xref: /linux/fs/proc/base.c (revision 492c826b9facefa84995f4dea917e301b5ee0884)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include "internal.h"
87 
88 /* NOTE:
89  *	Implementing inode permission operations in /proc is almost
90  *	certainly an error.  Permission checks need to happen during
91  *	each system call not at open time.  The reason is that most of
92  *	what we wish to check for permissions in /proc varies at runtime.
93  *
94  *	The classic example of a problem is opening file descriptors
95  *	in /proc for a task before it execs a suid executable.
96  */
97 
98 struct pid_entry {
99 	char *name;
100 	int len;
101 	mode_t mode;
102 	const struct inode_operations *iop;
103 	const struct file_operations *fop;
104 	union proc_op op;
105 };
106 
107 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
108 	.name = (NAME),					\
109 	.len  = sizeof(NAME) - 1,			\
110 	.mode = MODE,					\
111 	.iop  = IOP,					\
112 	.fop  = FOP,					\
113 	.op   = OP,					\
114 }
115 
116 #define DIR(NAME, MODE, iops, fops)	\
117 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
118 #define LNK(NAME, get_link)					\
119 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
120 		&proc_pid_link_inode_operations, NULL,		\
121 		{ .proc_get_link = get_link } )
122 #define REG(NAME, MODE, fops)				\
123 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
124 #define INF(NAME, MODE, read)				\
125 	NOD(NAME, (S_IFREG|(MODE)), 			\
126 		NULL, &proc_info_file_operations,	\
127 		{ .proc_read = read } )
128 #define ONE(NAME, MODE, show)				\
129 	NOD(NAME, (S_IFREG|(MODE)), 			\
130 		NULL, &proc_single_file_operations,	\
131 		{ .proc_show = show } )
132 
133 /*
134  * Count the number of hardlinks for the pid_entry table, excluding the .
135  * and .. links.
136  */
137 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
138 	unsigned int n)
139 {
140 	unsigned int i;
141 	unsigned int count;
142 
143 	count = 0;
144 	for (i = 0; i < n; ++i) {
145 		if (S_ISDIR(entries[i].mode))
146 			++count;
147 	}
148 
149 	return count;
150 }
151 
152 static int get_task_root(struct task_struct *task, struct path *root)
153 {
154 	int result = -ENOENT;
155 
156 	task_lock(task);
157 	if (task->fs) {
158 		get_fs_root(task->fs, root);
159 		result = 0;
160 	}
161 	task_unlock(task);
162 	return result;
163 }
164 
165 static int proc_cwd_link(struct inode *inode, struct path *path)
166 {
167 	struct task_struct *task = get_proc_task(inode);
168 	int result = -ENOENT;
169 
170 	if (task) {
171 		task_lock(task);
172 		if (task->fs) {
173 			get_fs_pwd(task->fs, path);
174 			result = 0;
175 		}
176 		task_unlock(task);
177 		put_task_struct(task);
178 	}
179 	return result;
180 }
181 
182 static int proc_root_link(struct inode *inode, struct path *path)
183 {
184 	struct task_struct *task = get_proc_task(inode);
185 	int result = -ENOENT;
186 
187 	if (task) {
188 		result = get_task_root(task, path);
189 		put_task_struct(task);
190 	}
191 	return result;
192 }
193 
194 static struct mm_struct *__check_mem_permission(struct task_struct *task)
195 {
196 	struct mm_struct *mm;
197 
198 	mm = get_task_mm(task);
199 	if (!mm)
200 		return ERR_PTR(-EINVAL);
201 
202 	/*
203 	 * A task can always look at itself, in case it chooses
204 	 * to use system calls instead of load instructions.
205 	 */
206 	if (task == current)
207 		return mm;
208 
209 	/*
210 	 * If current is actively ptrace'ing, and would also be
211 	 * permitted to freshly attach with ptrace now, permit it.
212 	 */
213 	if (task_is_stopped_or_traced(task)) {
214 		int match;
215 		rcu_read_lock();
216 		match = (tracehook_tracer_task(task) == current);
217 		rcu_read_unlock();
218 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
219 			return mm;
220 	}
221 
222 	/*
223 	 * No one else is allowed.
224 	 */
225 	mmput(mm);
226 	return ERR_PTR(-EPERM);
227 }
228 
229 /*
230  * If current may access user memory in @task return a reference to the
231  * corresponding mm, otherwise ERR_PTR.
232  */
233 static struct mm_struct *check_mem_permission(struct task_struct *task)
234 {
235 	struct mm_struct *mm;
236 	int err;
237 
238 	/*
239 	 * Avoid racing if task exec's as we might get a new mm but validate
240 	 * against old credentials.
241 	 */
242 	err = mutex_lock_killable(&task->signal->cred_guard_mutex);
243 	if (err)
244 		return ERR_PTR(err);
245 
246 	mm = __check_mem_permission(task);
247 	mutex_unlock(&task->signal->cred_guard_mutex);
248 
249 	return mm;
250 }
251 
252 struct mm_struct *mm_for_maps(struct task_struct *task)
253 {
254 	struct mm_struct *mm;
255 	int err;
256 
257 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
258 	if (err)
259 		return ERR_PTR(err);
260 
261 	mm = get_task_mm(task);
262 	if (mm && mm != current->mm &&
263 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
264 		mmput(mm);
265 		mm = ERR_PTR(-EACCES);
266 	}
267 	mutex_unlock(&task->signal->cred_guard_mutex);
268 
269 	return mm;
270 }
271 
272 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
273 {
274 	int res = 0;
275 	unsigned int len;
276 	struct mm_struct *mm = get_task_mm(task);
277 	if (!mm)
278 		goto out;
279 	if (!mm->arg_end)
280 		goto out_mm;	/* Shh! No looking before we're done */
281 
282  	len = mm->arg_end - mm->arg_start;
283 
284 	if (len > PAGE_SIZE)
285 		len = PAGE_SIZE;
286 
287 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
288 
289 	// If the nul at the end of args has been overwritten, then
290 	// assume application is using setproctitle(3).
291 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
292 		len = strnlen(buffer, res);
293 		if (len < res) {
294 		    res = len;
295 		} else {
296 			len = mm->env_end - mm->env_start;
297 			if (len > PAGE_SIZE - res)
298 				len = PAGE_SIZE - res;
299 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
300 			res = strnlen(buffer, res);
301 		}
302 	}
303 out_mm:
304 	mmput(mm);
305 out:
306 	return res;
307 }
308 
309 static int proc_pid_auxv(struct task_struct *task, char *buffer)
310 {
311 	struct mm_struct *mm = mm_for_maps(task);
312 	int res = PTR_ERR(mm);
313 	if (mm && !IS_ERR(mm)) {
314 		unsigned int nwords = 0;
315 		do {
316 			nwords += 2;
317 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
318 		res = nwords * sizeof(mm->saved_auxv[0]);
319 		if (res > PAGE_SIZE)
320 			res = PAGE_SIZE;
321 		memcpy(buffer, mm->saved_auxv, res);
322 		mmput(mm);
323 	}
324 	return res;
325 }
326 
327 
328 #ifdef CONFIG_KALLSYMS
329 /*
330  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
331  * Returns the resolved symbol.  If that fails, simply return the address.
332  */
333 static int proc_pid_wchan(struct task_struct *task, char *buffer)
334 {
335 	unsigned long wchan;
336 	char symname[KSYM_NAME_LEN];
337 
338 	wchan = get_wchan(task);
339 
340 	if (lookup_symbol_name(wchan, symname) < 0)
341 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
342 			return 0;
343 		else
344 			return sprintf(buffer, "%lu", wchan);
345 	else
346 		return sprintf(buffer, "%s", symname);
347 }
348 #endif /* CONFIG_KALLSYMS */
349 
350 static int lock_trace(struct task_struct *task)
351 {
352 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
353 	if (err)
354 		return err;
355 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
356 		mutex_unlock(&task->signal->cred_guard_mutex);
357 		return -EPERM;
358 	}
359 	return 0;
360 }
361 
362 static void unlock_trace(struct task_struct *task)
363 {
364 	mutex_unlock(&task->signal->cred_guard_mutex);
365 }
366 
367 #ifdef CONFIG_STACKTRACE
368 
369 #define MAX_STACK_TRACE_DEPTH	64
370 
371 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
372 			  struct pid *pid, struct task_struct *task)
373 {
374 	struct stack_trace trace;
375 	unsigned long *entries;
376 	int err;
377 	int i;
378 
379 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
380 	if (!entries)
381 		return -ENOMEM;
382 
383 	trace.nr_entries	= 0;
384 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
385 	trace.entries		= entries;
386 	trace.skip		= 0;
387 
388 	err = lock_trace(task);
389 	if (!err) {
390 		save_stack_trace_tsk(task, &trace);
391 
392 		for (i = 0; i < trace.nr_entries; i++) {
393 			seq_printf(m, "[<%pK>] %pS\n",
394 				   (void *)entries[i], (void *)entries[i]);
395 		}
396 		unlock_trace(task);
397 	}
398 	kfree(entries);
399 
400 	return err;
401 }
402 #endif
403 
404 #ifdef CONFIG_SCHEDSTATS
405 /*
406  * Provides /proc/PID/schedstat
407  */
408 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
409 {
410 	return sprintf(buffer, "%llu %llu %lu\n",
411 			(unsigned long long)task->se.sum_exec_runtime,
412 			(unsigned long long)task->sched_info.run_delay,
413 			task->sched_info.pcount);
414 }
415 #endif
416 
417 #ifdef CONFIG_LATENCYTOP
418 static int lstats_show_proc(struct seq_file *m, void *v)
419 {
420 	int i;
421 	struct inode *inode = m->private;
422 	struct task_struct *task = get_proc_task(inode);
423 
424 	if (!task)
425 		return -ESRCH;
426 	seq_puts(m, "Latency Top version : v0.1\n");
427 	for (i = 0; i < 32; i++) {
428 		struct latency_record *lr = &task->latency_record[i];
429 		if (lr->backtrace[0]) {
430 			int q;
431 			seq_printf(m, "%i %li %li",
432 				   lr->count, lr->time, lr->max);
433 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
434 				unsigned long bt = lr->backtrace[q];
435 				if (!bt)
436 					break;
437 				if (bt == ULONG_MAX)
438 					break;
439 				seq_printf(m, " %ps", (void *)bt);
440 			}
441 			seq_putc(m, '\n');
442 		}
443 
444 	}
445 	put_task_struct(task);
446 	return 0;
447 }
448 
449 static int lstats_open(struct inode *inode, struct file *file)
450 {
451 	return single_open(file, lstats_show_proc, inode);
452 }
453 
454 static ssize_t lstats_write(struct file *file, const char __user *buf,
455 			    size_t count, loff_t *offs)
456 {
457 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
458 
459 	if (!task)
460 		return -ESRCH;
461 	clear_all_latency_tracing(task);
462 	put_task_struct(task);
463 
464 	return count;
465 }
466 
467 static const struct file_operations proc_lstats_operations = {
468 	.open		= lstats_open,
469 	.read		= seq_read,
470 	.write		= lstats_write,
471 	.llseek		= seq_lseek,
472 	.release	= single_release,
473 };
474 
475 #endif
476 
477 static int proc_oom_score(struct task_struct *task, char *buffer)
478 {
479 	unsigned long points = 0;
480 
481 	read_lock(&tasklist_lock);
482 	if (pid_alive(task))
483 		points = oom_badness(task, NULL, NULL,
484 					totalram_pages + total_swap_pages);
485 	read_unlock(&tasklist_lock);
486 	return sprintf(buffer, "%lu\n", points);
487 }
488 
489 struct limit_names {
490 	char *name;
491 	char *unit;
492 };
493 
494 static const struct limit_names lnames[RLIM_NLIMITS] = {
495 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
496 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
497 	[RLIMIT_DATA] = {"Max data size", "bytes"},
498 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
499 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
500 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
501 	[RLIMIT_NPROC] = {"Max processes", "processes"},
502 	[RLIMIT_NOFILE] = {"Max open files", "files"},
503 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
504 	[RLIMIT_AS] = {"Max address space", "bytes"},
505 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
506 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
507 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
508 	[RLIMIT_NICE] = {"Max nice priority", NULL},
509 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
510 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
511 };
512 
513 /* Display limits for a process */
514 static int proc_pid_limits(struct task_struct *task, char *buffer)
515 {
516 	unsigned int i;
517 	int count = 0;
518 	unsigned long flags;
519 	char *bufptr = buffer;
520 
521 	struct rlimit rlim[RLIM_NLIMITS];
522 
523 	if (!lock_task_sighand(task, &flags))
524 		return 0;
525 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
526 	unlock_task_sighand(task, &flags);
527 
528 	/*
529 	 * print the file header
530 	 */
531 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
532 			"Limit", "Soft Limit", "Hard Limit", "Units");
533 
534 	for (i = 0; i < RLIM_NLIMITS; i++) {
535 		if (rlim[i].rlim_cur == RLIM_INFINITY)
536 			count += sprintf(&bufptr[count], "%-25s %-20s ",
537 					 lnames[i].name, "unlimited");
538 		else
539 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
540 					 lnames[i].name, rlim[i].rlim_cur);
541 
542 		if (rlim[i].rlim_max == RLIM_INFINITY)
543 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
544 		else
545 			count += sprintf(&bufptr[count], "%-20lu ",
546 					 rlim[i].rlim_max);
547 
548 		if (lnames[i].unit)
549 			count += sprintf(&bufptr[count], "%-10s\n",
550 					 lnames[i].unit);
551 		else
552 			count += sprintf(&bufptr[count], "\n");
553 	}
554 
555 	return count;
556 }
557 
558 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
559 static int proc_pid_syscall(struct task_struct *task, char *buffer)
560 {
561 	long nr;
562 	unsigned long args[6], sp, pc;
563 	int res = lock_trace(task);
564 	if (res)
565 		return res;
566 
567 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
568 		res = sprintf(buffer, "running\n");
569 	else if (nr < 0)
570 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
571 	else
572 		res = sprintf(buffer,
573 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
574 		       nr,
575 		       args[0], args[1], args[2], args[3], args[4], args[5],
576 		       sp, pc);
577 	unlock_trace(task);
578 	return res;
579 }
580 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
581 
582 /************************************************************************/
583 /*                       Here the fs part begins                        */
584 /************************************************************************/
585 
586 /* permission checks */
587 static int proc_fd_access_allowed(struct inode *inode)
588 {
589 	struct task_struct *task;
590 	int allowed = 0;
591 	/* Allow access to a task's file descriptors if it is us or we
592 	 * may use ptrace attach to the process and find out that
593 	 * information.
