1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/generic-radix-tree.h> 62 #include <linux/string.h> 63 #include <linux/seq_file.h> 64 #include <linux/namei.h> 65 #include <linux/mnt_namespace.h> 66 #include <linux/mm.h> 67 #include <linux/swap.h> 68 #include <linux/rcupdate.h> 69 #include <linux/kallsyms.h> 70 #include <linux/stacktrace.h> 71 #include <linux/resource.h> 72 #include <linux/module.h> 73 #include <linux/mount.h> 74 #include <linux/security.h> 75 #include <linux/ptrace.h> 76 #include <linux/printk.h> 77 #include <linux/cache.h> 78 #include <linux/cgroup.h> 79 #include <linux/cpuset.h> 80 #include <linux/audit.h> 81 #include <linux/poll.h> 82 #include <linux/nsproxy.h> 83 #include <linux/oom.h> 84 #include <linux/elf.h> 85 #include <linux/pid_namespace.h> 86 #include <linux/user_namespace.h> 87 #include <linux/fs_parser.h> 88 #include <linux/fs_struct.h> 89 #include <linux/slab.h> 90 #include <linux/sched/autogroup.h> 91 #include <linux/sched/mm.h> 92 #include <linux/sched/coredump.h> 93 #include <linux/sched/debug.h> 94 #include <linux/sched/stat.h> 95 #include <linux/posix-timers.h> 96 #include <linux/time_namespace.h> 97 #include <linux/resctrl.h> 98 #include <linux/cn_proc.h> 99 #include <linux/ksm.h> 100 #include <uapi/linux/lsm.h> 101 #include <trace/events/oom.h> 102 #include "internal.h" 103 #include "fd.h" 104 105 #include "../../lib/kstrtox.h" 106 107 /* NOTE: 108 * Implementing inode permission operations in /proc is almost 109 * certainly an error. Permission checks need to happen during 110 * each system call not at open time. The reason is that most of 111 * what we wish to check for permissions in /proc varies at runtime. 112 * 113 * The classic example of a problem is opening file descriptors 114 * in /proc for a task before it execs a suid executable. 115 */ 116 117 static u8 nlink_tid __ro_after_init; 118 static u8 nlink_tgid __ro_after_init; 119 120 enum proc_mem_force { 121 PROC_MEM_FORCE_ALWAYS, 122 PROC_MEM_FORCE_PTRACE, 123 PROC_MEM_FORCE_NEVER 124 }; 125 126 static enum proc_mem_force proc_mem_force_override __ro_after_init = 127 IS_ENABLED(CONFIG_PROC_MEM_NO_FORCE) ? PROC_MEM_FORCE_NEVER : 128 IS_ENABLED(CONFIG_PROC_MEM_FORCE_PTRACE) ? PROC_MEM_FORCE_PTRACE : 129 PROC_MEM_FORCE_ALWAYS; 130 131 static const struct constant_table proc_mem_force_table[] __initconst = { 132 { "always", PROC_MEM_FORCE_ALWAYS }, 133 { "ptrace", PROC_MEM_FORCE_PTRACE }, 134 { "never", PROC_MEM_FORCE_NEVER }, 135 { } 136 }; 137 138 static int __init early_proc_mem_force_override(char *buf) 139 { 140 if (!buf) 141 return -EINVAL; 142 143 /* 144 * lookup_constant() defaults to proc_mem_force_override to preseve 145 * the initial Kconfig choice in case an invalid param gets passed. 146 */ 147 proc_mem_force_override = lookup_constant(proc_mem_force_table, 148 buf, proc_mem_force_override); 149 150 return 0; 151 } 152 early_param("proc_mem.force_override", early_proc_mem_force_override); 153 154 struct pid_entry { 155 const char *name; 156 unsigned int len; 157 umode_t mode; 158 const struct inode_operations *iop; 159 const struct file_operations *fop; 160 union proc_op op; 161 }; 162 163 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 164 .name = (NAME), \ 165 .len = sizeof(NAME) - 1, \ 166 .mode = MODE, \ 167 .iop = IOP, \ 168 .fop = FOP, \ 169 .op = OP, \ 170 } 171 172 #define DIR(NAME, MODE, iops, fops) \ 173 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 174 #define LNK(NAME, get_link) \ 175 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 176 &proc_pid_link_inode_operations, NULL, \ 177 { .proc_get_link = get_link } ) 178 #define REG(NAME, MODE, fops) \ 179 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 180 #define ONE(NAME, MODE, show) \ 181 NOD(NAME, (S_IFREG|(MODE)), \ 182 NULL, &proc_single_file_operations, \ 183 { .proc_show = show } ) 184 #define ATTR(LSMID, NAME, MODE) \ 185 NOD(NAME, (S_IFREG|(MODE)), \ 186 NULL, &proc_pid_attr_operations, \ 187 { .lsmid = LSMID }) 188 189 /* 190 * Count the number of hardlinks for the pid_entry table, excluding the . 191 * and .. links. 192 */ 193 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 194 unsigned int n) 195 { 196 unsigned int i; 197 unsigned int count; 198 199 count = 2; 200 for (i = 0; i < n; ++i) { 201 if (S_ISDIR(entries[i].mode)) 202 ++count; 203 } 204 205 return count; 206 } 207 208 static int get_task_root(struct task_struct *task, struct path *root) 209 { 210 int result = -ENOENT; 211 212 task_lock(task); 213 if (task->fs) { 214 get_fs_root(task->fs, root); 215 result = 0; 216 } 217 task_unlock(task); 218 return result; 219 } 220 221 static int proc_cwd_link(struct dentry *dentry, struct path *path) 222 { 223 struct task_struct *task = get_proc_task(d_inode(dentry)); 224 int result = -ENOENT; 225 226 if (task) { 227 task_lock(task); 228 if (task->fs) { 229 get_fs_pwd(task->fs, path); 230 result = 0; 231 } 232 task_unlock(task); 233 put_task_struct(task); 234 } 235 return result; 236 } 237 238 static int proc_root_link(struct dentry *dentry, struct path *path) 239 { 240 struct task_struct *task = get_proc_task(d_inode(dentry)); 241 int result = -ENOENT; 242 243 if (task) { 244 result = get_task_root(task, path); 245 put_task_struct(task); 246 } 247 return result; 248 } 249 250 /* 251 * If the user used setproctitle(), we just get the string from 252 * user space at arg_start, and limit it to a maximum of one page. 253 */ 254 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 255 size_t count, unsigned long pos, 256 unsigned long arg_start) 257 { 258 char *page; 259 int ret, got; 260 261 if (pos >= PAGE_SIZE) 262 return 0; 263 264 page = (char *)__get_free_page(GFP_KERNEL); 265 if (!page) 266 return -ENOMEM; 267 268 ret = 0; 269 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 270 if (got > 0) { 271 int len = strnlen(page, got); 272 273 /* Include the NUL character if it was found */ 274 if (len < got) 275 len++; 276 277 if (len > pos) { 278 len -= pos; 279 if (len > count) 280 len = count; 281 len -= copy_to_user(buf, page+pos, len); 282 if (!len) 283 len = -EFAULT; 284 ret = len; 285 } 286 } 287 free_page((unsigned long)page); 288 return ret; 289 } 290 291 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 292 size_t count, loff_t *ppos) 293 { 294 unsigned long arg_start, arg_end, env_start, env_end; 295 unsigned long pos, len; 296 char *page, c; 297 298 /* Check if process spawned far enough to have cmdline. */ 299 if (!mm->env_end) 300 return 0; 301 302 spin_lock(&mm->arg_lock); 303 arg_start = mm->arg_start; 304 arg_end = mm->arg_end; 305 env_start = mm->env_start; 306 env_end = mm->env_end; 307 spin_unlock(&mm->arg_lock); 308 309 if (arg_start >= arg_end) 310 return 0; 311 312 /* 313 * We allow setproctitle() to overwrite the argument 314 * strings, and overflow past the original end. But 315 * only when it overflows into the environment area. 316 */ 317 if (env_start != arg_end || env_end < env_start) 318 env_start = env_end = arg_end; 319 len = env_end - arg_start; 320 321 /* We're not going to care if "*ppos" has high bits set */ 322 pos = *ppos; 323 if (pos >= len) 324 return 0; 325 if (count > len - pos) 326 count = len - pos; 327 if (!count) 328 return 0; 329 330 /* 331 * Magical special case: if the argv[] end byte is not 332 * zero, the user has overwritten it with setproctitle(3). 333 * 334 * Possible future enhancement: do this only once when 335 * pos is 0, and set a flag in the 'struct file'. 336 */ 337 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 338 return get_mm_proctitle(mm, buf, count, pos, arg_start); 339 340 /* 341 * For the non-setproctitle() case we limit things strictly 342 * to the [arg_start, arg_end[ range. 343 */ 344 pos += arg_start; 345 if (pos < arg_start || pos >= arg_end) 346 return 0; 347 if (count > arg_end - pos) 348 count = arg_end - pos; 349 350 page = (char *)__get_free_page(GFP_KERNEL); 351 if (!page) 352 return -ENOMEM; 353 354 len = 0; 355 while (count) { 356 int got; 357 size_t size = min_t(size_t, PAGE_SIZE, count); 358 359 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 360 if (got <= 0) 361 break; 362 got -= copy_to_user(buf, page, got); 363 if (unlikely(!got)) { 364 if (!len) 365 len = -EFAULT; 366 break; 367 } 368 pos += got; 369 buf += got; 370 len += got; 371 count -= got; 372 } 373 374 free_page((unsigned long)page); 375 return len; 376 } 377 378 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 379 size_t count, loff_t *pos) 380 { 381 struct mm_struct *mm; 382 ssize_t ret; 383 384 mm = get_task_mm(tsk); 385 if (!mm) 386 return 0; 387 388 ret = get_mm_cmdline(mm, buf, count, pos); 389 mmput(mm); 390 return ret; 391 } 392 393 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 394 size_t count, loff_t *pos) 395 { 396 struct task_struct *tsk; 397 ssize_t ret; 398 399 BUG_ON(*pos < 0); 400 401 tsk = get_proc_task(file_inode(file)); 402 if (!tsk) 403 return -ESRCH; 404 ret = get_task_cmdline(tsk, buf, count, pos); 405 put_task_struct(tsk); 406 if (ret > 0) 407 *pos += ret; 408 return ret; 409 } 410 411 static const struct file_operations proc_pid_cmdline_ops = { 412 .read = proc_pid_cmdline_read, 413 .llseek = generic_file_llseek, 414 }; 415 416 #ifdef CONFIG_KALLSYMS 417 /* 418 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 419 * Returns the resolved symbol. If that fails, simply return the address. 