xref: /linux/fs/proc/base.c (revision 424f0750edd5af866f80f5e65998e0610503cb5c)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #ifdef CONFIG_HARDWALL
87 #include <asm/hardwall.h>
88 #endif
89 #include "internal.h"
90 
91 /* NOTE:
92  *	Implementing inode permission operations in /proc is almost
93  *	certainly an error.  Permission checks need to happen during
94  *	each system call not at open time.  The reason is that most of
95  *	what we wish to check for permissions in /proc varies at runtime.
96  *
97  *	The classic example of a problem is opening file descriptors
98  *	in /proc for a task before it execs a suid executable.
99  */
100 
101 struct pid_entry {
102 	char *name;
103 	int len;
104 	mode_t mode;
105 	const struct inode_operations *iop;
106 	const struct file_operations *fop;
107 	union proc_op op;
108 };
109 
110 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
111 	.name = (NAME),					\
112 	.len  = sizeof(NAME) - 1,			\
113 	.mode = MODE,					\
114 	.iop  = IOP,					\
115 	.fop  = FOP,					\
116 	.op   = OP,					\
117 }
118 
119 #define DIR(NAME, MODE, iops, fops)	\
120 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
121 #define LNK(NAME, get_link)					\
122 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
123 		&proc_pid_link_inode_operations, NULL,		\
124 		{ .proc_get_link = get_link } )
125 #define REG(NAME, MODE, fops)				\
126 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
127 #define INF(NAME, MODE, read)				\
128 	NOD(NAME, (S_IFREG|(MODE)), 			\
129 		NULL, &proc_info_file_operations,	\
130 		{ .proc_read = read } )
131 #define ONE(NAME, MODE, show)				\
132 	NOD(NAME, (S_IFREG|(MODE)), 			\
133 		NULL, &proc_single_file_operations,	\
134 		{ .proc_show = show } )
135 
136 /*
137  * Count the number of hardlinks for the pid_entry table, excluding the .
138  * and .. links.
139  */
140 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
141 	unsigned int n)
142 {
143 	unsigned int i;
144 	unsigned int count;
145 
146 	count = 0;
147 	for (i = 0; i < n; ++i) {
148 		if (S_ISDIR(entries[i].mode))
149 			++count;
150 	}
151 
152 	return count;
153 }
154 
155 static int get_task_root(struct task_struct *task, struct path *root)
156 {
157 	int result = -ENOENT;
158 
159 	task_lock(task);
160 	if (task->fs) {
161 		get_fs_root(task->fs, root);
162 		result = 0;
163 	}
164 	task_unlock(task);
165 	return result;
166 }
167 
168 static int proc_cwd_link(struct inode *inode, struct path *path)
169 {
170 	struct task_struct *task = get_proc_task(inode);
171 	int result = -ENOENT;
172 
173 	if (task) {
174 		task_lock(task);
175 		if (task->fs) {
176 			get_fs_pwd(task->fs, path);
177 			result = 0;
178 		}
179 		task_unlock(task);
180 		put_task_struct(task);
181 	}
182 	return result;
183 }
184 
185 static int proc_root_link(struct inode *inode, struct path *path)
186 {
187 	struct task_struct *task = get_proc_task(inode);
188 	int result = -ENOENT;
189 
190 	if (task) {
191 		result = get_task_root(task, path);
192 		put_task_struct(task);
193 	}
194 	return result;
195 }
196 
197 static struct mm_struct *__check_mem_permission(struct task_struct *task)
198 {
199 	struct mm_struct *mm;
200 
201 	mm = get_task_mm(task);
202 	if (!mm)
203 		return ERR_PTR(-EINVAL);
204 
205 	/*
206 	 * A task can always look at itself, in case it chooses
207 	 * to use system calls instead of load instructions.
208 	 */
209 	if (task == current)
210 		return mm;
211 
212 	/*
213 	 * If current is actively ptrace'ing, and would also be
214 	 * permitted to freshly attach with ptrace now, permit it.
215 	 */
216 	if (task_is_stopped_or_traced(task)) {
217 		int match;
218 		rcu_read_lock();
219 		match = (ptrace_parent(task) == current);
220 		rcu_read_unlock();
221 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
222 			return mm;
223 	}
224 
225 	/*
226 	 * No one else is allowed.
227 	 */
228 	mmput(mm);
229 	return ERR_PTR(-EPERM);
230 }
231 
232 /*
233  * If current may access user memory in @task return a reference to the
234  * corresponding mm, otherwise ERR_PTR.
235  */
236 static struct mm_struct *check_mem_permission(struct task_struct *task)
237 {
238 	struct mm_struct *mm;
239 	int err;
240 
241 	/*
242 	 * Avoid racing if task exec's as we might get a new mm but validate
243 	 * against old credentials.
244 	 */
245 	err = mutex_lock_killable(&task->signal->cred_guard_mutex);
246 	if (err)
247 		return ERR_PTR(err);
248 
249 	mm = __check_mem_permission(task);
250 	mutex_unlock(&task->signal->cred_guard_mutex);
251 
252 	return mm;
253 }
254 
255 struct mm_struct *mm_for_maps(struct task_struct *task)
256 {
257 	struct mm_struct *mm;
258 	int err;
259 
260 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
261 	if (err)
262 		return ERR_PTR(err);
263 
264 	mm = get_task_mm(task);
265 	if (mm && mm != current->mm &&
266 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
267 		mmput(mm);
268 		mm = ERR_PTR(-EACCES);
269 	}
270 	mutex_unlock(&task->signal->cred_guard_mutex);
271 
272 	return mm;
273 }
274 
275 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
276 {
277 	int res = 0;
278 	unsigned int len;
279 	struct mm_struct *mm = get_task_mm(task);
280 	if (!mm)
281 		goto out;
282 	if (!mm->arg_end)
283 		goto out_mm;	/* Shh! No looking before we're done */
284 
285  	len = mm->arg_end - mm->arg_start;
286 
287 	if (len > PAGE_SIZE)
288 		len = PAGE_SIZE;
289 
290 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
291 
292 	// If the nul at the end of args has been overwritten, then
293 	// assume application is using setproctitle(3).
294 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
295 		len = strnlen(buffer, res);
296 		if (len < res) {
297 		    res = len;
298 		} else {
299 			len = mm->env_end - mm->env_start;
300 			if (len > PAGE_SIZE - res)
301 				len = PAGE_SIZE - res;
302 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
303 			res = strnlen(buffer, res);
304 		}
305 	}
306 out_mm:
307 	mmput(mm);
308 out:
309 	return res;
310 }
311 
312 static int proc_pid_auxv(struct task_struct *task, char *buffer)
313 {
314 	struct mm_struct *mm = mm_for_maps(task);
315 	int res = PTR_ERR(mm);
316 	if (mm && !IS_ERR(mm)) {
317 		unsigned int nwords = 0;
318 		do {
319 			nwords += 2;
320 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
321 		res = nwords * sizeof(mm->saved_auxv[0]);
322 		if (res > PAGE_SIZE)
323 			res = PAGE_SIZE;
324 		memcpy(buffer, mm->saved_auxv, res);
325 		mmput(mm);
326 	}
327 	return res;
328 }
329 
330 
331 #ifdef CONFIG_KALLSYMS
332 /*
333  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
334  * Returns the resolved symbol.  If that fails, simply return the address.
335  */
336 static int proc_pid_wchan(struct task_struct *task, char *buffer)
337 {
338 	unsigned long wchan;
339 	char symname[KSYM_NAME_LEN];
340 
341 	wchan = get_wchan(task);
342 
343 	if (lookup_symbol_name(wchan, symname) < 0)
344 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
345 			return 0;
346 		else
347 			return sprintf(buffer, "%lu", wchan);
348 	else
349 		return sprintf(buffer, "%s", symname);
350 }
351 #endif /* CONFIG_KALLSYMS */
352 
353 static int lock_trace(struct task_struct *task)
354 {
355 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
356 	if (err)
357 		return err;
358 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
359 		mutex_unlock(&task->signal->cred_guard_mutex);
360 		return -EPERM;
361 	}
362 	return 0;
363 }
364 
365 static void unlock_trace(struct task_struct *task)
366 {
367 	mutex_unlock(&task->signal->cred_guard_mutex);
368 }
369 
370 #ifdef CONFIG_STACKTRACE
371 
372 #define MAX_STACK_TRACE_DEPTH	64
373 
374 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
375 			  struct pid *pid, struct task_struct *task)
376 {
377 	struct stack_trace trace;
378 	unsigned long *entries;
379 	int err;
380 	int i;
381 
382 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
383 	if (!entries)
384 		return -ENOMEM;
385 
386 	trace.nr_entries	= 0;
387 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
388 	trace.entries		= entries;
389 	trace.skip		= 0;
390 
391 	err = lock_trace(task);
392 	if (!err) {
393 		save_stack_trace_tsk(task, &trace);
394 
395 		for (i = 0; i < trace.nr_entries; i++) {
396 			seq_printf(m, "[<%pK>] %pS\n",
397 				   (void *)entries[i], (void *)entries[i]);
398 		}
399 		unlock_trace(task);
400 	}
401 	kfree(entries);
402 
403 	return err;
404 }
405 #endif
406 
407 #ifdef CONFIG_SCHEDSTATS
408 /*
409  * Provides /proc/PID/schedstat
410  */
411 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
412 {
413 	return sprintf(buffer, "%llu %llu %lu\n",
414 			(unsigned long long)task->se.sum_exec_runtime,
415 			(unsigned long long)task->sched_info.run_delay,
416 			task->sched_info.pcount);
417 }
418 #endif
419 
420 #ifdef CONFIG_LATENCYTOP
421 static int lstats_show_proc(struct seq_file *m, void *v)
422 {
423 	int i;
424 	struct inode *inode = m->private;
425 	struct task_struct *task = get_proc_task(inode);
426 
427 	if (!task)
428 		return -ESRCH;
429 	seq_puts(m, "Latency Top version : v0.1\n");
430 	for (i = 0; i < 32; i++) {
431 		struct latency_record *lr = &task->latency_record[i];
432 		if (lr->backtrace[0]) {
433 			int q;
434 			seq_printf(m, "%i %li %li",
435 				   lr->count, lr->time, lr->max);
436 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
437 				unsigned long bt = lr->backtrace[q];
438 				if (!bt)
439 					break;
440 				if (bt == ULONG_MAX)
441 					break;
442 				seq_printf(m, " %ps", (void *)bt);
443 			}
444 			seq_putc(m, '\n');
445 		}
446 
447 	}
448 	put_task_struct(task);
449 	return 0;
450 }
451 
452 static int lstats_open(struct inode *inode, struct file *file)
453 {
454 	return single_open(file, lstats_show_proc, inode);
455 }
456 
457 static ssize_t lstats_write(struct file *file, const char __user *buf,
458 			    size_t count, loff_t *offs)
459 {
460 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
461 
462 	if (!task)
463 		return -ESRCH;
464 	clear_all_latency_tracing(task);
465 	put_task_struct(task);
466 
467 	return count;
468 }
469 
470 static const struct file_operations proc_lstats_operations = {
471 	.open		= lstats_open,
472 	.read		= seq_read,
473 	.write		= lstats_write,
474 	.llseek		= seq_lseek,
475 	.release	= single_release,
476 };
477 
478 #endif
479 
480 static int proc_oom_score(struct task_struct *task, char *buffer)
481 {
482 	unsigned long points = 0;
483 
484 	read_lock(&tasklist_lock);
485 	if (pid_alive(task))
486 		points = oom_badness(task, NULL, NULL,
487 					totalram_pages + total_swap_pages);
488 	read_unlock(&tasklist_lock);
489 	return sprintf(buffer, "%lu\n", points);
490 }
491 
492 struct limit_names {
493 	char *name;
494 	char *unit;
495 };
496 
497 static const struct limit_names lnames[RLIM_NLIMITS] = {
498 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
499 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
500 	[RLIMIT_DATA] = {"Max data size", "bytes"},
501 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
502 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
503 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
504 	[RLIMIT_NPROC] = {"Max processes", "processes"},
505 	[RLIMIT_NOFILE] = {"Max open files", "files"},
506 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
507 	[RLIMIT_AS] = {"Max address space", "bytes"},
508 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
509 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
510 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
511 	[RLIMIT_NICE] = {"Max nice priority", NULL},
512 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
513 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
514 };
515 
516 /* Display limits for a process */
517 static int proc_pid_limits(struct task_struct *task, char *buffer)
518 {
519 	unsigned int i;
520 	int count = 0;
521 	unsigned long flags;
522 	char *bufptr = buffer;
523 
524 	struct rlimit rlim[RLIM_NLIMITS];
525 
526 	if (!lock_task_sighand(task, &flags))
527 		return 0;
528 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
529 	unlock_task_sighand(task, &flags);
530 
531 	/*
532 	 * print the file header
533 	 */
534 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
535 			"Limit", "Soft Limit", "Hard Limit", "Units");
536 
537 	for (i = 0; i < RLIM_NLIMITS; i++) {
538 		if (rlim[i].rlim_cur == RLIM_INFINITY)
539 			count += sprintf(&bufptr[count], "%-25s %-20s ",
540 					 lnames[i].name, "unlimited");
541 		else
542 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
543 					 lnames[i].name, rlim[i].rlim_cur);
544 
545 		if (rlim[i].rlim_max == RLIM_INFINITY)
546 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
547 		else
548 			count += sprintf(&bufptr[count], "%-20lu ",
549 					 rlim[i].rlim_max);
550 
551 		if (lnames[i].unit)
552 			count += sprintf(&bufptr[count], "%-10s\n",
553 					 lnames[i].unit);
554 		else
555 			count += sprintf(&bufptr[count], "\n");
556 	}
557 
558 	return count;
559 }
560 
561 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
562 static int proc_pid_syscall(struct task_struct *task, char *buffer)
563 {
564 	long nr;
565 	unsigned long args[6], sp, pc;
566 	int res = lock_trace(task);
567 	if (res)
568 		return res;
569 
570 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
571 		res = sprintf(buffer, "running\n");
572 	else if (nr < 0)
573 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
574 	else
575 		res = sprintf(buffer,
576 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
577 		       nr,
578 		       args[0], args[1], args[2], args[3], args[4], args[5],
579 		       sp, pc);
580 	unlock_trace(task);
581 	return res;
582 }
583 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
584 
585 /************************************************************************/
586 /*                       Here the fs part begins                        */
587 /************************************************************************/
588 
589 /* permission checks */
590 static int proc_fd_access_allowed(struct inode *inode)
591 {
592 	struct task_struct *task;
593 	int allowed = 0;
594 	/* Allow access to a task's file descriptors if it is us or we
595 	 * may use ptrace attach to the process and find out that
596 	 * information.