594 	 */
595 	task = get_proc_task(inode);
596 	if (task) {
597 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
598 		put_task_struct(task);
599 	}
600 	return allowed;
601 }
602 
603 int proc_setattr(struct dentry *dentry, struct iattr *attr)
604 {
605 	int error;
606 	struct inode *inode = dentry->d_inode;
607 
608 	if (attr->ia_valid & ATTR_MODE)
609 		return -EPERM;
610 
611 	error = inode_change_ok(inode, attr);
612 	if (error)
613 		return error;
614 
615 	if ((attr->ia_valid & ATTR_SIZE) &&
616 	    attr->ia_size != i_size_read(inode)) {
617 		error = vmtruncate(inode, attr->ia_size);
618 		if (error)
619 			return error;
620 	}
621 
622 	setattr_copy(inode, attr);
623 	mark_inode_dirty(inode);
624 	return 0;
625 }
626 
627 static const struct inode_operations proc_def_inode_operations = {
628 	.setattr	= proc_setattr,
629 };
630 
631 static int mounts_open_common(struct inode *inode, struct file *file,
632 			      const struct seq_operations *op)
633 {
634 	struct task_struct *task = get_proc_task(inode);
635 	struct nsproxy *nsp;
636 	struct mnt_namespace *ns = NULL;
637 	struct path root;
638 	struct proc_mounts *p;
639 	int ret = -EINVAL;
640 
641 	if (task) {
642 		rcu_read_lock();
643 		nsp = task_nsproxy(task);
644 		if (nsp) {
645 			ns = nsp->mnt_ns;
646 			if (ns)
647 				get_mnt_ns(ns);
648 		}
649 		rcu_read_unlock();
650 		if (ns && get_task_root(task, &root) == 0)
651 			ret = 0;
652 		put_task_struct(task);
653 	}
654 
655 	if (!ns)
656 		goto err;
657 	if (ret)
658 		goto err_put_ns;
659 
660 	ret = -ENOMEM;
661 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
662 	if (!p)
663 		goto err_put_path;
664 
665 	file->private_data = &p->m;
666 	ret = seq_open(file, op);
667 	if (ret)
668 		goto err_free;
669 
670 	p->m.private = p;
671 	p->ns = ns;
672 	p->root = root;
673 	p->event = ns->event;
674 
675 	return 0;
676 
677  err_free:
678 	kfree(p);
679  err_put_path:
680 	path_put(&root);
681  err_put_ns:
682 	put_mnt_ns(ns);
683  err:
684 	return ret;
685 }
686 
687 static int mounts_release(struct inode *inode, struct file *file)
688 {
689 	struct proc_mounts *p = file->private_data;
690 	path_put(&p->root);
691 	put_mnt_ns(p->ns);
692 	return seq_release(inode, file);
693 }
694 
695 static unsigned mounts_poll(struct file *file, poll_table *wait)
696 {
697 	struct proc_mounts *p = file->private_data;
698 	unsigned res = POLLIN | POLLRDNORM;
699 
700 	poll_wait(file, &p->ns->poll, wait);
701 	if (mnt_had_events(p))
702 		res |= POLLERR | POLLPRI;
703 
704 	return res;
705 }
706 
707 static int mounts_open(struct inode *inode, struct file *file)
708 {
709 	return mounts_open_common(inode, file, &mounts_op);
710 }
711 
712 static const struct file_operations proc_mounts_operations = {
713 	.open		= mounts_open,
714 	.read		= seq_read,
715 	.llseek		= seq_lseek,
716 	.release	= mounts_release,
717 	.poll		= mounts_poll,
718 };
719 
720 static int mountinfo_open(struct inode *inode, struct file *file)
721 {
722 	return mounts_open_common(inode, file, &mountinfo_op);
723 }
724 
725 static const struct file_operations proc_mountinfo_operations = {
726 	.open		= mountinfo_open,
727 	.read		= seq_read,
728 	.llseek		= seq_lseek,
729 	.release	= mounts_release,
730 	.poll		= mounts_poll,
731 };
732 
733 static int mountstats_open(struct inode *inode, struct file *file)
734 {
735 	return mounts_open_common(inode, file, &mountstats_op);
736 }
737 
738 static const struct file_operations proc_mountstats_operations = {
739 	.open		= mountstats_open,
740 	.read		= seq_read,
741 	.llseek		= seq_lseek,
742 	.release	= mounts_release,
743 };
744 
745 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
746 
747 static ssize_t proc_info_read(struct file * file, char __user * buf,
748 			  size_t count, loff_t *ppos)
749 {
750 	struct inode * inode = file->f_path.dentry->d_inode;
751 	unsigned long page;
752 	ssize_t length;
753 	struct task_struct *task = get_proc_task(inode);
754 
755 	length = -ESRCH;
756 	if (!task)
757 		goto out_no_task;
758 
759 	if (count > PROC_BLOCK_SIZE)
760 		count = PROC_BLOCK_SIZE;
761 
762 	length = -ENOMEM;
763 	if (!(page = __get_free_page(GFP_TEMPORARY)))
764 		goto out;
765 
766 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
767 
768 	if (length >= 0)
769 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
770 	free_page(page);
771 out:
772 	put_task_struct(task);
773 out_no_task:
774 	return length;
775 }
776 
777 static const struct file_operations proc_info_file_operations = {
778 	.read		= proc_info_read,
779 	.llseek		= generic_file_llseek,
780 };
781 
782 static int proc_single_show(struct seq_file *m, void *v)
783 {
784 	struct inode *inode = m->private;
785 	struct pid_namespace *ns;
786 	struct pid *pid;
787 	struct task_struct *task;
788 	int ret;
789 
790 	ns = inode->i_sb->s_fs_info;
791 	pid = proc_pid(inode);
792 	task = get_pid_task(pid, PIDTYPE_PID);
793 	if (!task)
794 		return -ESRCH;
795 
796 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
797 
798 	put_task_struct(task);
799 	return ret;
800 }
801 
802 static int proc_single_open(struct inode *inode, struct file *filp)
803 {
804 	return single_open(filp, proc_single_show, inode);
805 }
806 
807 static const struct file_operations proc_single_file_operations = {
808 	.open		= proc_single_open,
809 	.read		= seq_read,
810 	.llseek		= seq_lseek,
811 	.release	= single_release,
812 };
813 
814 static int mem_open(struct inode* inode, struct file* file)
815 {
816 	file->private_data = (void*)((long)current->self_exec_id);
817 	/* OK to pass negative loff_t, we can catch out-of-range */
818 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
819 	return 0;
820 }
821 
822 static ssize_t mem_read(struct file * file, char __user * buf,
823 			size_t count, loff_t *ppos)
824 {
825 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
826 	char *page;
827 	unsigned long src = *ppos;
828 	int ret = -ESRCH;
829 	struct mm_struct *mm;
830 
831 	if (!task)
832 		goto out_no_task;
833 
834 	ret = -ENOMEM;
835 	page = (char *)__get_free_page(GFP_TEMPORARY);
836 	if (!page)
837 		goto out;
838 
839 	mm = check_mem_permission(task);
840 	ret = PTR_ERR(mm);
841 	if (IS_ERR(mm))
842 		goto out_free;
843 
844 	ret = -EIO;
845 
846 	if (file->private_data != (void*)((long)current->self_exec_id))
847 		goto out_put;
848 
849 	ret = 0;
850 
851 	while (count > 0) {
852 		int this_len, retval;
853 
854 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
855 		retval = access_remote_vm(mm, src, page, this_len, 0);
856 		if (!retval) {
857 			if (!ret)
858 				ret = -EIO;
859 			break;
860 		}
861 
862 		if (copy_to_user(buf, page, retval)) {
863 			ret = -EFAULT;
864 			break;
865 		}
866 
867 		ret += retval;
868 		src += retval;
869 		buf += retval;
870 		count -= retval;
871 	}
872 	*ppos = src;
873 
874 out_put:
875 	mmput(mm);
876 out_free:
877 	free_page((unsigned long) page);
878 out:
879 	put_task_struct(task);
880 out_no_task:
881 	return ret;
882 }
883 
884 static ssize_t mem_write(struct file * file, const char __user *buf,
885 			 size_t count, loff_t *ppos)
886 {
887 	int copied;
888 	char *page;
889 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
890 	unsigned long dst = *ppos;
891 	struct mm_struct *mm;
892 
893 	copied = -ESRCH;
894 	if (!task)
895 		goto out_no_task;
896 
897 	copied = -ENOMEM;
898 	page = (char *)__get_free_page(GFP_TEMPORARY);
899 	if (!page)
900 		goto out_task;
901 
902 	mm = check_mem_permission(task);
903 	copied = PTR_ERR(mm);
904 	if (IS_ERR(mm))
905 		goto out_free;
906 
907 	copied = -EIO;
908 	if (file->private_data != (void *)((long)current->self_exec_id))
909 		goto out_mm;
910 
911 	copied = 0;
912 	while (count > 0) {
913 		int this_len, retval;
914 
915 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
916 		if (copy_from_user(page, buf, this_len)) {
917 			copied = -EFAULT;
918 			break;
919 		}
920 		retval = access_remote_vm(mm, dst, page, this_len, 1);
921 		if (!retval) {
922 			if (!copied)
923 				copied = -EIO;
924 			break;
925 		}
926 		copied += retval;
927 		buf += retval;
928 		dst += retval;
929 		count -= retval;
930 	}
931 	*ppos = dst;
932 
933 out_mm:
934 	mmput(mm);
935 out_free:
936 	free_page((unsigned long) page);
937 out_task:
938 	put_task_struct(task);
939 out_no_task:
940 	return copied;
941 }
942 
943 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
944 {
945 	switch (orig) {
946 	case 0:
947 		file->f_pos = offset;
948 		break;
949 	case 1:
950 		file->f_pos += offset;
951 		break;
952 	default:
953 		return -EINVAL;
954 	}
955 	force_successful_syscall_return();
956 	return file->f_pos;
957 }
958 
959 static const struct file_operations proc_mem_operations = {
960 	.llseek		= mem_lseek,
961 	.read		= mem_read,
962 	.write		= mem_write,
963 	.open		= mem_open,
964 };
965 
966 static ssize_t environ_read(struct file *file, char __user *buf,
967 			size_t count, loff_t *ppos)
968 {
969 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
970 	char *page;
971 	unsigned long src = *ppos;
972 	int ret = -ESRCH;
973 	struct mm_struct *mm;
974 
975 	if (!task)
976 		goto out_no_task;
977 
978 	ret = -ENOMEM;
979 	page = (char *)__get_free_page(GFP_TEMPORARY);
980 	if (!page)
981 		goto out;
982 
983 
984 	mm = mm_for_maps(task);
985 	ret = PTR_ERR(mm);
986 	if (!mm || IS_ERR(mm))
987 		goto out_free;
988 
989 	ret = 0;
990 	while (count > 0) {
991 		int this_len, retval, max_len;
992 
993 		this_len = mm->env_end - (mm->env_start + src);
994 
995 		if (this_len <= 0)
996 			break;
997 
998 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
999 		this_len = (this_len > max_len) ? max_len : this_len;
1000 
1001 		retval = access_process_vm(task, (mm->env_start + src),
1002 			page, this_len, 0);
1003 
1004 		if (retval <= 0) {
1005 			ret = retval;
1006 			break;
1007 		}
1008 
1009 		if (copy_to_user(buf, page, retval)) {
1010 			ret = -EFAULT;
1011 			break;
1012 		}
1013 
1014 		ret += retval;
1015 		src += retval;
1016 		buf += retval;
1017 		count -= retval;
1018 	}
1019 	*ppos = src;
1020 
1021 	mmput(mm);
1022 out_free:
1023 	free_page((unsigned long) page);
1024 out:
1025 	put_task_struct(task);
1026 out_no_task:
1027 	return ret;
1028 }
1029 
1030 static const struct file_operations proc_environ_operations = {
1031 	.read		= environ_read,
1032 	.llseek		= generic_file_llseek,
1033 };
1034 
1035 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1036 				size_t count, loff_t *ppos)
1037 {
