	ei = PROC_I(inode);
1707 	inode->i_mode = mode;
1708 	inode->i_ino = get_next_ino();
1709 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1710 	inode->i_op = &proc_def_inode_operations;
1711 
1712 	/*
1713 	 * grab the reference to task.
1714 	 */
1715 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1716 	if (!ei->pid)
1717 		goto out_unlock;
1718 
1719 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1720 	security_task_to_inode(task, inode);
1721 
1722 out:
1723 	return inode;
1724 
1725 out_unlock:
1726 	iput(inode);
1727 	return NULL;
1728 }
1729 
1730 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1731 {
1732 	struct inode *inode = d_inode(dentry);
1733 	struct task_struct *task;
1734 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1735 
1736 	generic_fillattr(inode, stat);
1737 
1738 	rcu_read_lock();
1739 	stat->uid = GLOBAL_ROOT_UID;
1740 	stat->gid = GLOBAL_ROOT_GID;
1741 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1742 	if (task) {
1743 		if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1744 			rcu_read_unlock();
1745 			/*
1746 			 * This doesn't prevent learning whether PID exists,
1747 			 * it only makes getattr() consistent with readdir().
1748 			 */
1749 			return -ENOENT;
1750 		}
1751 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1752 	}
1753 	rcu_read_unlock();
1754 	return 0;
1755 }
1756 
1757 /* dentry stuff */
1758 
1759 /*
1760  *	Exceptional case: normally we are not allowed to unhash a busy
1761  * directory. In this case, however, we can do it - no aliasing problems
1762  * due to the way we treat inodes.
1763  *
1764  * Rewrite the inode's ownerships here because the owning task may have
1765  * performed a setuid(), etc.
1766  *
1767  */
1768 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1769 {
1770 	struct inode *inode;
1771 	struct task_struct *task;
1772 
1773 	if (flags & LOOKUP_RCU)
1774 		return -ECHILD;
1775 
1776 	inode = d_inode(dentry);
1777 	task = get_proc_task(inode);
1778 
1779 	if (task) {
1780 		task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1781 
1782 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1783 		security_task_to_inode(task, inode);
1784 		put_task_struct(task);
1785 		return 1;
1786 	}
1787 	return 0;
1788 }
1789 
1790 static inline bool proc_inode_is_dead(struct inode *inode)
1791 {
1792 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1793 }
1794 
1795 int pid_delete_dentry(const struct dentry *dentry)
1796 {
1797 	/* Is the task we represent dead?
1798 	 * If so, then don't put the dentry on the lru list,
1799 	 * kill it immediately.
1800 	 */
1801 	return proc_inode_is_dead(d_inode(dentry));
1802 }
1803 
1804 const struct dentry_operations pid_dentry_operations =
1805 {
1806 	.d_revalidate	= pid_revalidate,
1807 	.d_delete	= pid_delete_dentry,
1808 };
1809 
1810 /* Lookups */
1811 
1812 /*
1813  * Fill a directory entry.
1814  *
1815  * If possible create the dcache entry and derive our inode number and
1816  * file type from dcache entry.
1817  *
1818  * Since all of the proc inode numbers are dynamically generated, the inode
1819  * numbers do not exist until the inode is cache.  This means creating the
1820  * the dcache entry in readdir is necessary to keep the inode numbers
1821  * reported by readdir in sync with the inode numbers reported
1822  * by stat.
1823  */
1824 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1825 	const char *name, int len,
1826 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1827 {
1828 	struct dentry *child, *dir = file->f_path.dentry;
1829 	struct qstr qname = QSTR_INIT(name, len);
1830 	struct inode *inode;
1831 	unsigned type;
1832 	ino_t ino;
1833 
1834 	child = d_hash_and_lookup(dir, &qname);
1835 	if (!child) {
1836 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1837 		child = d_alloc_parallel(dir, &qname, &wq);
1838 		if (IS_ERR(child))
1839 			goto end_instantiate;
1840 		if (d_in_lookup(child)) {
1841 			int err = instantiate(d_inode(dir), child, task, ptr);
1842 			d_lookup_done(child);
1843 			if (err < 0) {
1844 				dput(child);
1845 				goto end_instantiate;
1846 			}
1847 		}
1848 	}
1849 	inode = d_inode(child);
1850 	ino = inode->i_ino;
1851 	type = inode->i_mode >> 12;
1852 	dput(child);
1853 	return dir_emit(ctx, name, len, ino, type);
1854 
1855 end_instantiate:
1856 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1857 }
1858 
1859 /*
1860  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1861  * which represent vma start and end addresses.
1862  */
1863 static int dname_to_vma_addr(struct dentry *dentry,
1864 			     unsigned long *start, unsigned long *end)
1865 {
1866 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1867 		return -EINVAL;
1868 
1869 	return 0;
1870 }
1871 
1872 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1873 {
1874 	unsigned long vm_start, vm_end;
1875 	bool exact_vma_exists = false;
1876 	struct mm_struct *mm = NULL;
1877 	struct task_struct *task;
1878 	struct inode *inode;
1879 	int status = 0;
1880 
1881 	if (flags & LOOKUP_RCU)
1882 		return -ECHILD;
1883 
1884 	inode = d_inode(dentry);
1885 	task = get_proc_task(inode);
1886 	if (!task)
1887 		goto out_notask;
1888 
1889 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1890 	if (IS_ERR_OR_NULL(mm))
1891 		goto out;
1892 
1893 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1894 		down_read(&mm->mmap_sem);
1895 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1896 		up_read(&mm->mmap_sem);
1897 	}
1898 
1899 	mmput(mm);
1900 
1901 	if (exact_vma_exists) {
1902 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1903 
1904 		security_task_to_inode(task, inode);
1905 		status = 1;
1906 	}
1907 
1908 out:
1909 	put_task_struct(task);
1910 
1911 out_notask:
1912 	return status;
1913 }
1914 
1915 static const struct dentry_operations tid_map_files_dentry_operations = {
1916 	.d_revalidate	= map_files_d_revalidate,
1917 	.d_delete	= pid_delete_dentry,
1918 };
1919 
1920 static int map_files_get_link(struct dentry *dentry, struct path *path)
1921 {
1922 	unsigned long vm_start, vm_end;
1923 	struct vm_area_struct *vma;
1924 	struct task_struct *task;
1925 	struct mm_struct *mm;
1926 	int rc;
1927 
1928 	rc = -ENOENT;
1929 	task = get_proc_task(d_inode(dentry));
1930 	if (!task)
1931 		goto out;
1932 
1933 	mm = get_task_mm(task);
1934 	put_task_struct(task);
1935 	if (!mm)
1936 		goto out;
1937 
1938 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1939 	if (rc)
1940 		goto out_mmput;
1941 
1942 	rc = -ENOENT;
1943 	down_read(&mm->mmap_sem);
1944 	vma = find_exact_vma(mm, vm_start, vm_end);
1945 	if (vma && vma->vm_file) {
1946 		*path = vma->vm_file->f_path;
1947 		path_get(path);
1948 		rc = 0;
1949 	}
1950 	up_read(&mm->mmap_sem);
1951 
1952 out_mmput:
1953 	mmput(mm);
1954 out:
1955 	return rc;
1956 }
1957 
1958 struct map_files_info {
1959 	fmode_t		mode;
1960 	unsigned int	len;
1961 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1962 };
1963 
1964 /*
1965  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1966  * symlinks may be used to bypass permissions on ancestor directories in the
1967  * path to the file in question.