597 	 */
598 	task = get_proc_task(inode);
599 	if (task) {
600 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
601 		put_task_struct(task);
602 	}
603 	return allowed;
604 }
605 
606 int proc_setattr(struct dentry *dentry, struct iattr *attr)
607 {
608 	int error;
609 	struct inode *inode = dentry->d_inode;
610 
611 	if (attr->ia_valid & ATTR_MODE)
612 		return -EPERM;
613 
614 	error = inode_change_ok(inode, attr);
615 	if (error)
616 		return error;
617 
618 	if ((attr->ia_valid & ATTR_SIZE) &&
619 	    attr->ia_size != i_size_read(inode)) {
620 		error = vmtruncate(inode, attr->ia_size);
621 		if (error)
622 			return error;
623 	}
624 
625 	setattr_copy(inode, attr);
626 	mark_inode_dirty(inode);
627 	return 0;
628 }
629 
630 static const struct inode_operations proc_def_inode_operations = {
631 	.setattr	= proc_setattr,
632 };
633 
634 static int mounts_open_common(struct inode *inode, struct file *file,
635 			      const struct seq_operations *op)
636 {
637 	struct task_struct *task = get_proc_task(inode);
638 	struct nsproxy *nsp;
639 	struct mnt_namespace *ns = NULL;
640 	struct path root;
641 	struct proc_mounts *p;
642 	int ret = -EINVAL;
643 
644 	if (task) {
645 		rcu_read_lock();
646 		nsp = task_nsproxy(task);
647 		if (nsp) {
648 			ns = nsp->mnt_ns;
649 			if (ns)
650 				get_mnt_ns(ns);
651 		}
652 		rcu_read_unlock();
653 		if (ns && get_task_root(task, &root) == 0)
654 			ret = 0;
655 		put_task_struct(task);
656 	}
657 
658 	if (!ns)
659 		goto err;
660 	if (ret)
661 		goto err_put_ns;
662 
663 	ret = -ENOMEM;
664 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
665 	if (!p)
666 		goto err_put_path;
667 
668 	file->private_data = &p->m;
669 	ret = seq_open(file, op);
670 	if (ret)
671 		goto err_free;
672 
673 	p->m.private = p;
674 	p->ns = ns;
675 	p->root = root;
676 	p->m.poll_event = ns->event;
677 
678 	return 0;
679 
680  err_free:
681 	kfree(p);
682  err_put_path:
683 	path_put(&root);
684  err_put_ns:
685 	put_mnt_ns(ns);
686  err:
687 	return ret;
688 }
689 
690 static int mounts_release(struct inode *inode, struct file *file)
691 {
692 	struct proc_mounts *p = file->private_data;
693 	path_put(&p->root);
694 	put_mnt_ns(p->ns);
695 	return seq_release(inode, file);
696 }
697 
698 static unsigned mounts_poll(struct file *file, poll_table *wait)
699 {
700 	struct proc_mounts *p = file->private_data;
701 	unsigned res = POLLIN | POLLRDNORM;
702 
703 	poll_wait(file, &p->ns->poll, wait);
704 	if (mnt_had_events(p))
705 		res |= POLLERR | POLLPRI;
706 
707 	return res;
708 }
709 
710 static int mounts_open(struct inode *inode, struct file *file)
711 {
712 	return mounts_open_common(inode, file, &mounts_op);
713 }
714 
715 static const struct file_operations proc_mounts_operations = {
716 	.open		= mounts_open,
717 	.read		= seq_read,
718 	.llseek		= seq_lseek,
719 	.release	= mounts_release,
720 	.poll		= mounts_poll,
721 };
722 
723 static int mountinfo_open(struct inode *inode, struct file *file)
724 {
725 	return mounts_open_common(inode, file, &mountinfo_op);
726 }
727 
728 static const struct file_operations proc_mountinfo_operations = {
729 	.open		= mountinfo_open,
730 	.read		= seq_read,
731 	.llseek		= seq_lseek,
732 	.release	= mounts_release,
733 	.poll		= mounts_poll,
734 };
735 
736 static int mountstats_open(struct inode *inode, struct file *file)
737 {
738 	return mounts_open_common(inode, file, &mountstats_op);
739 }
740 
741 static const struct file_operations proc_mountstats_operations = {
742 	.open		= mountstats_open,
743 	.read		= seq_read,
744 	.llseek		= seq_lseek,
745 	.release	= mounts_release,
746 };
747 
748 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
749 
750 static ssize_t proc_info_read(struct file * file, char __user * buf,
751 			  size_t count, loff_t *ppos)
752 {
753 	struct inode * inode = file->f_path.dentry->d_inode;
754 	unsigned long page;
755 	ssize_t length;
756 	struct task_struct *task = get_proc_task(inode);
757 
758 	length = -ESRCH;
759 	if (!task)
760 		goto out_no_task;
761 
762 	if (count > PROC_BLOCK_SIZE)
763 		count = PROC_BLOCK_SIZE;
764 
765 	length = -ENOMEM;
766 	if (!(page = __get_free_page(GFP_TEMPORARY)))
767 		goto out;
768 
769 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
770 
771 	if (length >= 0)
772 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
773 	free_page(page);
774 out:
775 	put_task_struct(task);
776 out_no_task:
777 	return length;
778 }
779 
780 static const struct file_operations proc_info_file_operations = {
781 	.read		= proc_info_read,
782 	.llseek		= generic_file_llseek,
783 };
784 
785 static int proc_single_show(struct seq_file *m, void *v)
786 {
787 	struct inode *inode = m->private;
788 	struct pid_namespace *ns;
789 	struct pid *pid;
790 	struct task_struct *task;
791 	int ret;
792 
793 	ns = inode->i_sb->s_fs_info;
794 	pid = proc_pid(inode);
795 	task = get_pid_task(pid, PIDTYPE_PID);
796 	if (!task)
797 		return -ESRCH;
798 
799 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
800 
801 	put_task_struct(task);
802 	return ret;
803 }
804 
805 static int proc_single_open(struct inode *inode, struct file *filp)
806 {
807 	return single_open(filp, proc_single_show, inode);
808 }
809 
810 static const struct file_operations proc_single_file_operations = {
811 	.open		= proc_single_open,
812 	.read		= seq_read,
813 	.llseek		= seq_lseek,
814 	.release	= single_release,
815 };
816 
817 static int mem_open(struct inode* inode, struct file* file)
818 {
819 	file->private_data = (void*)((long)current->self_exec_id);
820 	/* OK to pass negative loff_t, we can catch out-of-range */
821 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
822 	return 0;
823 }
824 
825 static ssize_t mem_read(struct file * file, char __user * buf,
826 			size_t count, loff_t *ppos)
827 {
828 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
829 	char *page;
830 	unsigned long src = *ppos;
831 	int ret = -ESRCH;
832 	struct mm_struct *mm;
833 
834 	if (!task)
835 		goto out_no_task;
836 
837 	ret = -ENOMEM;
838 	page = (char *)__get_free_page(GFP_TEMPORARY);
839 	if (!page)
840 		goto out;
841 
842 	mm = check_mem_permission(task);
843 	ret = PTR_ERR(mm);
844 	if (IS_ERR(mm))
845 		goto out_free;
846 
847 	ret = -EIO;
848 
849 	if (file->private_data != (void*)((long)current->self_exec_id))
850 		goto out_put;
851 
852 	ret = 0;
853 
854 	while (count > 0) {
855 		int this_len, retval;
856 
857 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
858 		retval = access_remote_vm(mm, src, page, this_len, 0);
859 		if (!retval) {
860 			if (!ret)
861 				ret = -EIO;
862 			break;
863 		}
864 
865 		if (copy_to_user(buf, page, retval)) {
866 			ret = -EFAULT;
867 			break;
868 		}
869 
870 		ret += retval;
871 		src += retval;
872 		buf += retval;
873 		count -= retval;
874 	}
875 	*ppos = src;
876 
877 out_put:
878 	mmput(mm);
879 out_free:
880 	free_page((unsigned long) page);
881 out:
882 	put_task_struct(task);
883 out_no_task:
884 	return ret;
885 }
886 
887 static ssize_t mem_write(struct file * file, const char __user *buf,
888 			 size_t count, loff_t *ppos)
889 {
890 	int copied;
891 	char *page;
892 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
893 	unsigned long dst = *ppos;
894 	struct mm_struct *mm;
895 
896 	copied = -ESRCH;
897 	if (!task)
898 		goto out_no_task;
899 
900 	copied = -ENOMEM;
901 	page = (char *)__get_free_page(GFP_TEMPORARY);
902 	if (!page)
903 		goto out_task;
904 
905 	mm = check_mem_permission(task);
906 	copied = PTR_ERR(mm);
907 	if (IS_ERR(mm))
908 		goto out_free;
909 
910 	copied = -EIO;
911 	if (file->private_data != (void *)((long)current->self_exec_id))
912 		goto out_mm;
913 
914 	copied = 0;
915 	while (count > 0) {
916 		int this_len, retval;
917 
918 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
919 		if (copy_from_user(page, buf, this_len)) {
920 			copied = -EFAULT;
921 			break;
922 		}
923 		retval = access_remote_vm(mm, dst, page, this_len, 1);
924 		if (!retval) {
925 			if (!copied)
926 				copied = -EIO;
927 			break;
928 		}
929 		copied += retval;
930 		buf += retval;
931 		dst += retval;
932 		count -= retval;
933 	}
934 	*ppos = dst;
935 
936 out_mm:
937 	mmput(mm);
938 out_free:
939 	free_page((unsigned long) page);
940 out_task:
941 	put_task_struct(task);
942 out_no_task:
943 	return copied;
944 }
945 
946 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
947 {
948 	switch (orig) {
949 	case 0:
950 		file->f_pos = offset;
951 		break;
952 	case 1:
953 		file->f_pos += offset;
954 		break;
955 	default:
956 		return -EINVAL;
957 	}
958 	force_successful_syscall_return();
959 	return file->f_pos;
960 }
961 
962 static const struct file_operations proc_mem_operations = {
963 	.llseek		= mem_lseek,
964 	.read		= mem_read,
965 	.write		= mem_write,
966 	.open		= mem_open,
967 };
968 
969 static ssize_t environ_read(struct file *file, char __user *buf,
970 			size_t count, loff_t *ppos)
971 {
972 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
973 	char *page;
974 	unsigned long src = *ppos;
975 	int ret = -ESRCH;
976 	struct mm_struct *mm;
977 
978 	if (!task)
979 		goto out_no_task;
980 
981 	ret = -ENOMEM;
982 	page = (char *)__get_free_page(GFP_TEMPORARY);
983 	if (!page)
984 		goto out;
985 
986 
987 	mm = mm_for_maps(task);
988 	ret = PTR_ERR(mm);
989 	if (!mm || IS_ERR(mm))
990 		goto out_free;
991 
992 	ret = 0;
993 	while (count > 0) {
994 		int this_len, retval, max_len;
995 
996 		this_len = mm->env_end - (mm->env_start + src);
997 
998 		if (this_len <= 0)
999 			break;
1000 
1001 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
1002 		this_len = (this_len > max_len) ? max_len : this_len;
1003 
1004 		retval = access_process_vm(task, (mm->env_start + src),
1005 			page, this_len, 0);
1006 
1007 		if (retval <= 0) {
1008 			ret = retval;
1009 			break;
1010 		}
1011 
1012 		if (copy_to_user(buf, page, retval)) {
1013 			ret = -EFAULT;
1014 			break;
1015 		}
1016 
1017 		ret += retval;
1018 		src += retval;
1019 		buf += retval;
1020 		count -= retval;
1021 	}
1022 	*ppos = src;
1023 
1024 	mmput(mm);
1025 out_free:
1026 	free_page((unsigned long) page);
1027 out:
1028 	put_task_struct(task);
1029 out_no_task:
1030 	return ret;
1031 }
1032 
1033 static const struct file_operations proc_environ_operations = {
1034 	.read		= environ_read,
1035 	.llseek		= generic_file_llseek,
1036 };
1037 
1038 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1039 				size_t count, loff_t *ppos)
1040 {
1041 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1042 	char buffer[PROC_NUMBUF];
1043 	size_t len;
1044 	int oom_adjust = OOM_DISABLE;
1045 	unsigned long flags;
1046 
1047 	if (!task)
1048 		return -ESRCH;
1049 
1050 	if (lock_task_sighand(task, &flags)) {
1051 		oom_adjust = task->signal->oom_adj;
1052 		unlock_task_sighand(task, &flags);
1053 	}
1054 
1055 	put_task_struct(task);
1056 
1057 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1058 
1059 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1060 }
1061 
1062 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1063 				size_t count, loff_t *ppos)
1064 {
1065 	struct task_struct *task;
1066 	char buffer[PROC_NUMBUF];
1067 	int oom_adjust;
1068 	unsigned long flags;
1069 	int err;
1070 
1071 	memset(buffer, 0, sizeof(buffer));
1072 	if (count > sizeof(buffer) - 1)
1073 		count = sizeof(buffer) - 1;
1074 	if (copy_from_user(buffer, buf, count)) {
1075 		err = -EFAULT;
1076 		goto out;
1077 	}
1078 
1079 	err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
1080 	if (err)
1081 		goto out;
1082 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1083 	     oom_adjust != OOM_DISABLE) {
1084 		err = -EINVAL;
1085 		goto out;
1086 	}
1087 
1088 	task = get_proc_task(file->f_path.dentry->d_inode);
1089 	if (!task) {
1090 		err = -ESRCH;
1091 		goto out;
1092 	}
1093 
1094 	task_lock(task);
1095 	if (!task->mm) {
1096 		err = -EINVAL;
1097 		goto err_task_lock;
1098 	}
1099 
1100 	if (!lock_task_sighand(task, &flags)) {
1101 		err = -ESRCH;
1102 		goto err_task_lock;
1103 	}
1104 
1105 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1106 		err = -EACCES;
1107 		goto err_sighand;
1108 	}
1109 
1110 	/*
1111 	 * Warn that /proc/pid/oom_adj is deprecated, see
1112 	 * Documentation/feature-removal-schedule.txt.
