xref: /linux/fs/proc/base.c (revision 394d83c17fac2b7bcf05cb99d1e945135767bb6b)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include "internal.h"
87 
88 /* NOTE:
89  *	Implementing inode permission operations in /proc is almost
90  *	certainly an error.  Permission checks need to happen during
91  *	each system call not at open time.  The reason is that most of
92  *	what we wish to check for permissions in /proc varies at runtime.
93  *
94  *	The classic example of a problem is opening file descriptors
95  *	in /proc for a task before it execs a suid executable.
96  */
97 
98 struct pid_entry {
99 	char *name;
100 	int len;
101 	mode_t mode;
102 	const struct inode_operations *iop;
103 	const struct file_operations *fop;
104 	union proc_op op;
105 };
106 
107 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
108 	.name = (NAME),					\
109 	.len  = sizeof(NAME) - 1,			\
110 	.mode = MODE,					\
111 	.iop  = IOP,					\
112 	.fop  = FOP,					\
113 	.op   = OP,					\
114 }
115 
116 #define DIR(NAME, MODE, iops, fops)	\
117 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
118 #define LNK(NAME, get_link)					\
119 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
120 		&proc_pid_link_inode_operations, NULL,		\
121 		{ .proc_get_link = get_link } )
122 #define REG(NAME, MODE, fops)				\
123 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
124 #define INF(NAME, MODE, read)				\
125 	NOD(NAME, (S_IFREG|(MODE)), 			\
126 		NULL, &proc_info_file_operations,	\
127 		{ .proc_read = read } )
128 #define ONE(NAME, MODE, show)				\
129 	NOD(NAME, (S_IFREG|(MODE)), 			\
130 		NULL, &proc_single_file_operations,	\
131 		{ .proc_show = show } )
132 
133 /*
134  * Count the number of hardlinks for the pid_entry table, excluding the .
135  * and .. links.
136  */
137 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
138 	unsigned int n)
139 {
140 	unsigned int i;
141 	unsigned int count;
142 
143 	count = 0;
144 	for (i = 0; i < n; ++i) {
145 		if (S_ISDIR(entries[i].mode))
146 			++count;
147 	}
148 
149 	return count;
150 }
151 
152 static int get_task_root(struct task_struct *task, struct path *root)
153 {
154 	int result = -ENOENT;
155 
156 	task_lock(task);
157 	if (task->fs) {
158 		get_fs_root(task->fs, root);
159 		result = 0;
160 	}
161 	task_unlock(task);
162 	return result;
163 }
164 
165 static int proc_cwd_link(struct inode *inode, struct path *path)
166 {
167 	struct task_struct *task = get_proc_task(inode);
168 	int result = -ENOENT;
169 
170 	if (task) {
171 		task_lock(task);
172 		if (task->fs) {
173 			get_fs_pwd(task->fs, path);
174 			result = 0;
175 		}
176 		task_unlock(task);
177 		put_task_struct(task);
178 	}
179 	return result;
180 }
181 
182 static int proc_root_link(struct inode *inode, struct path *path)
183 {
184 	struct task_struct *task = get_proc_task(inode);
185 	int result = -ENOENT;
186 
187 	if (task) {
188 		result = get_task_root(task, path);
189 		put_task_struct(task);
190 	}
191 	return result;
192 }
193 
194 /*
195  * Return zero if current may access user memory in @task, -error if not.
196  */
197 static int check_mem_permission(struct task_struct *task)
198 {
199 	/*
200 	 * A task can always look at itself, in case it chooses
201 	 * to use system calls instead of load instructions.
202 	 */
203 	if (task == current)
204 		return 0;
205 
206 	/*
207 	 * If current is actively ptrace'ing, and would also be
208 	 * permitted to freshly attach with ptrace now, permit it.
209 	 */
210 	if (task_is_stopped_or_traced(task)) {
211 		int match;
212 		rcu_read_lock();
213 		match = (tracehook_tracer_task(task) == current);
214 		rcu_read_unlock();
215 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
216 			return 0;
217 	}
218 
219 	/*
220 	 * Noone else is allowed.
221 	 */
222 	return -EPERM;
223 }
224 
225 struct mm_struct *mm_for_maps(struct task_struct *task)
226 {
227 	struct mm_struct *mm;
228 
229 	if (mutex_lock_killable(&task->signal->cred_guard_mutex))
230 		return NULL;
231 
232 	mm = get_task_mm(task);
233 	if (mm && mm != current->mm &&
234 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
235 		mmput(mm);
236 		mm = NULL;
237 	}
238 	mutex_unlock(&task->signal->cred_guard_mutex);
239 
240 	return mm;
241 }
242 
243 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
244 {
245 	int res = 0;
246 	unsigned int len;
247 	struct mm_struct *mm = get_task_mm(task);
248 	if (!mm)
249 		goto out;
250 	if (!mm->arg_end)
251 		goto out_mm;	/* Shh! No looking before we're done */
252 
253  	len = mm->arg_end - mm->arg_start;
254 
255 	if (len > PAGE_SIZE)
256 		len = PAGE_SIZE;
257 
258 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
259 
260 	// If the nul at the end of args has been overwritten, then
261 	// assume application is using setproctitle(3).
262 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
263 		len = strnlen(buffer, res);
264 		if (len < res) {
265 		    res = len;
266 		} else {
267 			len = mm->env_end - mm->env_start;
268 			if (len > PAGE_SIZE - res)
269 				len = PAGE_SIZE - res;
270 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
271 			res = strnlen(buffer, res);
272 		}
273 	}
274 out_mm:
275 	mmput(mm);
276 out:
277 	return res;
278 }
279 
280 static int proc_pid_auxv(struct task_struct *task, char *buffer)
281 {
282 	int res = 0;
283 	struct mm_struct *mm = get_task_mm(task);
284 	if (mm) {
285 		unsigned int nwords = 0;
286 		do {
287 			nwords += 2;
288 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
289 		res = nwords * sizeof(mm->saved_auxv[0]);
290 		if (res > PAGE_SIZE)
291 			res = PAGE_SIZE;
292 		memcpy(buffer, mm->saved_auxv, res);
293 		mmput(mm);
294 	}
295 	return res;
296 }
297 
298 
299 #ifdef CONFIG_KALLSYMS
300 /*
301  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
302  * Returns the resolved symbol.  If that fails, simply return the address.
303  */
304 static int proc_pid_wchan(struct task_struct *task, char *buffer)
305 {
306 	unsigned long wchan;
307 	char symname[KSYM_NAME_LEN];
308 
309 	wchan = get_wchan(task);
310 
311 	if (lookup_symbol_name(wchan, symname) < 0)
312 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
313 			return 0;
314 		else
315 			return sprintf(buffer, "%lu", wchan);
316 	else
317 		return sprintf(buffer, "%s", symname);
318 }
319 #endif /* CONFIG_KALLSYMS */
320 
321 #ifdef CONFIG_STACKTRACE
322 
323 #define MAX_STACK_TRACE_DEPTH	64
324 
325 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
326 			  struct pid *pid, struct task_struct *task)
327 {
328 	struct stack_trace trace;
329 	unsigned long *entries;
330 	int i;
331 
332 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
333 	if (!entries)
334 		return -ENOMEM;
335 
336 	trace.nr_entries	= 0;
337 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
338 	trace.entries		= entries;
339 	trace.skip		= 0;
340 	save_stack_trace_tsk(task, &trace);
341 
342 	for (i = 0; i < trace.nr_entries; i++) {
343 		seq_printf(m, "[<%p>] %pS\n",
344 			   (void *)entries[i], (void *)entries[i]);
345 	}
346 	kfree(entries);
347 
348 	return 0;
349 }
350 #endif
351 
352 #ifdef CONFIG_SCHEDSTATS
353 /*
354  * Provides /proc/PID/schedstat
355  */
356 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
357 {
358 	return sprintf(buffer, "%llu %llu %lu\n",
359 			(unsigned long long)task->se.sum_exec_runtime,
360 			(unsigned long long)task->sched_info.run_delay,
361 			task->sched_info.pcount);
362 }
363 #endif
364 
365 #ifdef CONFIG_LATENCYTOP
366 static int lstats_show_proc(struct seq_file *m, void *v)
367 {
368 	int i;
369 	struct inode *inode = m->private;
370 	struct task_struct *task = get_proc_task(inode);
371 
372 	if (!task)
373 		return -ESRCH;
374 	seq_puts(m, "Latency Top version : v0.1\n");
375 	for (i = 0; i < 32; i++) {
376 		struct latency_record *lr = &task->latency_record[i];
377 		if (lr->backtrace[0]) {
378 			int q;
379 			seq_printf(m, "%i %li %li",
380 				   lr->count, lr->time, lr->max);
381 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
382 				unsigned long bt = lr->backtrace[q];
383 				if (!bt)
384 					break;
385 				if (bt == ULONG_MAX)
386 					break;
387 				seq_printf(m, " %ps", (void *)bt);
388 			}
389 			seq_putc(m, '\n');
390 		}
391 
392 	}
393 	put_task_struct(task);
394 	return 0;
395 }
396 
397 static int lstats_open(struct inode *inode, struct file *file)
398 {
399 	return single_open(file, lstats_show_proc, inode);
400 }
401 
402 static ssize_t lstats_write(struct file *file, const char __user *buf,
403 			    size_t count, loff_t *offs)
404 {
405 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
406 
407 	if (!task)
408 		return -ESRCH;
409 	clear_all_latency_tracing(task);
410 	put_task_struct(task);
411 
412 	return count;
413 }
414 
415 static const struct file_operations proc_lstats_operations = {
416 	.open		= lstats_open,
417 	.read		= seq_read,
418 	.write		= lstats_write,
419 	.llseek		= seq_lseek,
420 	.release	= single_release,
421 };
422 
423 #endif
424 
425 static int proc_oom_score(struct task_struct *task, char *buffer)
426 {
427 	unsigned long points = 0;
428 
429 	read_lock(&tasklist_lock);
430 	if (pid_alive(task))
431 		points = oom_badness(task, NULL, NULL,
432 					totalram_pages + total_swap_pages);
433 	read_unlock(&tasklist_lock);
434 	return sprintf(buffer, "%lu\n", points);
435 }
436 
437 struct limit_names {
438 	char *name;
439 	char *unit;
440 };
441 
442 static const struct limit_names lnames[RLIM_NLIMITS] = {
443 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
444 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
445 	[RLIMIT_DATA] = {"Max data size", "bytes"},
446 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
447 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
448 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
449 	[RLIMIT_NPROC] = {"Max processes", "processes"},
450 	[RLIMIT_NOFILE] = {"Max open files", "files"},
451 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
452 	[RLIMIT_AS] = {"Max address space", "bytes"},
453 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
454 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
455 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
456 	[RLIMIT_NICE] = {"Max nice priority", NULL},
457 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
458 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
459 };
460 
461 /* Display limits for a process */
462 static int proc_pid_limits(struct task_struct *task, char *buffer)
463 {
464 	unsigned int i;
465 	int count = 0;
466 	unsigned long flags;
467 	char *bufptr = buffer;
468 
469 	struct rlimit rlim[RLIM_NLIMITS];
470 
471 	if (!lock_task_sighand(task, &flags))
472 		return 0;
473 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
474 	unlock_task_sighand(task, &flags);
475 
476 	/*
477 	 * print the file header
478 	 */
479 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
480 			"Limit", "Soft Limit", "Hard Limit", "Units");
481 
482 	for (i = 0; i < RLIM_NLIMITS; i++) {
483 		if (rlim[i].rlim_cur == RLIM_INFINITY)
484 			count += sprintf(&bufptr[count], "%-25s %-20s ",
485 					 lnames[i].name, "unlimited");
486 		else
487 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
488 					 lnames[i].name, rlim[i].rlim_cur);
489 
490 		if (rlim[i].rlim_max == RLIM_INFINITY)
491 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
492 		else
493 			count += sprintf(&bufptr[count], "%-20lu ",
494 					 rlim[i].rlim_max);
495 
496 		if (lnames[i].unit)
497 			count += sprintf(&bufptr[count], "%-10s\n",
498 					 lnames[i].unit);
499 		else
500 			count += sprintf(&bufptr[count], "\n");
501 	}
502 
503 	return count;
504 }
505 
506 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
507 static int proc_pid_syscall(struct task_struct *task, char *buffer)
508 {
509 	long nr;
510 	unsigned long args[6], sp, pc;
511 
512 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
513 		return sprintf(buffer, "running\n");
514 
515 	if (nr < 0)
516 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
517 
518 	return sprintf(buffer,
519 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
520 		       nr,
521 		       args[0], args[1], args[2], args[3], args[4], args[5],
522 		       sp, pc);
523 }
524 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
525 
526 /************************************************************************/
527 /*                       Here the fs part begins                        */
528 /************************************************************************/
529 
530 /* permission checks */
531 static int proc_fd_access_allowed(struct inode *inode)
532 {
533 	struct task_struct *task;
534 	int allowed = 0;
535 	/* Allow access to a task's file descriptors if it is us or we
536 	 * may use ptrace attach to the process and find out that
537 	 * information.