1968  */
1969 static const char *
1970 proc_map_files_get_link(struct dentry *dentry,
1971 			struct inode *inode,
1972 		        struct delayed_call *done)
1973 {
1974 	if (!capable(CAP_SYS_ADMIN))
1975 		return ERR_PTR(-EPERM);
1976 
1977 	return proc_pid_get_link(dentry, inode, done);
1978 }
1979 
1980 /*
1981  * Identical to proc_pid_link_inode_operations except for get_link()
1982  */
1983 static const struct inode_operations proc_map_files_link_inode_operations = {
1984 	.readlink	= proc_pid_readlink,
1985 	.get_link	= proc_map_files_get_link,
1986 	.setattr	= proc_setattr,
1987 };
1988 
1989 static int
1990 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1991 			   struct task_struct *task, const void *ptr)
1992 {
1993 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1994 	struct proc_inode *ei;
1995 	struct inode *inode;
1996 
1997 	inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
1998 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
1999 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2000 	if (!inode)
2001 		return -ENOENT;
2002 
2003 	ei = PROC_I(inode);
2004 	ei->op.proc_get_link = map_files_get_link;
2005 
2006 	inode->i_op = &proc_map_files_link_inode_operations;
2007 	inode->i_size = 64;
2008 
2009 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2010 	d_add(dentry, inode);
2011 
2012 	return 0;
2013 }
2014 
2015 static struct dentry *proc_map_files_lookup(struct inode *dir,
2016 		struct dentry *dentry, unsigned int flags)
2017 {
2018 	unsigned long vm_start, vm_end;
2019 	struct vm_area_struct *vma;
2020 	struct task_struct *task;
2021 	int result;
2022 	struct mm_struct *mm;
2023 
2024 	result = -ENOENT;
2025 	task = get_proc_task(dir);
2026 	if (!task)
2027 		goto out;
2028 
2029 	result = -EACCES;
2030 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2031 		goto out_put_task;
2032 
2033 	result = -ENOENT;
2034 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2035 		goto out_put_task;
2036 
2037 	mm = get_task_mm(task);
2038 	if (!mm)
2039 		goto out_put_task;
2040 
2041 	down_read(&mm->mmap_sem);
2042 	vma = find_exact_vma(mm, vm_start, vm_end);
2043 	if (!vma)
2044 		goto out_no_vma;
2045 
2046 	if (vma->vm_file)
2047 		result = proc_map_files_instantiate(dir, dentry, task,
2048 				(void *)(unsigned long)vma->vm_file->f_mode);
2049 
2050 out_no_vma:
2051 	up_read(&mm->mmap_sem);
2052 	mmput(mm);
2053 out_put_task:
2054 	put_task_struct(task);
2055 out:
2056 	return ERR_PTR(result);
2057 }
2058 
2059 static const struct inode_operations proc_map_files_inode_operations = {
2060 	.lookup		= proc_map_files_lookup,
2061 	.permission	= proc_fd_permission,
2062 	.setattr	= proc_setattr,
2063 };
2064 
2065 static int
2066 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2067 {
2068 	struct vm_area_struct *vma;
2069 	struct task_struct *task;
2070 	struct mm_struct *mm;
2071 	unsigned long nr_files, pos, i;
2072 	struct flex_array *fa = NULL;
2073 	struct map_files_info info;
2074 	struct map_files_info *p;
2075 	int ret;
2076 
2077 	ret = -ENOENT;
2078 	task = get_proc_task(file_inode(file));
2079 	if (!task)
2080 		goto out;
2081 
2082 	ret = -EACCES;
2083 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2084 		goto out_put_task;
2085 
2086 	ret = 0;
2087 	if (!dir_emit_dots(file, ctx))
2088 		goto out_put_task;
2089 
2090 	mm = get_task_mm(task);
2091 	if (!mm)
2092 		goto out_put_task;
2093 	down_read(&mm->mmap_sem);
2094 
2095 	nr_files = 0;
2096 
2097 	/*
2098 	 * We need two passes here:
2099 	 *
2100 	 *  1) Collect vmas of mapped files with mmap_sem taken
2101 	 *  2) Release mmap_sem and instantiate entries
2102 	 *
2103 	 * otherwise we get lockdep complained, since filldir()
2104 	 * routine might require mmap_sem taken in might_fault().
2105 	 */
2106 
2107 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2108 		if (vma->vm_file && ++pos > ctx->pos)
2109 			nr_files++;
2110 	}
2111 
2112 	if (nr_files) {
2113 		fa = flex_array_alloc(sizeof(info), nr_files,
2114 					GFP_KERNEL);
2115 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2116 						GFP_KERNEL)) {
2117 			ret = -ENOMEM;
2118 			if (fa)
2119 				flex_array_free(fa);
2120 			up_read(&mm->mmap_sem);
2121 			mmput(mm);
2122 			goto out_put_task;
2123 		}
2124 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2125 				vma = vma->vm_next) {
2126 			if (!vma->vm_file)
2127 				continue;
2128 			if (++pos <= ctx->pos)
2129 				continue;
2130 
2131 			info.mode = vma->vm_file->f_mode;
2132 			info.len = snprintf(info.name,
2133 					sizeof(info.name), "%lx-%lx",
2134 					vma->vm_start, vma->vm_end);
2135 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2136 				BUG();
2137 		}
2138 	}
2139 	up_read(&mm->mmap_sem);
2140 
2141 	for (i = 0; i < nr_files; i++) {
2142 		p = flex_array_get(fa, i);
2143 		if (!proc_fill_cache(file, ctx,
2144 				      p->name, p->len,
2145 				      proc_map_files_instantiate,
2146 				      task,
2147 				      (void *)(unsigned long)p->mode))
2148 			break;
2149 		ctx->pos++;
2150 	}
2151 	if (fa)
2152 		flex_array_free(fa);
2153 	mmput(mm);
2154 
2155 out_put_task:
2156 	put_task_struct(task);
2157 out:
2158 	return ret;
2159 }
2160 
2161 static const struct file_operations proc_map_files_operations = {
2162 	.read		= generic_read_dir,
2163 	.iterate_shared	= proc_map_files_readdir,
2164 	.llseek		= generic_file_llseek,
2165 };
2166 
2167 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2168 struct timers_private {
2169 	struct pid *pid;
2170 	struct task_struct *task;
2171 	struct sighand_struct *sighand;
2172 	struct pid_namespace *ns;
2173 	unsigned long flags;
2174 };
2175 
2176 static void *timers_start(struct seq_file *m, loff_t *pos)
2177 {