1113 	 */
1114 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1115 		  current->comm, task_pid_nr(current), task_pid_nr(task),
1116 		  task_pid_nr(task));
1117 	task->signal->oom_adj = oom_adjust;
1118 	/*
1119 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1120 	 * value is always attainable.
1121 	 */
1122 	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1123 		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1124 	else
1125 		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1126 								-OOM_DISABLE;
1127 err_sighand:
1128 	unlock_task_sighand(task, &flags);
1129 err_task_lock:
1130 	task_unlock(task);
1131 	put_task_struct(task);
1132 out:
1133 	return err < 0 ? err : count;
1134 }
1135 
1136 static const struct file_operations proc_oom_adjust_operations = {
1137 	.read		= oom_adjust_read,
1138 	.write		= oom_adjust_write,
1139 	.llseek		= generic_file_llseek,
1140 };
1141 
1142 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1143 					size_t count, loff_t *ppos)
1144 {
1145 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1146 	char buffer[PROC_NUMBUF];
1147 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1148 	unsigned long flags;
1149 	size_t len;
1150 
1151 	if (!task)
1152 		return -ESRCH;
1153 	if (lock_task_sighand(task, &flags)) {
1154 		oom_score_adj = task->signal->oom_score_adj;
1155 		unlock_task_sighand(task, &flags);
1156 	}
1157 	put_task_struct(task);
1158 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1159 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1160 }
1161 
1162 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1163 					size_t count, loff_t *ppos)
1164 {
1165 	struct task_struct *task;
1166 	char buffer[PROC_NUMBUF];
1167 	unsigned long flags;
1168 	int oom_score_adj;
1169 	int err;
1170 
1171 	memset(buffer, 0, sizeof(buffer));
1172 	if (count > sizeof(buffer) - 1)
1173 		count = sizeof(buffer) - 1;
1174 	if (copy_from_user(buffer, buf, count)) {
1175 		err = -EFAULT;
1176 		goto out;
1177 	}
1178 
1179 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1180 	if (err)
1181 		goto out;
1182 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1183 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1184 		err = -EINVAL;
1185 		goto out;
1186 	}
1187 
1188 	task = get_proc_task(file->f_path.dentry->d_inode);
1189 	if (!task) {
1190 		err = -ESRCH;
1191 		goto out;
1192 	}
1193 
1194 	task_lock(task);
1195 	if (!task->mm) {
1196 		err = -EINVAL;
1197 		goto err_task_lock;
1198 	}
1199 
1200 	if (!lock_task_sighand(task, &flags)) {
1201 		err = -ESRCH;
1202 		goto err_task_lock;
1203 	}
1204 
1205 	if (oom_score_adj < task->signal->oom_score_adj_min &&
1206 			!capable(CAP_SYS_RESOURCE)) {
1207 		err = -EACCES;
1208 		goto err_sighand;
1209 	}
1210 
1211 	task->signal->oom_score_adj = oom_score_adj;
1212 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1213 		task->signal->oom_score_adj_min = oom_score_adj;
1214 	/*
1215 	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1216 	 * always attainable.
1217 	 */
1218 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1219 		task->signal->oom_adj = OOM_DISABLE;
1220 	else
1221 		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1222 							OOM_SCORE_ADJ_MAX;
1223 err_sighand:
1224 	unlock_task_sighand(task, &flags);
1225 err_task_lock:
1226 	task_unlock(task);
1227 	put_task_struct(task);
1228 out:
1229 	return err < 0 ? err : count;
1230 }
1231 
1232 static const struct file_operations proc_oom_score_adj_operations = {
1233 	.read		= oom_score_adj_read,
1234 	.write		= oom_score_adj_write,
1235 	.llseek		= default_llseek,
1236 };
1237 
1238 #ifdef CONFIG_AUDITSYSCALL
1239 #define TMPBUFLEN 21
1240 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1241 				  size_t count, loff_t *ppos)
1242 {
1243 	struct inode * inode = file->f_path.dentry->d_inode;
1244 	struct task_struct *task = get_proc_task(inode);
1245 	ssize_t length;
1246 	char tmpbuf[TMPBUFLEN];
1247 
1248 	if (!task)
1249 		return -ESRCH;
1250 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1251 				audit_get_loginuid(task));
1252 	put_task_struct(task);
1253 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1254 }
1255 
1256 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1257 				   size_t count, loff_t *ppos)
1258 {
1259 	struct inode * inode = file->f_path.dentry->d_inode;
1260 	char *page, *tmp;
1261 	ssize_t length;
1262 	uid_t loginuid;
1263 
1264 	if (!capable(CAP_AUDIT_CONTROL))
1265 		return -EPERM;
1266 
1267 	rcu_read_lock();
1268 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1269 		rcu_read_unlock();
1270 		return -EPERM;
1271 	}
1272 	rcu_read_unlock();
1273 
1274 	if (count >= PAGE_SIZE)
1275 		count = PAGE_SIZE - 1;
1276 
1277 	if (*ppos != 0) {
1278 		/* No partial writes. */
1279 		return -EINVAL;
1280 	}
1281 	page = (char*)__get_free_page(GFP_TEMPORARY);
1282 	if (!page)
1283 		return -ENOMEM;
1284 	length = -EFAULT;
1285 	if (copy_from_user(page, buf, count))
1286 		goto out_free_page;
1287 
1288 	page[count] = '\0';
1289 	loginuid = simple_strtoul(page, &tmp, 10);
1290 	if (tmp == page) {
1291 		length = -EINVAL;
1292 		goto out_free_page;
1293 
1294 	}
1295 	length = audit_set_loginuid(current, loginuid);
1296 	if (likely(length == 0))
1297 		length = count;
1298 
1299 out_free_page:
1300 	free_page((unsigned long) page);
1301 	return length;
1302 }
1303 
1304 static const struct file_operations proc_loginuid_operations = {
1305 	.read		= proc_loginuid_read,
1306 	.write		= proc_loginuid_write,
1307 	.llseek		= generic_file_llseek,
1308 };
1309 
1310 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1311 				  size_t count, loff_t *ppos)
1312 {
1313 	struct inode * inode = file->f_path.dentry->d_inode;
1314 	struct task_struct *task = get_proc_task(inode);
1315 	ssize_t length;
1316 	char tmpbuf[TMPBUFLEN];
1317 
1318 	if (!task)
1319 		return -ESRCH;
1320 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1321 				audit_get_sessionid(task));
1322 	put_task_struct(task);
1323 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1324 }
1325 
1326 static const struct file_operations proc_sessionid_operations = {
1327 	.read		= proc_sessionid_read,
1328 	.llseek		= generic_file_llseek,
1329 };
1330 #endif
1331 
1332 #ifdef CONFIG_FAULT_INJECTION
1333 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1334 				      size_t count, loff_t *ppos)
1335 {
1336 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1337 	char buffer[PROC_NUMBUF];
1338 	size_t len;
1339 	int make_it_fail;
1340 
1341 	if (!task)
1342 		return -ESRCH;
1343 	make_it_fail = task->make_it_fail;
1344 	put_task_struct(task);
1345 
1346 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1347 
1348 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1349 }
1350 
1351 static ssize_t proc_fault_inject_write(struct file * file,
1352 			const char __user * buf, size_t count, loff_t *ppos)
1353 {
1354 	struct task_struct *task;
1355 	char buffer[PROC_NUMBUF], *end;
1356 	int make_it_fail;
1357 
1358 	if (!capable(CAP_SYS_RESOURCE))
1359 		return -EPERM;
1360 	memset(buffer, 0, sizeof(buffer));
1361 	if (count > sizeof(buffer) - 1)
1362 		count = sizeof(buffer) - 1;
1363 	if (copy_from_user(buffer, buf, count))
1364 		return -EFAULT;
1365 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1366 	if (*end)
1367 		return -EINVAL;
1368 	task = get_proc_task(file->f_dentry->d_inode);
1369 	if (!task)
1370 		return -ESRCH;
1371 	task->make_it_fail = make_it_fail;
1372 	put_task_struct(task);
1373 
1374 	return count;
1375 }
1376 
1377 static const struct file_operations proc_fault_inject_operations = {
1378 	.read		= proc_fault_inject_read,
1379 	.write		= proc_fault_inject_write,
1380 	.llseek		= generic_file_llseek,
1381 };
1382 #endif
1383 
1384 
1385 #ifdef CONFIG_SCHED_DEBUG
1386 /*
1387  * Print out various scheduling related per-task fields:
1388  */
1389 static int sched_show(struct seq_file *m, void *v)
1390 {
1391 	struct inode *inode = m->private;
1392 	struct task_struct *p;
1393 
1394 	p = get_proc_task(inode);
1395 	if (!p)
1396 		return -ESRCH;
1397 	proc_sched_show_task(p, m);
1398 
1399 	put_task_struct(p);
1400 
1401 	return 0;
1402 }
1403 
1404 static ssize_t
1405 sched_write(struct file *file, const char __user *buf,
1406 	    size_t count, loff_t *offset)
1407 {
1408 	struct inode *inode = file->f_path.dentry->d_inode;
1409 	struct task_struct *p;
1410 
1411 	p = get_proc_task(inode);
1412 	if (!p)
1413 		return -ESRCH;
1414 	proc_sched_set_task(p);
1415 
1416 	put_task_struct(p);
1417 
1418 	return count;
1419 }
1420 
1421 static int sched_open(struct inode *inode, struct file *filp)
1422 {
1423 	return single_open(filp, sched_show, inode);
1424 }
1425 
1426 static const struct file_operations proc_pid_sched_operations = {
1427 	.open		= sched_open,
1428 	.read		= seq_read,
1429 	.write		= sched_write,
1430 	.llseek		= seq_lseek,
1431 	.release	= single_release,
1432 };
1433 
1434 #endif
1435 
1436 #ifdef CONFIG_SCHED_AUTOGROUP
1437 /*
1438  * Print out autogroup related information:
1439  */
1440 static int sched_autogroup_show(struct seq_file *m, void *v)
1441 {
1442 	struct inode *inode = m->private;
1443 	struct task_struct *p;
1444 
1445 	p = get_proc_task(inode);
1446 	if (!p)
1447 		return -ESRCH;
1448 	proc_sched_autogroup_show_task(p, m);
1449 
1450 	put_task_struct(p);
1451 
1452 	return 0;
1453 }
1454 
1455 static ssize_t
1456 sched_autogroup_write(struct file *file, const char __user *buf,
1457 	    size_t count, loff_t *offset)
1458 {
1459 	struct inode *inode = file->f_path.dentry->d_inode;
1460 	struct task_struct *p;
1461 	char buffer[PROC_NUMBUF];
1462 	int nice;
1463 	int err;
1464 
1465 	memset(buffer, 0, sizeof(buffer));
1466 	if (count > sizeof(buffer) - 1)
1467 		count = sizeof(buffer) - 1;
1468 	if (copy_from_user(buffer, buf, count))
1469 		return -EFAULT;
1470 
1471 	err = kstrtoint(strstrip(buffer), 0, &nice);
1472 	if (err < 0)
1473 		return err;
1474 