538 	 */
539 	task = get_proc_task(inode);
540 	if (task) {
541 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
542 		put_task_struct(task);
543 	}
544 	return allowed;
545 }
546 
547 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
548 {
549 	int error;
550 	struct inode *inode = dentry->d_inode;
551 
552 	if (attr->ia_valid & ATTR_MODE)
553 		return -EPERM;
554 
555 	error = inode_change_ok(inode, attr);
556 	if (error)
557 		return error;
558 
559 	if ((attr->ia_valid & ATTR_SIZE) &&
560 	    attr->ia_size != i_size_read(inode)) {
561 		error = vmtruncate(inode, attr->ia_size);
562 		if (error)
563 			return error;
564 	}
565 
566 	setattr_copy(inode, attr);
567 	mark_inode_dirty(inode);
568 	return 0;
569 }
570 
571 static const struct inode_operations proc_def_inode_operations = {
572 	.setattr	= proc_setattr,
573 };
574 
575 static int mounts_open_common(struct inode *inode, struct file *file,
576 			      const struct seq_operations *op)
577 {
578 	struct task_struct *task = get_proc_task(inode);
579 	struct nsproxy *nsp;
580 	struct mnt_namespace *ns = NULL;
581 	struct path root;
582 	struct proc_mounts *p;
583 	int ret = -EINVAL;
584 
585 	if (task) {
586 		rcu_read_lock();
587 		nsp = task_nsproxy(task);
588 		if (nsp) {
589 			ns = nsp->mnt_ns;
590 			if (ns)
591 				get_mnt_ns(ns);
592 		}
593 		rcu_read_unlock();
594 		if (ns && get_task_root(task, &root) == 0)
595 			ret = 0;
596 		put_task_struct(task);
597 	}
598 
599 	if (!ns)
600 		goto err;
601 	if (ret)
602 		goto err_put_ns;
603 
604 	ret = -ENOMEM;
605 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
606 	if (!p)
607 		goto err_put_path;
608 
609 	file->private_data = &p->m;
610 	ret = seq_open(file, op);
611 	if (ret)
612 		goto err_free;
613 
614 	p->m.private = p;
615 	p->ns = ns;
616 	p->root = root;
617 	p->event = ns->event;
618 
619 	return 0;
620 
621  err_free:
622 	kfree(p);
623  err_put_path:
624 	path_put(&root);
625  err_put_ns:
626 	put_mnt_ns(ns);
627  err:
628 	return ret;
629 }
630 
631 static int mounts_release(struct inode *inode, struct file *file)
632 {
633 	struct proc_mounts *p = file->private_data;
634 	path_put(&p->root);
635 	put_mnt_ns(p->ns);
636 	return seq_release(inode, file);
637 }
638 
639 static unsigned mounts_poll(struct file *file, poll_table *wait)
640 {
641 	struct proc_mounts *p = file->private_data;
642 	unsigned res = POLLIN | POLLRDNORM;
643 
644 	poll_wait(file, &p->ns->poll, wait);
645 	if (mnt_had_events(p))
646 		res |= POLLERR | POLLPRI;
647 
648 	return res;
649 }
650 
651 static int mounts_open(struct inode *inode, struct file *file)
652 {
653 	return mounts_open_common(inode, file, &mounts_op);
654 }
655 
656 static const struct file_operations proc_mounts_operations = {
657 	.open		= mounts_open,
658 	.read		= seq_read,
659 	.llseek		= seq_lseek,
660 	.release	= mounts_release,
661 	.poll		= mounts_poll,
662 };
663 
664 static int mountinfo_open(struct inode *inode, struct file *file)
665 {
666 	return mounts_open_common(inode, file, &mountinfo_op);
667 }
668 
669 static const struct file_operations proc_mountinfo_operations = {
670 	.open		= mountinfo_open,
671 	.read		= seq_read,
672 	.llseek		= seq_lseek,
673 	.release	= mounts_release,
674 	.poll		= mounts_poll,
675 };
676 
677 static int mountstats_open(struct inode *inode, struct file *file)
678 {
679 	return mounts_open_common(inode, file, &mountstats_op);
680 }
681 
682 static const struct file_operations proc_mountstats_operations = {
683 	.open		= mountstats_open,
684 	.read		= seq_read,
685 	.llseek		= seq_lseek,
686 	.release	= mounts_release,
687 };
688 
689 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
690 
691 static ssize_t proc_info_read(struct file * file, char __user * buf,
692 			  size_t count, loff_t *ppos)
693 {
694 	struct inode * inode = file->f_path.dentry->d_inode;
695 	unsigned long page;
696 	ssize_t length;
697 	struct task_struct *task = get_proc_task(inode);
698 
699 	length = -ESRCH;
700 	if (!task)
701 		goto out_no_task;
702 
703 	if (count > PROC_BLOCK_SIZE)
704 		count = PROC_BLOCK_SIZE;
705 
706 	length = -ENOMEM;
707 	if (!(page = __get_free_page(GFP_TEMPORARY)))
708 		goto out;
709 
710 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
711 
712 	if (length >= 0)
713 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
714 	free_page(page);
715 out:
716 	put_task_struct(task);
717 out_no_task:
718 	return length;
719 }
720 
721 static const struct file_operations proc_info_file_operations = {
722 	.read		= proc_info_read,
723 	.llseek		= generic_file_llseek,
724 };
725 
726 static int proc_single_show(struct seq_file *m, void *v)
727 {
728 	struct inode *inode = m->private;
729 	struct pid_namespace *ns;
730 	struct pid *pid;
731 	struct task_struct *task;
732 	int ret;
733 
734 	ns = inode->i_sb->s_fs_info;
735 	pid = proc_pid(inode);
736 	task = get_pid_task(pid, PIDTYPE_PID);
737 	if (!task)
738 		return -ESRCH;
739 
740 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
741 
742 	put_task_struct(task);
743 	return ret;
744 }
745 
746 static int proc_single_open(struct inode *inode, struct file *filp)
747 {
748 	return single_open(filp, proc_single_show, inode);
749 }
750 
751 static const struct file_operations proc_single_file_operations = {
752 	.open		= proc_single_open,
753 	.read		= seq_read,
754 	.llseek		= seq_lseek,
755 	.release	= single_release,
756 };
757 
758 static int mem_open(struct inode* inode, struct file* file)
759 {
760 	file->private_data = (void*)((long)current->self_exec_id);
761 	/* OK to pass negative loff_t, we can catch out-of-range */
762 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
763 	return 0;
764 }
765 
766 static ssize_t mem_read(struct file * file, char __user * buf,
767 			size_t count, loff_t *ppos)
768 {
769 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
770 	char *page;
771 	unsigned long src = *ppos;
772 	int ret = -ESRCH;
773 	struct mm_struct *mm;
774 
775 	if (!task)
776 		goto out_no_task;
777 
778 	if (check_mem_permission(task))
779 		goto out;
780 
781 	ret = -ENOMEM;
782 	page = (char *)__get_free_page(GFP_TEMPORARY);
783 	if (!page)
784 		goto out;
785 
786 	ret = 0;
787 
788 	mm = get_task_mm(task);
789 	if (!mm)
790 		goto out_free;
791 
792 	ret = -EIO;
793 
794 	if (file->private_data != (void*)((long)current->self_exec_id))
795 		goto out_put;
796 
797 	ret = 0;
798 
799 	while (count > 0) {
800 		int this_len, retval;
801 
802 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
803 		retval = access_process_vm(task, src, page, this_len, 0);
804 		if (!retval || check_mem_permission(task)) {
805 			if (!ret)
806 				ret = -EIO;
807 			break;
808 		}
809 
810 		if (copy_to_user(buf, page, retval)) {
811 			ret = -EFAULT;
812 			break;
813 		}
814 
815 		ret += retval;
816 		src += retval;
817 		buf += retval;
818 		count -= retval;
819 	}
820 	*ppos = src;
821 
822 out_put:
823 	mmput(mm);
824 out_free:
825 	free_page((unsigned long) page);
826 out:
827 	put_task_struct(task);
828 out_no_task:
829 	return ret;
830 }
831 
832 #define mem_write NULL
833 
834 #ifndef mem_write
835 /* This is a security hazard */
836 static ssize_t mem_write(struct file * file, const char __user *buf,
837 			 size_t count, loff_t *ppos)
838 {
839 	int copied;
840 	char *page;
841 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
842 	unsigned long dst = *ppos;
843 
844 	copied = -ESRCH;
845 	if (!task)
846 		goto out_no_task;
847 
848 	if (check_mem_permission(task))
849 		goto out;
850 
851 	copied = -ENOMEM;
852 	page = (char *)__get_free_page(GFP_TEMPORARY);
853 	if (!page)
854 		goto out;
855 
856 	copied = 0;
857 	while (count > 0) {
858 		int this_len, retval;
859 
860 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
861 		if (copy_from_user(page, buf, this_len)) {
862 			copied = -EFAULT;
863 			break;
864 		}
865 		retval = access_process_vm(task, dst, page, this_len, 1);
866 		if (!retval) {
867 			if (!copied)
868 				copied = -EIO;
869 			break;
870 		}
871 		copied += retval;
872 		buf += retval;
873 		dst += retval;
874 		count -= retval;
875 	}
876 	*ppos = dst;
877 	free_page((unsigned long) page);
878 out:
879 	put_task_struct(task);
880 out_no_task:
881 	return copied;
882 }
883 #endif
884 
885 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
886 {
887 	switch (orig) {
888 	case 0:
889 		file->f_pos = offset;
890 		break;
891 	case 1:
892 		file->f_pos += offset;
893 		break;
894 	default:
895 		return -EINVAL;
896 	}
897 	force_successful_syscall_return();
898 	return file->f_pos;
899 }
900 
901 static const struct file_operations proc_mem_operations = {
902 	.llseek		= mem_lseek,
903 	.read		= mem_read,
904 	.write		= mem_write,
905 	.open		= mem_open,
906 };
907 
908 static ssize_t environ_read(struct file *file, char __user *buf,
909 			size_t count, loff_t *ppos)
910 {
911 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
912 	char *page;
913 	unsigned long src = *ppos;
914 	int ret = -ESRCH;
915 	struct mm_struct *mm;
916 
917 	if (!task)
918 		goto out_no_task;
919 
920 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
921 		goto out;
922 
923 	ret = -ENOMEM;
924 	page = (char *)__get_free_page(GFP_TEMPORARY);
925 	if (!page)
926 		goto out;
927 
928 	ret = 0;
929 
930 	mm = get_task_mm(task);
931 	if (!mm)
932 		goto out_free;
933 
934 	while (count > 0) {
935 		int this_len, retval, max_len;
936 
937 		this_len = mm->env_end - (mm->env_start + src);
938 
939 		if (this_len <= 0)
940 			break;
941 
942 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
943 		this_len = (this_len > max_len) ? max_len : this_len;
944 
945 		retval = access_process_vm(task, (mm->env_start + src),
946 			page, this_len, 0);
947 
948 		if (retval <= 0) {
949 			ret = retval;
950 			break;
951 		}
952 
953 		if (copy_to_user(buf, page, retval)) {
954 			ret = -EFAULT;
955 			break;
956 		}
957 
958 		ret += retval;
959 		src += retval;
960 		buf += retval;
961 		count -= retval;
962 	}
963 	*ppos = src;
964 
965 	mmput(mm);
966 out_free:
967 	free_page((unsigned long) page);
968 out:
969 	put_task_struct(task);
970 out_no_task:
971 	return ret;
972 }
973 
974 static const struct file_operations proc_environ_operations = {
975 	.read		= environ_read,
976 	.llseek		= generic_file_llseek,
977 };
978 
979 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
980 				size_t count, loff_t *ppos)
981 {
982 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
983 	char buffer[PROC_NUMBUF];
984 	size_t len;
985 	int oom_adjust = OOM_DISABLE;
986 	unsigned long flags;
987 
988 	if (!task)
989 		return -ESRCH;
990 
991 	if (lock_task_sighand(task, &flags)) {
992 		oom_adjust = task->signal->oom_adj;
993 		unlock_task_sighand(task, &flags);
994 	}
995 
996 	put_task_struct(task);
997 
998 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
999 
1000 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1001 }
1002 
1003 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1004 				size_t count, loff_t *ppos)
1005 {
1006 	struct task_struct *task;
1007 	char buffer[PROC_NUMBUF];
1008 	long oom_adjust;
1009 	unsigned long flags;
1010 	int err;
1011 
1012 	memset(buffer, 0, sizeof(buffer));
1013 	if (count > sizeof(buffer) - 1)
1014 		count = sizeof(buffer) - 1;
1015 	if (copy_from_user(buffer, buf, count)) {
1016 		err = -EFAULT;
1017 		goto out;
1018 	}
1019 
1020 	err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1021 	if (err)
1022 		goto out;
1023 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1024 	     oom_adjust != OOM_DISABLE) {
1025 		err = -EINVAL;
1026 		goto out;
1027 	}
1028 
1029 	task = get_proc_task(file->f_path.dentry->d_inode);
1030 	if (!task) {
1031 		err = -ESRCH;
1032 		goto out;
1033 	}
1034 
1035 	task_lock(task);
1036 	if (!task->mm) {
1037 		err = -EINVAL;
1038 		goto err_task_lock;
1039 	}
1040 
1041 	if (!lock_task_sighand(task, &flags)) {
1042 		err = -ESRCH;
1043 		goto err_task_lock;
1044 	}
1045 
1046 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1047 		err = -EACCES;
1048 		goto err_sighand;
1049 	}
1050 
1051 	if (oom_adjust != task->signal->oom_adj) {
1052 		if (oom_adjust == OOM_DISABLE)
1053 			atomic_inc(&task->mm->oom_disable_count);
1054 		if (task->signal->oom_adj == OOM_DISABLE)
1055 			atomic_dec(&task->mm->oom_disable_count);
1056 	}
1057 
1058 	/*
1059 	 * Warn that /proc/pid/oom_adj is deprecated, see
1060 	 * Documentation/feature-removal-schedule.txt.