1038 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1039 	char buffer[PROC_NUMBUF];
1040 	size_t len;
1041 	int oom_adjust = OOM_DISABLE;
1042 	unsigned long flags;
1043 
1044 	if (!task)
1045 		return -ESRCH;
1046 
1047 	if (lock_task_sighand(task, &flags)) {
1048 		oom_adjust = task->signal->oom_adj;
1049 		unlock_task_sighand(task, &flags);
1050 	}
1051 
1052 	put_task_struct(task);
1053 
1054 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1055 
1056 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1057 }
1058 
1059 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1060 				size_t count, loff_t *ppos)
1061 {
1062 	struct task_struct *task;
1063 	char buffer[PROC_NUMBUF];
1064 	int oom_adjust;
1065 	unsigned long flags;
1066 	int err;
1067 
1068 	memset(buffer, 0, sizeof(buffer));
1069 	if (count > sizeof(buffer) - 1)
1070 		count = sizeof(buffer) - 1;
1071 	if (copy_from_user(buffer, buf, count)) {
1072 		err = -EFAULT;
1073 		goto out;
1074 	}
1075 
1076 	err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
1077 	if (err)
1078 		goto out;
1079 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1080 	     oom_adjust != OOM_DISABLE) {
1081 		err = -EINVAL;
1082 		goto out;
1083 	}
1084 
1085 	task = get_proc_task(file->f_path.dentry->d_inode);
1086 	if (!task) {
1087 		err = -ESRCH;
1088 		goto out;
1089 	}
1090 
1091 	task_lock(task);
1092 	if (!task->mm) {
1093 		err = -EINVAL;
1094 		goto err_task_lock;
1095 	}
1096 
1097 	if (!lock_task_sighand(task, &flags)) {
1098 		err = -ESRCH;
1099 		goto err_task_lock;
1100 	}
1101 
1102 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1103 		err = -EACCES;
1104 		goto err_sighand;
1105 	}
1106 
1107 	if (oom_adjust != task->signal->oom_adj) {
1108 		if (oom_adjust == OOM_DISABLE)
1109 			atomic_inc(&task->mm->oom_disable_count);
1110 		if (task->signal->oom_adj == OOM_DISABLE)
1111 			atomic_dec(&task->mm->oom_disable_count);
1112 	}
1113 
1114 	/*
1115 	 * Warn that /proc/pid/oom_adj is deprecated, see
1116 	 * Documentation/feature-removal-schedule.txt.
1117 	 */
1118 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, "
1119 			"please use /proc/%d/oom_score_adj instead.\n",
1120 			current->comm, task_pid_nr(current),
1121 			task_pid_nr(task), task_pid_nr(task));
1122 	task->signal->oom_adj = oom_adjust;
1123 	/*
1124 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1125 	 * value is always attainable.
1126 	 */
1127 	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1128 		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1129 	else
1130 		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1131 								-OOM_DISABLE;
1132 err_sighand:
1133 	unlock_task_sighand(task, &flags);
1134 err_task_lock:
1135 	task_unlock(task);
1136 	put_task_struct(task);
1137 out:
1138 	return err < 0 ? err : count;
1139 }
1140 
1141 static const struct file_operations proc_oom_adjust_operations = {
1142 	.read		= oom_adjust_read,
1143 	.write		= oom_adjust_write,
1144 	.llseek		= generic_file_llseek,
1145 };
1146 
1147 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1148 					size_t count, loff_t *ppos)
1149 {
1150 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1151 	char buffer[PROC_NUMBUF];
1152 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1153 	unsigned long flags;
1154 	size_t len;
1155 
1156 	if (!task)
1157 		return -ESRCH;
1158 	if (lock_task_sighand(task, &flags)) {
1159 		oom_score_adj = task->signal->oom_score_adj;
1160 		unlock_task_sighand(task, &flags);
1161 	}
1162 	put_task_struct(task);
1163 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1164 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1165 }
1166 
1167 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1168 					size_t count, loff_t *ppos)
1169 {
1170 	struct task_struct *task;
1171 	char buffer[PROC_NUMBUF];
1172 	unsigned long flags;
1173 	int oom_score_adj;
1174 	int err;
1175 
1176 	memset(buffer, 0, sizeof(buffer));
1177 	if (count > sizeof(buffer) - 1)
1178 		count = sizeof(buffer) - 1;
1179 	if (copy_from_user(buffer, buf, count)) {
1180 		err = -EFAULT;
1181 		goto out;
1182 	}
1183 
1184 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1185 	if (err)
1186 		goto out;
1187 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1188 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1189 		err = -EINVAL;
1190 		goto out;
1191 	}
1192 
1193 	task = get_proc_task(file->f_path.dentry->d_inode);
1194 	if (!task) {
1195 		err = -ESRCH;
1196 		goto out;
1197 	}
1198 
1199 	task_lock(task);
1200 	if (!task->mm) {
1201 		err = -EINVAL;
1202 		goto err_task_lock;
1203 	}
1204 
1205 	if (!lock_task_sighand(task, &flags)) {
1206 		err = -ESRCH;
1207 		goto err_task_lock;
1208 	}
1209 
1210 	if (oom_score_adj < task->signal->oom_score_adj_min &&
1211 			!capable(CAP_SYS_RESOURCE)) {
1212 		err = -EACCES;
1213 		goto err_sighand;
1214 	}
1215 
1216 	if (oom_score_adj != task->signal->oom_score_adj) {
1217 		if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1218 			atomic_inc(&task->mm->oom_disable_count);
1219 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1220 			atomic_dec(&task->mm->oom_disable_count);
1221 	}
1222 	task->signal->oom_score_adj = oom_score_adj;
1223 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1224 		task->signal->oom_score_adj_min = oom_score_adj;
1225 	/*
1226 	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1227 	 * always attainable.
1228 	 */
1229 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1230 		task->signal->oom_adj = OOM_DISABLE;
1231 	else
1232 		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1233 							OOM_SCORE_ADJ_MAX;
1234 err_sighand:
1235 	unlock_task_sighand(task, &flags);
1236 err_task_lock:
1237 	task_unlock(task);
1238 	put_task_struct(task);
1239 out:
1240 	return err < 0 ? err : count;
1241 }
1242 
1243 static const struct file_operations proc_oom_score_adj_operations = {
1244 	.read		= oom_score_adj_read,
1245 	.write		= oom_score_adj_write,
1246 	.llseek		= default_llseek,
1247 };
1248 
1249 #ifdef CONFIG_AUDITSYSCALL
1250 #define TMPBUFLEN 21
1251 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1252 				  size_t count, loff_t *ppos)
1253 {
1254 	struct inode * inode = file->f_path.dentry->d_inode;
1255 	struct task_struct *task = get_proc_task(inode);
1256 	ssize_t length;
1257 	char tmpbuf[TMPBUFLEN];
1258 
1259 	if (!task)
1260 		return -ESRCH;
1261 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1262 				audit_get_loginuid(task));
1263 	put_task_struct(task);
1264 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1265 }
1266 
1267 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1268 				   size_t count, loff_t *ppos)
1269 {
1270 	struct inode * inode = file->f_path.dentry->d_inode;
1271 	char *page, *tmp;
1272 	ssize_t length;
1273 	uid_t loginuid;
1274 
1275 	if (!capable(CAP_AUDIT_CONTROL))
1276 		return -EPERM;
1277 
1278 	rcu_read_lock();
1279 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1280 		rcu_read_unlock();
1281 		return -EPERM;
1282 	}
1283 	rcu_read_unlock();
1284 
1285 	if (count >= PAGE_SIZE)
1286 		count = PAGE_SIZE - 1;
1287 
1288 	if (*ppos != 0) {
1289 		/* No partial writes. */
1290 		return -EINVAL;
1291 	}
1292 	page = (char*)__get_free_page(GFP_TEMPORARY);
1293 	if (!page)
1294 		return -ENOMEM;
1295 	length = -EFAULT;
1296 	if (copy_from_user(page, buf, count))
1297 		goto out_free_page;
1298 
1299 	page[count] = '\0';
1300 	loginuid = simple_strtoul(page, &tmp, 10);
1301 	if (tmp == page) {
1302 		length = -EINVAL;
1303 		goto out_free_page;
1304 
1305 	}
1306 	length = audit_set_loginuid(current, loginuid);
1307 	if (likely(length == 0))
1308 		length = count;
1309 
1310 out_free_page:
1311 	free_page((unsigned long) page);
1312 	return length;
1313 }
1314 
1315 static const struct file_operations proc_loginuid_operations = {
1316 	.read		= proc_loginuid_read,
1317 	.write		= proc_loginuid_write,
1318 	.llseek		= generic_file_llseek,
1319 };
1320 
1321 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1322 				  size_t count, loff_t *ppos)
1323 {
1324 	struct inode * inode = file->f_path.dentry->d_inode;
1325 	struct task_struct *task = get_proc_task(inode);
1326 	ssize_t length;
1327 	char tmpbuf[TMPBUFLEN];
1328 
1329 	if (!task)
1330 		return -ESRCH;
1331 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1332 				audit_get_sessionid(task));
1333 	put_task_struct(task);
1334 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1335 }
1336 
1337 static const struct file_operations proc_sessionid_operations = {
1338 	.read		= proc_sessionid_read,
1339 	.llseek		= generic_file_llseek,
1340 };
1341 #endif
1342 
1343 #ifdef CONFIG_FAULT_INJECTION
1344 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1345 				      size_t count, loff_t *ppos)
1346 {
1347 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1348 	char buffer[PROC_NUMBUF];
1349 	size_t len;
1350 	int make_it_fail;
1351 
1352 	if (!task)
1353 		return -ESRCH;
1354 	make_it_fail = task->make_it_fail;
1355 	put_task_struct(task);
1356 
1357 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1358 
1359 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1360 }
1361 
1362 static ssize_t proc_fault_inject_write(struct file * file,
1363 			const char __user * buf, size_t count, loff_t *ppos)
1364 {
1365 	struct task_struct *task;
1366 	char buffer[PROC_NUMBUF], *end;
1367 	int make_it_fail;
1368 
1369 	if (!capable(CAP_SYS_RESOURCE))
1370 		return -EPERM;
1371 	memset(buffer, 0, sizeof(buffer));
1372 	if (count > sizeof(buffer) - 1)
1373 		count = sizeof(buffer) - 1;
1374 	if (copy_from_user(buffer, buf, count))
1375 		return -EFAULT;
1376 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1377 	if (*end)
1378 		return -EINVAL;
1379 	task = get_proc_task(file->f_dentry->d_inode);
1380 	if (!task)
1381 		return -ESRCH;
1382 	task->make_it_fail = make_it_fail;
1383 	put_task_struct(task);
1384 
1385 	return count;
1386 }
1387 
1388 static const struct file_operations proc_fault_inject_operations = {
1389 	.read		= proc_fault_inject_read,
1390 	.write		= proc_fault_inject_write,
1391 	.llseek		= generic_file_llseek,
1392 };
1393 #endif
1394 
1395 
1396 #ifdef CONFIG_SCHED_DEBUG
1397 /*
1398  * Print out various scheduling related per-task fields:
1399  */
1400 static int sched_show(struct seq_file *m, void *v)
1401 {
1402 	struct inode *inode = m->private;
1403 	struct task_struct *p;
1404 
1405 	p = get_proc_task(inode);
1406 	if (!p)
1407 		return -ESRCH;