420 */ 421 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 422 struct pid *pid, struct task_struct *task) 423 { 424 unsigned long wchan; 425 char symname[KSYM_NAME_LEN]; 426 427 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 428 goto print0; 429 430 wchan = get_wchan(task); 431 if (wchan && !lookup_symbol_name(wchan, symname)) { 432 seq_puts(m, symname); 433 return 0; 434 } 435 436 print0: 437 seq_putc(m, '0'); 438 return 0; 439 } 440 #endif /* CONFIG_KALLSYMS */ 441 442 static int lock_trace(struct task_struct *task) 443 { 444 int err = down_read_killable(&task->signal->exec_update_lock); 445 if (err) 446 return err; 447 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 448 up_read(&task->signal->exec_update_lock); 449 return -EPERM; 450 } 451 return 0; 452 } 453 454 static void unlock_trace(struct task_struct *task) 455 { 456 up_read(&task->signal->exec_update_lock); 457 } 458 459 #ifdef CONFIG_STACKTRACE 460 461 #define MAX_STACK_TRACE_DEPTH 64 462 463 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 464 struct pid *pid, struct task_struct *task) 465 { 466 unsigned long *entries; 467 int err; 468 469 /* 470 * The ability to racily run the kernel stack unwinder on a running task 471 * and then observe the unwinder output is scary; while it is useful for 472 * debugging kernel issues, it can also allow an attacker to leak kernel 473 * stack contents. 474 * Doing this in a manner that is at least safe from races would require 475 * some work to ensure that the remote task can not be scheduled; and 476 * even then, this would still expose the unwinder as local attack 477 * surface. 478 * Therefore, this interface is restricted to root. 479 */ 480 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 481 return -EACCES; 482 483 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 484 GFP_KERNEL); 485 if (!entries) 486 return -ENOMEM; 487 488 err = lock_trace(task); 489 if (!err) { 490 unsigned int i, nr_entries; 491 492 nr_entries = stack_trace_save_tsk(task, entries, 493 MAX_STACK_TRACE_DEPTH, 0); 494 495 for (i = 0; i < nr_entries; i++) { 496 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 497 } 498 499 unlock_trace(task); 500 } 501 kfree(entries); 502 503 return err; 504 } 505 #endif 506 507 #ifdef CONFIG_SCHED_INFO 508 /* 509 * Provides /proc/PID/schedstat 510 */ 511 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 512 struct pid *pid, struct task_struct *task) 513 { 514 if (unlikely(!sched_info_on())) 515 seq_puts(m, "0 0 0\n"); 516 else 517 seq_printf(m, "%llu %llu %lu\n", 518 (unsigned long long)task->se.sum_exec_runtime, 519 (unsigned long long)task->sched_info.run_delay, 520 task->sched_info.pcount); 521 522 return 0; 523 } 524 #endif 525 526 #ifdef CONFIG_LATENCYTOP 527 static int lstats_show_proc(struct seq_file *m, void *v) 528 { 529 int i; 530 struct inode *inode = m->private; 531 struct task_struct *task = get_proc_task(inode); 532 533 if (!task) 534 return -ESRCH; 535 seq_puts(m, "Latency Top version : v0.1\n"); 536 for (i = 0; i < LT_SAVECOUNT; i++) { 537 struct latency_record *lr = &task->latency_record[i]; 538 if (lr->backtrace[0]) { 539 int q; 540 seq_printf(m, "%i %li %li", 541 lr->count, lr->time, lr->max); 542 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 543 unsigned long bt = lr->backtrace[q]; 544 545 if (!bt) 546 break; 547 seq_printf(m, " %ps", (void *)bt); 548 } 549 seq_putc(m, '\n'); 550 } 551 552 } 553 put_task_struct(task); 554 return 0; 555 } 556 557 static int lstats_open(struct inode *inode, struct file *file) 558 { 559 return single_open(file, lstats_show_proc, inode); 560 } 561 562 static ssize_t lstats_write(struct file *file, const char __user *buf, 563 size_t count, loff_t *offs) 564 { 565 struct task_struct *task = get_proc_task(file_inode(file)); 566 567 if (!task) 568 return -ESRCH; 569 clear_tsk_latency_tracing(task); 570 put_task_struct(task); 571 572 return count; 573 } 574 575 static const struct file_operations proc_lstats_operations = { 576 .open = lstats_open, 577 .read = seq_read, 578 .write = lstats_write, 579 .llseek = seq_lseek, 580 .release = single_release, 581 }; 582 583 #endif 584 585 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 586 struct pid *pid, struct task_struct *task) 587 { 588 unsigned long totalpages = totalram_pages() + total_swap_pages; 589 unsigned long points = 0; 590 long badness; 591 592 badness = oom_badness(task, totalpages); 593 /* 594 * Special case OOM_SCORE_ADJ_MIN for all others scale the 595 * badness value into [0, 2000] range which we have been 596 * exporting for a long time so userspace might depend on it. 597 */ 598 if (badness != LONG_MIN) 599 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3; 600 601 seq_printf(m, "%lu\n", points); 602 603 return 0; 604 } 605 606 struct limit_names { 607 const char *name; 608 const char *unit; 609 }; 610 611 static const struct limit_names lnames[RLIM_NLIMITS] = { 612 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 613 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 614 [RLIMIT_DATA] = {"Max data size", "bytes"}, 615 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 616 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 617 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 618 [RLIMIT_NPROC] = {"Max processes", "processes"}, 619 [RLIMIT_NOFILE] = {"Max open files", "files"}, 620 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 621 [RLIMIT_AS] = {"Max address space", "bytes"}, 622 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 623 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 624 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 625 [RLIMIT_NICE] = {"Max nice priority", NULL}, 626 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 627 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 628 }; 629 630 /* Display limits for a process */ 631 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 632 struct pid *pid, struct task_struct *task) 633 { 634 unsigned int i; 635 unsigned long flags; 636 637 struct rlimit rlim[RLIM_NLIMITS]; 638 639 if (!lock_task_sighand(task, &flags)) 640 return 0; 641 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 642 unlock_task_sighand(task, &flags); 643 644 /* 645 * print the file header 646 */ 647 seq_puts(m, "Limit " 648 "Soft Limit " 649 "Hard Limit " 650 "Units \n"); 651 652 for (i = 0; i < RLIM_NLIMITS; i++) { 653 if (rlim[i].rlim_cur == RLIM_INFINITY) 654 seq_printf(m, "%-25s %-20s ", 655 lnames[i].name, "unlimited"); 656 else 657 seq_printf(m, "%-25s %-20lu ", 658 lnames[i].name, rlim[i].rlim_cur); 659 660 if (rlim[i].rlim_max == RLIM_INFINITY) 661 seq_printf(m, "%-20s ", "unlimited"); 662 else 663 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 664 665 if (lnames[i].unit) 666 seq_printf(m, "%-10s\n", lnames[i].unit); 667 else 668 seq_putc(m, '\n'); 669 } 670 671 return 0; 672 } 673 674 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 675 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 676 struct pid *pid, struct task_struct *task) 677 { 678 struct syscall_info info; 679 u64 *args = &info.data.args[0]; 680 int res; 681 682 res = lock_trace(task); 683 if (res) 684 return res; 685 686 if (task_current_syscall(task, &info)) 687 seq_puts(m, "running\n"); 688 else if (info.data.nr < 0) 689 seq_printf(m, "%d 0x%llx 0x%llx\n", 690 info.data.nr, info.sp, info.data.instruction_pointer); 691 else 692 seq_printf(m, 693 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 694 info.data.nr, 695 args[0], args[1], args[2], args[3], args[4], args[5], 696 info.sp, info.data.instruction_pointer); 697 unlock_trace(task); 698 699 return 0; 700 } 701 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 702 703 /************************************************************************/ 704 /* Here the fs part begins */ 705 /************************************************************************/ 706 707 /* permission checks */ 708 static bool proc_fd_access_allowed(struct inode *inode) 709 { 710 struct task_struct *task; 711 bool allowed = false; 712 /* Allow access to a task's file descriptors if it is us or we 713 * may use ptrace attach to the process and find out that 714 * information. 715 */ 716 task = get_proc_task(inode); 717 if (task) { 718 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 719 put_task_struct(task); 720 } 721 return allowed; 722 } 723 724 int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 725 struct iattr *attr) 726 { 727 int error; 728 struct inode *inode = d_inode(dentry); 729 730 if (attr->ia_valid & ATTR_MODE) 731 return -EPERM; 732 733 error = setattr_prepare(&nop_mnt_idmap, dentry, attr); 734 if (error) 735 return error; 736 737 setattr_copy(&nop_mnt_idmap, inode, attr); 738 return 0; 739 } 740 741 /* 742 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 743 * or euid/egid (for hide_pid_min=2)? 