1061 	 */
1062 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, "
1063 			"please use /proc/%d/oom_score_adj instead.\n",
1064 			current->comm, task_pid_nr(current),
1065 			task_pid_nr(task), task_pid_nr(task));
1066 	task->signal->oom_adj = oom_adjust;
1067 	/*
1068 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1069 	 * value is always attainable.
1070 	 */
1071 	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1072 		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1073 	else
1074 		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1075 								-OOM_DISABLE;
1076 err_sighand:
1077 	unlock_task_sighand(task, &flags);
1078 err_task_lock:
1079 	task_unlock(task);
1080 	put_task_struct(task);
1081 out:
1082 	return err < 0 ? err : count;
1083 }
1084 
1085 static const struct file_operations proc_oom_adjust_operations = {
1086 	.read		= oom_adjust_read,
1087 	.write		= oom_adjust_write,
1088 	.llseek		= generic_file_llseek,
1089 };
1090 
1091 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1092 					size_t count, loff_t *ppos)
1093 {
1094 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1095 	char buffer[PROC_NUMBUF];
1096 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1097 	unsigned long flags;
1098 	size_t len;
1099 
1100 	if (!task)
1101 		return -ESRCH;
1102 	if (lock_task_sighand(task, &flags)) {
1103 		oom_score_adj = task->signal->oom_score_adj;
1104 		unlock_task_sighand(task, &flags);
1105 	}
1106 	put_task_struct(task);
1107 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1108 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1109 }
1110 
1111 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1112 					size_t count, loff_t *ppos)
1113 {
1114 	struct task_struct *task;
1115 	char buffer[PROC_NUMBUF];
1116 	unsigned long flags;
1117 	long oom_score_adj;
1118 	int err;
1119 
1120 	memset(buffer, 0, sizeof(buffer));
1121 	if (count > sizeof(buffer) - 1)
1122 		count = sizeof(buffer) - 1;
1123 	if (copy_from_user(buffer, buf, count)) {
1124 		err = -EFAULT;
1125 		goto out;
1126 	}
1127 
1128 	err = strict_strtol(strstrip(buffer), 0, &oom_score_adj);
1129 	if (err)
1130 		goto out;
1131 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1132 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1133 		err = -EINVAL;
1134 		goto out;
1135 	}
1136 
1137 	task = get_proc_task(file->f_path.dentry->d_inode);
1138 	if (!task) {
1139 		err = -ESRCH;
1140 		goto out;
1141 	}
1142 
1143 	task_lock(task);
1144 	if (!task->mm) {
1145 		err = -EINVAL;
1146 		goto err_task_lock;
1147 	}
1148 
1149 	if (!lock_task_sighand(task, &flags)) {
1150 		err = -ESRCH;
1151 		goto err_task_lock;
1152 	}
1153 
1154 	if (oom_score_adj < task->signal->oom_score_adj_min &&
1155 			!capable(CAP_SYS_RESOURCE)) {
1156 		err = -EACCES;
1157 		goto err_sighand;
1158 	}
1159 
1160 	if (oom_score_adj != task->signal->oom_score_adj) {
1161 		if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1162 			atomic_inc(&task->mm->oom_disable_count);
1163 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1164 			atomic_dec(&task->mm->oom_disable_count);
1165 	}
1166 	task->signal->oom_score_adj = oom_score_adj;
1167 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1168 		task->signal->oom_score_adj_min = oom_score_adj;
1169 	/*
1170 	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1171 	 * always attainable.
1172 	 */
1173 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1174 		task->signal->oom_adj = OOM_DISABLE;
1175 	else
1176 		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1177 							OOM_SCORE_ADJ_MAX;
1178 err_sighand:
1179 	unlock_task_sighand(task, &flags);
1180 err_task_lock:
1181 	task_unlock(task);
1182 	put_task_struct(task);
1183 out:
1184 	return err < 0 ? err : count;
1185 }
1186 
1187 static const struct file_operations proc_oom_score_adj_operations = {
1188 	.read		= oom_score_adj_read,
1189 	.write		= oom_score_adj_write,
1190 	.llseek		= default_llseek,
1191 };
1192 
1193 #ifdef CONFIG_AUDITSYSCALL
1194 #define TMPBUFLEN 21
1195 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1196 				  size_t count, loff_t *ppos)
1197 {
1198 	struct inode * inode = file->f_path.dentry->d_inode;
1199 	struct task_struct *task = get_proc_task(inode);
1200 	ssize_t length;
1201 	char tmpbuf[TMPBUFLEN];
1202 
1203 	if (!task)
1204 		return -ESRCH;
1205 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1206 				audit_get_loginuid(task));
1207 	put_task_struct(task);
1208 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1209 }
1210 
1211 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1212 				   size_t count, loff_t *ppos)
1213 {
1214 	struct inode * inode = file->f_path.dentry->d_inode;
1215 	char *page, *tmp;
1216 	ssize_t length;
1217 	uid_t loginuid;
1218 
1219 	if (!capable(CAP_AUDIT_CONTROL))
1220 		return -EPERM;
1221 
1222 	rcu_read_lock();
1223 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1224 		rcu_read_unlock();
1225 		return -EPERM;
1226 	}
1227 	rcu_read_unlock();
1228 
1229 	if (count >= PAGE_SIZE)
1230 		count = PAGE_SIZE - 1;
1231 
1232 	if (*ppos != 0) {
1233 		/* No partial writes. */
1234 		return -EINVAL;
1235 	}
1236 	page = (char*)__get_free_page(GFP_TEMPORARY);
1237 	if (!page)
1238 		return -ENOMEM;
1239 	length = -EFAULT;
1240 	if (copy_from_user(page, buf, count))
1241 		goto out_free_page;
1242 
1243 	page[count] = '\0';
1244 	loginuid = simple_strtoul(page, &tmp, 10);
1245 	if (tmp == page) {
1246 		length = -EINVAL;
1247 		goto out_free_page;
1248 
1249 	}
1250 	length = audit_set_loginuid(current, loginuid);
1251 	if (likely(length == 0))
1252 		length = count;
1253 
1254 out_free_page:
1255 	free_page((unsigned long) page);
1256 	return length;
1257 }
1258 
1259 static const struct file_operations proc_loginuid_operations = {
1260 	.read		= proc_loginuid_read,
1261 	.write		= proc_loginuid_write,
1262 	.llseek		= generic_file_llseek,
1263 };
1264 
1265 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1266 				  size_t count, loff_t *ppos)
1267 {
1268 	struct inode * inode = file->f_path.dentry->d_inode;
1269 	struct task_struct *task = get_proc_task(inode);
1270 	ssize_t length;
1271 	char tmpbuf[TMPBUFLEN];
1272 
1273 	if (!task)
1274 		return -ESRCH;
1275 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1276 				audit_get_sessionid(task));
1277 	put_task_struct(task);
1278 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1279 }
1280 
1281 static const struct file_operations proc_sessionid_operations = {
1282 	.read		= proc_sessionid_read,
1283 	.llseek		= generic_file_llseek,
1284 };
1285 #endif
1286 
1287 #ifdef CONFIG_FAULT_INJECTION
1288 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1289 				      size_t count, loff_t *ppos)
1290 {
1291 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1292 	char buffer[PROC_NUMBUF];
1293 	size_t len;
1294 	int make_it_fail;
1295 
1296 	if (!task)
1297 		return -ESRCH;
1298 	make_it_fail = task->make_it_fail;
1299 	put_task_struct(task);
1300 
1301 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1302 
1303 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1304 }
1305 
1306 static ssize_t proc_fault_inject_write(struct file * file,
1307 			const char __user * buf, size_t count, loff_t *ppos)
1308 {
1309 	struct task_struct *task;
1310 	char buffer[PROC_NUMBUF], *end;
1311 	int make_it_fail;
1312 
1313 	if (!capable(CAP_SYS_RESOURCE))
1314 		return -EPERM;
1315 	memset(buffer, 0, sizeof(buffer));
1316 	if (count > sizeof(buffer) - 1)
1317 		count = sizeof(buffer) - 1;
1318 	if (copy_from_user(buffer, buf, count))
1319 		return -EFAULT;
1320 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1321 	if (*end)
1322 		return -EINVAL;
1323 	task = get_proc_task(file->f_dentry->d_inode);
1324 	if (!task)
1325 		return -ESRCH;
1326 	task->make_it_fail = make_it_fail;
1327 	put_task_struct(task);
1328 
1329 	return count;
1330 }
1331 
1332 static const struct file_operations proc_fault_inject_operations = {
1333 	.read		= proc_fault_inject_read,
1334 	.write		= proc_fault_inject_write,
1335 	.llseek		= generic_file_llseek,
1336 };
1337 #endif
1338 
1339 
1340 #ifdef CONFIG_SCHED_DEBUG
1341 /*
1342  * Print out various scheduling related per-task fields:
1343  */
1344 static int sched_show(struct seq_file *m, void *v)
1345 {
1346 	struct inode *inode = m->private;
1347 	struct task_struct *p;
1348 
1349 	p = get_proc_task(inode);
1350 	if (!p)
1351 		return -ESRCH;
1352 	proc_sched_show_task(p, m);
1353 
1354 	put_task_struct(p);
1355 
1356 	return 0;
1357 }
1358 
1359 static ssize_t
1360 sched_write(struct file *file, const char __user *buf,
1361 	    size_t count, loff_t *offset)
1362 {
1363 	struct inode *inode = file->f_path.dentry->d_inode;
1364 	struct task_struct *p;
1365 
1366 	p = get_proc_task(inode);
1367 	if (!p)
1368 		return -ESRCH;
1369 	proc_sched_set_task(p);
1370 
1371 	put_task_struct(p);
1372 
1373 	return count;
1374 }
1375 
1376 static int sched_open(struct inode *inode, struct file *filp)
1377 {
1378 	return single_open(filp, sched_show, inode);
1379 }
1380 
1381 static const struct file_operations proc_pid_sched_operations = {
1382 	.open		= sched_open,
1383 	.read		= seq_read,
1384 	.write		= sched_write,
1385 	.llseek		= seq_lseek,
1386 	.release	= single_release,
1387 };
1388 
1389 #endif
1390 
1391 #ifdef CONFIG_SCHED_AUTOGROUP
1392 /*
1393  * Print out autogroup related information:
1394  */
1395 static int sched_autogroup_show(struct seq_file *m, void *v)
1396 {
1397 	struct inode *inode = m->private;
1398 	struct task_struct *p;
1399 
1400 	p = get_proc_task(inode);
1401 	if (!p)
1402 		return -ESRCH;
1403 	proc_sched_autogroup_show_task(p, m);
1404 
1405 	put_task_struct(p);
1406 
1407 	return 0;
1408 }
1409 
1410 static ssize_t
1411 sched_autogroup_write(struct file *file, const char __user *buf,
1412 	    size_t count, loff_t *offset)
1413 {
1414 	struct inode *inode = file->f_path.dentry->d_inode;
1415 	struct task_struct *p;
1416 	char buffer[PROC_NUMBUF];
1417 	long nice;
1418 	int err;
1419 
1420 	memset(buffer, 0, sizeof(buffer));
1421 	if (count > sizeof(buffer) - 1)
1422 		count = sizeof(buffer) - 1;
1423 	if (copy_from_user(buffer, buf, count))
1424 		return -EFAULT;
1425 
1426 	err = strict_strtol(strstrip(buffer), 0, &nice);
1427 	if (err)
1428 		return -EINVAL;
1429 
1430 	p = get_proc_task(inode);
1431 	if (!p)
1432 		return -ESRCH;
1433 
1434 	err = nice;
1435 	err = proc_sched_autogroup_set_nice(p, &err);
1436 	if (err)
1437 		count = err;
1438 
1439 	put_task_struct(p);
1440 
1441 	return count;
1442 }
1443 
1444 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1445 {
1446 	int ret;
1447 
1448 	ret = single_open(filp, sched_autogroup_show, NULL);
1449 	if (!ret) {
1450 		struct seq_file *m = filp->private_data;
1451 
1452 		m->private = inode;
1453 	}
1454 	return ret;
1455 }
1456 
1457 static const struct file_operations proc_pid_sched_autogroup_operations = {
1458 	.open		= sched_autogroup_open,
1459 	.read		= seq_read,
1460 	.write		= sched_autogroup_write,
1461 	.llseek		= seq_lseek,
1462 	.release	= single_release,
1463 };
1464 
1465 #endif /* CONFIG_SCHED_AUTOGROUP */
1466 
1467 static ssize_t comm_write(struct file *file, const char __user *buf,
1468 				size_t count, loff_t *offset)
1469 {
1470 	struct inode *inode = file->f_path.dentry->d_inode;
1471 	struct task_struct *p;
1472 	char buffer[TASK_COMM_LEN];
1473 
1474 	memset(buffer, 0, sizeof(buffer));
1475 	if (count > sizeof(buffer) - 1)
1476 		count = sizeof(buffer) - 1;
1477 	if (copy_from_user(buffer, buf, count))
1478 		return -EFAULT;
1479 
1480 	p = get_proc_task(inode);
1481 	if (!p)
1482 		return -ESRCH;
1483 
1484 	if (same_thread_group(current, p))
1485 		set_task_comm(p, buffer);
1486 	else
1487 		count = -EINVAL;
1488 
1489 	put_task_struct(p);
1490 
1491 	return count;
1492 }
1493 
1494 static int comm_show(struct seq_file *m, void *v)
1495 {
1496 	struct inode *inode = m->private;
1497 	struct task_struct *p;
1498 
1499 	p = get_proc_task(inode);
1500 	if (!p)
1501 		return -ESRCH;
1502 
1503 	task_lock(p);
1504 	seq_printf(m, "%s\n", p->comm);
1505 	task_unlock(p);
1506 
1507 	put_task_struct(p);
1508 
1509 	return 0;
1510 }
1511 
1512 static int comm_open(struct inode *inode, struct file *filp)
1513 {
1514 	return single_open(filp, comm_show, inode);
1515 }
1516 
1517 static const struct file_operations proc_pid_set_comm_operations = {
1518 	.open		= comm_open,
1519 	.read		= seq_read,
1520 	.write		= comm_write,
1521 	.llseek		= seq_lseek,
1522 	.release	= single_release,
1523 };
1524 
1525 /*
1526  * We added or removed a vma mapping the executable. The vmas are only mapped
1527  * during exec and are not mapped with the mmap system call.