1408 	proc_sched_show_task(p, m);
1409 
1410 	put_task_struct(p);
1411 
1412 	return 0;
1413 }
1414 
1415 static ssize_t
1416 sched_write(struct file *file, const char __user *buf,
1417 	    size_t count, loff_t *offset)
1418 {
1419 	struct inode *inode = file->f_path.dentry->d_inode;
1420 	struct task_struct *p;
1421 
1422 	p = get_proc_task(inode);
1423 	if (!p)
1424 		return -ESRCH;
1425 	proc_sched_set_task(p);
1426 
1427 	put_task_struct(p);
1428 
1429 	return count;
1430 }
1431 
1432 static int sched_open(struct inode *inode, struct file *filp)
1433 {
1434 	return single_open(filp, sched_show, inode);
1435 }
1436 
1437 static const struct file_operations proc_pid_sched_operations = {
1438 	.open		= sched_open,
1439 	.read		= seq_read,
1440 	.write		= sched_write,
1441 	.llseek		= seq_lseek,
1442 	.release	= single_release,
1443 };
1444 
1445 #endif
1446 
1447 #ifdef CONFIG_SCHED_AUTOGROUP
1448 /*
1449  * Print out autogroup related information:
1450  */
1451 static int sched_autogroup_show(struct seq_file *m, void *v)
1452 {
1453 	struct inode *inode = m->private;
1454 	struct task_struct *p;
1455 
1456 	p = get_proc_task(inode);
1457 	if (!p)
1458 		return -ESRCH;
1459 	proc_sched_autogroup_show_task(p, m);
1460 
1461 	put_task_struct(p);
1462 
1463 	return 0;
1464 }
1465 
1466 static ssize_t
1467 sched_autogroup_write(struct file *file, const char __user *buf,
1468 	    size_t count, loff_t *offset)
1469 {
1470 	struct inode *inode = file->f_path.dentry->d_inode;
1471 	struct task_struct *p;
1472 	char buffer[PROC_NUMBUF];
1473 	int nice;
1474 	int err;
1475 
1476 	memset(buffer, 0, sizeof(buffer));
1477 	if (count > sizeof(buffer) - 1)
1478 		count = sizeof(buffer) - 1;
1479 	if (copy_from_user(buffer, buf, count))
1480 		return -EFAULT;
1481 
1482 	err = kstrtoint(strstrip(buffer), 0, &nice);
1483 	if (err < 0)
1484 		return err;
1485 
1486 	p = get_proc_task(inode);
1487 	if (!p)
1488 		return -ESRCH;
1489 
1490 	err = nice;
1491 	err = proc_sched_autogroup_set_nice(p, &err);
1492 	if (err)
1493 		count = err;
1494 
1495 	put_task_struct(p);
1496 
1497 	return count;
1498 }
1499 
1500 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1501 {
1502 	int ret;
1503 
1504 	ret = single_open(filp, sched_autogroup_show, NULL);
1505 	if (!ret) {
1506 		struct seq_file *m = filp->private_data;
1507 
1508 		m->private = inode;
1509 	}
1510 	return ret;
1511 }
1512 
1513 static const struct file_operations proc_pid_sched_autogroup_operations = {
1514 	.open		= sched_autogroup_open,
1515 	.read		= seq_read,
1516 	.write		= sched_autogroup_write,
1517 	.llseek		= seq_lseek,
1518 	.release	= single_release,
1519 };
1520 
1521 #endif /* CONFIG_SCHED_AUTOGROUP */
1522 
1523 static ssize_t comm_write(struct file *file, const char __user *buf,
1524 				size_t count, loff_t *offset)
1525 {
1526 	struct inode *inode = file->f_path.dentry->d_inode;
1527 	struct task_struct *p;
1528 	char buffer[TASK_COMM_LEN];
1529 
1530 	memset(buffer, 0, sizeof(buffer));
1531 	if (count > sizeof(buffer) - 1)
1532 		count = sizeof(buffer) - 1;
1533 	if (copy_from_user(buffer, buf, count))
1534 		return -EFAULT;
1535 
1536 	p = get_proc_task(inode);
1537 	if (!p)
1538 		return -ESRCH;
1539 
1540 	if (same_thread_group(current, p))
1541 		set_task_comm(p, buffer);
1542 	else
1543 		count = -EINVAL;
1544 
1545 	put_task_struct(p);
1546 
1547 	return count;
1548 }
1549 
1550 static int comm_show(struct seq_file *m, void *v)
1551 {
1552 	struct inode *inode = m->private;
1553 	struct task_struct *p;
1554 
1555 	p = get_proc_task(inode);
1556 	if (!p)
1557 		return -ESRCH;
1558 
1559 	task_lock(p);
1560 	seq_printf(m, "%s\n", p->comm);
1561 	task_unlock(p);
1562 
1563 	put_task_struct(p);
1564 
1565 	return 0;
1566 }
1567 
1568 static int comm_open(struct inode *inode, struct file *filp)
1569 {
1570 	return single_open(filp, comm_show, inode);
1571 }
1572 
1573 static const struct file_operations proc_pid_set_comm_operations = {
1574 	.open		= comm_open,
1575 	.read		= seq_read,
1576 	.write		= comm_write,
1577 	.llseek		= seq_lseek,
1578 	.release	= single_release,
1579 };
1580 
1581 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1582 {
1583 	struct task_struct *task;
1584 	struct mm_struct *mm;
1585 	struct file *exe_file;
1586 
1587 	task = get_proc_task(inode);
1588 	if (!task)
1589 		return -ENOENT;
1590 	mm = get_task_mm(task);
1591 	put_task_struct(task);
1592 	if (!mm)
1593 		return -ENOENT;
1594 	exe_file = get_mm_exe_file(mm);
1595 	mmput(mm);
1596 	if (exe_file) {
1597 		*exe_path = exe_file->f_path;
1598 		path_get(&exe_file->f_path);
1599 		fput(exe_file);
1600 		return 0;
1601 	} else
1602 		return -ENOENT;
1603 }
1604 
1605 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1606 {
1607 	struct inode *inode = dentry->d_inode;
1608 	int error = -EACCES;
1609 
1610 	/* We don't need a base pointer in the /proc filesystem */
1611 	path_put(&nd->path);
1612 
1613 	/* Are we allowed to snoop on the tasks file descriptors? */
1614 	if (!proc_fd_access_allowed(inode))
1615 		goto out;
1616 
1617 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1618 out:
1619 	return ERR_PTR(error);
1620 }
1621 
1622 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1623 {
1624 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1625 	char *pathname;
1626 	int len;
1627 
1628 	if (!tmp)
1629 		return -ENOMEM;
1630 
1631 	pathname = d_path(path, tmp, PAGE_SIZE);
1632 	len = PTR_ERR(pathname);
1633 	if (IS_ERR(pathname))
1634 		goto out;
1635 	len = tmp + PAGE_SIZE - 1 - pathname;
1636 
1637 	if (len > buflen)
1638 		len = buflen;
1639 	if (copy_to_user(buffer, pathname, len))
1640 		len = -EFAULT;
1641  out:
1642 	free_page((unsigned long)tmp);
1643 	return len;
1644 }
1645 
1646 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1647 {
1648 	int error = -EACCES;
1649 	struct inode *inode = dentry->d_inode;
1650 	struct path path;
1651 
1652 	/* Are we allowed to snoop on the tasks file descriptors? */
1653 	if (!proc_fd_access_allowed(inode))
1654 		goto out;
1655 
1656 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1657 	if (error)
1658 		goto out;
1659 
1660 	error = do_proc_readlink(&path, buffer, buflen);
1661 	path_put(&path);
1662 out:
1663 	return error;
1664 }
1665 
1666 static const struct inode_operations proc_pid_link_inode_operations = {
1667 	.readlink	= proc_pid_readlink,
1668 	.follow_link	= proc_pid_follow_link,
1669 	.setattr	= proc_setattr,
1670 };
1671 
1672 
1673 /* building an inode */
1674 
1675 static int task_dumpable(struct task_struct *task)
1676 {
1677 	int dumpable = 0;
1678 	struct mm_struct *mm;
1679 
1680 	task_lock(task);
1681 	mm = task->mm;
1682 	if (mm)
1683 		dumpable = get_dumpable(mm);
1684 	task_unlock(task);
1685 	if(dumpable == 1)
1686 		return 1;
1687 	return 0;
1688 }
1689 
1690 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1691 {
1692 	struct inode * inode;
1693 	struct proc_inode *ei;
1694 	const struct cred *cred;
1695 
1696 	/* We need a new inode */
1697 
1698 	inode = new_inode(sb);
1699 	if (!inode)
1700 		goto out;
1701 
1702 	/* Common stuff */
1703 	ei = PROC_I(inode);
1704 	inode->i_ino = get_next_ino();
1705 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1706 	inode->i_op = &proc_def_inode_operations;
1707 
1708 	/*
1709 	 * grab the reference to task.
1710 	 */
1711 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1712 	if (!ei->pid)
1713 		goto out_unlock;
1714 
1715 	if (task_dumpable(task)) {
1716 		rcu_read_lock();
1717 		cred = __task_cred(task);
1718 		inode->i_uid = cred->euid;
1719 		inode->i_gid = cred->egid;
1720 		rcu_read_unlock();
1721 	}
1722 	security_task_to_inode(task, inode);
1723 
1724 out:
1725 	return inode;
1726 
1727 out_unlock:
1728 	iput(inode);
1729 	return NULL;
1730 }
1731 
1732 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1733 {
1734 	struct inode *inode = dentry->d_inode;
1735 	struct task_struct *task;
1736 	const struct cred *cred;
1737 
1738 	generic_fillattr(inode, stat);
1739 
1740 	rcu_read_lock();
1741 	stat->uid = 0;
1742 	stat->gid = 0;
1743 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1744 	if (task) {
1745 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1746 		    task_dumpable(task)) {
1747 			cred = __task_cred(task);
1748 			stat->uid = cred->euid;
1749 			stat->gid = cred->egid;
1750 		}
1751 	}
1752 	rcu_read_unlock();
1753 	return 0;
1754 }
1755 
1756 /* dentry stuff */
1757 
1758 /*
1759  *	Exceptional case: normally we are not allowed to unhash a busy
1760  * directory. In this case, however, we can do it - no aliasing problems
1761  * due to the way we treat inodes.
1762  *
1763  * Rewrite the inode's ownerships here because the owning task may have
1764  * performed a setuid(), etc.
1765  *
1766  * Before the /proc/pid/status file was created the only way to read
1767  * the effective uid of a /process was to stat /proc/pid.  Reading
1768  * /proc/pid/status is slow enough that procps and other packages
1769  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1770  * made this apply to all per process world readable and executable
1771  * directories.
1772  */
1773 int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1774 {
1775 	struct inode *inode;
1776 	struct task_struct *task;
1777 	const struct cred *cred;
1778 
1779 	if (nd && nd->flags & LOOKUP_RCU)
1780 		return -ECHILD;
1781 
1782 	inode = dentry->d_inode;
1783 	task = get_proc_task(inode);
1784 
1785 	if (task) {
1786 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1787 		    task_dumpable(task)) {
1788 			rcu_read_lock();
1789 			cred = __task_cred(task);
1790 			inode->i_uid = cred->euid;
1791 			inode->i_gid = cred->egid;
1792 			rcu_read_unlock();
1793 		} else {
1794 			inode->i_uid = 0;
1795 			inode->i_gid = 0;
1796 		}
1797 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1798 		security_task_to_inode(task, inode);
1799 		put_task_struct(task);
1800 		return 1;
1801 	}
1802 	d_drop(dentry);
1803 	return 0;
1804 }
1805 
1806 static int pid_delete_dentry(const struct dentry * dentry)
1807 {
1808 	/* Is the task we represent dead?
1809 	 * If so, then don't put the dentry on the lru list,
1810 	 * kill it immediately.
1811 	 */
1812 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1813 }
1814 
1815 const struct dentry_operations pid_dentry_operations =
1816 {
1817 	.d_revalidate	= pid_revalidate,
1818 	.d_delete	= pid_delete_dentry,
1819 };
1820 
1821 /* Lookups */
1822 
1823 /*
1824  * Fill a directory entry.