1475 	p = get_proc_task(inode);
1476 	if (!p)
1477 		return -ESRCH;
1478 
1479 	err = nice;
1480 	err = proc_sched_autogroup_set_nice(p, &err);
1481 	if (err)
1482 		count = err;
1483 
1484 	put_task_struct(p);
1485 
1486 	return count;
1487 }
1488 
1489 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1490 {
1491 	int ret;
1492 
1493 	ret = single_open(filp, sched_autogroup_show, NULL);
1494 	if (!ret) {
1495 		struct seq_file *m = filp->private_data;
1496 
1497 		m->private = inode;
1498 	}
1499 	return ret;
1500 }
1501 
1502 static const struct file_operations proc_pid_sched_autogroup_operations = {
1503 	.open		= sched_autogroup_open,
1504 	.read		= seq_read,
1505 	.write		= sched_autogroup_write,
1506 	.llseek		= seq_lseek,
1507 	.release	= single_release,
1508 };
1509 
1510 #endif /* CONFIG_SCHED_AUTOGROUP */
1511 
1512 static ssize_t comm_write(struct file *file, const char __user *buf,
1513 				size_t count, loff_t *offset)
1514 {
1515 	struct inode *inode = file->f_path.dentry->d_inode;
1516 	struct task_struct *p;
1517 	char buffer[TASK_COMM_LEN];
1518 
1519 	memset(buffer, 0, sizeof(buffer));
1520 	if (count > sizeof(buffer) - 1)
1521 		count = sizeof(buffer) - 1;
1522 	if (copy_from_user(buffer, buf, count))
1523 		return -EFAULT;
1524 
1525 	p = get_proc_task(inode);
1526 	if (!p)
1527 		return -ESRCH;
1528 
1529 	if (same_thread_group(current, p))
1530 		set_task_comm(p, buffer);
1531 	else
1532 		count = -EINVAL;
1533 
1534 	put_task_struct(p);
1535 
1536 	return count;
1537 }
1538 
1539 static int comm_show(struct seq_file *m, void *v)
1540 {
1541 	struct inode *inode = m->private;
1542 	struct task_struct *p;
1543 
1544 	p = get_proc_task(inode);
1545 	if (!p)
1546 		return -ESRCH;
1547 
1548 	task_lock(p);
1549 	seq_printf(m, "%s\n", p->comm);
1550 	task_unlock(p);
1551 
1552 	put_task_struct(p);
1553 
1554 	return 0;
1555 }
1556 
1557 static int comm_open(struct inode *inode, struct file *filp)
1558 {
1559 	return single_open(filp, comm_show, inode);
1560 }
1561 
1562 static const struct file_operations proc_pid_set_comm_operations = {
1563 	.open		= comm_open,
1564 	.read		= seq_read,
1565 	.write		= comm_write,
1566 	.llseek		= seq_lseek,
1567 	.release	= single_release,
1568 };
1569 
1570 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1571 {
1572 	struct task_struct *task;
1573 	struct mm_struct *mm;
1574 	struct file *exe_file;
1575 
1576 	task = get_proc_task(inode);
1577 	if (!task)
1578 		return -ENOENT;
1579 	mm = get_task_mm(task);
1580 	put_task_struct(task);
1581 	if (!mm)
1582 		return -ENOENT;
1583 	exe_file = get_mm_exe_file(mm);
1584 	mmput(mm);
1585 	if (exe_file) {
1586 		*exe_path = exe_file->f_path;
1587 		path_get(&exe_file->f_path);
1588 		fput(exe_file);
1589 		return 0;
1590 	} else
1591 		return -ENOENT;
1592 }
1593 
1594 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1595 {
1596 	struct inode *inode = dentry->d_inode;
1597 	int error = -EACCES;
1598 
1599 	/* We don't need a base pointer in the /proc filesystem */
1600 	path_put(&nd->path);
1601 
1602 	/* Are we allowed to snoop on the tasks file descriptors? */
1603 	if (!proc_fd_access_allowed(inode))
1604 		goto out;
1605 
1606 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1607 out:
1608 	return ERR_PTR(error);
1609 }
1610 
1611 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1612 {
1613 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1614 	char *pathname;
1615 	int len;
1616 
1617 	if (!tmp)
1618 		return -ENOMEM;
1619 
1620 	pathname = d_path(path, tmp, PAGE_SIZE);
1621 	len = PTR_ERR(pathname);
1622 	if (IS_ERR(pathname))
1623 		goto out;
1624 	len = tmp + PAGE_SIZE - 1 - pathname;
1625 
1626 	if (len > buflen)
1627 		len = buflen;
1628 	if (copy_to_user(buffer, pathname, len))
1629 		len = -EFAULT;
1630  out:
1631 	free_page((unsigned long)tmp);
1632 	return len;
1633 }
1634 
1635 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1636 {
1637 	int error = -EACCES;
1638 	struct inode *inode = dentry->d_inode;
1639 	struct path path;
1640 
1641 	/* Are we allowed to snoop on the tasks file descriptors? */
1642 	if (!proc_fd_access_allowed(inode))
1643 		goto out;
1644 
1645 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1646 	if (error)
1647 		goto out;
1648 
1649 	error = do_proc_readlink(&path, buffer, buflen);
1650 	path_put(&path);
1651 out:
1652 	return error;
1653 }
1654 
1655 static int proc_pid_fd_link_getattr(struct vfsmount *mnt, struct dentry *dentry,
1656 		struct kstat *stat)
1657 {
1658 	struct inode *inode = dentry->d_inode;
1659 	struct task_struct *task = get_proc_task(inode);
1660 	int rc;
1661 
1662 	if (task == NULL)
1663 		return -ESRCH;
1664 
1665 	rc = -EACCES;
1666 	if (lock_trace(task))
1667 		goto out_task;
1668 
1669 	generic_fillattr(inode, stat);
1670 	unlock_trace(task);
1671 	rc = 0;
1672 out_task:
1673 	put_task_struct(task);
1674 	return rc;
1675 }
1676 
1677 static const struct inode_operations proc_pid_link_inode_operations = {
1678 	.readlink	= proc_pid_readlink,
1679 	.follow_link	= proc_pid_follow_link,
1680 	.setattr	= proc_setattr,
1681 };
1682 
1683 static const struct inode_operations proc_fdinfo_link_inode_operations = {
1684 	.setattr	= proc_setattr,
1685 	.getattr	= proc_pid_fd_link_getattr,
1686 };
1687 
1688 static const struct inode_operations proc_fd_link_inode_operations = {
1689 	.readlink	= proc_pid_readlink,
1690 	.follow_link	= proc_pid_follow_link,
1691 	.setattr	= proc_setattr,
1692 	.getattr	= proc_pid_fd_link_getattr,
1693 };
1694 
1695 
1696 /* building an inode */
1697 
1698 static int task_dumpable(struct task_struct *task)
1699 {
1700 	int dumpable = 0;
1701 	struct mm_struct *mm;
1702 
1703 	task_lock(task);
1704 	mm = task->mm;
1705 	if (mm)
1706 		dumpable = get_dumpable(mm);
1707 	task_unlock(task);
1708 	if(dumpable == 1)
1709 		return 1;
1710 	return 0;
1711 }
1712 
1713 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1714 {
1715 	struct inode * inode;
1716 	struct proc_inode *ei;
1717 	const struct cred *cred;
1718 
1719 	/* We need a new inode */
1720 
1721 	inode = new_inode(sb);
1722 	if (!inode)
1723 		goto out;
1724 
1725 	/* Common stuff */
1726 	ei = PROC_I(inode);
1727 	inode->i_ino = get_next_ino();
1728 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1729 	inode->i_op = &proc_def_inode_operations;
1730 
1731 	/*
1732 	 * grab the reference to task.
1733 	 */
1734 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1735 	if (!ei->pid)
1736 		goto out_unlock;
1737 
1738 	if (task_dumpable(task)) {
1739 		rcu_read_lock();
1740 		cred = __task_cred(task);
1741 		inode->i_uid = cred->euid;
1742 		inode->i_gid = cred->egid;
1743 		rcu_read_unlock();
1744 	}
1745 	security_task_to_inode(task, inode);
1746 
1747 out:
1748 	return inode;
1749 
1750 out_unlock:
1751 	iput(inode);
1752 	return NULL;
1753 }
1754 
1755 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1756 {
1757 	struct inode *inode = dentry->d_inode;
1758 	struct task_struct *task;
1759 	const struct cred *cred;
1760 
1761 	generic_fillattr(inode, stat);
1762 
1763 	rcu_read_lock();
1764 	stat->uid = 0;
1765 	stat->gid = 0;
1766 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1767 	if (task) {
1768 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1769 		    task_dumpable(task)) {
1770 			cred = __task_cred(task);
1771 			stat->uid = cred->euid;
1772 			stat->gid = cred->egid;
1773 		}
1774 	}
1775 	rcu_read_unlock();
1776 	return 0;
1777 }
1778 
1779 /* dentry stuff */
1780 
1781 /*
1782  *	Exceptional case: normally we are not allowed to unhash a busy
1783  * directory. In this case, however, we can do it - no aliasing problems
1784  * due to the way we treat inodes.
1785  *
1786  * Rewrite the inode's ownerships here because the owning task may have
1787  * performed a setuid(), etc.
1788  *
1789  * Before the /proc/pid/status file was created the only way to read
1790  * the effective uid of a /process was to stat /proc/pid.  Reading
1791  * /proc/pid/status is slow enough that procps and other packages
1792  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1793  * made this apply to all per process world readable and executable
1794  * directories.
1795  */
1796 int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1797 {
1798 	struct inode *inode;
1799 	struct task_struct *task;
1800 	const struct cred *cred;
1801 
1802 	if (nd && nd->flags & LOOKUP_RCU)
1803 		return -ECHILD;
1804 
1805 	inode = dentry->d_inode;
1806 	task = get_proc_task(inode);
1807 
1808 	if (task) {
1809 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1810 		    task_dumpable(task)) {
1811 			rcu_read_lock();
1812 			cred = __task_cred(task);
1813 			inode->i_uid = cred->euid;
1814 			inode->i_gid = cred->egid;
1815 			rcu_read_unlock();
1816 		} else {
1817 			inode->i_uid = 0;
1818 			inode->i_gid = 0;
1819 		}
1820 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1821 		security_task_to_inode(task, inode);
1822 		put_task_struct(task);
1823 		return 1;
1824 	}
1825 	d_drop(dentry);
1826 	return 0;
1827 }
1828 
1829 static int pid_delete_dentry(const struct dentry * dentry)
1830 {
1831 	/* Is the task we represent dead?
1832 	 * If so, then don't put the dentry on the lru list,
1833 	 * kill it immediately.
1834 	 */
1835 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1836 }
1837 
1838 const struct dentry_operations pid_dentry_operations =
1839 {
1840 	.d_revalidate	= pid_revalidate,
1841 	.d_delete	= pid_delete_dentry,
1842 };
1843 
1844 /* Lookups */
1845 
1846 /*
1847  * Fill a directory entry.
1848  *
1849  * If possible create the dcache entry and derive our inode number and
1850  * file type from dcache entry.
1851  *
1852  * Since all of the proc inode numbers are dynamically generated, the inode
1853  * numbers do not exist until the inode is cache.  This means creating the
1854  * the dcache entry in readdir is necessary to keep the inode numbers
1855  * reported by readdir in sync with the inode numbers reported
1856  * by stat.