1528  * Callers must hold down_write() on the mm's mmap_sem for these
1529  */
1530 void added_exe_file_vma(struct mm_struct *mm)
1531 {
1532 	mm->num_exe_file_vmas++;
1533 }
1534 
1535 void removed_exe_file_vma(struct mm_struct *mm)
1536 {
1537 	mm->num_exe_file_vmas--;
1538 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1539 		fput(mm->exe_file);
1540 		mm->exe_file = NULL;
1541 	}
1542 
1543 }
1544 
1545 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1546 {
1547 	if (new_exe_file)
1548 		get_file(new_exe_file);
1549 	if (mm->exe_file)
1550 		fput(mm->exe_file);
1551 	mm->exe_file = new_exe_file;
1552 	mm->num_exe_file_vmas = 0;
1553 }
1554 
1555 struct file *get_mm_exe_file(struct mm_struct *mm)
1556 {
1557 	struct file *exe_file;
1558 
1559 	/* We need mmap_sem to protect against races with removal of
1560 	 * VM_EXECUTABLE vmas */
1561 	down_read(&mm->mmap_sem);
1562 	exe_file = mm->exe_file;
1563 	if (exe_file)
1564 		get_file(exe_file);
1565 	up_read(&mm->mmap_sem);
1566 	return exe_file;
1567 }
1568 
1569 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1570 {
1571 	/* It's safe to write the exe_file pointer without exe_file_lock because
1572 	 * this is called during fork when the task is not yet in /proc */
1573 	newmm->exe_file = get_mm_exe_file(oldmm);
1574 }
1575 
1576 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1577 {
1578 	struct task_struct *task;
1579 	struct mm_struct *mm;
1580 	struct file *exe_file;
1581 
1582 	task = get_proc_task(inode);
1583 	if (!task)
1584 		return -ENOENT;
1585 	mm = get_task_mm(task);
1586 	put_task_struct(task);
1587 	if (!mm)
1588 		return -ENOENT;
1589 	exe_file = get_mm_exe_file(mm);
1590 	mmput(mm);
1591 	if (exe_file) {
1592 		*exe_path = exe_file->f_path;
1593 		path_get(&exe_file->f_path);
1594 		fput(exe_file);
1595 		return 0;
1596 	} else
1597 		return -ENOENT;
1598 }
1599 
1600 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1601 {
1602 	struct inode *inode = dentry->d_inode;
1603 	int error = -EACCES;
1604 
1605 	/* We don't need a base pointer in the /proc filesystem */
1606 	path_put(&nd->path);
1607 
1608 	/* Are we allowed to snoop on the tasks file descriptors? */
1609 	if (!proc_fd_access_allowed(inode))
1610 		goto out;
1611 
1612 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1613 out:
1614 	return ERR_PTR(error);
1615 }
1616 
1617 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1618 {
1619 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1620 	char *pathname;
1621 	int len;
1622 
1623 	if (!tmp)
1624 		return -ENOMEM;
1625 
1626 	pathname = d_path(path, tmp, PAGE_SIZE);
1627 	len = PTR_ERR(pathname);
1628 	if (IS_ERR(pathname))
1629 		goto out;
1630 	len = tmp + PAGE_SIZE - 1 - pathname;
1631 
1632 	if (len > buflen)
1633 		len = buflen;
1634 	if (copy_to_user(buffer, pathname, len))
1635 		len = -EFAULT;
1636  out:
1637 	free_page((unsigned long)tmp);
1638 	return len;
1639 }
1640 
1641 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1642 {
1643 	int error = -EACCES;
1644 	struct inode *inode = dentry->d_inode;
1645 	struct path path;
1646 
1647 	/* Are we allowed to snoop on the tasks file descriptors? */
1648 	if (!proc_fd_access_allowed(inode))
1649 		goto out;
1650 
1651 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1652 	if (error)
1653 		goto out;
1654 
1655 	error = do_proc_readlink(&path, buffer, buflen);
1656 	path_put(&path);
1657 out:
1658 	return error;
1659 }
1660 
1661 static const struct inode_operations proc_pid_link_inode_operations = {
1662 	.readlink	= proc_pid_readlink,
1663 	.follow_link	= proc_pid_follow_link,
1664 	.setattr	= proc_setattr,
1665 };
1666 
1667 
1668 /* building an inode */
1669 
1670 static int task_dumpable(struct task_struct *task)
1671 {
1672 	int dumpable = 0;
1673 	struct mm_struct *mm;
1674 
1675 	task_lock(task);
1676 	mm = task->mm;
1677 	if (mm)
1678 		dumpable = get_dumpable(mm);
1679 	task_unlock(task);
1680 	if(dumpable == 1)
1681 		return 1;
1682 	return 0;
1683 }
1684 
1685 
1686 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1687 {
1688 	struct inode * inode;
1689 	struct proc_inode *ei;
1690 	const struct cred *cred;
1691 
1692 	/* We need a new inode */
1693 
1694 	inode = new_inode(sb);
1695 	if (!inode)
1696 		goto out;
1697 
1698 	/* Common stuff */
1699 	ei = PROC_I(inode);
1700 	inode->i_ino = get_next_ino();
1701 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1702 	inode->i_op = &proc_def_inode_operations;
1703 
1704 	/*
1705 	 * grab the reference to task.
1706 	 */
1707 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1708 	if (!ei->pid)
1709 		goto out_unlock;
1710 
1711 	if (task_dumpable(task)) {
1712 		rcu_read_lock();
1713 		cred = __task_cred(task);
1714 		inode->i_uid = cred->euid;
1715 		inode->i_gid = cred->egid;
1716 		rcu_read_unlock();
1717 	}
1718 	security_task_to_inode(task, inode);
1719 
1720 out:
1721 	return inode;
1722 
1723 out_unlock:
1724 	iput(inode);
1725 	return NULL;
1726 }
1727 
1728 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1729 {
1730 	struct inode *inode = dentry->d_inode;
1731 	struct task_struct *task;
1732 	const struct cred *cred;
1733 
1734 	generic_fillattr(inode, stat);
1735 
1736 	rcu_read_lock();
1737 	stat->uid = 0;
1738 	stat->gid = 0;
1739 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1740 	if (task) {
1741 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1742 		    task_dumpable(task)) {
1743 			cred = __task_cred(task);
1744 			stat->uid = cred->euid;
1745 			stat->gid = cred->egid;
1746 		}
1747 	}
1748 	rcu_read_unlock();
1749 	return 0;
1750 }
1751 
1752 /* dentry stuff */
1753 
1754 /*
1755  *	Exceptional case: normally we are not allowed to unhash a busy
1756  * directory. In this case, however, we can do it - no aliasing problems
1757  * due to the way we treat inodes.
1758  *
1759  * Rewrite the inode's ownerships here because the owning task may have
1760  * performed a setuid(), etc.
1761  *
1762  * Before the /proc/pid/status file was created the only way to read
1763  * the effective uid of a /process was to stat /proc/pid.  Reading
1764  * /proc/pid/status is slow enough that procps and other packages
1765  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1766  * made this apply to all per process world readable and executable
1767  * directories.
1768  */
1769 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1770 {
1771 	struct inode *inode;
1772 	struct task_struct *task;
1773 	const struct cred *cred;
1774 
1775 	if (nd && nd->flags & LOOKUP_RCU)
1776 		return -ECHILD;
1777 
1778 	inode = dentry->d_inode;
1779 	task = get_proc_task(inode);
1780 
1781 	if (task) {
1782 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1783 		    task_dumpable(task)) {
1784 			rcu_read_lock();
1785 			cred = __task_cred(task);
1786 			inode->i_uid = cred->euid;
1787 			inode->i_gid = cred->egid;
1788 			rcu_read_unlock();
1789 		} else {
1790 			inode->i_uid = 0;
1791 			inode->i_gid = 0;
1792 		}
1793 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1794 		security_task_to_inode(task, inode);
1795 		put_task_struct(task);
1796 		return 1;
1797 	}
1798 	d_drop(dentry);
1799 	return 0;
1800 }
1801 
1802 static int pid_delete_dentry(const struct dentry * dentry)
1803 {
1804 	/* Is the task we represent dead?
1805 	 * If so, then don't put the dentry on the lru list,
1806 	 * kill it immediately.
1807 	 */
1808 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1809 }
1810 
1811 static const struct dentry_operations pid_dentry_operations =
1812 {
1813 	.d_revalidate	= pid_revalidate,
1814 	.d_delete	= pid_delete_dentry,
1815 };
1816 
1817 /* Lookups */
1818 
1819 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1820 				struct task_struct *, const void *);
1821 
1822 /*
1823  * Fill a directory entry.
1824  *
1825  * If possible create the dcache entry and derive our inode number and
1826  * file type from dcache entry.
1827  *
1828  * Since all of the proc inode numbers are dynamically generated, the inode
1829  * numbers do not exist until the inode is cache.  This means creating the
1830  * the dcache entry in readdir is necessary to keep the inode numbers
1831  * reported by readdir in sync with the inode numbers reported
1832  * by stat.