1825  *
1826  * If possible create the dcache entry and derive our inode number and
1827  * file type from dcache entry.
1828  *
1829  * Since all of the proc inode numbers are dynamically generated, the inode
1830  * numbers do not exist until the inode is cache.  This means creating the
1831  * the dcache entry in readdir is necessary to keep the inode numbers
1832  * reported by readdir in sync with the inode numbers reported
1833  * by stat.
1834  */
1835 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1836 	const char *name, int len,
1837 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1838 {
1839 	struct dentry *child, *dir = filp->f_path.dentry;
1840 	struct inode *inode;
1841 	struct qstr qname;
1842 	ino_t ino = 0;
1843 	unsigned type = DT_UNKNOWN;
1844 
1845 	qname.name = name;
1846 	qname.len  = len;
1847 	qname.hash = full_name_hash(name, len);
1848 
1849 	child = d_lookup(dir, &qname);
1850 	if (!child) {
1851 		struct dentry *new;
1852 		new = d_alloc(dir, &qname);
1853 		if (new) {
1854 			child = instantiate(dir->d_inode, new, task, ptr);
1855 			if (child)
1856 				dput(new);
1857 			else
1858 				child = new;
1859 		}
1860 	}
1861 	if (!child || IS_ERR(child) || !child->d_inode)
1862 		goto end_instantiate;
1863 	inode = child->d_inode;
1864 	if (inode) {
1865 		ino = inode->i_ino;
1866 		type = inode->i_mode >> 12;
1867 	}
1868 	dput(child);
1869 end_instantiate:
1870 	if (!ino)
1871 		ino = find_inode_number(dir, &qname);
1872 	if (!ino)
1873 		ino = 1;
1874 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1875 }
1876 
1877 static unsigned name_to_int(struct dentry *dentry)
1878 {
1879 	const char *name = dentry->d_name.name;
1880 	int len = dentry->d_name.len;
1881 	unsigned n = 0;
1882 
1883 	if (len > 1 && *name == '0')
1884 		goto out;
1885 	while (len-- > 0) {
1886 		unsigned c = *name++ - '0';
1887 		if (c > 9)
1888 			goto out;
1889 		if (n >= (~0U-9)/10)
1890 			goto out;
1891 		n *= 10;
1892 		n += c;
1893 	}
1894 	return n;
1895 out:
1896 	return ~0U;
1897 }
1898 
1899 #define PROC_FDINFO_MAX 64
1900 
1901 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1902 {
1903 	struct task_struct *task = get_proc_task(inode);
1904 	struct files_struct *files = NULL;
1905 	struct file *file;
1906 	int fd = proc_fd(inode);
1907 
1908 	if (task) {
1909 		files = get_files_struct(task);
1910 		put_task_struct(task);
1911 	}
1912 	if (files) {
1913 		/*
1914 		 * We are not taking a ref to the file structure, so we must
1915 		 * hold ->file_lock.
1916 		 */
1917 		spin_lock(&files->file_lock);
1918 		file = fcheck_files(files, fd);
1919 		if (file) {
1920 			if (path) {
1921 				*path = file->f_path;
1922 				path_get(&file->f_path);
1923 			}
1924 			if (info)
1925 				snprintf(info, PROC_FDINFO_MAX,
1926 					 "pos:\t%lli\n"
1927 					 "flags:\t0%o\n",
1928 					 (long long) file->f_pos,
1929 					 file->f_flags);
1930 			spin_unlock(&files->file_lock);
1931 			put_files_struct(files);
1932 			return 0;
1933 		}
1934 		spin_unlock(&files->file_lock);
1935 		put_files_struct(files);
1936 	}
1937 	return -ENOENT;
1938 }
1939 
1940 static int proc_fd_link(struct inode *inode, struct path *path)
1941 {
1942 	return proc_fd_info(inode, path, NULL);
1943 }
1944 
1945 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1946 {
1947 	struct inode *inode;
1948 	struct task_struct *task;
1949 	int fd;
1950 	struct files_struct *files;
1951 	const struct cred *cred;
1952 
1953 	if (nd && nd->flags & LOOKUP_RCU)
1954 		return -ECHILD;
1955 
1956 	inode = dentry->d_inode;
1957 	task = get_proc_task(inode);
1958 	fd = proc_fd(inode);
1959 
1960 	if (task) {
1961 		files = get_files_struct(task);
1962 		if (files) {
1963 			rcu_read_lock();
1964 			if (fcheck_files(files, fd)) {
1965 				rcu_read_unlock();
1966 				put_files_struct(files);
1967 				if (task_dumpable(task)) {
1968 					rcu_read_lock();
1969 					cred = __task_cred(task);
1970 					inode->i_uid = cred->euid;
1971 					inode->i_gid = cred->egid;
1972 					rcu_read_unlock();
1973 				} else {
1974 					inode->i_uid = 0;
1975 					inode->i_gid = 0;
1976 				}
1977 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1978 				security_task_to_inode(task, inode);
1979 				put_task_struct(task);
1980 				return 1;
1981 			}
1982 			rcu_read_unlock();
1983 			put_files_struct(files);
1984 		}
1985 		put_task_struct(task);
1986 	}
1987 	d_drop(dentry);
1988 	return 0;
1989 }
1990 
1991 static const struct dentry_operations tid_fd_dentry_operations =
1992 {
1993 	.d_revalidate	= tid_fd_revalidate,
1994 	.d_delete	= pid_delete_dentry,
1995 };
1996 
1997 static struct dentry *proc_fd_instantiate(struct inode *dir,
1998 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1999 {
2000 	unsigned fd = *(const unsigned *)ptr;
2001 	struct file *file;
2002 	struct files_struct *files;
2003  	struct inode *inode;
2004  	struct proc_inode *ei;
2005 	struct dentry *error = ERR_PTR(-ENOENT);
2006 
2007 	inode = proc_pid_make_inode(dir->i_sb, task);
2008 	if (!inode)
2009 		goto out;
2010 	ei = PROC_I(inode);
2011 	ei->fd = fd;
2012 	files = get_files_struct(task);
2013 	if (!files)
2014 		goto out_iput;
2015 	inode->i_mode = S_IFLNK;
2016 
2017 	/*
2018 	 * We are not taking a ref to the file structure, so we must
2019 	 * hold ->file_lock.
2020 	 */
2021 	spin_lock(&files->file_lock);
2022 	file = fcheck_files(files, fd);
2023 	if (!file)
2024 		goto out_unlock;
2025 	if (file->f_mode & FMODE_READ)
2026 		inode->i_mode |= S_IRUSR | S_IXUSR;
2027 	if (file->f_mode & FMODE_WRITE)
2028 		inode->i_mode |= S_IWUSR | S_IXUSR;
2029 	spin_unlock(&files->file_lock);
2030 	put_files_struct(files);
2031 
2032 	inode->i_op = &proc_pid_link_inode_operations;
2033 	inode->i_size = 64;
2034 	ei->op.proc_get_link = proc_fd_link;
2035 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2036 	d_add(dentry, inode);
2037 	/* Close the race of the process dying before we return the dentry */
2038 	if (tid_fd_revalidate(dentry, NULL))
2039 		error = NULL;
2040 
2041  out:
2042 	return error;
2043 out_unlock:
2044 	spin_unlock(&files->file_lock);
2045 	put_files_struct(files);
2046 out_iput:
2047 	iput(inode);
2048 	goto out;
2049 }
2050 
2051 static struct dentry *proc_lookupfd_common(struct inode *dir,
2052 					   struct dentry *dentry,
2053 					   instantiate_t instantiate)
2054 {
2055 	struct task_struct *task = get_proc_task(dir);
2056 	unsigned fd = name_to_int(dentry);
2057 	struct dentry *result = ERR_PTR(-ENOENT);
2058 
2059 	if (!task)
2060 		goto out_no_task;
2061 	if (fd == ~0U)
2062 		goto out;
2063 
2064 	result = instantiate(dir, dentry, task, &fd);
2065 out:
2066 	put_task_struct(task);
2067 out_no_task:
2068 	return result;
2069 }
2070 
2071 static int proc_readfd_common(struct file * filp, void * dirent,
2072 			      filldir_t filldir, instantiate_t instantiate)
2073 {
2074 	struct dentry *dentry = filp->f_path.dentry;
2075 	struct inode *inode = dentry->d_inode;
2076 	struct task_struct *p = get_proc_task(inode);
2077 	unsigned int fd, ino;
2078 	int retval;
2079 	struct files_struct * files;
2080 
2081 	retval = -ENOENT;
2082 	if (!p)
2083 		goto out_no_task;
2084 	retval = 0;
2085 
2086 	fd = filp->f_pos;
2087 	switch (fd) {
2088 		case 0:
2089 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2090 				goto out;
2091 			filp->f_pos++;
2092 		case 1:
2093 			ino = parent_ino(dentry);
2094 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2095 				goto out;
2096 			filp->f_pos++;
2097 		default:
2098 			files = get_files_struct(p);
2099 			if (!files)
2100 				goto out;
2101 			rcu_read_lock();
2102 			for (fd = filp->f_pos-2;
2103 			     fd < files_fdtable(files)->max_fds;
2104 			     fd++, filp->f_pos++) {
2105 				char name[PROC_NUMBUF];
2106 				int len;
2107 
2108 				if (!fcheck_files(files, fd))
2109 					continue;
2110 				rcu_read_unlock();
2111 
2112 				len = snprintf(name, sizeof(name), "%d", fd);
2113 				if (proc_fill_cache(filp, dirent, filldir,
2114 						    name, len, instantiate,
2115 						    p, &fd) < 0) {
2116 					rcu_read_lock();
2117 					break;
2118 				}
2119 				rcu_read_lock();
2120 			}
2121 			rcu_read_unlock();
2122 			put_files_struct(files);
2123 	}
2124 out:
2125 	put_task_struct(p);
2126 out_no_task:
2127 	return retval;
2128 }
2129 
2130 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2131 				    struct nameidata *nd)
2132 {
2133 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2134 }
2135 
2136 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2137 {
2138 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2139 }
2140 
2141 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2142 				      size_t len, loff_t *ppos)
2143 {
2144 	char tmp[PROC_FDINFO_MAX];
2145 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2146 	if (!err)
2147 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2148 	return err;
2149 }
2150 
2151 static const struct file_operations proc_fdinfo_file_operations = {
2152 	.open           = nonseekable_open,
2153 	.read		= proc_fdinfo_read,
2154 	.llseek		= no_llseek,
2155 };
2156 
2157 static const struct file_operations proc_fd_operations = {
2158 	.read		= generic_read_dir,
2159 	.readdir	= proc_readfd,
2160 	.llseek		= default_llseek,
2161 };
2162 
2163 /*
2164  * /proc/pid/fd needs a special permission handler so that a process can still
2165  * access /proc/self/fd after it has executed a setuid().
2166  */
2167 static int proc_fd_permission(struct inode *inode, int mask, unsigned int flags)
2168 {
2169 	int rv;
2170 
2171 	if (flags & IPERM_FLAG_RCU)
2172 		return -ECHILD;
2173 	rv = generic_permission(inode, mask, flags, NULL);
2174 	if (rv == 0)
2175 		return 0;
2176 	if (task_pid(current) == proc_pid(inode))
2177 		rv = 0;
2178 	return rv;
2179 }
2180 
2181 /*
2182  * proc directories can do almost nothing..
2183  */
2184 static const struct inode_operations proc_fd_inode_operations = {
2185 	.lookup		= proc_lookupfd,
2186 	.permission	= proc_fd_permission,
2187 	.setattr	= proc_setattr,
2188 };
2189 
2190 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2191 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2192 {
2193 	unsigned fd = *(unsigned *)ptr;
2194  	struct inode *inode;
2195  	struct proc_inode *ei;
2196 	struct dentry *error = ERR_PTR(-ENOENT);
2197 
2198 	inode = proc_pid_make_inode(dir->i_sb, task);
2199 	if (!inode)
2200 		goto out;
2201 	ei = PROC_I(inode);
2202 	ei->fd = fd;
2203 	inode->i_mode = S_IFREG | S_IRUSR;
2204 	inode->i_fop = &proc_fdinfo_file_operations;
2205 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2206 	d_add(dentry, inode);
2207 	/* Close the race of the process dying before we return the dentry */
2208 	if (tid_fd_revalidate(dentry, NULL))
2209 		error = NULL;
2210 
2211  out:
2212 	return error;
2213 }
2214 
2215 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2216 					struct dentry *dentry,
2217 					struct nameidata *nd)
2218 {
2219 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2220 }
2221 
2222 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2223 {
2224 	return proc_readfd_common(filp, dirent, filldir,
2225 				  proc_fdinfo_instantiate);
2226 }
2227 
2228 static const struct file_operations proc_fdinfo_operations = {
2229 	.read		= generic_read_dir,
2230 	.readdir	= proc_readfdinfo,
2231 	.llseek		= default_llseek,
2232 };
2233 
2234 /*
2235  * proc directories can do almost nothing..