744 */ 745 static bool has_pid_permissions(struct proc_fs_info *fs_info, 746 struct task_struct *task, 747 enum proc_hidepid hide_pid_min) 748 { 749 /* 750 * If 'hidpid' mount option is set force a ptrace check, 751 * we indicate that we are using a filesystem syscall 752 * by passing PTRACE_MODE_READ_FSCREDS 753 */ 754 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) 755 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 756 757 if (fs_info->hide_pid < hide_pid_min) 758 return true; 759 if (in_group_p(fs_info->pid_gid)) 760 return true; 761 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 762 } 763 764 765 static int proc_pid_permission(struct mnt_idmap *idmap, 766 struct inode *inode, int mask) 767 { 768 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 769 struct task_struct *task; 770 bool has_perms; 771 772 task = get_proc_task(inode); 773 if (!task) 774 return -ESRCH; 775 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS); 776 put_task_struct(task); 777 778 if (!has_perms) { 779 if (fs_info->hide_pid == HIDEPID_INVISIBLE) { 780 /* 781 * Let's make getdents(), stat(), and open() 782 * consistent with each other. If a process 783 * may not stat() a file, it shouldn't be seen 784 * in procfs at all. 785 */ 786 return -ENOENT; 787 } 788 789 return -EPERM; 790 } 791 return generic_permission(&nop_mnt_idmap, inode, mask); 792 } 793 794 795 796 static const struct inode_operations proc_def_inode_operations = { 797 .setattr = proc_setattr, 798 }; 799 800 static int proc_single_show(struct seq_file *m, void *v) 801 { 802 struct inode *inode = m->private; 803 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 804 struct pid *pid = proc_pid(inode); 805 struct task_struct *task; 806 int ret; 807 808 task = get_pid_task(pid, PIDTYPE_PID); 809 if (!task) 810 return -ESRCH; 811 812 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 813 814 put_task_struct(task); 815 return ret; 816 } 817 818 static int proc_single_open(struct inode *inode, struct file *filp) 819 { 820 return single_open(filp, proc_single_show, inode); 821 } 822 823 static const struct file_operations proc_single_file_operations = { 824 .open = proc_single_open, 825 .read = seq_read, 826 .llseek = seq_lseek, 827 .release = single_release, 828 }; 829 830 831 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 832 { 833 struct task_struct *task = get_proc_task(inode); 834 struct mm_struct *mm = ERR_PTR(-ESRCH); 835 836 if (task) { 837 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 838 put_task_struct(task); 839 840 if (!IS_ERR_OR_NULL(mm)) { 841 /* ensure this mm_struct can't be freed */ 842 mmgrab(mm); 843 /* but do not pin its memory */ 844 mmput(mm); 845 } 846 } 847 848 return mm; 849 } 850 851 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 852 { 853 struct mm_struct *mm = proc_mem_open(inode, mode); 854 855 if (IS_ERR(mm)) 856 return PTR_ERR(mm); 857 858 file->private_data = mm; 859 return 0; 860 } 861 862 static int mem_open(struct inode *inode, struct file *file) 863 { 864 if (WARN_ON_ONCE(!(file->f_op->fop_flags & FOP_UNSIGNED_OFFSET))) 865 return -EINVAL; 866 return __mem_open(inode, file, PTRACE_MODE_ATTACH); 867 } 868 869 static bool proc_mem_foll_force(struct file *file, struct mm_struct *mm) 870 { 871 struct task_struct *task; 872 bool ptrace_active = false; 873 874 switch (proc_mem_force_override) { 875 case PROC_MEM_FORCE_NEVER: 876 return false; 877 case PROC_MEM_FORCE_PTRACE: 878 task = get_proc_task(file_inode(file)); 879 if (task) { 880 ptrace_active = READ_ONCE(task->ptrace) && 881 READ_ONCE(task->mm) == mm && 882 READ_ONCE(task->parent) == current; 883 put_task_struct(task); 884 } 885 return ptrace_active; 886 default: 887 return true; 888 } 889 } 890 891 static ssize_t mem_rw(struct file *file, char __user *buf, 892 size_t count, loff_t *ppos, int write) 893 { 894 struct mm_struct *mm = file->private_data; 895 unsigned long addr = *ppos; 896 ssize_t copied; 897 char *page; 898 unsigned int flags; 899 900 if (!mm) 901 return 0; 902 903 page = (char *)__get_free_page(GFP_KERNEL); 904 if (!page) 905 return -ENOMEM; 906 907 copied = 0; 908 if (!mmget_not_zero(mm)) 909 goto free; 910 911 flags = write ? FOLL_WRITE : 0; 912 if (proc_mem_foll_force(file, mm)) 913 flags |= FOLL_FORCE; 914 915 while (count > 0) { 916 size_t this_len = min_t(size_t, count, PAGE_SIZE); 917 918 if (write && copy_from_user(page, buf, this_len)) { 919 copied = -EFAULT; 920 break; 921 } 922 923 this_len = access_remote_vm(mm, addr, page, this_len, flags); 924 if (!this_len) { 925 if (!copied) 926 copied = -EIO; 927 break; 928 } 929 930 if (!write && copy_to_user(buf, page, this_len)) { 931 copied = -EFAULT; 932 break; 933 } 934 935 buf += this_len; 936 addr += this_len; 937 copied += this_len; 938 count -= this_len; 939 } 940 *ppos = addr; 941 942 mmput(mm); 943 free: 944 free_page((unsigned long) page); 945 return copied; 946 } 947 948 static ssize_t mem_read(struct file *file, char __user *buf, 949 size_t count, loff_t *ppos) 950 { 951 return mem_rw(file, buf, count, ppos, 0); 952 } 953 954 static ssize_t mem_write(struct file *file, const char __user *buf, 955 size_t count, loff_t *ppos) 956 { 957 return mem_rw(file, (char __user*)buf, count, ppos, 1); 958 } 959 960 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 961 { 962 switch (orig) { 963 case 0: 964 file->f_pos = offset; 965 break; 966 case 1: 967 file->f_pos += offset; 968 break; 969 default: 970 return -EINVAL; 971 } 972 force_successful_syscall_return(); 973 return file->f_pos; 974 } 975 976 static int mem_release(struct inode *inode, struct file *file) 977 { 978 struct mm_struct *mm = file->private_data; 979 if (mm) 980 mmdrop(mm); 981 return 0; 982 } 983 984 static const struct file_operations proc_mem_operations = { 985 .llseek = mem_lseek, 986 .read = mem_read, 987 .write = mem_write, 988 .open = mem_open, 989 .release = mem_release, 990 .fop_flags = FOP_UNSIGNED_OFFSET, 991 }; 992 993 static int environ_open(struct inode *inode, struct file *file) 994 { 995 return __mem_open(inode, file, PTRACE_MODE_READ); 996 } 997 998 static ssize_t environ_read(struct file *file, char __user *buf, 999 size_t count, loff_t *ppos) 1000 { 1001 char *page; 1002 unsigned long src = *ppos; 1003 int ret = 0; 1004 struct mm_struct *mm = file->private_data; 1005 unsigned long env_start, env_end; 1006 1007 /* Ensure the process spawned far enough to have an environment. */ 1008 if (!mm || !mm->env_end) 1009 return 0; 1010 1011 page = (char *)__get_free_page(GFP_KERNEL); 1012 if (!page) 1013 return -ENOMEM; 1014 1015 ret = 0; 1016 if (!mmget_not_zero(mm)) 1017 goto free; 1018 1019 spin_lock(&mm->arg_lock); 1020 env_start = mm->env_start; 1021 env_end = mm->env_end; 1022 spin_unlock(&mm->arg_lock); 1023 1024 while (count > 0) { 1025 size_t this_len, max_len; 1026 int retval; 1027 1028 if (src >= (env_end - env_start)) 1029 break; 1030 1031 this_len = env_end - (env_start + src); 1032 1033 max_len = min_t(size_t, PAGE_SIZE, count); 1034 this_len = min(max_len, this_len); 1035 1036 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 1037 1038 if (retval <= 0) { 1039 ret = retval; 1040 break; 1041 } 1042 1043 if (copy_to_user(buf, page, retval)) { 1044 ret = -EFAULT; 1045 break; 1046 } 1047 1048 ret += retval; 1049 src += retval; 1050 buf += retval; 1051 count -= retval; 1052 } 1053 *ppos = src; 1054 mmput(mm); 1055 1056 free: 1057 free_page((unsigned long) page); 1058 return ret; 1059 } 1060 1061 static const struct file_operations proc_environ_operations = { 1062 .open = environ_open, 1063 .read = environ_read, 1064 .llseek = generic_file_llseek, 1065 .release = mem_release, 1066 }; 1067 1068 static int auxv_open(struct inode *inode, struct file *file) 1069 { 1070 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 1071 } 1072 1073 static ssize_t auxv_read(struct file *file, char __user *buf, 1074 size_t count, loff_t *ppos) 1075 { 1076 struct mm_struct *mm = file->private_data; 1077 unsigned int nwords = 0; 1078 1079 if (!mm) 1080 return 0; 1081 do { 1082 nwords += 2; 1083 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1084 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1085 nwords * sizeof(mm->saved_auxv[0])); 1086 } 1087 1088 static const struct file_operations proc_auxv_operations = { 1089 .open = auxv_open, 1090 .read = auxv_read, 1091 .llseek = generic_file_llseek, 1092 .release = mem_release, 1093 }; 1094 1095 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1096 loff_t *ppos) 1097 { 1098 struct task_struct *task = get_proc_task(file_inode(file)); 1099 char buffer[PROC_NUMBUF]; 1100 int oom_adj = OOM_ADJUST_MIN; 1101 size_t len; 1102 1103 if (!task) 1104 return -ESRCH; 1105 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1106 oom_adj = OOM_ADJUST_MAX; 1107 else 1108 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1109 OOM_SCORE_ADJ_MAX; 1110 put_task_struct(task); 1111 if (oom_adj > OOM_ADJUST_MAX) 1112 oom_adj = OOM_ADJUST_MAX; 1113 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1114 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1115 } 1116 1117 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1118 { 1119 struct mm_struct *mm = NULL; 1120 struct task_struct *task; 1121 int err = 0; 1122 1123 task = get_proc_task(file_inode(file)); 1124 if (!task) 1125 return -ESRCH; 1126 1127 mutex_lock(&oom_adj_mutex); 1128 if (legacy) { 1129 if (oom_adj < task->signal->oom_score_adj && 1130 !capable(CAP_SYS_RESOURCE)) { 1131 err = -EACCES; 1132 goto err_unlock; 1133 } 1134 /* 1135 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1136 * /proc/pid/oom_score_adj instead. 