1833  */
1834 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1835 	char *name, int len,
1836 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1837 {
1838 	struct dentry *child, *dir = filp->f_path.dentry;
1839 	struct inode *inode;
1840 	struct qstr qname;
1841 	ino_t ino = 0;
1842 	unsigned type = DT_UNKNOWN;
1843 
1844 	qname.name = name;
1845 	qname.len  = len;
1846 	qname.hash = full_name_hash(name, len);
1847 
1848 	child = d_lookup(dir, &qname);
1849 	if (!child) {
1850 		struct dentry *new;
1851 		new = d_alloc(dir, &qname);
1852 		if (new) {
1853 			child = instantiate(dir->d_inode, new, task, ptr);
1854 			if (child)
1855 				dput(new);
1856 			else
1857 				child = new;
1858 		}
1859 	}
1860 	if (!child || IS_ERR(child) || !child->d_inode)
1861 		goto end_instantiate;
1862 	inode = child->d_inode;
1863 	if (inode) {
1864 		ino = inode->i_ino;
1865 		type = inode->i_mode >> 12;
1866 	}
1867 	dput(child);
1868 end_instantiate:
1869 	if (!ino)
1870 		ino = find_inode_number(dir, &qname);
1871 	if (!ino)
1872 		ino = 1;
1873 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1874 }
1875 
1876 static unsigned name_to_int(struct dentry *dentry)
1877 {
1878 	const char *name = dentry->d_name.name;
1879 	int len = dentry->d_name.len;
1880 	unsigned n = 0;
1881 
1882 	if (len > 1 && *name == '0')
1883 		goto out;
1884 	while (len-- > 0) {
1885 		unsigned c = *name++ - '0';
1886 		if (c > 9)
1887 			goto out;
1888 		if (n >= (~0U-9)/10)
1889 			goto out;
1890 		n *= 10;
1891 		n += c;
1892 	}
1893 	return n;
1894 out:
1895 	return ~0U;
1896 }
1897 
1898 #define PROC_FDINFO_MAX 64
1899 
1900 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1901 {
1902 	struct task_struct *task = get_proc_task(inode);
1903 	struct files_struct *files = NULL;
1904 	struct file *file;
1905 	int fd = proc_fd(inode);
1906 
1907 	if (task) {
1908 		files = get_files_struct(task);
1909 		put_task_struct(task);
1910 	}
1911 	if (files) {
1912 		/*
1913 		 * We are not taking a ref to the file structure, so we must
1914 		 * hold ->file_lock.
1915 		 */
1916 		spin_lock(&files->file_lock);
1917 		file = fcheck_files(files, fd);
1918 		if (file) {
1919 			if (path) {
1920 				*path = file->f_path;
1921 				path_get(&file->f_path);
1922 			}
1923 			if (info)
1924 				snprintf(info, PROC_FDINFO_MAX,
1925 					 "pos:\t%lli\n"
1926 					 "flags:\t0%o\n",
1927 					 (long long) file->f_pos,
1928 					 file->f_flags);
1929 			spin_unlock(&files->file_lock);
1930 			put_files_struct(files);
1931 			return 0;
1932 		}
1933 		spin_unlock(&files->file_lock);
1934 		put_files_struct(files);
1935 	}
1936 	return -ENOENT;
1937 }
1938 
1939 static int proc_fd_link(struct inode *inode, struct path *path)
1940 {
1941 	return proc_fd_info(inode, path, NULL);
1942 }
1943 
1944 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1945 {
1946 	struct inode *inode;
1947 	struct task_struct *task;
1948 	int fd;
1949 	struct files_struct *files;
1950 	const struct cred *cred;
1951 
1952 	if (nd && nd->flags & LOOKUP_RCU)
1953 		return -ECHILD;
1954 
1955 	inode = dentry->d_inode;
1956 	task = get_proc_task(inode);
1957 	fd = proc_fd(inode);
1958 
1959 	if (task) {
1960 		files = get_files_struct(task);
1961 		if (files) {
1962 			rcu_read_lock();
1963 			if (fcheck_files(files, fd)) {
1964 				rcu_read_unlock();
1965 				put_files_struct(files);
1966 				if (task_dumpable(task)) {
1967 					rcu_read_lock();
1968 					cred = __task_cred(task);
1969 					inode->i_uid = cred->euid;
1970 					inode->i_gid = cred->egid;
1971 					rcu_read_unlock();
1972 				} else {
1973 					inode->i_uid = 0;
1974 					inode->i_gid = 0;
1975 				}
1976 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1977 				security_task_to_inode(task, inode);
1978 				put_task_struct(task);
1979 				return 1;
1980 			}
1981 			rcu_read_unlock();
1982 			put_files_struct(files);
1983 		}
1984 		put_task_struct(task);
1985 	}
1986 	d_drop(dentry);
1987 	return 0;
1988 }
1989 
1990 static const struct dentry_operations tid_fd_dentry_operations =
1991 {
1992 	.d_revalidate	= tid_fd_revalidate,
1993 	.d_delete	= pid_delete_dentry,
1994 };
1995 
1996 static struct dentry *proc_fd_instantiate(struct inode *dir,
1997 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1998 {
1999 	unsigned fd = *(const unsigned *)ptr;
2000 	struct file *file;
2001 	struct files_struct *files;
2002  	struct inode *inode;
2003  	struct proc_inode *ei;
2004 	struct dentry *error = ERR_PTR(-ENOENT);
2005 
2006 	inode = proc_pid_make_inode(dir->i_sb, task);
2007 	if (!inode)
2008 		goto out;
2009 	ei = PROC_I(inode);
2010 	ei->fd = fd;
2011 	files = get_files_struct(task);
2012 	if (!files)
2013 		goto out_iput;
2014 	inode->i_mode = S_IFLNK;
2015 
2016 	/*
2017 	 * We are not taking a ref to the file structure, so we must
2018 	 * hold ->file_lock.
2019 	 */
2020 	spin_lock(&files->file_lock);
2021 	file = fcheck_files(files, fd);
2022 	if (!file)
2023 		goto out_unlock;
2024 	if (file->f_mode & FMODE_READ)
2025 		inode->i_mode |= S_IRUSR | S_IXUSR;
2026 	if (file->f_mode & FMODE_WRITE)
2027 		inode->i_mode |= S_IWUSR | S_IXUSR;
2028 	spin_unlock(&files->file_lock);
2029 	put_files_struct(files);
2030 
2031 	inode->i_op = &proc_pid_link_inode_operations;
2032 	inode->i_size = 64;
2033 	ei->op.proc_get_link = proc_fd_link;
2034 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2035 	d_add(dentry, inode);
2036 	/* Close the race of the process dying before we return the dentry */
2037 	if (tid_fd_revalidate(dentry, NULL))
2038 		error = NULL;
2039 
2040  out:
2041 	return error;
2042 out_unlock:
2043 	spin_unlock(&files->file_lock);
2044 	put_files_struct(files);
2045 out_iput:
2046 	iput(inode);
2047 	goto out;
2048 }
2049 
2050 static struct dentry *proc_lookupfd_common(struct inode *dir,
2051 					   struct dentry *dentry,
2052 					   instantiate_t instantiate)
2053 {
2054 	struct task_struct *task = get_proc_task(dir);
2055 	unsigned fd = name_to_int(dentry);
2056 	struct dentry *result = ERR_PTR(-ENOENT);
2057 
2058 	if (!task)
2059 		goto out_no_task;
2060 	if (fd == ~0U)
2061 		goto out;
2062 
2063 	result = instantiate(dir, dentry, task, &fd);
2064 out:
2065 	put_task_struct(task);
2066 out_no_task:
2067 	return result;
2068 }
2069 
2070 static int proc_readfd_common(struct file * filp, void * dirent,
2071 			      filldir_t filldir, instantiate_t instantiate)
2072 {
2073 	struct dentry *dentry = filp->f_path.dentry;
2074 	struct inode *inode = dentry->d_inode;
2075 	struct task_struct *p = get_proc_task(inode);
2076 	unsigned int fd, ino;
2077 	int retval;
2078 	struct files_struct * files;
2079 
2080 	retval = -ENOENT;
2081 	if (!p)
2082 		goto out_no_task;
2083 	retval = 0;
2084 
2085 	fd = filp->f_pos;
2086 	switch (fd) {
2087 		case 0:
2088 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2089 				goto out;
2090 			filp->f_pos++;
2091 		case 1:
2092 			ino = parent_ino(dentry);
2093 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2094 				goto out;
2095 			filp->f_pos++;
2096 		default:
2097 			files = get_files_struct(p);
2098 			if (!files)
2099 				goto out;
2100 			rcu_read_lock();
2101 			for (fd = filp->f_pos-2;
2102 			     fd < files_fdtable(files)->max_fds;
2103 			     fd++, filp->f_pos++) {
2104 				char name[PROC_NUMBUF];
2105 				int len;
2106 
2107 				if (!fcheck_files(files, fd))
2108 					continue;
2109 				rcu_read_unlock();
2110 
2111 				len = snprintf(name, sizeof(name), "%d", fd);
2112 				if (proc_fill_cache(filp, dirent, filldir,
2113 						    name, len, instantiate,
2114 						    p, &fd) < 0) {
2115 					rcu_read_lock();
2116 					break;
2117 				}
2118 				rcu_read_lock();
2119 			}
2120 			rcu_read_unlock();
2121 			put_files_struct(files);
2122 	}
2123 out:
2124 	put_task_struct(p);
2125 out_no_task:
2126 	return retval;
2127 }
2128 
2129 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2130 				    struct nameidata *nd)
2131 {
2132 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2133 }
2134 
2135 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2136 {
2137 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2138 }
2139 
2140 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2141 				      size_t len, loff_t *ppos)
2142 {
2143 	char tmp[PROC_FDINFO_MAX];
2144 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2145 	if (!err)
2146 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2147 	return err;
2148 }
2149 
2150 static const struct file_operations proc_fdinfo_file_operations = {
2151 	.open           = nonseekable_open,
2152 	.read		= proc_fdinfo_read,
2153 	.llseek		= no_llseek,
2154 };
2155 
2156 static const struct file_operations proc_fd_operations = {
2157 	.read		= generic_read_dir,
2158 	.readdir	= proc_readfd,
2159 	.llseek		= default_llseek,
2160 };
2161 
2162 /*
2163  * /proc/pid/fd needs a special permission handler so that a process can still
2164  * access /proc/self/fd after it has executed a setuid().
2165  */
2166 static int proc_fd_permission(struct inode *inode, int mask, unsigned int flags)
2167 {
2168 	int rv;
2169 
2170 	if (flags & IPERM_FLAG_RCU)
2171 		return -ECHILD;
2172 	rv = generic_permission(inode, mask, flags, NULL);
2173 	if (rv == 0)
2174 		return 0;
2175 	if (task_pid(current) == proc_pid(inode))
2176 		rv = 0;
2177 	return rv;
2178 }
2179 
2180 /*
2181  * proc directories can do almost nothing..
2182  */
2183 static const struct inode_operations proc_fd_inode_operations = {
2184 	.lookup		= proc_lookupfd,
2185 	.permission	= proc_fd_permission,
2186 	.setattr	= proc_setattr,
2187 };
2188 
2189 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2190 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2191 {
2192 	unsigned fd = *(unsigned *)ptr;
2193  	struct inode *inode;
2194  	struct proc_inode *ei;
2195 	struct dentry *error = ERR_PTR(-ENOENT);
2196 
2197 	inode = proc_pid_make_inode(dir->i_sb, task);
2198 	if (!inode)
2199 		goto out;
2200 	ei = PROC_I(inode);
2201 	ei->fd = fd;
2202 	inode->i_mode = S_IFREG | S_IRUSR;
2203 	inode->i_fop = &proc_fdinfo_file_operations;
2204 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2205 	d_add(dentry, inode);
2206 	/* Close the race of the process dying before we return the dentry */
2207 	if (tid_fd_revalidate(dentry, NULL))
2208 		error = NULL;
2209 
2210  out:
2211 	return error;
2212 }
2213 
2214 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2215 					struct dentry *dentry,
2216 					struct nameidata *nd)
2217 {
2218 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2219 }
2220 
2221 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2222 {
2223 	return proc_readfd_common(filp, dirent, filldir,
2224 				  proc_fdinfo_instantiate);
2225 }
2226 
2227 static const struct file_operations proc_fdinfo_operations = {
2228 	.read		= generic_read_dir,
2229 	.readdir	= proc_readfdinfo,
2230 	.llseek		= default_llseek,
2231 };
2232 
2233 /*
2234  * proc directories can do almost nothing..