2236  */
2237 static const struct inode_operations proc_fdinfo_inode_operations = {
2238 	.lookup		= proc_lookupfdinfo,
2239 	.setattr	= proc_setattr,
2240 };
2241 
2242 
2243 static struct dentry *proc_pident_instantiate(struct inode *dir,
2244 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2245 {
2246 	const struct pid_entry *p = ptr;
2247 	struct inode *inode;
2248 	struct proc_inode *ei;
2249 	struct dentry *error = ERR_PTR(-ENOENT);
2250 
2251 	inode = proc_pid_make_inode(dir->i_sb, task);
2252 	if (!inode)
2253 		goto out;
2254 
2255 	ei = PROC_I(inode);
2256 	inode->i_mode = p->mode;
2257 	if (S_ISDIR(inode->i_mode))
2258 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2259 	if (p->iop)
2260 		inode->i_op = p->iop;
2261 	if (p->fop)
2262 		inode->i_fop = p->fop;
2263 	ei->op = p->op;
2264 	d_set_d_op(dentry, &pid_dentry_operations);
2265 	d_add(dentry, inode);
2266 	/* Close the race of the process dying before we return the dentry */
2267 	if (pid_revalidate(dentry, NULL))
2268 		error = NULL;
2269 out:
2270 	return error;
2271 }
2272 
2273 static struct dentry *proc_pident_lookup(struct inode *dir,
2274 					 struct dentry *dentry,
2275 					 const struct pid_entry *ents,
2276 					 unsigned int nents)
2277 {
2278 	struct dentry *error;
2279 	struct task_struct *task = get_proc_task(dir);
2280 	const struct pid_entry *p, *last;
2281 
2282 	error = ERR_PTR(-ENOENT);
2283 
2284 	if (!task)
2285 		goto out_no_task;
2286 
2287 	/*
2288 	 * Yes, it does not scale. And it should not. Don't add
2289 	 * new entries into /proc/<tgid>/ without very good reasons.
2290 	 */
2291 	last = &ents[nents - 1];
2292 	for (p = ents; p <= last; p++) {
2293 		if (p->len != dentry->d_name.len)
2294 			continue;
2295 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2296 			break;
2297 	}
2298 	if (p > last)
2299 		goto out;
2300 
2301 	error = proc_pident_instantiate(dir, dentry, task, p);
2302 out:
2303 	put_task_struct(task);
2304 out_no_task:
2305 	return error;
2306 }
2307 
2308 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2309 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2310 {
2311 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2312 				proc_pident_instantiate, task, p);
2313 }
2314 
2315 static int proc_pident_readdir(struct file *filp,
2316 		void *dirent, filldir_t filldir,
2317 		const struct pid_entry *ents, unsigned int nents)
2318 {
2319 	int i;
2320 	struct dentry *dentry = filp->f_path.dentry;
2321 	struct inode *inode = dentry->d_inode;
2322 	struct task_struct *task = get_proc_task(inode);
2323 	const struct pid_entry *p, *last;
2324 	ino_t ino;
2325 	int ret;
2326 
2327 	ret = -ENOENT;
2328 	if (!task)
2329 		goto out_no_task;
2330 
2331 	ret = 0;
2332 	i = filp->f_pos;
2333 	switch (i) {
2334 	case 0:
2335 		ino = inode->i_ino;
2336 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2337 			goto out;
2338 		i++;
2339 		filp->f_pos++;
2340 		/* fall through */
2341 	case 1:
2342 		ino = parent_ino(dentry);
2343 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2344 			goto out;
2345 		i++;
2346 		filp->f_pos++;
2347 		/* fall through */
2348 	default:
2349 		i -= 2;
2350 		if (i >= nents) {
2351 			ret = 1;
2352 			goto out;
2353 		}
2354 		p = ents + i;
2355 		last = &ents[nents - 1];
2356 		while (p <= last) {
2357 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2358 				goto out;
2359 			filp->f_pos++;
2360 			p++;
2361 		}
2362 	}
2363 
2364 	ret = 1;
2365 out:
2366 	put_task_struct(task);
2367 out_no_task:
2368 	return ret;
2369 }
2370 
2371 #ifdef CONFIG_SECURITY
2372 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2373 				  size_t count, loff_t *ppos)
2374 {
2375 	struct inode * inode = file->f_path.dentry->d_inode;
2376 	char *p = NULL;
2377 	ssize_t length;
2378 	struct task_struct *task = get_proc_task(inode);
2379 
2380 	if (!task)
2381 		return -ESRCH;
2382 
2383 	length = security_getprocattr(task,
2384 				      (char*)file->f_path.dentry->d_name.name,
2385 				      &p);
2386 	put_task_struct(task);
2387 	if (length > 0)
2388 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2389 	kfree(p);
2390 	return length;
2391 }
2392 
2393 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2394 				   size_t count, loff_t *ppos)
2395 {
2396 	struct inode * inode = file->f_path.dentry->d_inode;
2397 	char *page;
2398 	ssize_t length;
2399 	struct task_struct *task = get_proc_task(inode);
2400 
2401 	length = -ESRCH;
2402 	if (!task)
2403 		goto out_no_task;
2404 	if (count > PAGE_SIZE)
2405 		count = PAGE_SIZE;
2406 
2407 	/* No partial writes. */
2408 	length = -EINVAL;
2409 	if (*ppos != 0)
2410 		goto out;
2411 
2412 	length = -ENOMEM;
2413 	page = (char*)__get_free_page(GFP_TEMPORARY);
2414 	if (!page)
2415 		goto out;
2416 
2417 	length = -EFAULT;
2418 	if (copy_from_user(page, buf, count))
2419 		goto out_free;
2420 
2421 	/* Guard against adverse ptrace interaction */
2422 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2423 	if (length < 0)
2424 		goto out_free;
2425 
2426 	length = security_setprocattr(task,
2427 				      (char*)file->f_path.dentry->d_name.name,
2428 				      (void*)page, count);
2429 	mutex_unlock(&task->signal->cred_guard_mutex);
2430 out_free:
2431 	free_page((unsigned long) page);
2432 out:
2433 	put_task_struct(task);
2434 out_no_task:
2435 	return length;
2436 }
2437 
2438 static const struct file_operations proc_pid_attr_operations = {
2439 	.read		= proc_pid_attr_read,
2440 	.write		= proc_pid_attr_write,
2441 	.llseek		= generic_file_llseek,
2442 };
2443 
2444 static const struct pid_entry attr_dir_stuff[] = {
2445 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2446 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2447 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2448 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2449 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2450 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2451 };
2452 
2453 static int proc_attr_dir_readdir(struct file * filp,
2454 			     void * dirent, filldir_t filldir)
2455 {
2456 	return proc_pident_readdir(filp,dirent,filldir,
2457 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2458 }
2459 
2460 static const struct file_operations proc_attr_dir_operations = {
2461 	.read		= generic_read_dir,
2462 	.readdir	= proc_attr_dir_readdir,
2463 	.llseek		= default_llseek,
2464 };
2465 
2466 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2467 				struct dentry *dentry, struct nameidata *nd)
2468 {
2469 	return proc_pident_lookup(dir, dentry,
2470 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2471 }
2472 
2473 static const struct inode_operations proc_attr_dir_inode_operations = {
2474 	.lookup		= proc_attr_dir_lookup,
2475 	.getattr	= pid_getattr,
2476 	.setattr	= proc_setattr,
2477 };
2478 
2479 #endif
2480 
2481 #ifdef CONFIG_ELF_CORE
2482 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2483 					 size_t count, loff_t *ppos)
2484 {
2485 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2486 	struct mm_struct *mm;
2487 	char buffer[PROC_NUMBUF];
2488 	size_t len;
2489 	int ret;
2490 
2491 	if (!task)
2492 		return -ESRCH;
2493 
2494 	ret = 0;
2495 	mm = get_task_mm(task);
2496 	if (mm) {
2497 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2498 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2499 				MMF_DUMP_FILTER_SHIFT));
2500 		mmput(mm);
2501 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2502 	}
2503 
2504 	put_task_struct(task);
2505 
2506 	return ret;
2507 }
2508 
2509 static ssize_t proc_coredump_filter_write(struct file *file,
2510 					  const char __user *buf,
2511 					  size_t count,
2512 					  loff_t *ppos)
2513 {
2514 	struct task_struct *task;
2515 	struct mm_struct *mm;
2516 	char buffer[PROC_NUMBUF], *end;
2517 	unsigned int val;
2518 	int ret;
2519 	int i;
2520 	unsigned long mask;
2521 
2522 	ret = -EFAULT;
2523 	memset(buffer, 0, sizeof(buffer));
2524 	if (count > sizeof(buffer) - 1)
2525 		count = sizeof(buffer) - 1;
2526 	if (copy_from_user(buffer, buf, count))
2527 		goto out_no_task;
2528 
2529 	ret = -EINVAL;
2530 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2531 	if (*end == '\n')
2532 		end++;
2533 	if (end - buffer == 0)
2534 		goto out_no_task;
2535 
2536 	ret = -ESRCH;
2537 	task = get_proc_task(file->f_dentry->d_inode);
2538 	if (!task)
2539 		goto out_no_task;
2540 
2541 	ret = end - buffer;
2542 	mm = get_task_mm(task);
2543 	if (!mm)
2544 		goto out_no_mm;
2545 
2546 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2547 		if (val & mask)
2548 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2549 		else
2550 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2551 	}
2552 
2553 	mmput(mm);
2554  out_no_mm:
2555 	put_task_struct(task);
2556  out_no_task:
2557 	return ret;
2558 }
2559 
2560 static const struct file_operations proc_coredump_filter_operations = {
2561 	.read		= proc_coredump_filter_read,
2562 	.write		= proc_coredump_filter_write,
2563 	.llseek		= generic_file_llseek,
2564 };
2565 #endif
2566 
2567 /*
2568  * /proc/self:
2569  */
2570 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2571 			      int buflen)
2572 {
2573 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2574 	pid_t tgid = task_tgid_nr_ns(current, ns);
2575 	char tmp[PROC_NUMBUF];
2576 	if (!tgid)
2577 		return -ENOENT;
2578 	sprintf(tmp, "%d", tgid);
2579 	return vfs_readlink(dentry,buffer,buflen,tmp);
2580 }
2581 
2582 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2583 {
2584 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2585 	pid_t tgid = task_tgid_nr_ns(current, ns);
2586 	char *name = ERR_PTR(-ENOENT);
2587 	if (tgid) {
2588 		name = __getname();
2589 		if (!name)
2590 			name = ERR_PTR(-ENOMEM);
2591 		else
2592 			sprintf(name, "%d", tgid);
2593 	}
2594 	nd_set_link(nd, name);
2595 	return NULL;
2596 }
2597 
2598 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2599 				void *cookie)
2600 {
2601 	char *s = nd_get_link(nd);
2602 	if (!IS_ERR(s))
2603 		__putname(s);
2604 }
2605 
2606 static const struct inode_operations proc_self_inode_operations = {
2607 	.readlink	= proc_self_readlink,
2608 	.follow_link	= proc_self_follow_link,
2609 	.put_link	= proc_self_put_link,
2610 };
2611 
2612 /*
2613  * proc base
2614  *
2615  * These are the directory entries in the root directory of /proc
2616  * that properly belong to the /proc filesystem, as they describe
2617  * describe something that is process related.
2618  */
2619 static const struct pid_entry proc_base_stuff[] = {
2620 	NOD("self", S_IFLNK|S_IRWXUGO,
2621 		&proc_self_inode_operations, NULL, {}),
2622 };
2623 
2624 static struct dentry *proc_base_instantiate(struct inode *dir,
2625 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2626 {
2627 	const struct pid_entry *p = ptr;
2628 	struct inode *inode;
2629 	struct proc_inode *ei;
2630 	struct dentry *error;
2631 
2632 	/* Allocate the inode */
2633 	error = ERR_PTR(-ENOMEM);
2634 	inode = new_inode(dir->i_sb);
2635 	if (!inode)
2636 		goto out;
2637 
2638 	/* Initialize the inode */
2639 	ei = PROC_I(inode);
2640 	inode->i_ino = get_next_ino();
2641 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2642 
2643 	/*
2644 	 * grab the reference to the task.