1137 */ 1138 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1139 current->comm, task_pid_nr(current), task_pid_nr(task), 1140 task_pid_nr(task)); 1141 } else { 1142 if ((short)oom_adj < task->signal->oom_score_adj_min && 1143 !capable(CAP_SYS_RESOURCE)) { 1144 err = -EACCES; 1145 goto err_unlock; 1146 } 1147 } 1148 1149 /* 1150 * Make sure we will check other processes sharing the mm if this is 1151 * not vfrok which wants its own oom_score_adj. 1152 * pin the mm so it doesn't go away and get reused after task_unlock 1153 */ 1154 if (!task->vfork_done) { 1155 struct task_struct *p = find_lock_task_mm(task); 1156 1157 if (p) { 1158 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) { 1159 mm = p->mm; 1160 mmgrab(mm); 1161 } 1162 task_unlock(p); 1163 } 1164 } 1165 1166 task->signal->oom_score_adj = oom_adj; 1167 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1168 task->signal->oom_score_adj_min = (short)oom_adj; 1169 trace_oom_score_adj_update(task); 1170 1171 if (mm) { 1172 struct task_struct *p; 1173 1174 rcu_read_lock(); 1175 for_each_process(p) { 1176 if (same_thread_group(task, p)) 1177 continue; 1178 1179 /* do not touch kernel threads or the global init */ 1180 if (p->flags & PF_KTHREAD || is_global_init(p)) 1181 continue; 1182 1183 task_lock(p); 1184 if (!p->vfork_done && process_shares_mm(p, mm)) { 1185 p->signal->oom_score_adj = oom_adj; 1186 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1187 p->signal->oom_score_adj_min = (short)oom_adj; 1188 } 1189 task_unlock(p); 1190 } 1191 rcu_read_unlock(); 1192 mmdrop(mm); 1193 } 1194 err_unlock: 1195 mutex_unlock(&oom_adj_mutex); 1196 put_task_struct(task); 1197 return err; 1198 } 1199 1200 /* 1201 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1202 * kernels. The effective policy is defined by oom_score_adj, which has a 1203 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1204 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1205 * Processes that become oom disabled via oom_adj will still be oom disabled 1206 * with this implementation. 1207 * 1208 * oom_adj cannot be removed since existing userspace binaries use it. 1209 */ 1210 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1211 size_t count, loff_t *ppos) 1212 { 1213 char buffer[PROC_NUMBUF] = {}; 1214 int oom_adj; 1215 int err; 1216 1217 if (count > sizeof(buffer) - 1) 1218 count = sizeof(buffer) - 1; 1219 if (copy_from_user(buffer, buf, count)) { 1220 err = -EFAULT; 1221 goto out; 1222 } 1223 1224 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1225 if (err) 1226 goto out; 1227 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1228 oom_adj != OOM_DISABLE) { 1229 err = -EINVAL; 1230 goto out; 1231 } 1232 1233 /* 1234 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1235 * value is always attainable. 1236 */ 1237 if (oom_adj == OOM_ADJUST_MAX) 1238 oom_adj = OOM_SCORE_ADJ_MAX; 1239 else 1240 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1241 1242 err = __set_oom_adj(file, oom_adj, true); 1243 out: 1244 return err < 0 ? err : count; 1245 } 1246 1247 static const struct file_operations proc_oom_adj_operations = { 1248 .read = oom_adj_read, 1249 .write = oom_adj_write, 1250 .llseek = generic_file_llseek, 1251 }; 1252 1253 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1254 size_t count, loff_t *ppos) 1255 { 1256 struct task_struct *task = get_proc_task(file_inode(file)); 1257 char buffer[PROC_NUMBUF]; 1258 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1259 size_t len; 1260 1261 if (!task) 1262 return -ESRCH; 1263 oom_score_adj = task->signal->oom_score_adj; 1264 put_task_struct(task); 1265 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1266 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1267 } 1268 1269 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1270 size_t count, loff_t *ppos) 1271 { 1272 char buffer[PROC_NUMBUF] = {}; 1273 int oom_score_adj; 1274 int err; 1275 1276 if (count > sizeof(buffer) - 1) 1277 count = sizeof(buffer) - 1; 1278 if (copy_from_user(buffer, buf, count)) { 1279 err = -EFAULT; 1280 goto out; 1281 } 1282 1283 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1284 if (err) 1285 goto out; 1286 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1287 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1288 err = -EINVAL; 1289 goto out; 1290 } 1291 1292 err = __set_oom_adj(file, oom_score_adj, false); 1293 out: 1294 return err < 0 ? err : count; 1295 } 1296 1297 static const struct file_operations proc_oom_score_adj_operations = { 1298 .read = oom_score_adj_read, 1299 .write = oom_score_adj_write, 1300 .llseek = default_llseek, 1301 }; 1302 1303 #ifdef CONFIG_AUDIT 1304 #define TMPBUFLEN 11 1305 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1306 size_t count, loff_t *ppos) 1307 { 1308 struct inode * inode = file_inode(file); 1309 struct task_struct *task = get_proc_task(inode); 1310 ssize_t length; 1311 char tmpbuf[TMPBUFLEN]; 1312 1313 if (!task) 1314 return -ESRCH; 1315 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1316 from_kuid(file->f_cred->user_ns, 1317 audit_get_loginuid(task))); 1318 put_task_struct(task); 1319 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1320 } 1321 1322 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1323 size_t count, loff_t *ppos) 1324 { 1325 struct inode * inode = file_inode(file); 1326 uid_t loginuid; 1327 kuid_t kloginuid; 1328 int rv; 1329 1330 /* Don't let kthreads write their own loginuid */ 1331 if (current->flags & PF_KTHREAD) 1332 return -EPERM; 1333 1334 rcu_read_lock(); 1335 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1336 rcu_read_unlock(); 1337 return -EPERM; 1338 } 1339 rcu_read_unlock(); 1340 1341 if (*ppos != 0) { 1342 /* No partial writes. */ 1343 return -EINVAL; 1344 } 1345 1346 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1347 if (rv < 0) 1348 return rv; 1349 1350 /* is userspace tring to explicitly UNSET the loginuid? */ 1351 if (loginuid == AUDIT_UID_UNSET) { 1352 kloginuid = INVALID_UID; 1353 } else { 1354 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1355 if (!uid_valid(kloginuid)) 1356 return -EINVAL; 1357 } 1358 1359 rv = audit_set_loginuid(kloginuid); 1360 if (rv < 0) 1361 return rv; 1362 return count; 1363 } 1364 1365 static const struct file_operations proc_loginuid_operations = { 1366 .read = proc_loginuid_read, 1367 .write = proc_loginuid_write, 1368 .llseek = generic_file_llseek, 1369 }; 1370 1371 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1372 size_t count, loff_t *ppos) 1373 { 1374 struct inode * inode = file_inode(file); 1375 struct task_struct *task = get_proc_task(inode); 1376 ssize_t length; 1377 char tmpbuf[TMPBUFLEN]; 1378 1379 if (!task) 1380 return -ESRCH; 1381 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1382 audit_get_sessionid(task)); 1383 put_task_struct(task); 1384 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1385 } 1386 1387 static const struct file_operations proc_sessionid_operations = { 1388 .read = proc_sessionid_read, 1389 .llseek = generic_file_llseek, 1390 }; 1391 #endif 1392 1393 #ifdef CONFIG_FAULT_INJECTION 1394 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1395 size_t count, loff_t *ppos) 1396 { 1397 struct task_struct *task = get_proc_task(file_inode(file)); 1398 char buffer[PROC_NUMBUF]; 1399 size_t len; 1400 int make_it_fail; 1401 1402 if (!task) 1403 return -ESRCH; 1404 make_it_fail = task->make_it_fail; 1405 put_task_struct(task); 1406 1407 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1408 1409 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1410 } 1411 1412 static ssize_t proc_fault_inject_write(struct file * file, 1413 const char __user * buf, size_t count, loff_t *ppos) 1414 { 1415 struct task_struct *task; 1416 char buffer[PROC_NUMBUF] = {}; 1417 int make_it_fail; 1418 int rv; 1419 1420 if (!capable(CAP_SYS_RESOURCE)) 1421 return -EPERM; 1422 1423 if (count > sizeof(buffer) - 1) 1424 count = sizeof(buffer) - 1; 1425 if (copy_from_user(buffer, buf, count)) 1426 return -EFAULT; 1427 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1428 if (rv < 0) 1429 return rv; 1430 if (make_it_fail < 0 || make_it_fail > 1) 1431 return -EINVAL; 1432 1433 task = get_proc_task(file_inode(file)); 1434 if (!task) 1435 return -ESRCH; 1436 task->make_it_fail = make_it_fail; 1437 put_task_struct(task); 1438 1439 return count; 