2235  */
2236 static const struct inode_operations proc_fdinfo_inode_operations = {
2237 	.lookup		= proc_lookupfdinfo,
2238 	.setattr	= proc_setattr,
2239 };
2240 
2241 
2242 static struct dentry *proc_pident_instantiate(struct inode *dir,
2243 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2244 {
2245 	const struct pid_entry *p = ptr;
2246 	struct inode *inode;
2247 	struct proc_inode *ei;
2248 	struct dentry *error = ERR_PTR(-ENOENT);
2249 
2250 	inode = proc_pid_make_inode(dir->i_sb, task);
2251 	if (!inode)
2252 		goto out;
2253 
2254 	ei = PROC_I(inode);
2255 	inode->i_mode = p->mode;
2256 	if (S_ISDIR(inode->i_mode))
2257 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2258 	if (p->iop)
2259 		inode->i_op = p->iop;
2260 	if (p->fop)
2261 		inode->i_fop = p->fop;
2262 	ei->op = p->op;
2263 	d_set_d_op(dentry, &pid_dentry_operations);
2264 	d_add(dentry, inode);
2265 	/* Close the race of the process dying before we return the dentry */
2266 	if (pid_revalidate(dentry, NULL))
2267 		error = NULL;
2268 out:
2269 	return error;
2270 }
2271 
2272 static struct dentry *proc_pident_lookup(struct inode *dir,
2273 					 struct dentry *dentry,
2274 					 const struct pid_entry *ents,
2275 					 unsigned int nents)
2276 {
2277 	struct dentry *error;
2278 	struct task_struct *task = get_proc_task(dir);
2279 	const struct pid_entry *p, *last;
2280 
2281 	error = ERR_PTR(-ENOENT);
2282 
2283 	if (!task)
2284 		goto out_no_task;
2285 
2286 	/*
2287 	 * Yes, it does not scale. And it should not. Don't add
2288 	 * new entries into /proc/<tgid>/ without very good reasons.
2289 	 */
2290 	last = &ents[nents - 1];
2291 	for (p = ents; p <= last; p++) {
2292 		if (p->len != dentry->d_name.len)
2293 			continue;
2294 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2295 			break;
2296 	}
2297 	if (p > last)
2298 		goto out;
2299 
2300 	error = proc_pident_instantiate(dir, dentry, task, p);
2301 out:
2302 	put_task_struct(task);
2303 out_no_task:
2304 	return error;
2305 }
2306 
2307 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2308 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2309 {
2310 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2311 				proc_pident_instantiate, task, p);
2312 }
2313 
2314 static int proc_pident_readdir(struct file *filp,
2315 		void *dirent, filldir_t filldir,
2316 		const struct pid_entry *ents, unsigned int nents)
2317 {
2318 	int i;
2319 	struct dentry *dentry = filp->f_path.dentry;
2320 	struct inode *inode = dentry->d_inode;
2321 	struct task_struct *task = get_proc_task(inode);
2322 	const struct pid_entry *p, *last;
2323 	ino_t ino;
2324 	int ret;
2325 
2326 	ret = -ENOENT;
2327 	if (!task)
2328 		goto out_no_task;
2329 
2330 	ret = 0;
2331 	i = filp->f_pos;
2332 	switch (i) {
2333 	case 0:
2334 		ino = inode->i_ino;
2335 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2336 			goto out;
2337 		i++;
2338 		filp->f_pos++;
2339 		/* fall through */
2340 	case 1:
2341 		ino = parent_ino(dentry);
2342 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2343 			goto out;
2344 		i++;
2345 		filp->f_pos++;
2346 		/* fall through */
2347 	default:
2348 		i -= 2;
2349 		if (i >= nents) {
2350 			ret = 1;
2351 			goto out;
2352 		}
2353 		p = ents + i;
2354 		last = &ents[nents - 1];
2355 		while (p <= last) {
2356 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2357 				goto out;
2358 			filp->f_pos++;
2359 			p++;
2360 		}
2361 	}
2362 
2363 	ret = 1;
2364 out:
2365 	put_task_struct(task);
2366 out_no_task:
2367 	return ret;
2368 }
2369 
2370 #ifdef CONFIG_SECURITY
2371 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2372 				  size_t count, loff_t *ppos)
2373 {
2374 	struct inode * inode = file->f_path.dentry->d_inode;
2375 	char *p = NULL;
2376 	ssize_t length;
2377 	struct task_struct *task = get_proc_task(inode);
2378 
2379 	if (!task)
2380 		return -ESRCH;
2381 
2382 	length = security_getprocattr(task,
2383 				      (char*)file->f_path.dentry->d_name.name,
2384 				      &p);
2385 	put_task_struct(task);
2386 	if (length > 0)
2387 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2388 	kfree(p);
2389 	return length;
2390 }
2391 
2392 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2393 				   size_t count, loff_t *ppos)
2394 {
2395 	struct inode * inode = file->f_path.dentry->d_inode;
2396 	char *page;
2397 	ssize_t length;
2398 	struct task_struct *task = get_proc_task(inode);
2399 
2400 	length = -ESRCH;
2401 	if (!task)
2402 		goto out_no_task;
2403 	if (count > PAGE_SIZE)
2404 		count = PAGE_SIZE;
2405 
2406 	/* No partial writes. */
2407 	length = -EINVAL;
2408 	if (*ppos != 0)
2409 		goto out;
2410 
2411 	length = -ENOMEM;
2412 	page = (char*)__get_free_page(GFP_TEMPORARY);
2413 	if (!page)
2414 		goto out;
2415 
2416 	length = -EFAULT;
2417 	if (copy_from_user(page, buf, count))
2418 		goto out_free;
2419 
2420 	/* Guard against adverse ptrace interaction */
2421 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2422 	if (length < 0)
2423 		goto out_free;
2424 
2425 	length = security_setprocattr(task,
2426 				      (char*)file->f_path.dentry->d_name.name,
2427 				      (void*)page, count);
2428 	mutex_unlock(&task->signal->cred_guard_mutex);
2429 out_free:
2430 	free_page((unsigned long) page);
2431 out:
2432 	put_task_struct(task);
2433 out_no_task:
2434 	return length;
2435 }
2436 
2437 static const struct file_operations proc_pid_attr_operations = {
2438 	.read		= proc_pid_attr_read,
2439 	.write		= proc_pid_attr_write,
2440 	.llseek		= generic_file_llseek,
2441 };
2442 
2443 static const struct pid_entry attr_dir_stuff[] = {
2444 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2445 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2446 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2447 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2448 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2449 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2450 };
2451 
2452 static int proc_attr_dir_readdir(struct file * filp,
2453 			     void * dirent, filldir_t filldir)
2454 {
2455 	return proc_pident_readdir(filp,dirent,filldir,
2456 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2457 }
2458 
2459 static const struct file_operations proc_attr_dir_operations = {
2460 	.read		= generic_read_dir,
2461 	.readdir	= proc_attr_dir_readdir,
2462 	.llseek		= default_llseek,
2463 };
2464 
2465 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2466 				struct dentry *dentry, struct nameidata *nd)
2467 {
2468 	return proc_pident_lookup(dir, dentry,
2469 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2470 }
2471 
2472 static const struct inode_operations proc_attr_dir_inode_operations = {
2473 	.lookup		= proc_attr_dir_lookup,
2474 	.getattr	= pid_getattr,
2475 	.setattr	= proc_setattr,
2476 };
2477 
2478 #endif
2479 
2480 #ifdef CONFIG_ELF_CORE
2481 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2482 					 size_t count, loff_t *ppos)
2483 {
2484 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2485 	struct mm_struct *mm;
2486 	char buffer[PROC_NUMBUF];
2487 	size_t len;
2488 	int ret;
2489 
2490 	if (!task)
2491 		return -ESRCH;
2492 
2493 	ret = 0;
2494 	mm = get_task_mm(task);
2495 	if (mm) {
2496 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2497 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2498 				MMF_DUMP_FILTER_SHIFT));
2499 		mmput(mm);
2500 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2501 	}
2502 
2503 	put_task_struct(task);
2504 
2505 	return ret;
2506 }
2507 
2508 static ssize_t proc_coredump_filter_write(struct file *file,
2509 					  const char __user *buf,
2510 					  size_t count,
2511 					  loff_t *ppos)
2512 {
2513 	struct task_struct *task;
2514 	struct mm_struct *mm;
2515 	char buffer[PROC_NUMBUF], *end;
2516 	unsigned int val;
2517 	int ret;
2518 	int i;
2519 	unsigned long mask;
2520 
2521 	ret = -EFAULT;
2522 	memset(buffer, 0, sizeof(buffer));
2523 	if (count > sizeof(buffer) - 1)
2524 		count = sizeof(buffer) - 1;
2525 	if (copy_from_user(buffer, buf, count))
2526 		goto out_no_task;
2527 
2528 	ret = -EINVAL;
2529 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2530 	if (*end == '\n')
2531 		end++;
2532 	if (end - buffer == 0)
2533 		goto out_no_task;
2534 
2535 	ret = -ESRCH;
2536 	task = get_proc_task(file->f_dentry->d_inode);
2537 	if (!task)
2538 		goto out_no_task;
2539 
2540 	ret = end - buffer;
2541 	mm = get_task_mm(task);
2542 	if (!mm)
2543 		goto out_no_mm;
2544 
2545 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2546 		if (val & mask)
2547 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2548 		else
2549 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2550 	}
2551 
2552 	mmput(mm);
2553  out_no_mm:
2554 	put_task_struct(task);
2555  out_no_task:
2556 	return ret;
2557 }
2558 
2559 static const struct file_operations proc_coredump_filter_operations = {
2560 	.read		= proc_coredump_filter_read,
2561 	.write		= proc_coredump_filter_write,
2562 	.llseek		= generic_file_llseek,
2563 };
2564 #endif
2565 
2566 /*
2567  * /proc/self:
2568  */
2569 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2570 			      int buflen)
2571 {
2572 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2573 	pid_t tgid = task_tgid_nr_ns(current, ns);
2574 	char tmp[PROC_NUMBUF];
2575 	if (!tgid)
2576 		return -ENOENT;
2577 	sprintf(tmp, "%d", tgid);
2578 	return vfs_readlink(dentry,buffer,buflen,tmp);
2579 }
2580 
2581 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2582 {
2583 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2584 	pid_t tgid = task_tgid_nr_ns(current, ns);
2585 	char *name = ERR_PTR(-ENOENT);
2586 	if (tgid) {
2587 		name = __getname();
2588 		if (!name)
2589 			name = ERR_PTR(-ENOMEM);
2590 		else
2591 			sprintf(name, "%d", tgid);
2592 	}
2593 	nd_set_link(nd, name);
2594 	return NULL;
2595 }
2596 
2597 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2598 				void *cookie)
2599 {
2600 	char *s = nd_get_link(nd);
2601 	if (!IS_ERR(s))
2602 		__putname(s);
2603 }
2604 
2605 static const struct inode_operations proc_self_inode_operations = {
2606 	.readlink	= proc_self_readlink,
2607 	.follow_link	= proc_self_follow_link,
2608 	.put_link	= proc_self_put_link,
2609 };
2610 
2611 /*
2612  * proc base
2613  *
2614  * These are the directory entries in the root directory of /proc
2615  * that properly belong to the /proc filesystem, as they describe
2616  * describe something that is process related.
2617  */
2618 static const struct pid_entry proc_base_stuff[] = {
2619 	NOD("self", S_IFLNK|S_IRWXUGO,
2620 		&proc_self_inode_operations, NULL, {}),
2621 };
2622 
2623 /*
2624  *	Exceptional case: normally we are not allowed to unhash a busy
2625  * directory. In this case, however, we can do it - no aliasing problems
2626  * due to the way we treat inodes.
2627  */
2628 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2629 {
2630 	struct inode *inode;
2631 	struct task_struct *task;
2632 
2633 	if (nd->flags & LOOKUP_RCU)
2634 		return -ECHILD;
2635 
2636 	inode = dentry->d_inode;
2637 	task = get_proc_task(inode);
2638 	if (task) {
2639 		put_task_struct(task);
2640 		return 1;
2641 	}
2642 	d_drop(dentry);
2643 	return 0;
2644 }
2645 
2646 static const struct dentry_operations proc_base_dentry_operations =
2647 {
2648 	.d_revalidate	= proc_base_revalidate,
2649 	.d_delete	= pid_delete_dentry,
2650 };
2651 
2652 static struct dentry *proc_base_instantiate(struct inode *dir,
2653 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2654 {
2655 	const struct pid_entry *p = ptr;
2656 	struct inode *inode;
2657 	struct proc_inode *ei;
2658 	struct dentry *error;
2659 
2660 	/* Allocate the inode */
2661 	error = ERR_PTR(-ENOMEM);
2662 	inode = new_inode(dir->i_sb);
2663 	if (!inode)
2664 		goto out;
2665 
2666 	/* Initialize the inode */
2667 	ei = PROC_I(inode);
2668 	inode->i_ino = get_next_ino();
2669 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2670 
2671 	/*
2672 	 * grab the reference to the task.