2178 	struct timers_private *tp = m->private;
2179 
2180 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2181 	if (!tp->task)
2182 		return ERR_PTR(-ESRCH);
2183 
2184 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2185 	if (!tp->sighand)
2186 		return ERR_PTR(-ESRCH);
2187 
2188 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2189 }
2190 
2191 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2192 {
2193 	struct timers_private *tp = m->private;
2194 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2195 }
2196 
2197 static void timers_stop(struct seq_file *m, void *v)
2198 {
2199 	struct timers_private *tp = m->private;
2200 
2201 	if (tp->sighand) {
2202 		unlock_task_sighand(tp->task, &tp->flags);
2203 		tp->sighand = NULL;
2204 	}
2205 
2206 	if (tp->task) {
2207 		put_task_struct(tp->task);
2208 		tp->task = NULL;
2209 	}
2210 }
2211 
2212 static int show_timer(struct seq_file *m, void *v)
2213 {
2214 	struct k_itimer *timer;
2215 	struct timers_private *tp = m->private;
2216 	int notify;
2217 	static const char * const nstr[] = {
2218 		[SIGEV_SIGNAL] = "signal",
2219 		[SIGEV_NONE] = "none",
2220 		[SIGEV_THREAD] = "thread",
2221 	};
2222 
2223 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2224 	notify = timer->it_sigev_notify;
2225 
2226 	seq_printf(m, "ID: %d\n", timer->it_id);
2227 	seq_printf(m, "signal: %d/%p\n",
2228 		   timer->sigq->info.si_signo,
2229 		   timer->sigq->info.si_value.sival_ptr);
2230 	seq_printf(m, "notify: %s/%s.%d\n",
2231 		   nstr[notify & ~SIGEV_THREAD_ID],
2232 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2233 		   pid_nr_ns(timer->it_pid, tp->ns));
2234 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2235 
2236 	return 0;
2237 }
2238 
2239 static const struct seq_operations proc_timers_seq_ops = {
2240 	.start	= timers_start,
2241 	.next	= timers_next,
2242 	.stop	= timers_stop,
2243 	.show	= show_timer,
2244 };
2245 
2246 static int proc_timers_open(struct inode *inode, struct file *file)
2247 {
2248 	struct timers_private *tp;
2249 
2250 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2251 			sizeof(struct timers_private));
2252 	if (!tp)
2253 		return -ENOMEM;
2254 
2255 	tp->pid = proc_pid(inode);
2256 	tp->ns = inode->i_sb->s_fs_info;
2257 	return 0;
2258 }
2259 
2260 static const struct file_operations proc_timers_operations = {
2261 	.open		= proc_timers_open,
2262 	.read		= seq_read,
2263 	.llseek		= seq_lseek,
2264 	.release	= seq_release_private,
2265 };
2266 #endif
2267 
2268 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2269 					size_t count, loff_t *offset)
2270 {
2271 	struct inode *inode = file_inode(file);
2272 	struct task_struct *p;
2273 	u64 slack_ns;
2274 	int err;
2275 
2276 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2277 	if (err < 0)
2278 		return err;
2279 
2280 	p = get_proc_task(inode);
2281 	if (!p)
2282 		return -ESRCH;
2283 
2284 	if (p != current) {
2285 		if (!capable(CAP_SYS_NICE)) {
2286 			count = -EPERM;
2287 			goto out;
2288 		}
2289 
2290 		err = security_task_setscheduler(p);
2291 		if (err) {
2292 			count = err;
2293 			goto out;
2294 		}
2295 	}
2296 
2297 	task_lock(p);
2298 	if (slack_ns == 0)
2299 		p->timer_slack_ns = p->default_timer_slack_ns;
2300 	else
2301 		p->timer_slack_ns = slack_ns;
2302 	task_unlock(p);
2303 
2304 out:
2305 	put_task_struct(p);
2306 
2307 	return count;
2308 }
2309 
2310 static int timerslack_ns_show(struct seq_file *m, void *v)
2311 {
2312 	struct inode *inode = m->private;
2313 	struct task_struct *p;
2314 	int err = 0;
2315 
2316 	p = get_proc_task(inode);
2317 	if (!p)
2318 		return -ESRCH;
2319 
2320 	if (p != current) {
2321 
2322 		if (!capable(CAP_SYS_NICE)) {
2323 			err = -EPERM;
2324 			goto out;
2325 		}
2326 		err = security_task_getscheduler(p);
2327 		if (err)
2328 			goto out;
2329 	}
2330 
2331 	task_lock(p);
2332 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2333 	task_unlock(p);
2334 
2335 out:
2336 	put_task_struct(p);
2337 
2338 	return err;
2339 }
2340 
2341 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2342 {
2343 	return single_open(filp, timerslack_ns_show, inode);
2344 }
2345 
2346 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2347 	.open		= timerslack_ns_open,
2348 	.read		= seq_read,
2349 	.write		= timerslack_ns_write,
2350 	.llseek		= seq_lseek,
2351 	.release	= single_release,
2352 };
2353 
2354 static int proc_pident_instantiate(struct inode *dir,
2355 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2356 {
2357 	const struct pid_entry *p = ptr;
2358 	struct inode *inode;
2359 	struct proc_inode *ei;
2360 
2361 	inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2362 	if (!inode)
2363 		goto out;
2364 
2365 	ei = PROC_I(inode);
2366 	if (S_ISDIR(inode->i_mode))
2367 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2368 	if (p->iop)
2369 		inode->i_op = p->iop;
2370 	if (p->fop)
2371 		inode->i_fop = p->fop;
2372 	ei->op = p->op;
2373 	d_set_d_op(dentry, &pid_dentry_operations);
2374 	d_add(dentry, inode);
2375 	/* Close the race of the process dying before we return the dentry */
2376 	if (pid_revalidate(dentry, 0))
2377 		return 0;
2378 out:
2379 	return -ENOENT;
2380 }
2381 
2382 static struct dentry *proc_pident_lookup(struct inode *dir,
2383 					 struct dentry *dentry,
2384 					 const struct pid_entry *ents,
2385 					 unsigned int nents)
2386 {
2387 	int error;
2388 	struct task_struct *task = get_proc_task(dir);
2389 	const struct pid_entry *p, *last;
2390 
2391 	error = -ENOENT;
2392 
2393 	if (!task)
2394 		goto out_no_task;
2395 
2396 	/*
2397 	 * Yes, it does not scale. And it should not. Don't add
2398 	 * new entries into /proc/<tgid>/ without very good reasons.