2645 	 */
2646 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2647 	if (!ei->pid)
2648 		goto out_iput;
2649 
2650 	inode->i_mode = p->mode;
2651 	if (S_ISDIR(inode->i_mode))
2652 		inode->i_nlink = 2;
2653 	if (S_ISLNK(inode->i_mode))
2654 		inode->i_size = 64;
2655 	if (p->iop)
2656 		inode->i_op = p->iop;
2657 	if (p->fop)
2658 		inode->i_fop = p->fop;
2659 	ei->op = p->op;
2660 	d_add(dentry, inode);
2661 	error = NULL;
2662 out:
2663 	return error;
2664 out_iput:
2665 	iput(inode);
2666 	goto out;
2667 }
2668 
2669 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2670 {
2671 	struct dentry *error;
2672 	struct task_struct *task = get_proc_task(dir);
2673 	const struct pid_entry *p, *last;
2674 
2675 	error = ERR_PTR(-ENOENT);
2676 
2677 	if (!task)
2678 		goto out_no_task;
2679 
2680 	/* Lookup the directory entry */
2681 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2682 	for (p = proc_base_stuff; p <= last; p++) {
2683 		if (p->len != dentry->d_name.len)
2684 			continue;
2685 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2686 			break;
2687 	}
2688 	if (p > last)
2689 		goto out;
2690 
2691 	error = proc_base_instantiate(dir, dentry, task, p);
2692 
2693 out:
2694 	put_task_struct(task);
2695 out_no_task:
2696 	return error;
2697 }
2698 
2699 static int proc_base_fill_cache(struct file *filp, void *dirent,
2700 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2701 {
2702 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2703 				proc_base_instantiate, task, p);
2704 }
2705 
2706 #ifdef CONFIG_TASK_IO_ACCOUNTING
2707 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2708 {
2709 	struct task_io_accounting acct = task->ioac;
2710 	unsigned long flags;
2711 
2712 	if (whole && lock_task_sighand(task, &flags)) {
2713 		struct task_struct *t = task;
2714 
2715 		task_io_accounting_add(&acct, &task->signal->ioac);
2716 		while_each_thread(task, t)
2717 			task_io_accounting_add(&acct, &t->ioac);
2718 
2719 		unlock_task_sighand(task, &flags);
2720 	}
2721 	return sprintf(buffer,
2722 			"rchar: %llu\n"
2723 			"wchar: %llu\n"
2724 			"syscr: %llu\n"
2725 			"syscw: %llu\n"
2726 			"read_bytes: %llu\n"
2727 			"write_bytes: %llu\n"
2728 			"cancelled_write_bytes: %llu\n",
2729 			(unsigned long long)acct.rchar,
2730 			(unsigned long long)acct.wchar,
2731 			(unsigned long long)acct.syscr,
2732 			(unsigned long long)acct.syscw,
2733 			(unsigned long long)acct.read_bytes,
2734 			(unsigned long long)acct.write_bytes,
2735 			(unsigned long long)acct.cancelled_write_bytes);
2736 }
2737 
2738 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2739 {
2740 	return do_io_accounting(task, buffer, 0);
2741 }
2742 
2743 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2744 {
2745 	return do_io_accounting(task, buffer, 1);
2746 }
2747 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2748 
2749 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2750 				struct pid *pid, struct task_struct *task)
2751 {
2752 	int err = lock_trace(task);
2753 	if (!err) {
2754 		seq_printf(m, "%08x\n", task->personality);
2755 		unlock_trace(task);
2756 	}
2757 	return err;
2758 }
2759 
2760 /*
2761  * Thread groups
2762  */
2763 static const struct file_operations proc_task_operations;
2764 static const struct inode_operations proc_task_inode_operations;
2765 
2766 static const struct pid_entry tgid_base_stuff[] = {
2767 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2768 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2769 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2770 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2771 #ifdef CONFIG_NET
2772 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2773 #endif
2774 	REG("environ",    S_IRUSR, proc_environ_operations),
2775 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2776 	ONE("status",     S_IRUGO, proc_pid_status),
2777 	ONE("personality", S_IRUGO, proc_pid_personality),
2778 	INF("limits",	  S_IRUGO, proc_pid_limits),
2779 #ifdef CONFIG_SCHED_DEBUG
2780 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2781 #endif
2782 #ifdef CONFIG_SCHED_AUTOGROUP
2783 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2784 #endif
2785 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2786 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2787 	INF("syscall",    S_IRUGO, proc_pid_syscall),
2788 #endif
2789 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2790 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2791 	ONE("statm",      S_IRUGO, proc_pid_statm),
2792 	REG("maps",       S_IRUGO, proc_maps_operations),
2793 #ifdef CONFIG_NUMA
2794 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2795 #endif
2796 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2797 	LNK("cwd",        proc_cwd_link),
2798 	LNK("root",       proc_root_link),
2799 	LNK("exe",        proc_exe_link),
2800 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2801 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2802 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2803 #ifdef CONFIG_PROC_PAGE_MONITOR
2804 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2805 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2806 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2807 #endif
2808 #ifdef CONFIG_SECURITY
2809 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2810 #endif
2811 #ifdef CONFIG_KALLSYMS
2812 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2813 #endif
2814 #ifdef CONFIG_STACKTRACE
2815 	ONE("stack",      S_IRUGO, proc_pid_stack),
2816 #endif
2817 #ifdef CONFIG_SCHEDSTATS
2818 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2819 #endif
2820 #ifdef CONFIG_LATENCYTOP
2821 	REG("latency",  S_IRUGO, proc_lstats_operations),
2822 #endif
2823 #ifdef CONFIG_PROC_PID_CPUSET
2824 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2825 #endif
2826 #ifdef CONFIG_CGROUPS
2827 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2828 #endif
2829 	INF("oom_score",  S_IRUGO, proc_oom_score),
2830 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2831 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2832 #ifdef CONFIG_AUDITSYSCALL
2833 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2834 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2835 #endif
2836 #ifdef CONFIG_FAULT_INJECTION
2837 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2838 #endif
2839 #ifdef CONFIG_ELF_CORE
2840 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2841 #endif
2842 #ifdef CONFIG_TASK_IO_ACCOUNTING
2843 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2844 #endif
2845 };
2846 
2847 static int proc_tgid_base_readdir(struct file * filp,
2848 			     void * dirent, filldir_t filldir)
2849 {
2850 	return proc_pident_readdir(filp,dirent,filldir,
2851 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2852 }
2853 
2854 static const struct file_operations proc_tgid_base_operations = {
2855 	.read		= generic_read_dir,
2856 	.readdir	= proc_tgid_base_readdir,
2857 	.llseek		= default_llseek,
2858 };
2859 
2860 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2861 	return proc_pident_lookup(dir, dentry,
2862 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2863 }
2864 
2865 static const struct inode_operations proc_tgid_base_inode_operations = {
2866 	.lookup		= proc_tgid_base_lookup,
2867 	.getattr	= pid_getattr,
2868 	.setattr	= proc_setattr,
2869 };
2870 
2871 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2872 {
2873 	struct dentry *dentry, *leader, *dir;
2874 	char buf[PROC_NUMBUF];
2875 	struct qstr name;
2876 
2877 	name.name = buf;
2878 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2879 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2880 	if (dentry) {
2881 		shrink_dcache_parent(dentry);
2882 		d_drop(dentry);
2883 		dput(dentry);
2884 	}
2885 
2886 	name.name = buf;
2887 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2888 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2889 	if (!leader)
2890 		goto out;
2891 
2892 	name.name = "task";
2893 	name.len = strlen(name.name);
2894 	dir = d_hash_and_lookup(leader, &name);
2895 	if (!dir)
2896 		goto out_put_leader;
2897 
2898 	name.name = buf;
2899 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2900 	dentry = d_hash_and_lookup(dir, &name);
2901 	if (dentry) {
2902 		shrink_dcache_parent(dentry);
2903 		d_drop(dentry);
2904 		dput(dentry);
2905 	}
2906 
2907 	dput(dir);
2908 out_put_leader:
2909 	dput(leader);
2910 out:
2911 	return;
2912 }
2913 
2914 /**
2915  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2916  * @task: task that should be flushed.
2917  *
2918  * When flushing dentries from proc, one needs to flush them from global
2919  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2920  * in. This call is supposed to do all of this job.
2921  *
2922  * Looks in the dcache for
2923  * /proc/@pid
2924  * /proc/@tgid/task/@pid
2925  * if either directory is present flushes it and all of it'ts children
2926  * from the dcache.
2927  *
2928  * It is safe and reasonable to cache /proc entries for a task until
2929  * that task exits.  After that they just clog up the dcache with
2930  * useless entries, possibly causing useful dcache entries to be
2931  * flushed instead.  This routine is proved to flush those useless
2932  * dcache entries at process exit time.
2933  *
2934  * NOTE: This routine is just an optimization so it does not guarantee
2935  *       that no dcache entries will exist at process exit time it
2936  *       just makes it very unlikely that any will persist.
2937  */
2938 
2939 void proc_flush_task(struct task_struct *task)
2940 {
2941 	int i;
2942 	struct pid *pid, *tgid;
2943 	struct upid *upid;
2944 
2945 	pid = task_pid(task);
2946 	tgid = task_tgid(task);
2947 
2948 	for (i = 0; i <= pid->level; i++) {
2949 		upid = &pid->numbers[i];
2950 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2951 					tgid->numbers[i].nr);
2952 	}
2953 
2954 	upid = &pid->numbers[pid->level];
2955 	if (upid->nr == 1)
2956 		pid_ns_release_proc(upid->ns);
2957 }
2958 
2959 static struct dentry *proc_pid_instantiate(struct inode *dir,
2960 					   struct dentry * dentry,
2961 					   struct task_struct *task, const void *ptr)
2962 {
2963 	struct dentry *error = ERR_PTR(-ENOENT);
2964 	struct inode *inode;
2965 
2966 	inode = proc_pid_make_inode(dir->i_sb, task);
2967 	if (!inode)
2968 		goto out;
2969 
2970 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2971 	inode->i_op = &proc_tgid_base_inode_operations;
2972 	inode->i_fop = &proc_tgid_base_operations;
2973 	inode->i_flags|=S_IMMUTABLE;
2974 
2975 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2976 		ARRAY_SIZE(tgid_base_stuff));
2977 
2978 	d_set_d_op(dentry, &pid_dentry_operations);
2979 
2980 	d_add(dentry, inode);
2981 	/* Close the race of the process dying before we return the dentry */
2982 	if (pid_revalidate(dentry, NULL))
2983 		error = NULL;
2984 out:
2985 	return error;
2986 }
2987 
2988 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2989 {
2990 	struct dentry *result;
2991 	struct task_struct *task;
2992 	unsigned tgid;
2993 	struct pid_namespace *ns;
2994 
2995 	result = proc_base_lookup(dir, dentry);
2996 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2997 		goto out;
2998 
2999 	tgid = name_to_int(dentry);
3000 	if (tgid == ~0U)
3001 		goto out;
3002 
3003 	ns = dentry->d_sb->s_fs_info;
3004 	rcu_read_lock();
3005 	task = find_task_by_pid_ns(tgid, ns);
3006 	if (task)
3007 		get_task_struct(task);
3008 	rcu_read_unlock();
3009 	if (!task)
3010 		goto out;
3011 
3012 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3013 	put_task_struct(task);
3014 out:
3015 	return result;
3016 }
3017 
3018 /*
3019  * Find the first task with tgid >= tgid
3020  *
3021  */
3022 struct tgid_iter {
3023 	unsigned int tgid;
3024 	struct task_struct *task;
3025 };
3026 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3027 {
3028 	struct pid *pid;
3029 
3030 	if (iter.task)
3031 		put_task_struct(iter.task);
3032 	rcu_read_lock();
3033 retry:
3034 	iter.task = NULL;
3035 	pid = find_ge_pid(iter.tgid, ns);
3036 	if (pid) {
3037 		iter.tgid = pid_nr_ns(pid, ns);
3038 		iter.task = pid_task(pid, PIDTYPE_PID);
3039 		/* What we to know is if the pid we have find is the
3040 		 * pid of a thread_group_leader.  Testing for task
3041 		 * being a thread_group_leader is the obvious thing
3042 		 * todo but there is a window when it fails, due to
3043 		 * the pid transfer logic in de_thread.
3044 		 *
3045 		 * So we perform the straight forward test of seeing
3046 		 * if the pid we have found is the pid of a thread
3047 		 * group leader, and don't worry if the task we have
3048 		 * found doesn't happen to be a thread group leader.