2673 	 */
2674 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2675 	if (!ei->pid)
2676 		goto out_iput;
2677 
2678 	inode->i_mode = p->mode;
2679 	if (S_ISDIR(inode->i_mode))
2680 		inode->i_nlink = 2;
2681 	if (S_ISLNK(inode->i_mode))
2682 		inode->i_size = 64;
2683 	if (p->iop)
2684 		inode->i_op = p->iop;
2685 	if (p->fop)
2686 		inode->i_fop = p->fop;
2687 	ei->op = p->op;
2688 	d_set_d_op(dentry, &proc_base_dentry_operations);
2689 	d_add(dentry, inode);
2690 	error = NULL;
2691 out:
2692 	return error;
2693 out_iput:
2694 	iput(inode);
2695 	goto out;
2696 }
2697 
2698 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2699 {
2700 	struct dentry *error;
2701 	struct task_struct *task = get_proc_task(dir);
2702 	const struct pid_entry *p, *last;
2703 
2704 	error = ERR_PTR(-ENOENT);
2705 
2706 	if (!task)
2707 		goto out_no_task;
2708 
2709 	/* Lookup the directory entry */
2710 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2711 	for (p = proc_base_stuff; p <= last; p++) {
2712 		if (p->len != dentry->d_name.len)
2713 			continue;
2714 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2715 			break;
2716 	}
2717 	if (p > last)
2718 		goto out;
2719 
2720 	error = proc_base_instantiate(dir, dentry, task, p);
2721 
2722 out:
2723 	put_task_struct(task);
2724 out_no_task:
2725 	return error;
2726 }
2727 
2728 static int proc_base_fill_cache(struct file *filp, void *dirent,
2729 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2730 {
2731 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2732 				proc_base_instantiate, task, p);
2733 }
2734 
2735 #ifdef CONFIG_TASK_IO_ACCOUNTING
2736 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2737 {
2738 	struct task_io_accounting acct = task->ioac;
2739 	unsigned long flags;
2740 
2741 	if (whole && lock_task_sighand(task, &flags)) {
2742 		struct task_struct *t = task;
2743 
2744 		task_io_accounting_add(&acct, &task->signal->ioac);
2745 		while_each_thread(task, t)
2746 			task_io_accounting_add(&acct, &t->ioac);
2747 
2748 		unlock_task_sighand(task, &flags);
2749 	}
2750 	return sprintf(buffer,
2751 			"rchar: %llu\n"
2752 			"wchar: %llu\n"
2753 			"syscr: %llu\n"
2754 			"syscw: %llu\n"
2755 			"read_bytes: %llu\n"
2756 			"write_bytes: %llu\n"
2757 			"cancelled_write_bytes: %llu\n",
2758 			(unsigned long long)acct.rchar,
2759 			(unsigned long long)acct.wchar,
2760 			(unsigned long long)acct.syscr,
2761 			(unsigned long long)acct.syscw,
2762 			(unsigned long long)acct.read_bytes,
2763 			(unsigned long long)acct.write_bytes,
2764 			(unsigned long long)acct.cancelled_write_bytes);
2765 }
2766 
2767 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2768 {
2769 	return do_io_accounting(task, buffer, 0);
2770 }
2771 
2772 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2773 {
2774 	return do_io_accounting(task, buffer, 1);
2775 }
2776 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2777 
2778 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2779 				struct pid *pid, struct task_struct *task)
2780 {
2781 	seq_printf(m, "%08x\n", task->personality);
2782 	return 0;
2783 }
2784 
2785 /*
2786  * Thread groups
2787  */
2788 static const struct file_operations proc_task_operations;
2789 static const struct inode_operations proc_task_inode_operations;
2790 
2791 static const struct pid_entry tgid_base_stuff[] = {
2792 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2793 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2794 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2795 #ifdef CONFIG_NET
2796 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2797 #endif
2798 	REG("environ",    S_IRUSR, proc_environ_operations),
2799 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2800 	ONE("status",     S_IRUGO, proc_pid_status),
2801 	ONE("personality", S_IRUSR, proc_pid_personality),
2802 	INF("limits",	  S_IRUGO, proc_pid_limits),
2803 #ifdef CONFIG_SCHED_DEBUG
2804 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2805 #endif
2806 #ifdef CONFIG_SCHED_AUTOGROUP
2807 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2808 #endif
2809 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2810 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2811 	INF("syscall",    S_IRUSR, proc_pid_syscall),
2812 #endif
2813 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2814 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2815 	ONE("statm",      S_IRUGO, proc_pid_statm),
2816 	REG("maps",       S_IRUGO, proc_maps_operations),
2817 #ifdef CONFIG_NUMA
2818 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2819 #endif
2820 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2821 	LNK("cwd",        proc_cwd_link),
2822 	LNK("root",       proc_root_link),
2823 	LNK("exe",        proc_exe_link),
2824 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2825 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2826 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2827 #ifdef CONFIG_PROC_PAGE_MONITOR
2828 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2829 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2830 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2831 #endif
2832 #ifdef CONFIG_SECURITY
2833 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2834 #endif
2835 #ifdef CONFIG_KALLSYMS
2836 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2837 #endif
2838 #ifdef CONFIG_STACKTRACE
2839 	ONE("stack",      S_IRUSR, proc_pid_stack),
2840 #endif
2841 #ifdef CONFIG_SCHEDSTATS
2842 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2843 #endif
2844 #ifdef CONFIG_LATENCYTOP
2845 	REG("latency",  S_IRUGO, proc_lstats_operations),
2846 #endif
2847 #ifdef CONFIG_PROC_PID_CPUSET
2848 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2849 #endif
2850 #ifdef CONFIG_CGROUPS
2851 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2852 #endif
2853 	INF("oom_score",  S_IRUGO, proc_oom_score),
2854 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2855 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2856 #ifdef CONFIG_AUDITSYSCALL
2857 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2858 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2859 #endif
2860 #ifdef CONFIG_FAULT_INJECTION
2861 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2862 #endif
2863 #ifdef CONFIG_ELF_CORE
2864 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2865 #endif
2866 #ifdef CONFIG_TASK_IO_ACCOUNTING
2867 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2868 #endif
2869 };
2870 
2871 static int proc_tgid_base_readdir(struct file * filp,
2872 			     void * dirent, filldir_t filldir)
2873 {
2874 	return proc_pident_readdir(filp,dirent,filldir,
2875 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2876 }
2877 
2878 static const struct file_operations proc_tgid_base_operations = {
2879 	.read		= generic_read_dir,
2880 	.readdir	= proc_tgid_base_readdir,
2881 	.llseek		= default_llseek,
2882 };
2883 
2884 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2885 	return proc_pident_lookup(dir, dentry,
2886 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2887 }
2888 
2889 static const struct inode_operations proc_tgid_base_inode_operations = {
2890 	.lookup		= proc_tgid_base_lookup,
2891 	.getattr	= pid_getattr,
2892 	.setattr	= proc_setattr,
2893 };
2894 
2895 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2896 {
2897 	struct dentry *dentry, *leader, *dir;
2898 	char buf[PROC_NUMBUF];
2899 	struct qstr name;
2900 
2901 	name.name = buf;
2902 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2903 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2904 	if (dentry) {
2905 		shrink_dcache_parent(dentry);
2906 		d_drop(dentry);
2907 		dput(dentry);
2908 	}
2909 
2910 	name.name = buf;
2911 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2912 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2913 	if (!leader)
2914 		goto out;
2915 
2916 	name.name = "task";
2917 	name.len = strlen(name.name);
2918 	dir = d_hash_and_lookup(leader, &name);
2919 	if (!dir)
2920 		goto out_put_leader;
2921 
2922 	name.name = buf;
2923 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2924 	dentry = d_hash_and_lookup(dir, &name);
2925 	if (dentry) {
2926 		shrink_dcache_parent(dentry);
2927 		d_drop(dentry);
2928 		dput(dentry);
2929 	}
2930 
2931 	dput(dir);
2932 out_put_leader:
2933 	dput(leader);
2934 out:
2935 	return;
2936 }
2937 
2938 /**
2939  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2940  * @task: task that should be flushed.
2941  *
2942  * When flushing dentries from proc, one needs to flush them from global
2943  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2944  * in. This call is supposed to do all of this job.
2945  *
2946  * Looks in the dcache for
2947  * /proc/@pid
2948  * /proc/@tgid/task/@pid
2949  * if either directory is present flushes it and all of it'ts children
2950  * from the dcache.
2951  *
2952  * It is safe and reasonable to cache /proc entries for a task until
2953  * that task exits.  After that they just clog up the dcache with
2954  * useless entries, possibly causing useful dcache entries to be
2955  * flushed instead.  This routine is proved to flush those useless
2956  * dcache entries at process exit time.
2957  *
2958  * NOTE: This routine is just an optimization so it does not guarantee
2959  *       that no dcache entries will exist at process exit time it
2960  *       just makes it very unlikely that any will persist.
2961  */
2962 
2963 void proc_flush_task(struct task_struct *task)
2964 {
2965 	int i;
2966 	struct pid *pid, *tgid;
2967 	struct upid *upid;
2968 
2969 	pid = task_pid(task);
2970 	tgid = task_tgid(task);
2971 
2972 	for (i = 0; i <= pid->level; i++) {
2973 		upid = &pid->numbers[i];
2974 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2975 					tgid->numbers[i].nr);
2976 	}
2977 
2978 	upid = &pid->numbers[pid->level];
2979 	if (upid->nr == 1)
2980 		pid_ns_release_proc(upid->ns);
2981 }
2982 
2983 static struct dentry *proc_pid_instantiate(struct inode *dir,
2984 					   struct dentry * dentry,
2985 					   struct task_struct *task, const void *ptr)
2986 {
2987 	struct dentry *error = ERR_PTR(-ENOENT);
2988 	struct inode *inode;
2989 
2990 	inode = proc_pid_make_inode(dir->i_sb, task);
2991 	if (!inode)
2992 		goto out;
2993 
2994 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2995 	inode->i_op = &proc_tgid_base_inode_operations;
2996 	inode->i_fop = &proc_tgid_base_operations;
2997 	inode->i_flags|=S_IMMUTABLE;
2998 
2999 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
3000 		ARRAY_SIZE(tgid_base_stuff));
3001 
3002 	d_set_d_op(dentry, &pid_dentry_operations);
3003 
3004 	d_add(dentry, inode);
3005 	/* Close the race of the process dying before we return the dentry */
3006 	if (pid_revalidate(dentry, NULL))
3007 		error = NULL;
3008 out:
3009 	return error;
3010 }
3011 
3012 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3013 {
3014 	struct dentry *result;
3015 	struct task_struct *task;
3016 	unsigned tgid;
3017 	struct pid_namespace *ns;
3018 
3019 	result = proc_base_lookup(dir, dentry);
3020 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3021 		goto out;
3022 
3023 	tgid = name_to_int(dentry);
3024 	if (tgid == ~0U)
3025 		goto out;
3026 
3027 	ns = dentry->d_sb->s_fs_info;
3028 	rcu_read_lock();
3029 	task = find_task_by_pid_ns(tgid, ns);
3030 	if (task)
3031 		get_task_struct(task);
3032 	rcu_read_unlock();
3033 	if (!task)
3034 		goto out;
3035 
3036 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3037 	put_task_struct(task);
3038 out:
3039 	return result;
3040 }
3041 
3042 /*
3043  * Find the first task with tgid >= tgid
3044  *
3045  */
3046 struct tgid_iter {
3047 	unsigned int tgid;
3048 	struct task_struct *task;
3049 };
3050 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3051 {
3052 	struct pid *pid;
3053 
3054 	if (iter.task)
3055 		put_task_struct(iter.task);
3056 	rcu_read_lock();
3057 retry:
3058 	iter.task = NULL;
3059 	pid = find_ge_pid(iter.tgid, ns);
3060 	if (pid) {
3061 		iter.tgid = pid_nr_ns(pid, ns);
3062 		iter.task = pid_task(pid, PIDTYPE_PID);
3063 		/* What we to know is if the pid we have find is the
3064 		 * pid of a thread_group_leader.  Testing for task
3065 		 * being a thread_group_leader is the obvious thing
3066 		 * todo but there is a window when it fails, due to
3067 		 * the pid transfer logic in de_thread.