2399 	 */
2400 	last = &ents[nents];
2401 	for (p = ents; p < last; p++) {
2402 		if (p->len != dentry->d_name.len)
2403 			continue;
2404 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2405 			break;
2406 	}
2407 	if (p >= last)
2408 		goto out;
2409 
2410 	error = proc_pident_instantiate(dir, dentry, task, p);
2411 out:
2412 	put_task_struct(task);
2413 out_no_task:
2414 	return ERR_PTR(error);
2415 }
2416 
2417 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2418 		const struct pid_entry *ents, unsigned int nents)
2419 {
2420 	struct task_struct *task = get_proc_task(file_inode(file));
2421 	const struct pid_entry *p;
2422 
2423 	if (!task)
2424 		return -ENOENT;
2425 
2426 	if (!dir_emit_dots(file, ctx))
2427 		goto out;
2428 
2429 	if (ctx->pos >= nents + 2)
2430 		goto out;
2431 
2432 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2433 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2434 				proc_pident_instantiate, task, p))
2435 			break;
2436 		ctx->pos++;
2437 	}
2438 out:
2439 	put_task_struct(task);
2440 	return 0;
2441 }
2442 
2443 #ifdef CONFIG_SECURITY
2444 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2445 				  size_t count, loff_t *ppos)
2446 {
2447 	struct inode * inode = file_inode(file);
2448 	char *p = NULL;
2449 	ssize_t length;
2450 	struct task_struct *task = get_proc_task(inode);
2451 
2452 	if (!task)
2453 		return -ESRCH;
2454 
2455 	length = security_getprocattr(task,
2456 				      (char*)file->f_path.dentry->d_name.name,
2457 				      &p);
2458 	put_task_struct(task);
2459 	if (length > 0)
2460 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2461 	kfree(p);
2462 	return length;
2463 }
2464 
2465 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2466 				   size_t count, loff_t *ppos)
2467 {
2468 	struct inode * inode = file_inode(file);
2469 	void *page;
2470 	ssize_t length;
2471 	struct task_struct *task = get_proc_task(inode);
2472 
2473 	length = -ESRCH;
2474 	if (!task)
2475 		goto out_no_task;
2476 
2477 	/* A task may only write its own attributes. */
2478 	length = -EACCES;
2479 	if (current != task)
2480 		goto out;
2481 
2482 	if (count > PAGE_SIZE)
2483 		count = PAGE_SIZE;
2484 
2485 	/* No partial writes. */
2486 	length = -EINVAL;
2487 	if (*ppos != 0)
2488 		goto out;
2489 
2490 	page = memdup_user(buf, count);
2491 	if (IS_ERR(page)) {
2492 		length = PTR_ERR(page);
2493 		goto out;
2494 	}
2495 
2496 	/* Guard against adverse ptrace interaction */
2497 	length = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2498 	if (length < 0)
2499 		goto out_free;
2500 
2501 	length = security_setprocattr(file->f_path.dentry->d_name.name,
2502 				      page, count);
2503 	mutex_unlock(&current->signal->cred_guard_mutex);
2504 out_free:
2505 	kfree(page);
2506 out:
2507 	put_task_struct(task);
2508 out_no_task:
2509 	return length;
2510 }
2511 
2512 static const struct file_operations proc_pid_attr_operations = {
2513 	.read		= proc_pid_attr_read,
2514 	.write		= proc_pid_attr_write,
2515 	.llseek		= generic_file_llseek,
2516 };
2517 
2518 static const struct pid_entry attr_dir_stuff[] = {
2519 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2520 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2521 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2522 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2523 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2524 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2525 };
2526 
2527 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2528 {
2529 	return proc_pident_readdir(file, ctx,
2530 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2531 }
2532 
2533 static const struct file_operations proc_attr_dir_operations = {
2534 	.read		= generic_read_dir,
2535 	.iterate_shared	= proc_attr_dir_readdir,
2536 	.llseek		= generic_file_llseek,
2537 };
2538 
2539 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2540 				struct dentry *dentry, unsigned int flags)
2541 {
2542 	return proc_pident_lookup(dir, dentry,
2543 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2544 }
2545 
2546 static const struct inode_operations proc_attr_dir_inode_operations = {
2547 	.lookup		= proc_attr_dir_lookup,
2548 	.getattr	= pid_getattr,
2549 	.setattr	= proc_setattr,
2550 };
2551 
2552 #endif
2553 
2554 #ifdef CONFIG_ELF_CORE
2555 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2556 					 size_t count, loff_t *ppos)
2557 {
2558 	struct task_struct *task = get_proc_task(file_inode(file));
2559 	struct mm_struct *mm;
2560 	char buffer[PROC_NUMBUF];
2561 	size_t len;
2562 	int ret;
2563 
2564 	if (!task)
2565 		return -ESRCH;
2566 
2567 	ret = 0;
2568 	mm = get_task_mm(task);
2569 	if (mm) {
2570 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2571 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2572 				MMF_DUMP_FILTER_SHIFT));
2573 		mmput(mm);
2574 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2575 	}
2576 
2577 	put_task_struct(task);
2578 
2579 	return ret;
2580 }
2581 
2582 static ssize_t proc_coredump_filter_write(struct file *file,
2583 					  const char __user *buf,
2584 					  size_t count,
2585 					  loff_t *ppos)
2586 {
2587 	struct task_struct *task;
2588 	struct mm_struct *mm;
2589 	unsigned int val;
2590 	int ret;
2591 	int i;
2592 	unsigned long mask;
2593 
2594 	ret = kstrtouint_from_user(buf, count, 0, &val);
2595 	if (ret < 0)
2596 		return ret;
2597 
2598 	ret = -ESRCH;
2599 	task = get_proc_task(file_inode(file));
2600 	if (!task)
2601 		goto out_no_task;
2602 
2603 	mm = get_task_mm(task);
2604 	if (!mm)
2605 		goto out_no_mm;
2606 	ret = 0;
2607 
2608 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2609 		if (val & mask)
2610 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2611 		else
2612 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2613 	}
2614 
2615 	mmput(mm);
2616  out_no_mm:
2617 	put_task_struct(task);
2618  out_no_task:
2619 	if (ret < 0)
2620 		return ret;
2621 	return count;
2622 }
2623 
2624 static const struct file_operations proc_coredump_filter_operations = {
2625 	.read		= proc_coredump_filter_read,
2626 	.write		= proc_coredump_filter_write,
2627 	.llseek		= generic_file_llseek,
2628 };
2629 #endif
2630 
2631 #ifdef CONFIG_TASK_IO_ACCOUNTING
2632 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2633 {
2634 	struct task_io_accounting acct = task->ioac;
2635 	unsigned long flags;
2636 	int result;
2637 
2638 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2639 	if (result)
2640 		return result;
2641 
2642 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2643 		result = -EACCES;
2644 		goto out_unlock;
2645 	}
2646 
2647 	if (whole && lock_task_sighand(task, &flags)) {
2648 		struct task_struct *t = task;
2649 
2650 		task_io_accounting_add(&acct, &task->signal->ioac);
2651 		while_each_thread(task, t)
2652 			task_io_accounting_add(&acct, &t->ioac);
2653 
2654 		unlock_task_sighand(task, &flags);
2655 	}
2656 	seq_printf(m,
2657 		   "rchar: %llu\n"
2658 		   "wchar: %llu\n"
2659 		   "syscr: %llu\n"
2660 		   "syscw: %llu\n"
2661 		   "read_bytes: %llu\n"
2662 		   "write_bytes: %llu\n"
2663 		   "cancelled_write_bytes: %llu\n",