1857  */
1858 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1859 	const char *name, int len,
1860 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1861 {
1862 	struct dentry *child, *dir = filp->f_path.dentry;
1863 	struct inode *inode;
1864 	struct qstr qname;
1865 	ino_t ino = 0;
1866 	unsigned type = DT_UNKNOWN;
1867 
1868 	qname.name = name;
1869 	qname.len  = len;
1870 	qname.hash = full_name_hash(name, len);
1871 
1872 	child = d_lookup(dir, &qname);
1873 	if (!child) {
1874 		struct dentry *new;
1875 		new = d_alloc(dir, &qname);
1876 		if (new) {
1877 			child = instantiate(dir->d_inode, new, task, ptr);
1878 			if (child)
1879 				dput(new);
1880 			else
1881 				child = new;
1882 		}
1883 	}
1884 	if (!child || IS_ERR(child) || !child->d_inode)
1885 		goto end_instantiate;
1886 	inode = child->d_inode;
1887 	if (inode) {
1888 		ino = inode->i_ino;
1889 		type = inode->i_mode >> 12;
1890 	}
1891 	dput(child);
1892 end_instantiate:
1893 	if (!ino)
1894 		ino = find_inode_number(dir, &qname);
1895 	if (!ino)
1896 		ino = 1;
1897 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1898 }
1899 
1900 static unsigned name_to_int(struct dentry *dentry)
1901 {
1902 	const char *name = dentry->d_name.name;
1903 	int len = dentry->d_name.len;
1904 	unsigned n = 0;
1905 
1906 	if (len > 1 && *name == '0')
1907 		goto out;
1908 	while (len-- > 0) {
1909 		unsigned c = *name++ - '0';
1910 		if (c > 9)
1911 			goto out;
1912 		if (n >= (~0U-9)/10)
1913 			goto out;
1914 		n *= 10;
1915 		n += c;
1916 	}
1917 	return n;
1918 out:
1919 	return ~0U;
1920 }
1921 
1922 #define PROC_FDINFO_MAX 64
1923 
1924 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1925 {
1926 	struct task_struct *task;
1927 	struct files_struct *files;
1928 	struct file *file;
1929 	int fd = proc_fd(inode);
1930 	int rc;
1931 
1932 	task = get_proc_task(inode);
1933 	if (!task)
1934 		return -ENOENT;
1935 
1936 	rc = -EACCES;
1937 	if (lock_trace(task))
1938 		goto out_task;
1939 
1940 	rc = -ENOENT;
1941 	files = get_files_struct(task);
1942 	if (files == NULL)
1943 		goto out_unlock;
1944 
1945 	/*
1946 	 * We are not taking a ref to the file structure, so we must
1947 	 * hold ->file_lock.
1948 	 */
1949 	spin_lock(&files->file_lock);
1950 	file = fcheck_files(files, fd);
1951 	if (file) {
1952 		unsigned int f_flags;
1953 		struct fdtable *fdt;
1954 
1955 		fdt = files_fdtable(files);
1956 		f_flags = file->f_flags & ~O_CLOEXEC;
1957 		if (FD_ISSET(fd, fdt->close_on_exec))
1958 			f_flags |= O_CLOEXEC;
1959 
1960 		if (path) {
1961 			*path = file->f_path;
1962 			path_get(&file->f_path);
1963 		}
1964 		if (info)
1965 			snprintf(info, PROC_FDINFO_MAX,
1966 				 "pos:\t%lli\n"
1967 				 "flags:\t0%o\n",
1968 				 (long long) file->f_pos,
1969 				 f_flags);
1970 		rc = 0;
1971 	} else
1972 		rc = -ENOENT;
1973 	spin_unlock(&files->file_lock);
1974 	put_files_struct(files);
1975 
1976 out_unlock:
1977 	unlock_trace(task);
1978 out_task:
1979 	put_task_struct(task);
1980 	return rc;
1981 }
1982 
1983 static int proc_fd_link(struct inode *inode, struct path *path)
1984 {
1985 	return proc_fd_info(inode, path, NULL);
1986 }
1987 
1988 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1989 {
1990 	struct inode *inode;
1991 	struct task_struct *task;
1992 	int fd;
1993 	struct files_struct *files;
1994 	const struct cred *cred;
1995 
1996 	if (nd && nd->flags & LOOKUP_RCU)
1997 		return -ECHILD;
1998 
1999 	inode = dentry->d_inode;
2000 	task = get_proc_task(inode);
2001 	fd = proc_fd(inode);
2002 
2003 	if (task) {
2004 		files = get_files_struct(task);
2005 		if (files) {
2006 			rcu_read_lock();
2007 			if (fcheck_files(files, fd)) {
2008 				rcu_read_unlock();
2009 				put_files_struct(files);
2010 				if (task_dumpable(task)) {
2011 					rcu_read_lock();
2012 					cred = __task_cred(task);
2013 					inode->i_uid = cred->euid;
2014 					inode->i_gid = cred->egid;
2015 					rcu_read_unlock();
2016 				} else {
2017 					inode->i_uid = 0;
2018 					inode->i_gid = 0;
2019 				}
2020 				inode->i_mode &= ~(S_ISUID | S_ISGID);
2021 				security_task_to_inode(task, inode);
2022 				put_task_struct(task);
2023 				return 1;
2024 			}
2025 			rcu_read_unlock();
2026 			put_files_struct(files);
2027 		}
2028 		put_task_struct(task);
2029 	}
2030 	d_drop(dentry);
2031 	return 0;
2032 }
2033 
2034 static const struct dentry_operations tid_fd_dentry_operations =
2035 {
2036 	.d_revalidate	= tid_fd_revalidate,
2037 	.d_delete	= pid_delete_dentry,
2038 };
2039 
2040 static struct dentry *proc_fd_instantiate(struct inode *dir,
2041 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2042 {
2043 	unsigned fd = *(const unsigned *)ptr;
2044 	struct file *file;
2045 	struct files_struct *files;
2046  	struct inode *inode;
2047  	struct proc_inode *ei;
2048 	struct dentry *error = ERR_PTR(-ENOENT);
2049 
2050 	inode = proc_pid_make_inode(dir->i_sb, task);
2051 	if (!inode)
2052 		goto out;
2053 	ei = PROC_I(inode);
2054 	ei->fd = fd;
2055 	files = get_files_struct(task);
2056 	if (!files)
2057 		goto out_iput;
2058 	inode->i_mode = S_IFLNK;
2059 
2060 	/*
2061 	 * We are not taking a ref to the file structure, so we must
2062 	 * hold ->file_lock.
2063 	 */
2064 	spin_lock(&files->file_lock);
2065 	file = fcheck_files(files, fd);
2066 	if (!file)
2067 		goto out_unlock;
2068 	if (file->f_mode & FMODE_READ)
2069 		inode->i_mode |= S_IRUSR | S_IXUSR;
2070 	if (file->f_mode & FMODE_WRITE)
2071 		inode->i_mode |= S_IWUSR | S_IXUSR;
2072 	spin_unlock(&files->file_lock);
2073 	put_files_struct(files);
2074 
2075 	inode->i_op = &proc_fd_link_inode_operations;
2076 	inode->i_size = 64;
2077 	ei->op.proc_get_link = proc_fd_link;
2078 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2079 	d_add(dentry, inode);
2080 	/* Close the race of the process dying before we return the dentry */
2081 	if (tid_fd_revalidate(dentry, NULL))
2082 		error = NULL;
2083 
2084  out:
2085 	return error;
2086 out_unlock:
2087 	spin_unlock(&files->file_lock);
2088 	put_files_struct(files);
2089 out_iput:
2090 	iput(inode);
2091 	goto out;
2092 }
2093 
2094 static struct dentry *proc_lookupfd_common(struct inode *dir,
2095 					   struct dentry *dentry,
2096 					   instantiate_t instantiate)
2097 {
2098 	struct task_struct *task = get_proc_task(dir);
2099 	unsigned fd = name_to_int(dentry);
2100 	struct dentry *result = ERR_PTR(-ENOENT);
2101 
2102 	if (!task)
2103 		goto out_no_task;
2104 	if (fd == ~0U)
2105 		goto out;
2106 
2107 	result = ERR_PTR(-EACCES);
2108 	if (lock_trace(task))
2109 		goto out;
2110 
2111 	result = instantiate(dir, dentry, task, &fd);
2112 	unlock_trace(task);
2113 out:
2114 	put_task_struct(task);
2115 out_no_task:
2116 	return result;
2117 }
2118 
2119 static int proc_readfd_common(struct file * filp, void * dirent,
2120 			      filldir_t filldir, instantiate_t instantiate)
2121 {
2122 	struct dentry *dentry = filp->f_path.dentry;
2123 	struct inode *inode = dentry->d_inode;
2124 	struct task_struct *p = get_proc_task(inode);
2125 	unsigned int fd, ino;
2126 	int retval;
2127 	struct files_struct * files;
2128 
2129 	retval = -ENOENT;
2130 	if (!p)
2131 		goto out_no_task;
2132 
2133 	retval = -EACCES;
2134 	if (lock_trace(p))
2135 		goto out;
2136 
2137 	retval = 0;
2138 
2139 	fd = filp->f_pos;
2140 	switch (fd) {
2141 		case 0:
2142 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2143 				goto out_unlock;
2144 			filp->f_pos++;
2145 		case 1:
2146 			ino = parent_ino(dentry);
2147 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2148 				goto out_unlock;
2149 			filp->f_pos++;
2150 		default:
2151 			files = get_files_struct(p);
2152 			if (!files)
2153 				goto out_unlock;
2154 			rcu_read_lock();
2155 			for (fd = filp->f_pos-2;
2156 			     fd < files_fdtable(files)->max_fds;
2157 			     fd++, filp->f_pos++) {
2158 				char name[PROC_NUMBUF];
2159 				int len;
2160 
2161 				if (!fcheck_files(files, fd))
2162 					continue;
2163 				rcu_read_unlock();
2164 
2165 				len = snprintf(name, sizeof(name), "%d", fd);
2166 				if (proc_fill_cache(filp, dirent, filldir,
2167 						    name, len, instantiate,
2168 						    p, &fd) < 0) {
2169 					rcu_read_lock();
2170 					break;
2171 				}
2172 				rcu_read_lock();
2173 			}
2174 			rcu_read_unlock();
2175 			put_files_struct(files);
2176 	}
2177 
2178 out_unlock:
2179 	unlock_trace(p);
2180 out:
2181 	put_task_struct(p);
2182 out_no_task:
2183 	return retval;
2184 }
2185 
2186 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2187 				    struct nameidata *nd)
2188 {
2189 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2190 }
2191 
2192 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2193 {
2194 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2195 }
2196 
2197 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2198 				      size_t len, loff_t *ppos)
2199 {
2200 	char tmp[PROC_FDINFO_MAX];
2201 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2202 	if (!err)
2203 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2204 	return err;
2205 }
2206 
2207 static const struct file_operations proc_fdinfo_file_operations = {
2208 	.open           = nonseekable_open,
2209 	.read		= proc_fdinfo_read,
2210 	.llseek		= no_llseek,
2211 };
2212 
2213 static const struct file_operations proc_fd_operations = {
2214 	.read		= generic_read_dir,
2215 	.readdir	= proc_readfd,
2216 	.llseek		= default_llseek,
2217 };
2218 
2219 /*
2220  * /proc/pid/fd needs a special permission handler so that a process can still
2221  * access /proc/self/fd after it has executed a setuid().
2222  */
2223 static int proc_fd_permission(struct inode *inode, int mask)
2224 {
2225 	int rv = generic_permission(inode, mask);
2226 	if (rv == 0)
2227 		return 0;
2228 	if (task_pid(current) == proc_pid(inode))
2229 		rv = 0;
2230 	return rv;
2231 }
2232 
2233 /*
2234  * proc directories can do almost nothing..
2235  */
2236 static const struct inode_operations proc_fd_inode_operations = {
2237 	.lookup		= proc_lookupfd,
2238 	.permission	= proc_fd_permission,
2239 	.setattr	= proc_setattr,
2240 };
2241 
2242 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2243 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2244 {
2245 	unsigned fd = *(unsigned *)ptr;
2246  	struct inode *inode;
2247  	struct proc_inode *ei;
2248 	struct dentry *error = ERR_PTR(-ENOENT);
2249 
2250 	inode = proc_pid_make_inode(dir->i_sb, task);
2251 	if (!inode)
2252 		goto out;
2253 	ei = PROC_I(inode);
2254 	ei->fd = fd;
2255 	inode->i_mode = S_IFREG | S_IRUSR;
2256 	inode->i_fop = &proc_fdinfo_file_operations;
2257 	inode->i_op = &proc_fdinfo_link_inode_operations;
2258 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2259 	d_add(dentry, inode);
2260 	/* Close the race of the process dying before we return the dentry */
2261 	if (tid_fd_revalidate(dentry, NULL))
2262 		error = NULL;
2263 
2264  out:
2265 	return error;
2266 }
2267 
2268 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2269 					struct dentry *dentry,
2270 					struct nameidata *nd)
2271 {
2272 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2273 }
2274 
2275 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2276 {
2277 	return proc_readfd_common(filp, dirent, filldir,
2278 				  proc_fdinfo_instantiate);
2279 }
2280 
2281 static const struct file_operations proc_fdinfo_operations = {
2282 	.read		= generic_read_dir,
2283 	.readdir	= proc_readfdinfo,
2284 	.llseek		= default_llseek,
2285 };
2286 
2287 /*
2288  * proc directories can do almost nothing..