1440 } 1441 1442 static const struct file_operations proc_fault_inject_operations = { 1443 .read = proc_fault_inject_read, 1444 .write = proc_fault_inject_write, 1445 .llseek = generic_file_llseek, 1446 }; 1447 1448 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1449 size_t count, loff_t *ppos) 1450 { 1451 struct task_struct *task; 1452 int err; 1453 unsigned int n; 1454 1455 err = kstrtouint_from_user(buf, count, 0, &n); 1456 if (err) 1457 return err; 1458 1459 task = get_proc_task(file_inode(file)); 1460 if (!task) 1461 return -ESRCH; 1462 task->fail_nth = n; 1463 put_task_struct(task); 1464 1465 return count; 1466 } 1467 1468 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1469 size_t count, loff_t *ppos) 1470 { 1471 struct task_struct *task; 1472 char numbuf[PROC_NUMBUF]; 1473 ssize_t len; 1474 1475 task = get_proc_task(file_inode(file)); 1476 if (!task) 1477 return -ESRCH; 1478 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1479 put_task_struct(task); 1480 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1481 } 1482 1483 static const struct file_operations proc_fail_nth_operations = { 1484 .read = proc_fail_nth_read, 1485 .write = proc_fail_nth_write, 1486 }; 1487 #endif 1488 1489 1490 #ifdef CONFIG_SCHED_DEBUG 1491 /* 1492 * Print out various scheduling related per-task fields: 1493 */ 1494 static int sched_show(struct seq_file *m, void *v) 1495 { 1496 struct inode *inode = m->private; 1497 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 1498 struct task_struct *p; 1499 1500 p = get_proc_task(inode); 1501 if (!p) 1502 return -ESRCH; 1503 proc_sched_show_task(p, ns, m); 1504 1505 put_task_struct(p); 1506 1507 return 0; 1508 } 1509 1510 static ssize_t 1511 sched_write(struct file *file, const char __user *buf, 1512 size_t count, loff_t *offset) 1513 { 1514 struct inode *inode = file_inode(file); 1515 struct task_struct *p; 1516 1517 p = get_proc_task(inode); 1518 if (!p) 1519 return -ESRCH; 1520 proc_sched_set_task(p); 1521 1522 put_task_struct(p); 1523 1524 return count; 1525 } 1526 1527 static int sched_open(struct inode *inode, struct file *filp) 1528 { 1529 return single_open(filp, sched_show, inode); 1530 } 1531 1532 static const struct file_operations proc_pid_sched_operations = { 1533 .open = sched_open, 1534 .read = seq_read, 1535 .write = sched_write, 1536 .llseek = seq_lseek, 1537 .release = single_release, 1538 }; 1539 1540 #endif 1541 1542 #ifdef CONFIG_SCHED_AUTOGROUP 1543 /* 1544 * Print out autogroup related information: 1545 */ 1546 static int sched_autogroup_show(struct seq_file *m, void *v) 1547 { 1548 struct inode *inode = m->private; 1549 struct task_struct *p; 1550 1551 p = get_proc_task(inode); 1552 if (!p) 1553 return -ESRCH; 1554 proc_sched_autogroup_show_task(p, m); 1555 1556 put_task_struct(p); 1557 1558 return 0; 1559 } 1560 1561 static ssize_t 1562 sched_autogroup_write(struct file *file, const char __user *buf, 1563 size_t count, loff_t *offset) 1564 { 1565 struct inode *inode = file_inode(file); 1566 struct task_struct *p; 1567 char buffer[PROC_NUMBUF] = {}; 1568 int nice; 1569 int err; 1570 1571 if (count > sizeof(buffer) - 1) 1572 count = sizeof(buffer) - 1; 1573 if (copy_from_user(buffer, buf, count)) 1574 return -EFAULT; 1575 1576 err = kstrtoint(strstrip(buffer), 0, &nice); 1577 if (err < 0) 1578 return err; 1579 1580 p = get_proc_task(inode); 1581 if (!p) 1582 return -ESRCH; 1583 1584 err = proc_sched_autogroup_set_nice(p, nice); 1585 if (err) 1586 count = err; 1587 1588 put_task_struct(p); 1589 1590 return count; 1591 } 1592 1593 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1594 { 1595 int ret; 1596 1597 ret = single_open(filp, sched_autogroup_show, NULL); 1598 if (!ret) { 1599 struct seq_file *m = filp->private_data; 1600 1601 m->private = inode; 1602 } 1603 return ret; 1604 } 1605 1606 static const struct file_operations proc_pid_sched_autogroup_operations = { 1607 .open = sched_autogroup_open, 1608 .read = seq_read, 1609 .write = sched_autogroup_write, 1610 .llseek = seq_lseek, 1611 .release = single_release, 1612 }; 1613 1614 #endif /* CONFIG_SCHED_AUTOGROUP */ 1615 1616 #ifdef CONFIG_TIME_NS 1617 static int timens_offsets_show(struct seq_file *m, void *v) 1618 { 1619 struct task_struct *p; 1620 1621 p = get_proc_task(file_inode(m->file)); 1622 if (!p) 1623 return -ESRCH; 1624 proc_timens_show_offsets(p, m); 1625 1626 put_task_struct(p); 1627 1628 return 0; 1629 } 1630 1631 static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1632 size_t count, loff_t *ppos) 1633 { 1634 struct inode *inode = file_inode(file); 1635 struct proc_timens_offset offsets[2]; 1636 char *kbuf = NULL, *pos, *next_line; 1637 struct task_struct *p; 1638 int ret, noffsets; 1639 1640 /* Only allow < page size writes at the beginning of the file */ 1641 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1642 return -EINVAL; 1643 1644 /* Slurp in the user data */ 1645 kbuf = memdup_user_nul(buf, count); 1646 if (IS_ERR(kbuf)) 1647 return PTR_ERR(kbuf); 1648 1649 /* Parse the user data */ 1650 ret = -EINVAL; 1651 noffsets = 0; 1652 for (pos = kbuf; pos; pos = next_line) { 1653 struct proc_timens_offset *off = &offsets[noffsets]; 1654 char clock[10]; 1655 int err; 1656 1657 /* Find the end of line and ensure we don't look past it */ 1658 next_line = strchr(pos, '\n'); 1659 if (next_line) { 1660 *next_line = '\0'; 1661 next_line++; 1662 if (*next_line == '\0') 1663 next_line = NULL; 1664 } 1665 1666 err = sscanf(pos, "%9s %lld %lu", clock, 1667 &off->val.tv_sec, &off->val.tv_nsec); 1668 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1669 goto out; 1670 1671 clock[sizeof(clock) - 1] = 0; 1672 if (strcmp(clock, "monotonic") == 0 || 1673 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1674 off->clockid = CLOCK_MONOTONIC; 1675 else if (strcmp(clock, "boottime") == 0 || 1676 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1677 off->clockid = CLOCK_BOOTTIME; 1678 else 1679 goto out; 1680 1681 noffsets++; 1682 if (noffsets == ARRAY_SIZE(offsets)) { 1683 if (next_line) 1684 count = next_line - kbuf; 1685 break; 1686 } 1687 } 1688 1689 ret = -ESRCH; 1690 p = get_proc_task(inode); 1691 if (!p) 1692 goto out; 1693 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1694 put_task_struct(p); 1695 if (ret) 1696 goto out; 1697 1698 ret = count; 1699 out: 1700 kfree(kbuf); 1701 return ret; 1702 } 1703 1704 static int timens_offsets_open(struct inode *inode, struct file *filp) 1705 { 1706 return single_open(filp, timens_offsets_show, inode); 1707 } 1708 1709 static const struct file_operations proc_timens_offsets_operations = { 1710 .open = timens_offsets_open, 1711 .read = seq_read, 1712 .write = timens_offsets_write, 1713 .llseek = seq_lseek, 1714 .release = single_release, 1715 }; 1716 #endif /* CONFIG_TIME_NS */ 1717 1718 static ssize_t comm_write(struct file *file, const char __user *buf, 1719 size_t count, loff_t *offset) 1720 { 1721 struct inode *inode = file_inode(file); 1722 struct task_struct *p; 1723 char buffer[TASK_COMM_LEN] = {}; 1724 const size_t maxlen = sizeof(buffer) - 1; 1725 1726 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1727 return -EFAULT; 1728 1729 p = get_proc_task(inode); 1730 if (!p) 1731 return -ESRCH; 1732 1733 if (same_thread_group(current, p)) { 1734 set_task_comm(p, buffer); 1735 proc_comm_connector(p); 1736 } 1737 else 1738 count = -EINVAL; 1739 1740 put_task_struct(p); 1741 1742 return count; 1743 } 1744 1745 static int comm_show(struct seq_file *m, void *v) 1746 { 1747 struct inode *inode = m->private; 1748 struct task_struct *p; 1749 1750 p = get_proc_task(inode); 1751 if (!p) 1752 return -ESRCH; 1753 1754 proc_task_name(m, p, false); 1755 seq_putc(m, '\n'); 1756 1757 put_task_struct(p); 1758 1759 return 0; 1760 } 1761 1762 static int comm_open(struct inode *inode, struct file *filp) 1763 { 1764 return single_open(filp, comm_show, inode); 1765 } 1766 1767 static const struct file_operations proc_pid_set_comm_operations = { 1768 .open = comm_open, 1769 .read = seq_read, 1770 .write = comm_write, 1771 .llseek = seq_lseek, 1772 .release = single_release, 1773 }; 1774 1775 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1776 { 1777 struct task_struct *task; 1778 struct file *exe_file; 1779 1780 task = get_proc_task(d_inode(dentry)); 1781 if (!task) 1782 return -ENOENT; 1783 exe_file = get_task_exe_file(task); 1784 put_task_struct(task); 1785 if (exe_file) { 1786 *exe_path = exe_file->f_path; 1787 path_get(&exe_file->f_path); 1788 fput(exe_file); 1789 return 0; 1790 } else 1791 return -ENOENT; 1792 } 1793 1794 static const char *proc_pid_get_link(struct dentry *dentry, 1795 struct inode *inode, 1796 struct delayed_call *done) 1797 { 1798 struct path path; 1799 int error = -EACCES; 1800 1801 if (!dentry) 1802 return ERR_PTR(-ECHILD); 1803 1804 /* Are we allowed to snoop on the tasks file descriptors? */ 1805 if (!proc_fd_access_allowed(inode)) 1806 goto out; 1807 1808 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1809 if (error) 1810 goto out; 1811 1812 error = nd_jump_link(&path); 1813 