2664 		   (unsigned long long)acct.rchar,
2665 		   (unsigned long long)acct.wchar,
2666 		   (unsigned long long)acct.syscr,
2667 		   (unsigned long long)acct.syscw,
2668 		   (unsigned long long)acct.read_bytes,
2669 		   (unsigned long long)acct.write_bytes,
2670 		   (unsigned long long)acct.cancelled_write_bytes);
2671 	result = 0;
2672 
2673 out_unlock:
2674 	mutex_unlock(&task->signal->cred_guard_mutex);
2675 	return result;
2676 }
2677 
2678 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2679 				  struct pid *pid, struct task_struct *task)
2680 {
2681 	return do_io_accounting(task, m, 0);
2682 }
2683 
2684 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2685 				   struct pid *pid, struct task_struct *task)
2686 {
2687 	return do_io_accounting(task, m, 1);
2688 }
2689 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2690 
2691 #ifdef CONFIG_USER_NS
2692 static int proc_id_map_open(struct inode *inode, struct file *file,
2693 	const struct seq_operations *seq_ops)
2694 {
2695 	struct user_namespace *ns = NULL;
2696 	struct task_struct *task;
2697 	struct seq_file *seq;
2698 	int ret = -EINVAL;
2699 
2700 	task = get_proc_task(inode);
2701 	if (task) {
2702 		rcu_read_lock();
2703 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2704 		rcu_read_unlock();
2705 		put_task_struct(task);
2706 	}
2707 	if (!ns)
2708 		goto err;
2709 
2710 	ret = seq_open(file, seq_ops);
2711 	if (ret)
2712 		goto err_put_ns;
2713 
2714 	seq = file->private_data;
2715 	seq->private = ns;
2716 
2717 	return 0;
2718 err_put_ns:
2719 	put_user_ns(ns);
2720 err:
2721 	return ret;
2722 }
2723 
2724 static int proc_id_map_release(struct inode *inode, struct file *file)
2725 {
2726 	struct seq_file *seq = file->private_data;
2727 	struct user_namespace *ns = seq->private;
2728 	put_user_ns(ns);
2729 	return seq_release(inode, file);
2730 }
2731 
2732 static int proc_uid_map_open(struct inode *inode, struct file *file)
2733 {
2734 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2735 }
2736 
2737 static int proc_gid_map_open(struct inode *inode, struct file *file)
2738 {
2739 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2740 }
2741 
2742 static int proc_projid_map_open(struct inode *inode, struct file *file)
2743 {
2744 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2745 }
2746 
2747 static const struct file_operations proc_uid_map_operations = {
2748 	.open		= proc_uid_map_open,
2749 	.write		= proc_uid_map_write,
2750 	.read		= seq_read,
2751 	.llseek		= seq_lseek,
2752 	.release	= proc_id_map_release,
2753 };
2754 
2755 static const struct file_operations proc_gid_map_operations = {
2756 	.open		= proc_gid_map_open,
2757 	.write		= proc_gid_map_write,
2758 	.read		= seq_read,
2759 	.llseek		= seq_lseek,
2760 	.release	= proc_id_map_release,
2761 };
2762 
2763 static const struct file_operations proc_projid_map_operations = {
2764 	.open		= proc_projid_map_open,
2765 	.write		= proc_projid_map_write,
2766 	.read		= seq_read,
2767 	.llseek		= seq_lseek,
2768 	.release	= proc_id_map_release,
2769 };
2770 
2771 static int proc_setgroups_open(struct inode *inode, struct file *file)
2772 {
2773 	struct user_namespace *ns = NULL;
2774 	struct task_struct *task;
2775 	int ret;
2776 
2777 	ret = -ESRCH;
2778 	task = get_proc_task(inode);
2779 	if (task) {
2780 		rcu_read_lock();
2781 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2782 		rcu_read_unlock();
2783 		put_task_struct(task);
2784 	}
2785 	if (!ns)
2786 		goto err;
2787 
2788 	if (file->f_mode & FMODE_WRITE) {
2789 		ret = -EACCES;
2790 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2791 			goto err_put_ns;
2792 	}
2793 
2794 	ret = single_open(file, &proc_setgroups_show, ns);
2795 	if (ret)
2796 		goto err_put_ns;
2797 
2798 	return 0;
2799 err_put_ns:
2800 	put_user_ns(ns);
2801 err:
2802 	return ret;
2803 }
2804 
2805 static int proc_setgroups_release(struct inode *inode, struct file *file)
2806 {
2807 	struct seq_file *seq = file->private_data;
2808 	struct user_namespace *ns = seq->private;
2809 	int ret = single_release(inode, file);
2810 	put_user_ns(ns);
2811 	return ret;
2812 }
2813 
2814 static const struct file_operations proc_setgroups_operations = {
2815 	.open		= proc_setgroups_open,
2816 	.write		= proc_setgroups_write,
2817 	.read		= seq_read,
2818 	.llseek		= seq_lseek,
2819 	.release	= proc_setgroups_release,
2820 };
2821 #endif /* CONFIG_USER_NS */
2822 
2823 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2824 				struct pid *pid, struct task_struct *task)
2825 {
2826 	int err = lock_trace(task);
2827 	if (!err) {
2828 		seq_printf(m, "%08x\n", task->personality);
2829 		unlock_trace(task);
2830 	}
2831 	return err;
2832 }
2833 
2834 /*
2835  * Thread groups
2836  */
2837 static const struct file_operations proc_task_operations;
2838 static const struct inode_operations proc_task_inode_operations;
2839 
2840 static const struct pid_entry tgid_base_stuff[] = {
2841 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2842 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2843 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2844 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2845 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2846 #ifdef CONFIG_NET
2847 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2848 #endif
2849 	REG("environ",    S_IRUSR, proc_environ_operations),
2850 	REG("auxv",       S_IRUSR, proc_auxv_operations),
2851 	ONE("status",     S_IRUGO, proc_pid_status),
2852 	ONE("personality", S_IRUSR, proc_pid_personality),
2853 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2854 #ifdef CONFIG_SCHED_DEBUG
2855 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2856 #endif
2857 #ifdef CONFIG_SCHED_AUTOGROUP
2858 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2859 #endif
2860 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2861 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2862 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2863 #endif
2864 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2865 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2866 	ONE("statm",      S_IRUGO, proc_pid_statm),
2867 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2868 #ifdef CONFIG_NUMA
2869 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2870 #endif
2871 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2872 	LNK("cwd",        proc_cwd_link),
2873 	LNK("root",       proc_root_link),
2874 	LNK("exe",        proc_exe_link),
2875 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2876 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2877 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2878 #ifdef CONFIG_PROC_PAGE_MONITOR
2879 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2880 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2881 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2882 #endif
2883 #ifdef CONFIG_SECURITY
2884 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2885 #endif
2886 #ifdef CONFIG_KALLSYMS
2887 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2888 #endif
2889 #ifdef CONFIG_STACKTRACE
2890 	ONE("stack",      S_IRUSR, proc_pid_stack),