3068 		 *
3069 		 * So we perform the straight forward test of seeing
3070 		 * if the pid we have found is the pid of a thread
3071 		 * group leader, and don't worry if the task we have
3072 		 * found doesn't happen to be a thread group leader.
3073 		 * As we don't care in the case of readdir.
3074 		 */
3075 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3076 			iter.tgid += 1;
3077 			goto retry;
3078 		}
3079 		get_task_struct(iter.task);
3080 	}
3081 	rcu_read_unlock();
3082 	return iter;
3083 }
3084 
3085 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3086 
3087 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3088 	struct tgid_iter iter)
3089 {
3090 	char name[PROC_NUMBUF];
3091 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3092 	return proc_fill_cache(filp, dirent, filldir, name, len,
3093 				proc_pid_instantiate, iter.task, NULL);
3094 }
3095 
3096 /* for the /proc/ directory itself, after non-process stuff has been done */
3097 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3098 {
3099 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3100 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
3101 	struct tgid_iter iter;
3102 	struct pid_namespace *ns;
3103 
3104 	if (!reaper)
3105 		goto out_no_task;
3106 
3107 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3108 		const struct pid_entry *p = &proc_base_stuff[nr];
3109 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3110 			goto out;
3111 	}
3112 
3113 	ns = filp->f_dentry->d_sb->s_fs_info;
3114 	iter.task = NULL;
3115 	iter.tgid = filp->f_pos - TGID_OFFSET;
3116 	for (iter = next_tgid(ns, iter);
3117 	     iter.task;
3118 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3119 		filp->f_pos = iter.tgid + TGID_OFFSET;
3120 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
3121 			put_task_struct(iter.task);
3122 			goto out;
3123 		}
3124 	}
3125 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3126 out:
3127 	put_task_struct(reaper);
3128 out_no_task:
3129 	return 0;
3130 }
3131 
3132 /*
3133  * Tasks
3134  */
3135 static const struct pid_entry tid_base_stuff[] = {
3136 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3137 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3138 	REG("environ",   S_IRUSR, proc_environ_operations),
3139 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3140 	ONE("status",    S_IRUGO, proc_pid_status),
3141 	ONE("personality", S_IRUSR, proc_pid_personality),
3142 	INF("limits",	 S_IRUGO, proc_pid_limits),
3143 #ifdef CONFIG_SCHED_DEBUG
3144 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3145 #endif
3146 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3147 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3148 	INF("syscall",   S_IRUSR, proc_pid_syscall),
3149 #endif
3150 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3151 	ONE("stat",      S_IRUGO, proc_tid_stat),
3152 	ONE("statm",     S_IRUGO, proc_pid_statm),
3153 	REG("maps",      S_IRUGO, proc_maps_operations),
3154 #ifdef CONFIG_NUMA
3155 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3156 #endif
3157 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3158 	LNK("cwd",       proc_cwd_link),
3159 	LNK("root",      proc_root_link),
3160 	LNK("exe",       proc_exe_link),
3161 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3162 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3163 #ifdef CONFIG_PROC_PAGE_MONITOR
3164 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3165 	REG("smaps",     S_IRUGO, proc_smaps_operations),
3166 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3167 #endif
3168 #ifdef CONFIG_SECURITY
3169 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3170 #endif
3171 #ifdef CONFIG_KALLSYMS
3172 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3173 #endif
3174 #ifdef CONFIG_STACKTRACE
3175 	ONE("stack",      S_IRUSR, proc_pid_stack),
3176 #endif
3177 #ifdef CONFIG_SCHEDSTATS
3178 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3179 #endif
3180 #ifdef CONFIG_LATENCYTOP
3181 	REG("latency",  S_IRUGO, proc_lstats_operations),
3182 #endif
3183 #ifdef CONFIG_PROC_PID_CPUSET
3184 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3185 #endif
3186 #ifdef CONFIG_CGROUPS
3187 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3188 #endif
3189 	INF("oom_score", S_IRUGO, proc_oom_score),
3190 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3191 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3192 #ifdef CONFIG_AUDITSYSCALL
3193 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3194 	REG("sessionid",  S_IRUSR, proc_sessionid_operations),
3195 #endif
3196 #ifdef CONFIG_FAULT_INJECTION
3197 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3198 #endif
3199 #ifdef CONFIG_TASK_IO_ACCOUNTING
3200 	INF("io",	S_IRUGO, proc_tid_io_accounting),
3201 #endif
3202 };
3203 
3204 static int proc_tid_base_readdir(struct file * filp,
3205 			     void * dirent, filldir_t filldir)
3206 {
3207 	return proc_pident_readdir(filp,dirent,filldir,
3208 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3209 }
3210 
3211 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3212 	return proc_pident_lookup(dir, dentry,
3213 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3214 }
3215 
3216 static const struct file_operations proc_tid_base_operations = {
3217 	.read		= generic_read_dir,
3218 	.readdir	= proc_tid_base_readdir,
3219 	.llseek		= default_llseek,
3220 };
3221 
3222 static const struct inode_operations proc_tid_base_inode_operations = {
3223 	.lookup		= proc_tid_base_lookup,
3224 	.getattr	= pid_getattr,
3225 	.setattr	= proc_setattr,
3226 };
3227 
3228 static struct dentry *proc_task_instantiate(struct inode *dir,
3229 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3230 {
3231 	struct dentry *error = ERR_PTR(-ENOENT);
3232 	struct inode *inode;
3233 	inode = proc_pid_make_inode(dir->i_sb, task);
3234 
3235 	if (!inode)
3236 		goto out;
3237 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3238 	inode->i_op = &proc_tid_base_inode_operations;
3239 	inode->i_fop = &proc_tid_base_operations;
3240 	inode->i_flags|=S_IMMUTABLE;
3241 
3242 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3243 		ARRAY_SIZE(tid_base_stuff));
3244 
3245 	d_set_d_op(dentry, &pid_dentry_operations);
3246 
3247 	d_add(dentry, inode);
3248 	/* Close the race of the process dying before we return the dentry */
3249 	if (pid_revalidate(dentry, NULL))
3250 		error = NULL;
3251 out:
3252 	return error;
3253 }
3254 
3255 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3256 {
3257 	struct dentry *result = ERR_PTR(-ENOENT);
3258 	struct task_struct *task;
3259 	struct task_struct *leader = get_proc_task(dir);
3260 	unsigned tid;
3261 	struct pid_namespace *ns;
3262 
3263 	if (!leader)
3264 		goto out_no_task;
3265 
3266 	tid = name_to_int(dentry);
3267 	if (tid == ~0U)
3268 		goto out;
3269 
3270 	ns = dentry->d_sb->s_fs_info;
3271 	rcu_read_lock();
3272 	task = find_task_by_pid_ns(tid, ns);
3273 	if (task)
3274 		get_task_struct(task);
3275 	rcu_read_unlock();
3276 	if (!task)
3277 		goto out;
3278 	if (!same_thread_group(leader, task))
3279 		goto out_drop_task;
3280 
3281 	result = proc_task_instantiate(dir, dentry, task, NULL);
3282 out_drop_task:
3283 	put_task_struct(task);
3284 out:
3285 	put_task_struct(leader);
3286 out_no_task:
3287 	return result;
3288 }
3289 
3290 /*
3291  * Find the first tid of a thread group to return to user space.
3292  *
3293  * Usually this is just the thread group leader, but if the users
3294  * buffer was too small or there was a seek into the middle of the
3295  * directory we have more work todo.
3296  *
3297  * In the case of a short read we start with find_task_by_pid.
3298  *
3299  * In the case of a seek we start with the leader and walk nr
3300  * threads past it.
3301  */
3302 static struct task_struct *first_tid(struct task_struct *leader,
3303 		int tid, int nr, struct pid_namespace *ns)
3304 {
3305 	struct task_struct *pos;
3306 
3307 	rcu_read_lock();
3308 	/* Attempt to start with the pid of a thread */
3309 	if (tid && (nr > 0)) {
3310 		pos = find_task_by_pid_ns(tid, ns);
3311 		if (pos && (pos->group_leader == leader))
3312 			goto found;
3313 	}
3314 
3315 	/* If nr exceeds the number of threads there is nothing todo */
3316 	pos = NULL;
3317 	if (nr && nr >= get_nr_threads(leader))
3318 		goto out;
3319 
3320 	/* If we haven't found our starting place yet start
3321 	 * with the leader and walk nr threads forward.
3322 	 */
3323 	for (pos = leader; nr > 0; --nr) {
3324 		pos = next_thread(pos);
3325 		if (pos == leader) {
3326 			pos = NULL;
3327 			goto out;
3328 		}
3329 	}
3330 found:
3331 	get_task_struct(pos);
3332 out:
3333 	rcu_read_unlock();
3334 	return pos;
3335 }
3336 
3337 /*
3338  * Find the next thread in the thread list.
3339  * Return NULL if there is an error or no next thread.
3340  *
3341  * The reference to the input task_struct is released.
3342  */
3343 static struct task_struct *next_tid(struct task_struct *start)
3344 {
3345 	struct task_struct *pos = NULL;
3346 	rcu_read_lock();
3347 	if (pid_alive(start)) {
3348 		pos = next_thread(start);
3349 		if (thread_group_leader(pos))
3350 			pos = NULL;
3351 		else
3352 			get_task_struct(pos);
3353 	}
3354 	rcu_read_unlock();
3355 	put_task_struct(start);
3356 	return pos;
3357 }
3358 
3359 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3360 	struct task_struct *task, int tid)
3361 {
3362 	char name[PROC_NUMBUF];
3363 	int len = snprintf(name, sizeof(name), "%d", tid);
3364 	return proc_fill_cache(filp, dirent, filldir, name, len,
3365 				proc_task_instantiate, task, NULL);
3366 }
3367 
3368 /* for the /proc/TGID/task/ directories */
3369 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3370 {
3371 	struct dentry *dentry = filp->f_path.dentry;
3372 	struct inode *inode = dentry->d_inode;
3373 	struct task_struct *leader = NULL;
3374 	struct task_struct *task;
3375 	int retval = -ENOENT;
3376 	ino_t ino;
3377 	int tid;
3378 	struct pid_namespace *ns;
3379 
3380 	task = get_proc_task(inode);
3381 	if (!task)
3382 		goto out_no_task;
3383 	rcu_read_lock();
3384 	if (pid_alive(task)) {
3385 		leader = task->group_leader;
3386 		get_task_struct(leader);
3387 	}
3388 	rcu_read_unlock();
3389 	put_task_struct(task);
3390 	if (!leader)
3391 		goto out_no_task;
3392 	retval = 0;
3393 
3394 	switch ((unsigned long)filp->f_pos) {
3395 	case 0:
3396 		ino = inode->i_ino;
3397 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3398 			goto out;
3399 		filp->f_pos++;
3400 		/* fall through */
3401 	case 1:
3402 		ino = parent_ino(dentry);
3403 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3404 			goto out;
3405 		filp->f_pos++;
3406 		/* fall through */
3407 	}
3408 
3409 	/* f_version caches the tgid value that the last readdir call couldn't
3410 	 * return. lseek aka telldir automagically resets f_version to 0.
3411 	 */
3412 	ns = filp->f_dentry->d_sb->s_fs_info;
3413 	tid = (int)filp->f_version;
3414 	filp->f_version = 0;
3415 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3416 	     task;
3417 	     task = next_tid(task), filp->f_pos++) {
3418 		tid = task_pid_nr_ns(task, ns);
3419 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3420 			/* returning this tgid failed, save it as the first
3421 			 * pid for the next readir call */
3422 			filp->f_version = (u64)tid;
3423 			put_task_struct(task);
3424 			break;
3425 		}
3426 	}
3427 out:
3428 	put_task_struct(leader);
3429 out_no_task:
3430 	return retval;
3431 }
3432 
3433 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3434 {
3435 	struct inode *inode = dentry->d_inode;
3436 	struct task_struct *p = get_proc_task(inode);
3437 	generic_fillattr(inode, stat);
3438 
3439 	if (p) {
3440 		stat->nlink += get_nr_threads(p);
3441 		put_task_struct(p);
3442 	}
3443 
3444 	return 0;
3445 }
3446 
3447 static const struct inode_operations proc_task_inode_operations = {
3448 	.lookup		= proc_task_lookup,
3449 	.getattr	= proc_task_getattr,
3450 	.setattr	= proc_setattr,
3451 };
3452 
3453 static const struct file_operations proc_task_operations = {
3454 	.read		= generic_read_dir,
3455 	.readdir	= proc_task_readdir,
3456 	.llseek		= default_llseek,
3457 };
3458