3049 		 * As we don't care in the case of readdir.
3050 		 */
3051 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3052 			iter.tgid += 1;
3053 			goto retry;
3054 		}
3055 		get_task_struct(iter.task);
3056 	}
3057 	rcu_read_unlock();
3058 	return iter;
3059 }
3060 
3061 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3062 
3063 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3064 	struct tgid_iter iter)
3065 {
3066 	char name[PROC_NUMBUF];
3067 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3068 	return proc_fill_cache(filp, dirent, filldir, name, len,
3069 				proc_pid_instantiate, iter.task, NULL);
3070 }
3071 
3072 /* for the /proc/ directory itself, after non-process stuff has been done */
3073 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3074 {
3075 	unsigned int nr;
3076 	struct task_struct *reaper;
3077 	struct tgid_iter iter;
3078 	struct pid_namespace *ns;
3079 
3080 	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3081 		goto out_no_task;
3082 	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3083 
3084 	reaper = get_proc_task(filp->f_path.dentry->d_inode);
3085 	if (!reaper)
3086 		goto out_no_task;
3087 
3088 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3089 		const struct pid_entry *p = &proc_base_stuff[nr];
3090 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3091 			goto out;
3092 	}
3093 
3094 	ns = filp->f_dentry->d_sb->s_fs_info;
3095 	iter.task = NULL;
3096 	iter.tgid = filp->f_pos - TGID_OFFSET;
3097 	for (iter = next_tgid(ns, iter);
3098 	     iter.task;
3099 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3100 		filp->f_pos = iter.tgid + TGID_OFFSET;
3101 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
3102 			put_task_struct(iter.task);
3103 			goto out;
3104 		}
3105 	}
3106 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3107 out:
3108 	put_task_struct(reaper);
3109 out_no_task:
3110 	return 0;
3111 }
3112 
3113 /*
3114  * Tasks
3115  */
3116 static const struct pid_entry tid_base_stuff[] = {
3117 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3118 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3119 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3120 	REG("environ",   S_IRUSR, proc_environ_operations),
3121 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3122 	ONE("status",    S_IRUGO, proc_pid_status),
3123 	ONE("personality", S_IRUGO, proc_pid_personality),
3124 	INF("limits",	 S_IRUGO, proc_pid_limits),
3125 #ifdef CONFIG_SCHED_DEBUG
3126 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3127 #endif
3128 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3129 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3130 	INF("syscall",   S_IRUGO, proc_pid_syscall),
3131 #endif
3132 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3133 	ONE("stat",      S_IRUGO, proc_tid_stat),
3134 	ONE("statm",     S_IRUGO, proc_pid_statm),
3135 	REG("maps",      S_IRUGO, proc_maps_operations),
3136 #ifdef CONFIG_NUMA
3137 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3138 #endif
3139 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3140 	LNK("cwd",       proc_cwd_link),
3141 	LNK("root",      proc_root_link),
3142 	LNK("exe",       proc_exe_link),
3143 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3144 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3145 #ifdef CONFIG_PROC_PAGE_MONITOR
3146 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3147 	REG("smaps",     S_IRUGO, proc_smaps_operations),
3148 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3149 #endif
3150 #ifdef CONFIG_SECURITY
3151 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3152 #endif
3153 #ifdef CONFIG_KALLSYMS
3154 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3155 #endif
3156 #ifdef CONFIG_STACKTRACE
3157 	ONE("stack",      S_IRUGO, proc_pid_stack),
3158 #endif
3159 #ifdef CONFIG_SCHEDSTATS
3160 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3161 #endif
3162 #ifdef CONFIG_LATENCYTOP
3163 	REG("latency",  S_IRUGO, proc_lstats_operations),
3164 #endif
3165 #ifdef CONFIG_PROC_PID_CPUSET
3166 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3167 #endif
3168 #ifdef CONFIG_CGROUPS
3169 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3170 #endif
3171 	INF("oom_score", S_IRUGO, proc_oom_score),
3172 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3173 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3174 #ifdef CONFIG_AUDITSYSCALL
3175 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3176 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3177 #endif
3178 #ifdef CONFIG_FAULT_INJECTION
3179 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3180 #endif
3181 #ifdef CONFIG_TASK_IO_ACCOUNTING
3182 	INF("io",	S_IRUGO, proc_tid_io_accounting),
3183 #endif
3184 };
3185 
3186 static int proc_tid_base_readdir(struct file * filp,
3187 			     void * dirent, filldir_t filldir)
3188 {
3189 	return proc_pident_readdir(filp,dirent,filldir,
3190 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3191 }
3192 
3193 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3194 	return proc_pident_lookup(dir, dentry,
3195 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3196 }
3197 
3198 static const struct file_operations proc_tid_base_operations = {
3199 	.read		= generic_read_dir,
3200 	.readdir	= proc_tid_base_readdir,
3201 	.llseek		= default_llseek,
3202 };
3203 
3204 static const struct inode_operations proc_tid_base_inode_operations = {
3205 	.lookup		= proc_tid_base_lookup,
3206 	.getattr	= pid_getattr,
3207 	.setattr	= proc_setattr,
3208 };
3209 
3210 static struct dentry *proc_task_instantiate(struct inode *dir,
3211 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3212 {
3213 	struct dentry *error = ERR_PTR(-ENOENT);
3214 	struct inode *inode;
3215 	inode = proc_pid_make_inode(dir->i_sb, task);
3216 
3217 	if (!inode)
3218 		goto out;
3219 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3220 	inode->i_op = &proc_tid_base_inode_operations;
3221 	inode->i_fop = &proc_tid_base_operations;
3222 	inode->i_flags|=S_IMMUTABLE;
3223 
3224 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3225 		ARRAY_SIZE(tid_base_stuff));
3226 
3227 	d_set_d_op(dentry, &pid_dentry_operations);
3228 
3229 	d_add(dentry, inode);
3230 	/* Close the race of the process dying before we return the dentry */
3231 	if (pid_revalidate(dentry, NULL))
3232 		error = NULL;
3233 out:
3234 	return error;
3235 }
3236 
3237 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3238 {
3239 	struct dentry *result = ERR_PTR(-ENOENT);
3240 	struct task_struct *task;
3241 	struct task_struct *leader = get_proc_task(dir);
3242 	unsigned tid;
3243 	struct pid_namespace *ns;
3244 
3245 	if (!leader)
3246 		goto out_no_task;
3247 
3248 	tid = name_to_int(dentry);
3249 	if (tid == ~0U)
3250 		goto out;
3251 
3252 	ns = dentry->d_sb->s_fs_info;
3253 	rcu_read_lock();
3254 	task = find_task_by_pid_ns(tid, ns);
3255 	if (task)
3256 		get_task_struct(task);
3257 	rcu_read_unlock();
3258 	if (!task)
3259 		goto out;
3260 	if (!same_thread_group(leader, task))
3261 		goto out_drop_task;
3262 
3263 	result = proc_task_instantiate(dir, dentry, task, NULL);
3264 out_drop_task:
3265 	put_task_struct(task);
3266 out:
3267 	put_task_struct(leader);
3268 out_no_task:
3269 	return result;
3270 }
3271 
3272 /*
3273  * Find the first tid of a thread group to return to user space.
3274  *
3275  * Usually this is just the thread group leader, but if the users
3276  * buffer was too small or there was a seek into the middle of the
3277  * directory we have more work todo.
3278  *
3279  * In the case of a short read we start with find_task_by_pid.
3280  *
3281  * In the case of a seek we start with the leader and walk nr
3282  * threads past it.
3283  */
3284 static struct task_struct *first_tid(struct task_struct *leader,
3285 		int tid, int nr, struct pid_namespace *ns)
3286 {
3287 	struct task_struct *pos;
3288 
3289 	rcu_read_lock();
3290 	/* Attempt to start with the pid of a thread */
3291 	if (tid && (nr > 0)) {
3292 		pos = find_task_by_pid_ns(tid, ns);
3293 		if (pos && (pos->group_leader == leader))
3294 			goto found;
3295 	}
3296 
3297 	/* If nr exceeds the number of threads there is nothing todo */
3298 	pos = NULL;
3299 	if (nr && nr >= get_nr_threads(leader))
3300 		goto out;
3301 
3302 	/* If we haven't found our starting place yet start
3303 	 * with the leader and walk nr threads forward.
3304 	 */
3305 	for (pos = leader; nr > 0; --nr) {
3306 		pos = next_thread(pos);
3307 		if (pos == leader) {
3308 			pos = NULL;
3309 			goto out;
3310 		}
3311 	}
3312 found:
3313 	get_task_struct(pos);
3314 out:
3315 	rcu_read_unlock();
3316 	return pos;
3317 }
3318 
3319 /*
3320  * Find the next thread in the thread list.
3321  * Return NULL if there is an error or no next thread.
3322  *
3323  * The reference to the input task_struct is released.
3324  */
3325 static struct task_struct *next_tid(struct task_struct *start)
3326 {
3327 	struct task_struct *pos = NULL;
3328 	rcu_read_lock();
3329 	if (pid_alive(start)) {
3330 		pos = next_thread(start);
3331 		if (thread_group_leader(pos))
3332 			pos = NULL;
3333 		else
3334 			get_task_struct(pos);
3335 	}
3336 	rcu_read_unlock();
3337 	put_task_struct(start);
3338 	return pos;
3339 }
3340 
3341 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3342 	struct task_struct *task, int tid)
3343 {
3344 	char name[PROC_NUMBUF];
3345 	int len = snprintf(name, sizeof(name), "%d", tid);
3346 	return proc_fill_cache(filp, dirent, filldir, name, len,
3347 				proc_task_instantiate, task, NULL);
3348 }
3349 
3350 /* for the /proc/TGID/task/ directories */
3351 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3352 {
3353 	struct dentry *dentry = filp->f_path.dentry;
3354 	struct inode *inode = dentry->d_inode;
3355 	struct task_struct *leader = NULL;
3356 	struct task_struct *task;
3357 	int retval = -ENOENT;
3358 	ino_t ino;
3359 	int tid;
3360 	struct pid_namespace *ns;
3361 
3362 	task = get_proc_task(inode);
3363 	if (!task)
3364 		goto out_no_task;
3365 	rcu_read_lock();
3366 	if (pid_alive(task)) {
3367 		leader = task->group_leader;
3368 		get_task_struct(leader);
3369 	}
3370 	rcu_read_unlock();
3371 	put_task_struct(task);
3372 	if (!leader)
3373 		goto out_no_task;
3374 	retval = 0;
3375 
3376 	switch ((unsigned long)filp->f_pos) {
3377 	case 0:
3378 		ino = inode->i_ino;
3379 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3380 			goto out;
3381 		filp->f_pos++;
3382 		/* fall through */
3383 	case 1:
3384 		ino = parent_ino(dentry);
3385 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3386 			goto out;
3387 		filp->f_pos++;
3388 		/* fall through */
3389 	}
3390 
3391 	/* f_version caches the tgid value that the last readdir call couldn't
3392 	 * return. lseek aka telldir automagically resets f_version to 0.
3393 	 */
3394 	ns = filp->f_dentry->d_sb->s_fs_info;
3395 	tid = (int)filp->f_version;
3396 	filp->f_version = 0;
3397 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3398 	     task;
3399 	     task = next_tid(task), filp->f_pos++) {
3400 		tid = task_pid_nr_ns(task, ns);
3401 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3402 			/* returning this tgid failed, save it as the first
3403 			 * pid for the next readir call */
3404 			filp->f_version = (u64)tid;
3405 			put_task_struct(task);
3406 			break;
3407 		}
3408 	}
3409 out:
3410 	put_task_struct(leader);
3411 out_no_task:
3412 	return retval;
3413 }
3414 
3415 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3416 {
3417 	struct inode *inode = dentry->d_inode;
3418 	struct task_struct *p = get_proc_task(inode);
3419 	generic_fillattr(inode, stat);
3420 
3421 	if (p) {
3422 		stat->nlink += get_nr_threads(p);
3423 		put_task_struct(p);
3424 	}
3425 
3426 	return 0;
3427 }
3428 
3429 static const struct inode_operations proc_task_inode_operations = {
3430 	.lookup		= proc_task_lookup,
3431 	.getattr	= proc_task_getattr,
3432 	.setattr	= proc_setattr,
3433 };
3434 
3435 static const struct file_operations proc_task_operations = {
3436 	.read		= generic_read_dir,
3437 	.readdir	= proc_task_readdir,
3438 	.llseek		= default_llseek,
3439 };
3440