2289  */
2290 static const struct inode_operations proc_fdinfo_inode_operations = {
2291 	.lookup		= proc_lookupfdinfo,
2292 	.setattr	= proc_setattr,
2293 };
2294 
2295 
2296 static struct dentry *proc_pident_instantiate(struct inode *dir,
2297 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2298 {
2299 	const struct pid_entry *p = ptr;
2300 	struct inode *inode;
2301 	struct proc_inode *ei;
2302 	struct dentry *error = ERR_PTR(-ENOENT);
2303 
2304 	inode = proc_pid_make_inode(dir->i_sb, task);
2305 	if (!inode)
2306 		goto out;
2307 
2308 	ei = PROC_I(inode);
2309 	inode->i_mode = p->mode;
2310 	if (S_ISDIR(inode->i_mode))
2311 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2312 	if (p->iop)
2313 		inode->i_op = p->iop;
2314 	if (p->fop)
2315 		inode->i_fop = p->fop;
2316 	ei->op = p->op;
2317 	d_set_d_op(dentry, &pid_dentry_operations);
2318 	d_add(dentry, inode);
2319 	/* Close the race of the process dying before we return the dentry */
2320 	if (pid_revalidate(dentry, NULL))
2321 		error = NULL;
2322 out:
2323 	return error;
2324 }
2325 
2326 static struct dentry *proc_pident_lookup(struct inode *dir,
2327 					 struct dentry *dentry,
2328 					 const struct pid_entry *ents,
2329 					 unsigned int nents)
2330 {
2331 	struct dentry *error;
2332 	struct task_struct *task = get_proc_task(dir);
2333 	const struct pid_entry *p, *last;
2334 
2335 	error = ERR_PTR(-ENOENT);
2336 
2337 	if (!task)
2338 		goto out_no_task;
2339 
2340 	/*
2341 	 * Yes, it does not scale. And it should not. Don't add
2342 	 * new entries into /proc/<tgid>/ without very good reasons.
2343 	 */
2344 	last = &ents[nents - 1];
2345 	for (p = ents; p <= last; p++) {
2346 		if (p->len != dentry->d_name.len)
2347 			continue;
2348 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2349 			break;
2350 	}
2351 	if (p > last)
2352 		goto out;
2353 
2354 	error = proc_pident_instantiate(dir, dentry, task, p);
2355 out:
2356 	put_task_struct(task);
2357 out_no_task:
2358 	return error;
2359 }
2360 
2361 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2362 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2363 {
2364 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2365 				proc_pident_instantiate, task, p);
2366 }
2367 
2368 static int proc_pident_readdir(struct file *filp,
2369 		void *dirent, filldir_t filldir,
2370 		const struct pid_entry *ents, unsigned int nents)
2371 {
2372 	int i;
2373 	struct dentry *dentry = filp->f_path.dentry;
2374 	struct inode *inode = dentry->d_inode;
2375 	struct task_struct *task = get_proc_task(inode);
2376 	const struct pid_entry *p, *last;
2377 	ino_t ino;
2378 	int ret;
2379 
2380 	ret = -ENOENT;
2381 	if (!task)
2382 		goto out_no_task;
2383 
2384 	ret = 0;
2385 	i = filp->f_pos;
2386 	switch (i) {
2387 	case 0:
2388 		ino = inode->i_ino;
2389 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2390 			goto out;
2391 		i++;
2392 		filp->f_pos++;
2393 		/* fall through */
2394 	case 1:
2395 		ino = parent_ino(dentry);
2396 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2397 			goto out;
2398 		i++;
2399 		filp->f_pos++;
2400 		/* fall through */
2401 	default:
2402 		i -= 2;
2403 		if (i >= nents) {
2404 			ret = 1;
2405 			goto out;
2406 		}
2407 		p = ents + i;
2408 		last = &ents[nents - 1];
2409 		while (p <= last) {
2410 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2411 				goto out;
2412 			filp->f_pos++;
2413 			p++;
2414 		}
2415 	}
2416 
2417 	ret = 1;
2418 out:
2419 	put_task_struct(task);
2420 out_no_task:
2421 	return ret;
2422 }
2423 
2424 #ifdef CONFIG_SECURITY
2425 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2426 				  size_t count, loff_t *ppos)
2427 {
2428 	struct inode * inode = file->f_path.dentry->d_inode;
2429 	char *p = NULL;
2430 	ssize_t length;
2431 	struct task_struct *task = get_proc_task(inode);
2432 
2433 	if (!task)
2434 		return -ESRCH;
2435 
2436 	length = security_getprocattr(task,
2437 				      (char*)file->f_path.dentry->d_name.name,
2438 				      &p);
2439 	put_task_struct(task);
2440 	if (length > 0)
2441 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2442 	kfree(p);
2443 	return length;
2444 }
2445 
2446 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2447 				   size_t count, loff_t *ppos)
2448 {
2449 	struct inode * inode = file->f_path.dentry->d_inode;
2450 	char *page;
2451 	ssize_t length;
2452 	struct task_struct *task = get_proc_task(inode);
2453 
2454 	length = -ESRCH;
2455 	if (!task)
2456 		goto out_no_task;
2457 	if (count > PAGE_SIZE)
2458 		count = PAGE_SIZE;
2459 
2460 	/* No partial writes. */
2461 	length = -EINVAL;
2462 	if (*ppos != 0)
2463 		goto out;
2464 
2465 	length = -ENOMEM;
2466 	page = (char*)__get_free_page(GFP_TEMPORARY);
2467 	if (!page)
2468 		goto out;
2469 
2470 	length = -EFAULT;
2471 	if (copy_from_user(page, buf, count))
2472 		goto out_free;
2473 
2474 	/* Guard against adverse ptrace interaction */
2475 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2476 	if (length < 0)
2477 		goto out_free;
2478 
2479 	length = security_setprocattr(task,
2480 				      (char*)file->f_path.dentry->d_name.name,
2481 				      (void*)page, count);
2482 	mutex_unlock(&task->signal->cred_guard_mutex);
2483 out_free:
2484 	free_page((unsigned long) page);
2485 out:
2486 	put_task_struct(task);
2487 out_no_task:
2488 	return length;
2489 }
2490 
2491 static const struct file_operations proc_pid_attr_operations = {
2492 	.read		= proc_pid_attr_read,
2493 	.write		= proc_pid_attr_write,
2494 	.llseek		= generic_file_llseek,
2495 };
2496 
2497 static const struct pid_entry attr_dir_stuff[] = {
2498 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2499 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2500 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2501 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2502 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2503 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2504 };
2505 
2506 static int proc_attr_dir_readdir(struct file * filp,
2507 			     void * dirent, filldir_t filldir)
2508 {
2509 	return proc_pident_readdir(filp,dirent,filldir,
2510 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2511 }
2512 
2513 static const struct file_operations proc_attr_dir_operations = {
2514 	.read		= generic_read_dir,
2515 	.readdir	= proc_attr_dir_readdir,
2516 	.llseek		= default_llseek,
2517 };
2518 
2519 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2520 				struct dentry *dentry, struct nameidata *nd)
2521 {
2522 	return proc_pident_lookup(dir, dentry,
2523 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2524 }
2525 
2526 static const struct inode_operations proc_attr_dir_inode_operations = {
2527 	.lookup		= proc_attr_dir_lookup,
2528 	.getattr	= pid_getattr,
2529 	.setattr	= proc_setattr,
2530 };
2531 
2532 #endif
2533 
2534 #ifdef CONFIG_ELF_CORE
2535 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2536 					 size_t count, loff_t *ppos)
2537 {
2538 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2539 	struct mm_struct *mm;
2540 	char buffer[PROC_NUMBUF];
2541 	size_t len;
2542 	int ret;
2543 
2544 	if (!task)
2545 		return -ESRCH;
2546 
2547 	ret = 0;
2548 	mm = get_task_mm(task);
2549 	if (mm) {
2550 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2551 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2552 				MMF_DUMP_FILTER_SHIFT));
2553 		mmput(mm);
2554 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2555 	}
2556 
2557 	put_task_struct(task);
2558 
2559 	return ret;
2560 }
2561 
2562 static ssize_t proc_coredump_filter_write(struct file *file,
2563 					  const char __user *buf,
2564 					  size_t count,
2565 					  loff_t *ppos)
2566 {
2567 	struct task_struct *task;
2568 	struct mm_struct *mm;
2569 	char buffer[PROC_NUMBUF], *end;
2570 	unsigned int val;
2571 	int ret;
2572 	int i;
2573 	unsigned long mask;
2574 
2575 	ret = -EFAULT;
2576 	memset(buffer, 0, sizeof(buffer));
2577 	if (count > sizeof(buffer) - 1)
2578 		count = sizeof(buffer) - 1;
2579 	if (copy_from_user(buffer, buf, count))
2580 		goto out_no_task;
2581 
2582 	ret = -EINVAL;
2583 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2584 	if (*end == '\n')
2585 		end++;
2586 	if (end - buffer == 0)
2587 		goto out_no_task;
2588 
2589 	ret = -ESRCH;
2590 	task = get_proc_task(file->f_dentry->d_inode);
2591 	if (!task)
2592 		goto out_no_task;
2593 
2594 	ret = end - buffer;
2595 	mm = get_task_mm(task);
2596 	if (!mm)
2597 		goto out_no_mm;
2598 
2599 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2600 		if (val & mask)
2601 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2602 		else
2603 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2604 	}
2605 
2606 	mmput(mm);
2607  out_no_mm:
2608 	put_task_struct(task);
2609  out_no_task:
2610 	return ret;
2611 }
2612 
2613 static const struct file_operations proc_coredump_filter_operations = {
2614 	.read		= proc_coredump_filter_read,
2615 	.write		= proc_coredump_filter_write,
2616 	.llseek		= generic_file_llseek,
2617 };
2618 #endif
2619 
2620 /*
2621  * /proc/self:
2622  */
2623 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2624 			      int buflen)
2625 {
2626 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2627 	pid_t tgid = task_tgid_nr_ns(current, ns);
2628 	char tmp[PROC_NUMBUF];
2629 	if (!tgid)
2630 		return -ENOENT;
2631 	sprintf(tmp, "%d", tgid);
2632 	return vfs_readlink(dentry,buffer,buflen,tmp);
2633 }
2634 
2635 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2636 {
2637 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2638 	pid_t tgid = task_tgid_nr_ns(current, ns);
2639 	char *name = ERR_PTR(-ENOENT);
2640 	if (tgid) {
2641 		name = __getname();
2642 		if (!name)
2643 			name = ERR_PTR(-ENOMEM);
2644 		else
2645 			sprintf(name, "%d", tgid);
2646 	}
2647 	nd_set_link(nd, name);
2648 	return NULL;
2649 }
2650 
2651 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2652 				void *cookie)
2653 {
2654 	char *s = nd_get_link(nd);
2655 	if (!IS_ERR(s))
2656 		__putname(s);
2657 }
2658 
2659 static const struct inode_operations proc_self_inode_operations = {
2660 	.readlink	= proc_self_readlink,
2661 	.follow_link	= proc_self_follow_link,
2662 	.put_link	= proc_self_put_link,
2663 };
2664 
2665 /*
2666  * proc base
2667  *
2668  * These are the directory entries in the root directory of /proc
2669  * that properly belong to the /proc filesystem, as they describe
2670  * describe something that is process related.
2671  */
2672 static const struct pid_entry proc_base_stuff[] = {
2673 	NOD("self", S_IFLNK|S_IRWXUGO,
2674 		&proc_self_inode_operations, NULL, {}),
2675 };
2676 
2677 static struct dentry *proc_base_instantiate(struct inode *dir,
2678 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2679 {
2680 	const struct pid_entry *p = ptr;
2681 	struct inode *inode;
2682 	struct proc_inode *ei;
2683 	struct dentry *error;
2684 
2685 	/* Allocate the inode */
2686 	error = ERR_PTR(-ENOMEM);
2687 	inode = new_inode(dir->i_sb);
2688 	if (!inode)
2689 		goto out;
2690 
2691 	/* Initialize the inode */
2692 	ei = PROC_I(inode);
2693 	inode->i_ino = get_next_ino();
2694 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2695 
2696 	/*
2697 	 * grab the reference to the task.