out: 1814 return ERR_PTR(error); 1815 } 1816 1817 static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen) 1818 { 1819 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL); 1820 char *pathname; 1821 int len; 1822 1823 if (!tmp) 1824 return -ENOMEM; 1825 1826 pathname = d_path(path, tmp, PATH_MAX); 1827 len = PTR_ERR(pathname); 1828 if (IS_ERR(pathname)) 1829 goto out; 1830 len = tmp + PATH_MAX - 1 - pathname; 1831 1832 if (len > buflen) 1833 len = buflen; 1834 if (copy_to_user(buffer, pathname, len)) 1835 len = -EFAULT; 1836 out: 1837 kfree(tmp); 1838 return len; 1839 } 1840 1841 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1842 { 1843 int error = -EACCES; 1844 struct inode *inode = d_inode(dentry); 1845 struct path path; 1846 1847 /* Are we allowed to snoop on the tasks file descriptors? */ 1848 if (!proc_fd_access_allowed(inode)) 1849 goto out; 1850 1851 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1852 if (error) 1853 goto out; 1854 1855 error = do_proc_readlink(&path, buffer, buflen); 1856 path_put(&path); 1857 out: 1858 return error; 1859 } 1860 1861 const struct inode_operations proc_pid_link_inode_operations = { 1862 .readlink = proc_pid_readlink, 1863 .get_link = proc_pid_get_link, 1864 .setattr = proc_setattr, 1865 }; 1866 1867 1868 /* building an inode */ 1869 1870 void task_dump_owner(struct task_struct *task, umode_t mode, 1871 kuid_t *ruid, kgid_t *rgid) 1872 { 1873 /* Depending on the state of dumpable compute who should own a 1874 * proc file for a task. 1875 */ 1876 const struct cred *cred; 1877 kuid_t uid; 1878 kgid_t gid; 1879 1880 if (unlikely(task->flags & PF_KTHREAD)) { 1881 *ruid = GLOBAL_ROOT_UID; 1882 *rgid = GLOBAL_ROOT_GID; 1883 return; 1884 } 1885 1886 /* Default to the tasks effective ownership */ 1887 rcu_read_lock(); 1888 cred = __task_cred(task); 1889 uid = cred->euid; 1890 gid = cred->egid; 1891 rcu_read_unlock(); 1892 1893 /* 1894 * Before the /proc/pid/status file was created the only way to read 1895 * the effective uid of a /process was to stat /proc/pid. Reading 1896 * /proc/pid/status is slow enough that procps and other packages 1897 * kept stating /proc/pid. To keep the rules in /proc simple I have 1898 * made this apply to all per process world readable and executable 1899 * directories. 1900 */ 1901 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1902 struct mm_struct *mm; 1903 task_lock(task); 1904 mm = task->mm; 1905 /* Make non-dumpable tasks owned by some root */ 1906 if (mm) { 1907 if (get_dumpable(mm) != SUID_DUMP_USER) { 1908 struct user_namespace *user_ns = mm->user_ns; 1909 1910 uid = make_kuid(user_ns, 0); 1911 if (!uid_valid(uid)) 1912 uid = GLOBAL_ROOT_UID; 1913 1914 gid = make_kgid(user_ns, 0); 1915 if (!gid_valid(gid)) 1916 gid = GLOBAL_ROOT_GID; 1917 } 1918 } else { 1919 uid = GLOBAL_ROOT_UID; 1920 gid = GLOBAL_ROOT_GID; 1921 } 1922 task_unlock(task); 1923 } 1924 *ruid = uid; 1925 *rgid = gid; 1926 } 1927 1928 void proc_pid_evict_inode(struct proc_inode *ei) 1929 { 1930 struct pid *pid = ei->pid; 1931 1932 if (S_ISDIR(ei->vfs_inode.i_mode)) { 1933 spin_lock(&pid->lock); 1934 hlist_del_init_rcu(&ei->sibling_inodes); 1935 spin_unlock(&pid->lock); 1936 } 1937 } 1938 1939 struct inode *proc_pid_make_inode(struct super_block *sb, 1940 struct task_struct *task, umode_t mode) 1941 { 1942 struct inode * inode; 1943 struct proc_inode *ei; 1944 struct pid *pid; 1945 1946 /* We need a new inode */ 1947 1948 inode = new_inode(sb); 1949 if (!inode) 1950 goto out; 1951 1952 /* Common stuff */ 1953 ei = PROC_I(inode); 1954 inode->i_mode = mode; 1955 inode->i_ino = get_next_ino(); 1956 simple_inode_init_ts(inode); 1957 inode->i_op = &proc_def_inode_operations; 1958 1959 /* 1960 * grab the reference to task. 1961 */ 1962 pid = get_task_pid(task, PIDTYPE_PID); 1963 if (!pid) 1964 goto out_unlock; 1965 1966 /* Let the pid remember us for quick removal */ 1967 ei->pid = pid; 1968 1969 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1970 security_task_to_inode(task, inode); 1971 1972 out: 1973 return inode; 1974 1975 out_unlock: 1976 iput(inode); 1977 return NULL; 1978 } 1979 1980 /* 1981 * Generating an inode and adding it into @pid->inodes, so that task will 1982 * invalidate inode's dentry before being released. 1983 * 1984 * This helper is used for creating dir-type entries under '/proc' and 1985 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>' 1986 * can be released by invalidating '/proc/<tgid>' dentry. 1987 * In theory, dentries under '/proc/<tgid>/task' can also be released by 1988 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single 1989 * thread exiting situation: Any one of threads should invalidate its 1990 * '/proc/<tgid>/task/<pid>' dentry before released. 1991 */ 1992 static struct inode *proc_pid_make_base_inode(struct super_block *sb, 1993 struct task_struct *task, umode_t mode) 1994 { 1995 struct inode *inode; 1996 struct proc_inode *ei; 1997 struct pid *pid; 1998 1999 inode = proc_pid_make_inode(sb, task, mode); 2000 if (!inode) 2001 return NULL; 2002 2003 /* Let proc_flush_pid find this directory inode */ 2004 ei = PROC_I(inode); 2005 pid = ei->pid; 2006 spin_lock(&pid->lock); 2007 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); 2008 spin_unlock(&pid->lock); 2009 2010 return inode; 2011 } 2012 2013 int pid_getattr(struct mnt_idmap *idmap, const struct path *path, 2014 struct kstat *stat, u32 request_mask, unsigned int query_flags) 2015 { 2016 struct inode *inode = d_inode(path->dentry); 2017 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 2018 struct task_struct *task; 2019 2020 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 2021 2022 stat->uid = GLOBAL_ROOT_UID; 2023 stat->gid = GLOBAL_ROOT_GID; 2024 rcu_read_lock(); 2025 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2026 if (task) { 2027 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) { 2028 rcu_read_unlock(); 2029 /* 2030 * This doesn't prevent learning whether PID exists, 2031 * it only makes getattr() consistent with readdir(). 2032 */ 2033 return -ENOENT; 2034 } 2035 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 2036 } 2037 rcu_read_unlock(); 2038 return 0; 2039 } 2040 2041 /* dentry stuff */ 2042 2043 /* 2044 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 2045 */ 2046 void pid_update_inode(struct task_struct *task, struct inode *inode) 2047 { 2048 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 2049 2050 inode->i_mode &= ~(S_ISUID | S_ISGID); 2051 security_task_to_inode(task, inode); 2052 } 2053 2054 /* 2055 * Rewrite the inode's ownerships here because the owning task may have 2056 * performed a setuid(), etc. 2057 * 2058 */ 2059 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 2060 { 2061 struct inode *inode; 2062 struct task_struct *task; 2063 int ret = 0; 2064 2065 rcu_read_lock(); 2066 inode = d_inode_rcu(dentry); 2067 if (!inode) 2068 goto out; 2069 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2070 2071 if (task) { 2072 pid_update_inode(task, inode); 2073 ret = 1; 2074 } 2075 out: 2076 rcu_read_unlock(); 2077 return ret; 2078 } 2079 2080 static inline bool proc_inode_is_dead(struct inode *inode) 2081 { 2082 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 2083 } 2084 2085 int pid_delete_dentry(const struct dentry *dentry) 2086 { 2087 /* Is the task we represent dead? 2088 * If so, then don't put the dentry on the lru list, 2089 * kill it immediately. 2090 */ 2091 return proc_inode_is_dead(d_inode(dentry)); 2092 } 2093 2094 const struct dentry_operations pid_dentry_operations = 2095 { 2096 .d_revalidate = pid_revalidate, 2097 .d_delete = pid_delete_dentry, 2098 }; 2099 2100 /* Lookups */ 2101 2102 /* 2103 * Fill a directory entry. 2104 * 2105 * If possible create the dcache entry and derive our inode number and 2106 * file type from dcache entry. 2107 * 2108 * Since all of the proc inode numbers are dynamically generated, the inode 2109 * numbers do not exist until the inode is cache. This means creating 2110 * the dcache entry in readdir is necessary to keep the inode numbers 2111 * reported by readdir in sync with the inode numbers reported 2112 * by stat. 2113 */ 2114 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 2115 const char *name, unsigned int len, 2116 instantiate_t instantiate, struct task_struct *task, const void *ptr) 2117 { 2118 struct dentry *child, *dir = file->f_path.dentry; 2119 struct qstr qname = QSTR_INIT(name, len); 2120 struct inode *inode; 2121 unsigned type = DT_UNKNOWN; 2122 ino_t ino = 1; 2123 2124 child = d_hash_and_lookup(dir, &qname); 2125 if (!child) { 2126 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2127 child = d_alloc_parallel(dir, &qname, &wq); 2128 if (IS_ERR(child)) 2129 goto end_instantiate; 2130 if (d_in_lookup(child)) { 2131 struct dentry *res; 2132 res = instantiate(child, task, ptr); 2133 d_lookup_done(child); 2134 if (unlikely(res)) { 2135 dput(child); 2136 child = res; 2137 if (IS_ERR(child)) 2138 goto end_instantiate; 2139 } 2140 } 2141 } 2142 inode = d_inode(child); 2143 ino = inode->i_ino; 2144 type = inode->i_mode >> 12; 2145 dput(child); 2146 end_instantiate: 2147 return dir_emit(ctx, name, len, ino, type); 2148 } 2149 2150 /* 2151 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2152 * which represent vma start and end addresses. 