2891 #endif
2892 #ifdef CONFIG_SCHED_INFO
2893 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2894 #endif
2895 #ifdef CONFIG_LATENCYTOP
2896 	REG("latency",  S_IRUGO, proc_lstats_operations),
2897 #endif
2898 #ifdef CONFIG_PROC_PID_CPUSET
2899 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2900 #endif
2901 #ifdef CONFIG_CGROUPS
2902 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2903 #endif
2904 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2905 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2906 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2907 #ifdef CONFIG_AUDITSYSCALL
2908 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2909 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2910 #endif
2911 #ifdef CONFIG_FAULT_INJECTION
2912 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2913 #endif
2914 #ifdef CONFIG_ELF_CORE
2915 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2916 #endif
2917 #ifdef CONFIG_TASK_IO_ACCOUNTING
2918 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2919 #endif
2920 #ifdef CONFIG_HARDWALL
2921 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2922 #endif
2923 #ifdef CONFIG_USER_NS
2924 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2925 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2926 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2927 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2928 #endif
2929 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2930 	REG("timers",	  S_IRUGO, proc_timers_operations),
2931 #endif
2932 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2933 };
2934 
2935 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2936 {
2937 	return proc_pident_readdir(file, ctx,
2938 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2939 }
2940 
2941 static const struct file_operations proc_tgid_base_operations = {
2942 	.read		= generic_read_dir,
2943 	.iterate_shared	= proc_tgid_base_readdir,
2944 	.llseek		= generic_file_llseek,
2945 };
2946 
2947 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2948 {
2949 	return proc_pident_lookup(dir, dentry,
2950 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2951 }
2952 
2953 static const struct inode_operations proc_tgid_base_inode_operations = {
2954 	.lookup		= proc_tgid_base_lookup,
2955 	.getattr	= pid_getattr,
2956 	.setattr	= proc_setattr,
2957 	.permission	= proc_pid_permission,
2958 };
2959 
2960 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2961 {
2962 	struct dentry *dentry, *leader, *dir;
2963 	char buf[PROC_NUMBUF];
2964 	struct qstr name;
2965 
2966 	name.name = buf;
2967 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2968 	/* no ->d_hash() rejects on procfs */
2969 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2970 	if (dentry) {
2971 		d_invalidate(dentry);
2972 		dput(dentry);
2973 	}
2974 
2975 	if (pid == tgid)
2976 		return;
2977 
2978 	name.name = buf;
2979 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2980 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2981 	if (!leader)
2982 		goto out;
2983 
2984 	name.name = "task";
2985 	name.len = strlen(name.name);
2986 	dir = d_hash_and_lookup(leader, &name);
2987 	if (!dir)
2988 		goto out_put_leader;
2989 
2990 	name.name = buf;
2991 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2992 	dentry = d_hash_and_lookup(dir, &name);
2993 	if (dentry) {
2994 		d_invalidate(dentry);
2995 		dput(dentry);
2996 	}
2997 
2998 	dput(dir);
2999 out_put_leader:
3000 	dput(leader);
3001 out:
3002 	return;
3003 }
3004 
3005 /**
3006  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3007  * @task: task that should be flushed.
3008  *
3009  * When flushing dentries from proc, one needs to flush them from global
3010  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3011  * in. This call is supposed to do all of this job.
3012  *
3013  * Looks in the dcache for
3014  * /proc/@pid
3015  * /proc/@tgid/task/@pid
3016  * if either directory is present flushes it and all of it'ts children
3017  * from the dcache.
3018  *
3019  * It is safe and reasonable to cache /proc entries for a task until
3020  * that task exits.  After that they just clog up the dcache with
3021  * useless entries, possibly causing useful dcache entries to be
3022  * flushed instead.  This routine is proved to flush those useless
3023  * dcache entries at process exit time.
3024  *
3025  * NOTE: This routine is just an optimization so it does not guarantee
3026  *       that no dcache entries will exist at process exit time it
3027  *       just makes it very unlikely that any will persist.
3028  */
3029 
3030 void proc_flush_task(struct task_struct *task)
3031 {
3032 	int i;
3033 	struct pid *pid, *tgid;
3034 	struct upid *upid;
3035 
3036 	pid = task_pid(task);
3037 	tgid = task_tgid(task);
3038 
3039 	for (i = 0; i <= pid->level; i++) {
3040 		upid = &pid->numbers[i];
3041 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3042 					tgid->numbers[i].nr);
3043 	}
3044 }
3045 
3046 static int proc_pid_instantiate(struct inode *dir,
3047 				   struct dentry * dentry,
3048 				   struct task_struct *task, const void *ptr)
3049 {
3050 	struct inode *inode;
3051 
3052 	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3053 	if (!inode)
3054 		goto out;
3055 
3056 	inode->i_op = &proc_tgid_base_inode_operations;
3057 	inode->i_fop = &proc_tgid_base_operations;
3058 	inode->i_flags|=S_IMMUTABLE;
3059 
3060 	set_nlink(inode, nlink_tgid);
3061 
3062 	d_set_d_op(dentry, &pid_dentry_operations);
3063 
3064 	d_add(dentry, inode);
3065 	/* Close the race of the process dying before we return the dentry */
3066 	if (pid_revalidate(dentry, 0))
3067 		return 0;
3068 out:
3069 	return -ENOENT;
3070 }
3071 
3072 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3073 {
3074 	int result = -ENOENT;
3075 	struct task_struct *task;
3076 	unsigned tgid;
3077 	struct pid_namespace *ns;
3078 
3079 	tgid = name_to_int(&dentry->d_name);
3080 	if (tgid == ~0U)
3081 		goto out;
3082 
3083 	ns = dentry->d_sb->s_fs_info;
3084 	rcu_read_lock();
3085 	task = find_task_by_pid_ns(tgid, ns);
3086 	if (task)
3087 		get_task_struct(task);
3088 	rcu_read_unlock();
3089 	if (!task)
3090 		goto out;
3091 
3092 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3093 	put_task_struct(task);
3094 out:
3095 	return ERR_PTR(result);
3096 }
3097 
3098 /*
3099  * Find the first task with tgid >= tgid
3100  *
3101  */
3102 struct tgid_iter {
3103 	unsigned int tgid;
3104 	struct task_struct *task;
3105 };
3106 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3107 {
3108 	struct pid *pid;
3109 
3110 	if (iter.task)
3111 		put_task_struct(iter.task);
3112 	rcu_read_lock();
3113 retry:
3114 	iter.task = NULL;
3115 	pid = find_ge_pid(iter.tgid, ns);
3116 	if (pid) {
3117 		iter.tgid = pid_nr_ns(pid, ns);
3118 		iter.task = pid_task(pid, PIDTYPE_PID);
3119 		/* What we to know is if the pid we have find is the
3120 		 * pid of a thread_group_leader.  Testing for task
3121 		 * being a thread_group_leader is the obvious thing
3122 		 * todo but there is a window when it fails, due to
3123 		 * the pid transfer logic in de_thread.