2698 	 */
2699 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2700 	if (!ei->pid)
2701 		goto out_iput;
2702 
2703 	inode->i_mode = p->mode;
2704 	if (S_ISDIR(inode->i_mode))
2705 		set_nlink(inode, 2);
2706 	if (S_ISLNK(inode->i_mode))
2707 		inode->i_size = 64;
2708 	if (p->iop)
2709 		inode->i_op = p->iop;
2710 	if (p->fop)
2711 		inode->i_fop = p->fop;
2712 	ei->op = p->op;
2713 	d_add(dentry, inode);
2714 	error = NULL;
2715 out:
2716 	return error;
2717 out_iput:
2718 	iput(inode);
2719 	goto out;
2720 }
2721 
2722 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2723 {
2724 	struct dentry *error;
2725 	struct task_struct *task = get_proc_task(dir);
2726 	const struct pid_entry *p, *last;
2727 
2728 	error = ERR_PTR(-ENOENT);
2729 
2730 	if (!task)
2731 		goto out_no_task;
2732 
2733 	/* Lookup the directory entry */
2734 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2735 	for (p = proc_base_stuff; p <= last; p++) {
2736 		if (p->len != dentry->d_name.len)
2737 			continue;
2738 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2739 			break;
2740 	}
2741 	if (p > last)
2742 		goto out;
2743 
2744 	error = proc_base_instantiate(dir, dentry, task, p);
2745 
2746 out:
2747 	put_task_struct(task);
2748 out_no_task:
2749 	return error;
2750 }
2751 
2752 static int proc_base_fill_cache(struct file *filp, void *dirent,
2753 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2754 {
2755 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2756 				proc_base_instantiate, task, p);
2757 }
2758 
2759 #ifdef CONFIG_TASK_IO_ACCOUNTING
2760 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2761 {
2762 	struct task_io_accounting acct = task->ioac;
2763 	unsigned long flags;
2764 	int result;
2765 
2766 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2767 	if (result)
2768 		return result;
2769 
2770 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2771 		result = -EACCES;
2772 		goto out_unlock;
2773 	}
2774 
2775 	if (whole && lock_task_sighand(task, &flags)) {
2776 		struct task_struct *t = task;
2777 
2778 		task_io_accounting_add(&acct, &task->signal->ioac);
2779 		while_each_thread(task, t)
2780 			task_io_accounting_add(&acct, &t->ioac);
2781 
2782 		unlock_task_sighand(task, &flags);
2783 	}
2784 	result = sprintf(buffer,
2785 			"rchar: %llu\n"
2786 			"wchar: %llu\n"
2787 			"syscr: %llu\n"
2788 			"syscw: %llu\n"
2789 			"read_bytes: %llu\n"
2790 			"write_bytes: %llu\n"
2791 			"cancelled_write_bytes: %llu\n",
2792 			(unsigned long long)acct.rchar,
2793 			(unsigned long long)acct.wchar,
2794 			(unsigned long long)acct.syscr,
2795 			(unsigned long long)acct.syscw,
2796 			(unsigned long long)acct.read_bytes,
2797 			(unsigned long long)acct.write_bytes,
2798 			(unsigned long long)acct.cancelled_write_bytes);
2799 out_unlock:
2800 	mutex_unlock(&task->signal->cred_guard_mutex);
2801 	return result;
2802 }
2803 
2804 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2805 {
2806 	return do_io_accounting(task, buffer, 0);
2807 }
2808 
2809 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2810 {
2811 	return do_io_accounting(task, buffer, 1);
2812 }
2813 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2814 
2815 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2816 				struct pid *pid, struct task_struct *task)
2817 {
2818 	int err = lock_trace(task);
2819 	if (!err) {
2820 		seq_printf(m, "%08x\n", task->personality);
2821 		unlock_trace(task);
2822 	}
2823 	return err;
2824 }
2825 
2826 /*
2827  * Thread groups
2828  */
2829 static const struct file_operations proc_task_operations;
2830 static const struct inode_operations proc_task_inode_operations;
2831 
2832 static const struct pid_entry tgid_base_stuff[] = {
2833 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2834 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2835 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2836 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2837 #ifdef CONFIG_NET
2838 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2839 #endif
2840 	REG("environ",    S_IRUSR, proc_environ_operations),
2841 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2842 	ONE("status",     S_IRUGO, proc_pid_status),
2843 	ONE("personality", S_IRUGO, proc_pid_personality),
2844 	INF("limits",	  S_IRUGO, proc_pid_limits),
2845 #ifdef CONFIG_SCHED_DEBUG
2846 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2847 #endif
2848 #ifdef CONFIG_SCHED_AUTOGROUP
2849 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2850 #endif
2851 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2852 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2853 	INF("syscall",    S_IRUGO, proc_pid_syscall),
2854 #endif
2855 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2856 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2857 	ONE("statm",      S_IRUGO, proc_pid_statm),
2858 	REG("maps",       S_IRUGO, proc_maps_operations),
2859 #ifdef CONFIG_NUMA
2860 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2861 #endif
2862 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2863 	LNK("cwd",        proc_cwd_link),
2864 	LNK("root",       proc_root_link),
2865 	LNK("exe",        proc_exe_link),
2866 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2867 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2868 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2869 #ifdef CONFIG_PROC_PAGE_MONITOR
2870 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2871 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2872 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2873 #endif
2874 #ifdef CONFIG_SECURITY
2875 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2876 #endif
2877 #ifdef CONFIG_KALLSYMS
2878 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2879 #endif
2880 #ifdef CONFIG_STACKTRACE
2881 	ONE("stack",      S_IRUGO, proc_pid_stack),
2882 #endif
2883 #ifdef CONFIG_SCHEDSTATS
2884 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2885 #endif
2886 #ifdef CONFIG_LATENCYTOP
2887 	REG("latency",  S_IRUGO, proc_lstats_operations),
2888 #endif
2889 #ifdef CONFIG_PROC_PID_CPUSET
2890 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2891 #endif
2892 #ifdef CONFIG_CGROUPS
2893 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2894 #endif
2895 	INF("oom_score",  S_IRUGO, proc_oom_score),
2896 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2897 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2898 #ifdef CONFIG_AUDITSYSCALL
2899 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2900 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2901 #endif
2902 #ifdef CONFIG_FAULT_INJECTION
2903 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2904 #endif
2905 #ifdef CONFIG_ELF_CORE
2906 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2907 #endif
2908 #ifdef CONFIG_TASK_IO_ACCOUNTING
2909 	INF("io",	S_IRUSR, proc_tgid_io_accounting),
2910 #endif
2911 #ifdef CONFIG_HARDWALL
2912 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2913 #endif
2914 };
2915 
2916 static int proc_tgid_base_readdir(struct file * filp,
2917 			     void * dirent, filldir_t filldir)
2918 {
2919 	return proc_pident_readdir(filp,dirent,filldir,
2920 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2921 }
2922 
2923 static const struct file_operations proc_tgid_base_operations = {
2924 	.read		= generic_read_dir,
2925 	.readdir	= proc_tgid_base_readdir,
2926 	.llseek		= default_llseek,
2927 };
2928 
2929 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2930 	return proc_pident_lookup(dir, dentry,
2931 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2932 }
2933 
2934 static const struct inode_operations proc_tgid_base_inode_operations = {
2935 	.lookup		= proc_tgid_base_lookup,
2936 	.getattr	= pid_getattr,
2937 	.setattr	= proc_setattr,
2938 };
2939 
2940 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2941 {
2942 	struct dentry *dentry, *leader, *dir;
2943 	char buf[PROC_NUMBUF];
2944 	struct qstr name;
2945 
2946 	name.name = buf;
2947 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2948 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2949 	if (dentry) {
2950 		shrink_dcache_parent(dentry);
2951 		d_drop(dentry);
2952 		dput(dentry);
2953 	}
2954 
2955 	name.name = buf;
2956 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2957 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2958 	if (!leader)
2959 		goto out;
2960 
2961 	name.name = "task";
2962 	name.len = strlen(name.name);
2963 	dir = d_hash_and_lookup(leader, &name);
2964 	if (!dir)
2965 		goto out_put_leader;
2966 
2967 	name.name = buf;
2968 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2969 	dentry = d_hash_and_lookup(dir, &name);
2970 	if (dentry) {
2971 		shrink_dcache_parent(dentry);
2972 		d_drop(dentry);
2973 		dput(dentry);
2974 	}
2975 
2976 	dput(dir);
2977 out_put_leader:
2978 	dput(leader);
2979 out:
2980 	return;
2981 }
2982 
2983 /**
2984  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2985  * @task: task that should be flushed.
2986  *
2987  * When flushing dentries from proc, one needs to flush them from global
2988  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2989  * in. This call is supposed to do all of this job.
2990  *
2991  * Looks in the dcache for
2992  * /proc/@pid
2993  * /proc/@tgid/task/@pid
2994  * if either directory is present flushes it and all of it'ts children
2995  * from the dcache.
2996  *
2997  * It is safe and reasonable to cache /proc entries for a task until
2998  * that task exits.  After that they just clog up the dcache with
2999  * useless entries, possibly causing useful dcache entries to be
3000  * flushed instead.  This routine is proved to flush those useless
3001  * dcache entries at process exit time.
3002  *
3003  * NOTE: This routine is just an optimization so it does not guarantee
3004  *       that no dcache entries will exist at process exit time it
3005  *       just makes it very unlikely that any will persist.
3006  */
3007 
3008 void proc_flush_task(struct task_struct *task)
3009 {
3010 	int i;
3011 	struct pid *pid, *tgid;
3012 	struct upid *upid;
3013 
3014 	pid = task_pid(task);
3015 	tgid = task_tgid(task);
3016 
3017 	for (i = 0; i <= pid->level; i++) {
3018 		upid = &pid->numbers[i];
3019 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3020 					tgid->numbers[i].nr);
3021 	}
3022 
3023 	upid = &pid->numbers[pid->level];
3024 	if (upid->nr == 1)
3025 		pid_ns_release_proc(upid->ns);
3026 }
3027 
3028 static struct dentry *proc_pid_instantiate(struct inode *dir,
3029 					   struct dentry * dentry,
3030 					   struct task_struct *task, const void *ptr)
3031 {
3032 	struct dentry *error = ERR_PTR(-ENOENT);
3033 	struct inode *inode;
3034 
3035 	inode = proc_pid_make_inode(dir->i_sb, task);
3036 	if (!inode)
3037 		goto out;
3038 
3039 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3040 	inode->i_op = &proc_tgid_base_inode_operations;
3041 	inode->i_fop = &proc_tgid_base_operations;
3042 	inode->i_flags|=S_IMMUTABLE;
3043 
3044 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3045 						  ARRAY_SIZE(tgid_base_stuff)));
3046 
3047 	d_set_d_op(dentry, &pid_dentry_operations);
3048 
3049 	d_add(dentry, inode);
3050 	/* Close the race of the process dying before we return the dentry */
3051 	if (pid_revalidate(dentry, NULL))
3052 		error = NULL;
3053 out:
3054 	return error;
3055 }
3056 
3057 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3058 {
3059 	struct dentry *result;
3060 	struct task_struct *task;
3061 	unsigned tgid;
3062 	struct pid_namespace *ns;
3063 
3064 	result = proc_base_lookup(dir, dentry);
3065 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3066 		goto out;
3067 
3068 	tgid = name_to_int(dentry);
3069 	if (tgid == ~0U)
3070 		goto out;
3071 
3072 	ns = dentry->d_sb->s_fs_info;
3073 	rcu_read_lock();
3074 	task = find_task_by_pid_ns(tgid, ns);
3075 	if (task)
3076 		get_task_struct(task);
3077 	rcu_read_unlock();
3078 	if (!task)
3079 		goto out;
3080 
3081 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3082 	put_task_struct(task);
3083 out:
3084 	return result;
3085 }
3086 
3087 /*
3088  * Find the first task with tgid >= tgid
3089  *
3090  */
3091 struct tgid_iter {
3092 	unsigned int tgid;
3093 	struct task_struct *task;
3094 };
3095 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3096 {
3097 	struct pid *pid;
3098 
3099 	if (iter.task)
3100 		put_task_struct(iter.task);
3101 	rcu_read_lock();
3102 retry:
3103 	iter.task = NULL;
3104 	pid = find_ge_pid(iter.tgid, ns);
3105 	if (pid) {
3106 		iter.tgid = pid_nr_ns(pid, ns);
3107 		iter.task = pid_task(pid, PIDTYPE_PID);
3108 		/* What we to know is if the pid we have find is the
3109 		 * pid of a thread_group_leader.  Testing for task
3110 		 * being a thread_group_leader is the obvious thing
3111 		 * todo but there is a window when it fails, due to
3112 		 * the pid transfer logic in de_thread.