2153 */ 2154 static int dname_to_vma_addr(struct dentry *dentry, 2155 unsigned long *start, unsigned long *end) 2156 { 2157 const char *str = dentry->d_name.name; 2158 unsigned long long sval, eval; 2159 unsigned int len; 2160 2161 if (str[0] == '0' && str[1] != '-') 2162 return -EINVAL; 2163 len = _parse_integer(str, 16, &sval); 2164 if (len & KSTRTOX_OVERFLOW) 2165 return -EINVAL; 2166 if (sval != (unsigned long)sval) 2167 return -EINVAL; 2168 str += len; 2169 2170 if (*str != '-') 2171 return -EINVAL; 2172 str++; 2173 2174 if (str[0] == '0' && str[1]) 2175 return -EINVAL; 2176 len = _parse_integer(str, 16, &eval); 2177 if (len & KSTRTOX_OVERFLOW) 2178 return -EINVAL; 2179 if (eval != (unsigned long)eval) 2180 return -EINVAL; 2181 str += len; 2182 2183 if (*str != '\0') 2184 return -EINVAL; 2185 2186 *start = sval; 2187 *end = eval; 2188 2189 return 0; 2190 } 2191 2192 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 2193 { 2194 unsigned long vm_start, vm_end; 2195 bool exact_vma_exists = false; 2196 struct mm_struct *mm = NULL; 2197 struct task_struct *task; 2198 struct inode *inode; 2199 int status = 0; 2200 2201 if (flags & LOOKUP_RCU) 2202 return -ECHILD; 2203 2204 inode = d_inode(dentry); 2205 task = get_proc_task(inode); 2206 if (!task) 2207 goto out_notask; 2208 2209 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2210 if (IS_ERR_OR_NULL(mm)) 2211 goto out; 2212 2213 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2214 status = mmap_read_lock_killable(mm); 2215 if (!status) { 2216 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2217 vm_end); 2218 mmap_read_unlock(mm); 2219 } 2220 } 2221 2222 mmput(mm); 2223 2224 if (exact_vma_exists) { 2225 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2226 2227 security_task_to_inode(task, inode); 2228 status = 1; 2229 } 2230 2231 out: 2232 put_task_struct(task); 2233 2234 out_notask: 2235 return status; 2236 } 2237 2238 static const struct dentry_operations tid_map_files_dentry_operations = { 2239 .d_revalidate = map_files_d_revalidate, 2240 .d_delete = pid_delete_dentry, 2241 }; 2242 2243 static int map_files_get_link(struct dentry *dentry, struct path *path) 2244 { 2245 unsigned long vm_start, vm_end; 2246 struct vm_area_struct *vma; 2247 struct task_struct *task; 2248 struct mm_struct *mm; 2249 int rc; 2250 2251 rc = -ENOENT; 2252 task = get_proc_task(d_inode(dentry)); 2253 if (!task) 2254 goto out; 2255 2256 mm = get_task_mm(task); 2257 put_task_struct(task); 2258 if (!mm) 2259 goto out; 2260 2261 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2262 if (rc) 2263 goto out_mmput; 2264 2265 rc = mmap_read_lock_killable(mm); 2266 if (rc) 2267 goto out_mmput; 2268 2269 rc = -ENOENT; 2270 vma = find_exact_vma(mm, vm_start, vm_end); 2271 if (vma && vma->vm_file) { 2272 *path = *file_user_path(vma->vm_file); 2273 path_get(path); 2274 rc = 0; 2275 } 2276 mmap_read_unlock(mm); 2277 2278 out_mmput: 2279 mmput(mm); 2280 out: 2281 return rc; 2282 } 2283 2284 struct map_files_info { 2285 unsigned long start; 2286 unsigned long end; 2287 fmode_t mode; 2288 }; 2289 2290 /* 2291 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due 2292 * to concerns about how the symlinks may be used to bypass permissions on 2293 * ancestor directories in the path to the file in question. 2294 */ 2295 static const char * 2296 proc_map_files_get_link(struct dentry *dentry, 2297 struct inode *inode, 2298 struct delayed_call *done) 2299 { 2300 if (!checkpoint_restore_ns_capable(&init_user_ns)) 2301 return ERR_PTR(-EPERM); 2302 2303 return proc_pid_get_link(dentry, inode, done); 2304 } 2305 2306 /* 2307 * Identical to proc_pid_link_inode_operations except for get_link() 2308 */ 2309 static const struct inode_operations proc_map_files_link_inode_operations = { 2310 .readlink = proc_pid_readlink, 2311 .get_link = proc_map_files_get_link, 2312 .setattr = proc_setattr, 2313 }; 2314 2315 static struct dentry * 2316 proc_map_files_instantiate(struct dentry *dentry, 2317 struct task_struct *task, const void *ptr) 2318 { 2319 fmode_t mode = (fmode_t)(unsigned long)ptr; 2320 struct proc_inode *ei; 2321 struct inode *inode; 2322 2323 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2324 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2325 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2326 if (!inode) 2327 return ERR_PTR(-ENOENT); 2328 2329 ei = PROC_I(inode); 2330 ei->op.proc_get_link = map_files_get_link; 2331 2332 inode->i_op = &proc_map_files_link_inode_operations; 2333 inode->i_size = 64; 2334 2335 return proc_splice_unmountable(inode, dentry, 2336 &tid_map_files_dentry_operations); 2337 } 2338 2339 static struct dentry *proc_map_files_lookup(struct inode *dir, 2340 struct dentry *dentry, unsigned int flags) 2341 { 2342 unsigned long vm_start, vm_end; 2343 struct vm_area_struct *vma; 2344 struct task_struct *task; 2345 struct dentry *result; 2346 struct mm_struct *mm; 2347 2348 result = ERR_PTR(-ENOENT); 2349 task = get_proc_task(dir); 2350 if (!task) 2351 goto out; 2352 2353 result = ERR_PTR(-EACCES); 2354 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2355 goto out_put_task; 2356 2357 result = ERR_PTR(-ENOENT); 2358 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2359 goto out_put_task; 2360 2361 mm = get_task_mm(task); 2362 if (!mm) 2363 goto out_put_task; 2364 2365 result = ERR_PTR(-EINTR); 2366 if (mmap_read_lock_killable(mm)) 2367 goto out_put_mm; 2368 2369 result = ERR_PTR(-ENOENT); 2370 vma = find_exact_vma(mm, vm_start, vm_end); 2371 if (!vma) 2372 goto out_no_vma; 2373 2374 if (vma->vm_file) 2375 result = proc_map_files_instantiate(dentry, task, 2376 (void *)(unsigned long)vma->vm_file->f_mode); 2377 2378 out_no_vma: 2379 mmap_read_unlock(mm); 2380 out_put_mm: 2381 mmput(mm); 2382 out_put_task: 2383 put_task_struct(task); 2384 out: 2385 return result; 2386 } 2387 2388 static const struct inode_operations proc_map_files_inode_operations = { 2389 .lookup = proc_map_files_lookup, 2390 .permission = proc_fd_permission, 2391 .setattr = proc_setattr, 2392 }; 2393 2394 static int 2395 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2396 { 2397 struct vm_area_struct *vma; 2398 struct task_struct *task; 2399 struct mm_struct *mm; 2400 unsigned long nr_files, pos, i; 2401 GENRADIX(struct map_files_info) fa; 2402 struct map_files_info *p; 2403 int ret; 2404 struct vma_iterator vmi; 2405 2406 genradix_init(&fa); 2407 2408 ret = -ENOENT; 2409 task = get_proc_task(file_inode(file)); 2410 if (!task) 2411 goto out; 2412 2413 ret = -EACCES; 2414 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2415 goto out_put_task; 2416 2417 ret = 0; 2418 if (!dir_emit_dots(file, ctx)) 2419 goto out_put_task; 2420 2421 mm = get_task_mm(task); 2422 if (!mm) 2423 goto out_put_task; 2424 2425 ret = mmap_read_lock_killable(mm); 2426 if (ret) { 2427 mmput(mm); 2428 goto out_put_task; 2429 } 2430 2431 nr_files = 0; 2432 2433 /* 2434 * We need two passes here: 2435 * 2436 * 1) Collect vmas of mapped files with mmap_lock taken 2437 * 2) Release mmap_lock and instantiate entries 2438 * 2439 * otherwise we get lockdep complained, since filldir() 2440 * routine might require mmap_lock taken in might_fault(). 2441 */ 2442 2443 pos = 2; 2444 vma_iter_init(&vmi, mm, 0); 2445 for_each_vma(vmi, vma) { 2446 if (!vma->vm_file) 2447 continue; 2448 if (++pos <= ctx->pos) 2449 continue; 2450 2451 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2452 if (!p) { 2453 ret = -ENOMEM; 2454 mmap_read_unlock(mm); 2455 mmput(mm); 2456 goto out_put_task; 2457 } 2458 2459 p->start = vma->vm_start; 2460 p->end = vma->vm_end; 2461 p->mode = vma->vm_file->f_mode; 2462 } 2463 mmap_read_unlock(mm); 2464 mmput(mm); 2465 2466 for (i = 0; i < nr_files; i++) { 2467 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2468 unsigned int len; 2469 2470 p = genradix_ptr(&fa, i); 2471 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2472 if (!proc_fill_cache(file, ctx, 2473 buf, len, 2474 proc_map_files_instantiate, 2475 task, 2476 (void *)(unsigned long)p->mode)) 2477 break; 2478 ctx->pos++; 2479 } 2480 2481 out_put_task: 2482 put_task_struct(task); 2483 out: 2484 genradix_free(&fa); 2485 return ret; 2486 } 2487 2488 static const struct file_operations proc_map_files_operations = { 2489 .read = generic_read_dir, 2490 .iterate_shared = proc_map_files_readdir, 2491 .llseek = generic_file_llseek, 2492 }; 2493 2494 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2495 struct timers_private { 2496 struct pid *pid; 2497 struct task_struct *task; 2498 struct sighand_struct *sighand; 2499 struct pid_namespace *ns; 2500 unsigned long flags; 2501 }; 2502 2503 static void *timers_start(struct seq_file *m, loff_t *pos) 2504 { 2505 struct timers_private *tp = m->private; 2506 2507 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2508 