3124 		 *
3125 		 * So we perform the straight forward test of seeing
3126 		 * if the pid we have found is the pid of a thread
3127 		 * group leader, and don't worry if the task we have
3128 		 * found doesn't happen to be a thread group leader.
3129 		 * As we don't care in the case of readdir.
3130 		 */
3131 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3132 			iter.tgid += 1;
3133 			goto retry;
3134 		}
3135 		get_task_struct(iter.task);
3136 	}
3137 	rcu_read_unlock();
3138 	return iter;
3139 }
3140 
3141 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3142 
3143 /* for the /proc/ directory itself, after non-process stuff has been done */
3144 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3145 {
3146 	struct tgid_iter iter;
3147 	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3148 	loff_t pos = ctx->pos;
3149 
3150 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3151 		return 0;
3152 
3153 	if (pos == TGID_OFFSET - 2) {
3154 		struct inode *inode = d_inode(ns->proc_self);
3155 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3156 			return 0;
3157 		ctx->pos = pos = pos + 1;
3158 	}
3159 	if (pos == TGID_OFFSET - 1) {
3160 		struct inode *inode = d_inode(ns->proc_thread_self);
3161 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3162 			return 0;
3163 		ctx->pos = pos = pos + 1;
3164 	}
3165 	iter.tgid = pos - TGID_OFFSET;
3166 	iter.task = NULL;
3167 	for (iter = next_tgid(ns, iter);
3168 	     iter.task;
3169 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3170 		char name[PROC_NUMBUF];
3171 		int len;
3172 
3173 		cond_resched();
3174 		if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3175 			continue;
3176 
3177 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3178 		ctx->pos = iter.tgid + TGID_OFFSET;
3179 		if (!proc_fill_cache(file, ctx, name, len,
3180 				     proc_pid_instantiate, iter.task, NULL)) {
3181 			put_task_struct(iter.task);
3182 			return 0;
3183 		}
3184 	}
3185 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3186 	return 0;
3187 }
3188 
3189 /*
3190  * proc_tid_comm_permission is a special permission function exclusively
3191  * used for the node /proc/<pid>/task/<tid>/comm.
3192  * It bypasses generic permission checks in the case where a task of the same
3193  * task group attempts to access the node.
3194  * The rationale behind this is that glibc and bionic access this node for
3195  * cross thread naming (pthread_set/getname_np(!self)). However, if
3196  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3197  * which locks out the cross thread naming implementation.
3198  * This function makes sure that the node is always accessible for members of
3199  * same thread group.
3200  */
3201 static int proc_tid_comm_permission(struct inode *inode, int mask)
3202 {
3203 	bool is_same_tgroup;
3204 	struct task_struct *task;
3205 
3206 	task = get_proc_task(inode);
3207 	if (!task)
3208 		return -ESRCH;
3209 	is_same_tgroup = same_thread_group(current, task);
3210 	put_task_struct(task);
3211 
3212 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3213 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3214 		 * read or written by the members of the corresponding
3215 		 * thread group.
3216 		 */
3217 		return 0;
3218 	}
3219 
3220 	return generic_permission(inode, mask);
3221 }
3222 
3223 static const struct inode_operations proc_tid_comm_inode_operations = {
3224 		.permission = proc_tid_comm_permission,
3225 };
3226 
3227 /*
3228  * Tasks
3229  */
3230 static const struct pid_entry tid_base_stuff[] = {
3231 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3232 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3233 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3234 #ifdef CONFIG_NET
3235 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3236 #endif
3237 	REG("environ",   S_IRUSR, proc_environ_operations),
3238 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3239 	ONE("status",    S_IRUGO, proc_pid_status),
3240 	ONE("personality", S_IRUSR, proc_pid_personality),
3241 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3242 #ifdef CONFIG_SCHED_DEBUG
3243 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3244 #endif
3245 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3246 			 &proc_tid_comm_inode_operations,
3247 			 &proc_pid_set_comm_operations, {}),
3248 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3249 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3250 #endif
3251 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3252 	ONE("stat",      S_IRUGO, proc_tid_stat),
3253 	ONE("statm",     S_IRUGO, proc_pid_statm),
3254 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3255 #ifdef CONFIG_PROC_CHILDREN
3256 	REG("children",  S_IRUGO, proc_tid_children_operations),
3257 #endif
3258 #ifdef CONFIG_NUMA
3259 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3260 #endif
3261 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3262 	LNK("cwd",       proc_cwd_link),
3263 	LNK("root",      proc_root_link),
3264 	LNK("exe",       proc_exe_link),
3265 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3266 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3267 #ifdef CONFIG_PROC_PAGE_MONITOR
3268 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3269 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3270 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3271 #endif
3272 #ifdef CONFIG_SECURITY
3273 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3274 #endif
3275 #ifdef CONFIG_KALLSYMS
3276 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3277 #endif
3278 #ifdef CONFIG_STACKTRACE
3279 	ONE("stack",      S_IRUSR, proc_pid_stack),
3280 #endif
3281 #ifdef CONFIG_SCHED_INFO
3282 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3283 #endif
3284 #ifdef CONFIG_LATENCYTOP
3285 	REG("latency",  S_IRUGO, proc_lstats_operations),
3286 #endif
3287 #ifdef CONFIG_PROC_PID_CPUSET
3288 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3289 #endif
3290 #ifdef CONFIG_CGROUPS
3291 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3292 #endif
3293 	ONE("oom_score", S_IRUGO, proc_oom_score),
3294 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3295 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3296 #ifdef CONFIG_AUDITSYSCALL
3297 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3298 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3299 #endif
3300 #ifdef CONFIG_FAULT_INJECTION
3301 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3302 #endif
3303 #ifdef CONFIG_TASK_IO_ACCOUNTING
3304 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3305 #endif
3306 #ifdef CONFIG_HARDWALL
3307 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3308 #endif
3309 #ifdef CONFIG_USER_NS