3113 		 *
3114 		 * So we perform the straight forward test of seeing
3115 		 * if the pid we have found is the pid of a thread
3116 		 * group leader, and don't worry if the task we have
3117 		 * found doesn't happen to be a thread group leader.
3118 		 * As we don't care in the case of readdir.
3119 		 */
3120 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3121 			iter.tgid += 1;
3122 			goto retry;
3123 		}
3124 		get_task_struct(iter.task);
3125 	}
3126 	rcu_read_unlock();
3127 	return iter;
3128 }
3129 
3130 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3131 
3132 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3133 	struct tgid_iter iter)
3134 {
3135 	char name[PROC_NUMBUF];
3136 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3137 	return proc_fill_cache(filp, dirent, filldir, name, len,
3138 				proc_pid_instantiate, iter.task, NULL);
3139 }
3140 
3141 /* for the /proc/ directory itself, after non-process stuff has been done */
3142 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3143 {
3144 	unsigned int nr;
3145 	struct task_struct *reaper;
3146 	struct tgid_iter iter;
3147 	struct pid_namespace *ns;
3148 
3149 	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3150 		goto out_no_task;
3151 	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3152 
3153 	reaper = get_proc_task(filp->f_path.dentry->d_inode);
3154 	if (!reaper)
3155 		goto out_no_task;
3156 
3157 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3158 		const struct pid_entry *p = &proc_base_stuff[nr];
3159 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3160 			goto out;
3161 	}
3162 
3163 	ns = filp->f_dentry->d_sb->s_fs_info;
3164 	iter.task = NULL;
3165 	iter.tgid = filp->f_pos - TGID_OFFSET;
3166 	for (iter = next_tgid(ns, iter);
3167 	     iter.task;
3168 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3169 		filp->f_pos = iter.tgid + TGID_OFFSET;
3170 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
3171 			put_task_struct(iter.task);
3172 			goto out;
3173 		}
3174 	}
3175 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3176 out:
3177 	put_task_struct(reaper);
3178 out_no_task:
3179 	return 0;
3180 }
3181 
3182 /*
3183  * Tasks
3184  */
3185 static const struct pid_entry tid_base_stuff[] = {
3186 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3187 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3188 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3189 	REG("environ",   S_IRUSR, proc_environ_operations),
3190 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3191 	ONE("status",    S_IRUGO, proc_pid_status),
3192 	ONE("personality", S_IRUGO, proc_pid_personality),
3193 	INF("limits",	 S_IRUGO, proc_pid_limits),
3194 #ifdef CONFIG_SCHED_DEBUG
3195 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3196 #endif
3197 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3198 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3199 	INF("syscall",   S_IRUGO, proc_pid_syscall),
3200 #endif
3201 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3202 	ONE("stat",      S_IRUGO, proc_tid_stat),
3203 	ONE("statm",     S_IRUGO, proc_pid_statm),
3204 	REG("maps",      S_IRUGO, proc_maps_operations),
3205 #ifdef CONFIG_NUMA
3206 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3207 #endif
3208 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3209 	LNK("cwd",       proc_cwd_link),
3210 	LNK("root",      proc_root_link),
3211 	LNK("exe",       proc_exe_link),
3212 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3213 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3214 #ifdef CONFIG_PROC_PAGE_MONITOR
3215 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3216 	REG("smaps",     S_IRUGO, proc_smaps_operations),
3217 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3218 #endif
3219 #ifdef CONFIG_SECURITY
3220 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3221 #endif
3222 #ifdef CONFIG_KALLSYMS
3223 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3224 #endif
3225 #ifdef CONFIG_STACKTRACE
3226 	ONE("stack",      S_IRUGO, proc_pid_stack),
3227 #endif
3228 #ifdef CONFIG_SCHEDSTATS
3229 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3230 #endif
3231 #ifdef CONFIG_LATENCYTOP
3232 	REG("latency",  S_IRUGO, proc_lstats_operations),
3233 #endif
3234 #ifdef CONFIG_PROC_PID_CPUSET
3235 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3236 #endif
3237 #ifdef CONFIG_CGROUPS
3238 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3239 #endif
3240 	INF("oom_score", S_IRUGO, proc_oom_score),
3241 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3242 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3243 #ifdef CONFIG_AUDITSYSCALL
3244 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3245 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3246 #endif
3247 #ifdef CONFIG_FAULT_INJECTION
3248 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3249 #endif
3250 #ifdef CONFIG_TASK_IO_ACCOUNTING
3251 	INF("io",	S_IRUSR, proc_tid_io_accounting),
3252 #endif
3253 #ifdef CONFIG_HARDWALL
3254 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3255 #endif
3256 };
3257 
3258 static int proc_tid_base_readdir(struct file * filp,
3259 			     void * dirent, filldir_t filldir)
3260 {
3261 	return proc_pident_readdir(filp,dirent,filldir,
3262 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3263 }
3264 
3265 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3266 	return proc_pident_lookup(dir, dentry,
3267 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3268 }
3269 
3270 static const struct file_operations proc_tid_base_operations = {
3271 	.read		= generic_read_dir,
3272 	.readdir	= proc_tid_base_readdir,
3273 	.llseek		= default_llseek,
3274 };
3275 
3276 static const struct inode_operations proc_tid_base_inode_operations = {
3277 	.lookup		= proc_tid_base_lookup,
3278 	.getattr	= pid_getattr,
3279 	.setattr	= proc_setattr,
3280 };
3281 
3282 static struct dentry *proc_task_instantiate(struct inode *dir,
3283 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3284 {
3285 	struct dentry *error = ERR_PTR(-ENOENT);
3286 	struct inode *inode;
3287 	inode = proc_pid_make_inode(dir->i_sb, task);
3288 
3289 	if (!inode)
3290 		goto out;
3291 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3292 	inode->i_op = &proc_tid_base_inode_operations;
3293 	inode->i_fop = &proc_tid_base_operations;
3294 	inode->i_flags|=S_IMMUTABLE;
3295 
3296 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3297 						  ARRAY_SIZE(tid_base_stuff)));
3298 
3299 	d_set_d_op(dentry, &pid_dentry_operations);
3300 
3301 	d_add(dentry, inode);
3302 	/* Close the race of the process dying before we return the dentry */
3303 	if (pid_revalidate(dentry, NULL))
3304 		error = NULL;
3305 out:
3306 	return error;
3307 }
3308 
3309 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3310 {
3311 	struct dentry *result = ERR_PTR(-ENOENT);
3312 	struct task_struct *task;
3313 	struct task_struct *leader = get_proc_task(dir);
3314 	unsigned tid;
3315 	struct pid_namespace *ns;
3316 
3317 	if (!leader)
3318 		goto out_no_task;
3319 
3320 	tid = name_to_int(dentry);
3321 	if (tid == ~0U)
3322 		goto out;
3323 
3324 	ns = dentry->d_sb->s_fs_info;
3325 	rcu_read_lock();
3326 	task = find_task_by_pid_ns(tid, ns);
3327 	if (task)
3328 		get_task_struct(task);
3329 	rcu_read_unlock();
3330 	if (!task)
3331 		goto out;
3332 	if (!same_thread_group(leader, task))
3333 		goto out_drop_task;
3334 
3335 	result = proc_task_instantiate(dir, dentry, task, NULL);
3336 out_drop_task:
3337 	put_task_struct(task);
3338 out:
3339 	put_task_struct(leader);
3340 out_no_task:
3341 	return result;
3342 }
3343 
3344 /*
3345  * Find the first tid of a thread group to return to user space.
3346  *
3347  * Usually this is just the thread group leader, but if the users
3348  * buffer was too small or there was a seek into the middle of the
3349  * directory we have more work todo.
3350  *
3351  * In the case of a short read we start with find_task_by_pid.
3352  *
3353  * In the case of a seek we start with the leader and walk nr
3354  * threads past it.
3355  */
3356 static struct task_struct *first_tid(struct task_struct *leader,
3357 		int tid, int nr, struct pid_namespace *ns)
3358 {
3359 	struct task_struct *pos;
3360 
3361 	rcu_read_lock();
3362 	/* Attempt to start with the pid of a thread */
3363 	if (tid && (nr > 0)) {
3364 		pos = find_task_by_pid_ns(tid, ns);
3365 		if (pos && (pos->group_leader == leader))
3366 			goto found;
3367 	}
3368 
3369 	/* If nr exceeds the number of threads there is nothing todo */
3370 	pos = NULL;
3371 	if (nr && nr >= get_nr_threads(leader))
3372 		goto out;
3373 
3374 	/* If we haven't found our starting place yet start
3375 	 * with the leader and walk nr threads forward.
3376 	 */
3377 	for (pos = leader; nr > 0; --nr) {
3378 		pos = next_thread(pos);
3379 		if (pos == leader) {
3380 			pos = NULL;
3381 			goto out;
3382 		}
3383 	}
3384 found:
3385 	get_task_struct(pos);
3386 out:
3387 	rcu_read_unlock();
3388 	return pos;
3389 }
3390 
3391 /*
3392  * Find the next thread in the thread list.
3393  * Return NULL if there is an error or no next thread.
3394  *
3395  * The reference to the input task_struct is released.
3396  */
3397 static struct task_struct *next_tid(struct task_struct *start)
3398 {
3399 	struct task_struct *pos = NULL;
3400 	rcu_read_lock();
3401 	if (pid_alive(start)) {
3402 		pos = next_thread(start);
3403 		if (thread_group_leader(pos))
3404 			pos = NULL;
3405 		else
3406 			get_task_struct(pos);
3407 	}
3408 	rcu_read_unlock();
3409 	put_task_struct(start);
3410 	return pos;
3411 }
3412 
3413 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3414 	struct task_struct *task, int tid)
3415 {
3416 	char name[PROC_NUMBUF];
3417 	int len = snprintf(name, sizeof(name), "%d", tid);
3418 	return proc_fill_cache(filp, dirent, filldir, name, len,
3419 				proc_task_instantiate, task, NULL);
3420 }
3421 
3422 /* for the /proc/TGID/task/ directories */
3423 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3424 {
3425 	struct dentry *dentry = filp->f_path.dentry;
3426 	struct inode *inode = dentry->d_inode;
3427 	struct task_struct *leader = NULL;
3428 	struct task_struct *task;
3429 	int retval = -ENOENT;
3430 	ino_t ino;
3431 	int tid;
3432 	struct pid_namespace *ns;
3433 
3434 	task = get_proc_task(inode);
3435 	if (!task)
3436 		goto out_no_task;
3437 	rcu_read_lock();
3438 	if (pid_alive(task)) {
3439 		leader = task->group_leader;
3440 		get_task_struct(leader);
3441 	}
3442 	rcu_read_unlock();
3443 	put_task_struct(task);
3444 	if (!leader)
3445 		goto out_no_task;
3446 	retval = 0;
3447 
3448 	switch ((unsigned long)filp->f_pos) {
3449 	case 0:
3450 		ino = inode->i_ino;
3451 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3452 			goto out;
3453 		filp->f_pos++;
3454 		/* fall through */
3455 	case 1:
3456 		ino = parent_ino(dentry);
3457 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3458 			goto out;
3459 		filp->f_pos++;
3460 		/* fall through */
3461 	}
3462 
3463 	/* f_version caches the tgid value that the last readdir call couldn't
3464 	 * return. lseek aka telldir automagically resets f_version to 0.
3465 	 */
3466 	ns = filp->f_dentry->d_sb->s_fs_info;
3467 	tid = (int)filp->f_version;
3468 	filp->f_version = 0;
3469 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3470 	     task;
3471 	     task = next_tid(task), filp->f_pos++) {
3472 		tid = task_pid_nr_ns(task, ns);
3473 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3474 			/* returning this tgid failed, save it as the first
3475 			 * pid for the next readir call */
3476 			filp->f_version = (u64)tid;
3477 			put_task_struct(task);
3478 			break;
3479 		}
3480 	}
3481 out:
3482 	put_task_struct(leader);
3483 out_no_task:
3484 	return retval;
3485 }
3486 
3487 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3488 {
3489 	struct inode *inode = dentry->d_inode;
3490 	struct task_struct *p = get_proc_task(inode);
3491 	generic_fillattr(inode, stat);
3492 
3493 	if (p) {
3494 		stat->nlink += get_nr_threads(p);
3495 		put_task_struct(p);
3496 	}
3497 
3498 	return 0;
3499 }
3500 
3501 static const struct inode_operations proc_task_inode_operations = {
3502 	.lookup		= proc_task_lookup,
3503 	.getattr	= proc_task_getattr,
3504 	.setattr	= proc_setattr,
3505 };
3506 
3507 static const struct file_operations proc_task_operations = {
3508 	.read		= generic_read_dir,
3509 	.readdir	= proc_task_readdir,
3510 	.llseek		= default_llseek,
3511 };
3512