3310 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3311 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3312 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3313 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3314 #endif
3315 };
3316 
3317 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3318 {
3319 	return proc_pident_readdir(file, ctx,
3320 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3321 }
3322 
3323 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3324 {
3325 	return proc_pident_lookup(dir, dentry,
3326 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3327 }
3328 
3329 static const struct file_operations proc_tid_base_operations = {
3330 	.read		= generic_read_dir,
3331 	.iterate_shared	= proc_tid_base_readdir,
3332 	.llseek		= generic_file_llseek,
3333 };
3334 
3335 static const struct inode_operations proc_tid_base_inode_operations = {
3336 	.lookup		= proc_tid_base_lookup,
3337 	.getattr	= pid_getattr,
3338 	.setattr	= proc_setattr,
3339 };
3340 
3341 static int proc_task_instantiate(struct inode *dir,
3342 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3343 {
3344 	struct inode *inode;
3345 	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3346 
3347 	if (!inode)
3348 		goto out;
3349 	inode->i_op = &proc_tid_base_inode_operations;
3350 	inode->i_fop = &proc_tid_base_operations;
3351 	inode->i_flags|=S_IMMUTABLE;
3352 
3353 	set_nlink(inode, nlink_tid);
3354 
3355 	d_set_d_op(dentry, &pid_dentry_operations);
3356 
3357 	d_add(dentry, inode);
3358 	/* Close the race of the process dying before we return the dentry */
3359 	if (pid_revalidate(dentry, 0))
3360 		return 0;
3361 out:
3362 	return -ENOENT;
3363 }
3364 
3365 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3366 {
3367 	int result = -ENOENT;
3368 	struct task_struct *task;
3369 	struct task_struct *leader = get_proc_task(dir);
3370 	unsigned tid;
3371 	struct pid_namespace *ns;
3372 
3373 	if (!leader)
3374 		goto out_no_task;
3375 
3376 	tid = name_to_int(&dentry->d_name);
3377 	if (tid == ~0U)
3378 		goto out;
3379 
3380 	ns = dentry->d_sb->s_fs_info;
3381 	rcu_read_lock();
3382 	task = find_task_by_pid_ns(tid, ns);
3383 	if (task)
3384 		get_task_struct(task);
3385 	rcu_read_unlock();
3386 	if (!task)
3387 		goto out;
3388 	if (!same_thread_group(leader, task))
3389 		goto out_drop_task;
3390 
3391 	result = proc_task_instantiate(dir, dentry, task, NULL);
3392 out_drop_task:
3393 	put_task_struct(task);
3394 out:
3395 	put_task_struct(leader);
3396 out_no_task:
3397 	return ERR_PTR(result);
3398 }
3399 
3400 /*
3401  * Find the first tid of a thread group to return to user space.
3402  *
3403  * Usually this is just the thread group leader, but if the users
3404  * buffer was too small or there was a seek into the middle of the
3405  * directory we have more work todo.
3406  *
3407  * In the case of a short read we start with find_task_by_pid.
3408  *
3409  * In the case of a seek we start with the leader and walk nr
3410  * threads past it.
3411  */
3412 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3413 					struct pid_namespace *ns)
3414 {
3415 	struct task_struct *pos, *task;
3416 	unsigned long nr = f_pos;
3417 
3418 	if (nr != f_pos)	/* 32bit overflow? */
3419 		return NULL;
3420 
3421 	rcu_read_lock();
3422 	task = pid_task(pid, PIDTYPE_PID);
3423 	if (!task)
3424 		goto fail;
3425 
3426 	/* Attempt to start with the tid of a thread */
3427 	if (tid && nr) {
3428 		pos = find_task_by_pid_ns(tid, ns);
3429 		if (pos && same_thread_group(pos, task))
3430 			goto found;
3431 	}
3432 
3433 	/* If nr exceeds the number of threads there is nothing todo */
3434 	if (nr >= get_nr_threads(task))
3435 		goto fail;
3436 
3437 	/* If we haven't found our starting place yet start
3438 	 * with the leader and walk nr threads forward.
3439 	 */
3440 	pos = task = task->group_leader;
3441 	do {
3442 		if (!nr--)
3443 			goto found;
3444 	} while_each_thread(task, pos);
3445 fail:
3446 	pos = NULL;
3447 	goto out;
3448 found:
3449 	get_task_struct(pos);
3450 out:
3451 	rcu_read_unlock();
3452 	return pos;
3453 }
3454 
3455 /*
3456  * Find the next thread in the thread list.
3457  * Return NULL if there is an error or no next thread.
3458  *
3459  * The reference to the input task_struct is released.
3460  */
3461 static struct task_struct *next_tid(struct task_struct *start)
3462 {
3463 	struct task_struct *pos = NULL;
3464 	rcu_read_lock();
3465 	if (pid_alive(start)) {
3466 		pos = next_thread(start);
3467 		if (thread_group_leader(pos))
3468 			pos = NULL;
3469 		else
3470 			get_task_struct(pos);
3471 	}
3472 	rcu_read_unlock();
3473 	put_task_struct(start);
3474 	return pos;
3475 }
3476 
3477 /* for the /proc/TGID/task/ directories */
3478 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3479 {
3480 	struct inode *inode = file_inode(file);
3481 	struct task_struct *task;
3482 	struct pid_namespace *ns;
3483 	int tid;
3484 
3485 	if (proc_inode_is_dead(inode))
3486 		return -ENOENT;
3487 
3488 	if (!dir_emit_dots(file, ctx))
3489 		return 0;
3490 
3491 	/* f_version caches the tgid value that the last readdir call couldn't
3492 	 * return. lseek aka telldir automagically resets f_version to 0.
3493 	 */
3494 	ns = inode->i_sb->s_fs_info;
3495 	tid = (int)file->f_version;
3496 	file->f_version = 0;
3497 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3498 	     task;
3499 	     task = next_tid(task), ctx->pos++) {
3500 		char name[PROC_NUMBUF];
3501 		int len;
3502 		tid = task_pid_nr_ns(task, ns);
3503 		len = snprintf(name, sizeof(name), "%d", tid);
3504 		if (!proc_fill_cache(file, ctx, name, len,
3505 				proc_task_instantiate, task, NULL)) {
3506 			/* returning this tgid failed, save it as the first
3507 			 * pid for the next readir call */
3508 			file->f_version = (u64)tid;
3509 			put_task_struct(task);
3510 			break;
3511 		}
3512 	}
3513 
3514 	return 0;
3515 }
3516 
3517 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3518 {
3519 	struct inode *inode = d_inode(dentry);
3520 	struct task_struct *p = get_proc_task(inode);
3521 	generic_fillattr(inode, stat);
3522 
3523 	if (p) {
3524 		stat->nlink += get_nr_threads(p);
3525 		put_task_struct(p);
3526 	}
3527 
3528 	return 0;
3529 }
3530 
3531 static const struct inode_operations proc_task_inode_operations = {
3532 	.lookup		= proc_task_lookup,
3533 	.getattr	= proc_task_getattr,
3534 	.setattr	= proc_setattr,
3535 	.permission	= proc_pid_permission,
3536 };
3537 
3538 static const struct file_operations proc_task_operations = {
3539 	.read		= generic_read_dir,
3540 	.iterate_shared	= proc_task_readdir,
3541 	.llseek		= generic_file_llseek,
3542 };
3543 
3544 void __init set_proc_pid_nlink(void)
3545 {
3546 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3547 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3548 }
3549