if (!tp->task) 2509 return ERR_PTR(-ESRCH); 2510 2511 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2512 if (!tp->sighand) 2513 return ERR_PTR(-ESRCH); 2514 2515 return seq_hlist_start(&tp->task->signal->posix_timers, *pos); 2516 } 2517 2518 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2519 { 2520 struct timers_private *tp = m->private; 2521 return seq_hlist_next(v, &tp->task->signal->posix_timers, pos); 2522 } 2523 2524 static void timers_stop(struct seq_file *m, void *v) 2525 { 2526 struct timers_private *tp = m->private; 2527 2528 if (tp->sighand) { 2529 unlock_task_sighand(tp->task, &tp->flags); 2530 tp->sighand = NULL; 2531 } 2532 2533 if (tp->task) { 2534 put_task_struct(tp->task); 2535 tp->task = NULL; 2536 } 2537 } 2538 2539 static int show_timer(struct seq_file *m, void *v) 2540 { 2541 struct k_itimer *timer; 2542 struct timers_private *tp = m->private; 2543 int notify; 2544 static const char * const nstr[] = { 2545 [SIGEV_SIGNAL] = "signal", 2546 [SIGEV_NONE] = "none", 2547 [SIGEV_THREAD] = "thread", 2548 }; 2549 2550 timer = hlist_entry((struct hlist_node *)v, struct k_itimer, list); 2551 notify = timer->it_sigev_notify; 2552 2553 seq_printf(m, "ID: %d\n", timer->it_id); 2554 seq_printf(m, "signal: %d/%px\n", 2555 timer->sigq->info.si_signo, 2556 timer->sigq->info.si_value.sival_ptr); 2557 seq_printf(m, "notify: %s/%s.%d\n", 2558 nstr[notify & ~SIGEV_THREAD_ID], 2559 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2560 pid_nr_ns(timer->it_pid, tp->ns)); 2561 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2562 2563 return 0; 2564 } 2565 2566 static const struct seq_operations proc_timers_seq_ops = { 2567 .start = timers_start, 2568 .next = timers_next, 2569 .stop = timers_stop, 2570 .show = show_timer, 2571 }; 2572 2573 static int proc_timers_open(struct inode *inode, struct file *file) 2574 { 2575 struct timers_private *tp; 2576 2577 tp = __seq_open_private(file, &proc_timers_seq_ops, 2578 sizeof(struct timers_private)); 2579 if (!tp) 2580 return -ENOMEM; 2581 2582 tp->pid = proc_pid(inode); 2583 tp->ns = proc_pid_ns(inode->i_sb); 2584 return 0; 2585 } 2586 2587 static const struct file_operations proc_timers_operations = { 2588 .open = proc_timers_open, 2589 .read = seq_read, 2590 .llseek = seq_lseek, 2591 .release = seq_release_private, 2592 }; 2593 #endif 2594 2595 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2596 size_t count, loff_t *offset) 2597 { 2598 struct inode *inode = file_inode(file); 2599 struct task_struct *p; 2600 u64 slack_ns; 2601 int err; 2602 2603 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2604 if (err < 0) 2605 return err; 2606 2607 p = get_proc_task(inode); 2608 if (!p) 2609 return -ESRCH; 2610 2611 if (p != current) { 2612 rcu_read_lock(); 2613 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2614 rcu_read_unlock(); 2615 count = -EPERM; 2616 goto out; 2617 } 2618 rcu_read_unlock(); 2619 2620 err = security_task_setscheduler(p); 2621 if (err) { 2622 count = err; 2623 goto out; 2624 } 2625 } 2626 2627 task_lock(p); 2628 if (rt_or_dl_task_policy(p)) 2629 slack_ns = 0; 2630 else if (slack_ns == 0) 2631 slack_ns = p->default_timer_slack_ns; 2632 p->timer_slack_ns = slack_ns; 2633 task_unlock(p); 2634 2635 out: 2636 put_task_struct(p); 2637 2638 return count; 2639 } 2640 2641 static int timerslack_ns_show(struct seq_file *m, void *v) 2642 { 2643 struct inode *inode = m->private; 2644 struct task_struct *p; 2645 int err = 0; 2646 2647 p = get_proc_task(inode); 2648 if (!p) 2649 return -ESRCH; 2650 2651 if (p != current) { 2652 rcu_read_lock(); 2653 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2654 rcu_read_unlock(); 2655 err = -EPERM; 2656 goto out; 2657 } 2658 rcu_read_unlock(); 2659 2660 err = security_task_getscheduler(p); 2661 if (err) 2662 goto out; 2663 } 2664 2665 task_lock(p); 2666 seq_printf(m, "%llu\n", p->timer_slack_ns); 2667 task_unlock(p); 2668 2669 out: 2670 put_task_struct(p); 2671 2672 return err; 2673 } 2674 2675 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2676 { 2677 return single_open(filp, timerslack_ns_show, inode); 2678 } 2679 2680 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2681 .open = timerslack_ns_open, 2682 .read = seq_read, 2683 .write = timerslack_ns_write, 2684 .llseek = seq_lseek, 2685 .release = single_release, 2686 }; 2687 2688 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2689 struct task_struct *task, const void *ptr) 2690 { 2691 const struct pid_entry *p = ptr; 2692 struct inode *inode; 2693 struct proc_inode *ei; 2694 2695 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2696 if (!inode) 2697 return ERR_PTR(-ENOENT); 2698 2699 ei = PROC_I(inode); 2700 if (S_ISDIR(inode->i_mode)) 2701 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2702 if (p->iop) 2703 inode->i_op = p->iop; 2704 if (p->fop) 2705 inode->i_fop = p->fop; 2706 ei->op = p->op; 2707 pid_update_inode(task, inode); 2708 d_set_d_op(dentry, &pid_dentry_operations); 2709 return d_splice_alias(inode, dentry); 2710 } 2711 2712 static struct dentry *proc_pident_lookup(struct inode *dir, 2713 struct dentry *dentry, 2714 const struct pid_entry *p, 2715 const struct pid_entry *end) 2716 { 2717 struct task_struct *task = get_proc_task(dir); 2718 struct dentry *res = ERR_PTR(-ENOENT); 2719 2720 if (!task) 2721 goto out_no_task; 2722 2723 /* 2724 * Yes, it does not scale. And it should not. Don't add 2725 * new entries into /proc/<tgid>/ without very good reasons. 2726 */ 2727 for (; p < end; p++) { 2728 if (p->len != dentry->d_name.len) 2729 continue; 2730 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2731 res = proc_pident_instantiate(dentry, task, p); 2732 break; 2733 } 2734 } 2735 put_task_struct(task); 2736 out_no_task: 2737 return res; 2738 } 2739 2740 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2741 const struct pid_entry *ents, unsigned int nents) 2742 { 2743 struct task_struct *task = get_proc_task(file_inode(file)); 2744 const struct pid_entry *p; 2745 2746 if (!task) 2747 return -ENOENT; 2748 2749 if (!dir_emit_dots(file, ctx)) 2750 goto out; 2751 2752 if (ctx->pos >= nents + 2) 2753 goto out; 2754 2755 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2756 if (!proc_fill_cache(file, ctx, p->name, p->len, 2757 proc_pident_instantiate, task, p)) 2758 break; 2759 ctx->pos++; 2760 } 2761 out: 2762 put_task_struct(task); 2763 return 0; 2764 } 2765 2766 #ifdef CONFIG_SECURITY 2767 static int proc_pid_attr_open(struct inode *inode, struct file *file) 2768 { 2769 file->private_data = NULL; 2770 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 2771 return 0; 2772 } 2773 2774 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2775 size_t count, loff_t *ppos) 2776 { 2777 struct inode * inode = file_inode(file); 2778 char *p = NULL; 2779 ssize_t length; 2780 struct task_struct *task = get_proc_task(inode); 2781 2782 if (!task) 2783 return -ESRCH; 2784 2785 length = security_getprocattr(task, PROC_I(inode)->op.lsmid, 2786 file->f_path.dentry->d_name.name, 2787 &p); 2788 put_task_struct(task); 2789 if (length > 0) 2790 length = simple_read_from_buffer(buf, count, ppos, p, length); 2791 kfree(p); 2792 return length; 2793 } 2794 2795 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2796 size_t count, loff_t *ppos) 2797 { 2798 struct inode * inode = file_inode(file); 2799 struct task_struct *task; 2800 void *page; 2801 int rv; 2802 2803 /* A task may only write when it was the opener. */ 2804 if (file->private_data != current->mm) 2805 return -EPERM; 2806 2807 rcu_read_lock(); 2808 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2809 if (!task) { 2810 rcu_read_unlock(); 2811 return -ESRCH; 2812 } 2813 /* A task may only write its own attributes. */ 2814 if (current != task) { 2815 rcu_read_unlock(); 2816 return -EACCES; 2817 } 2818 /* Prevent changes to overridden credentials. */ 2819 if (current_cred() != current_real_cred()) { 2820 rcu_read_unlock(); 2821 return -EBUSY; 2822 } 2823 rcu_read_unlock(); 2824 2825 if (count > PAGE_SIZE) 2826 count = PAGE_SIZE; 2827 2828 /* No partial writes. */ 2829 if (*ppos != 0) 2830 return -EINVAL; 2831 2832 page = memdup_user(buf, count); 2833 if (IS_ERR(page)) { 2834 rv = PTR_ERR(page); 2835 goto out; 2836 } 2837 2838 /* Guard against adverse ptrace interaction */ 2839 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2840 if (rv < 0) 2841 goto out_free; 2842 2843 rv = security_setprocattr(PROC_I(inode)->op.lsmid, 2844 file->f_path.dentry->d_name.name, page, 2845 count); 2846 mutex_unlock(¤t->signal->cred_guard_mutex); 2847 out_free: 2848 kfree(page); 2849 out: 2850 return rv; 2851 } 2852 2853 static const struct file_operations proc_pid_attr_operations = { 2854 .open = proc_pid_attr_open, 2855 .read = proc_pid_attr_read, 2856 .write = proc_pid_attr_write, 2857 .llseek = generic_file_llseek, 2858 .release = mem_release, 2859 }; 2860 2861 #define LSM_DIR_OPS(LSM) \ 2862 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2863 struct dir_context *ctx) \ 2864 { \ 2865 return proc_pident_readdir(filp, ctx, \ 2866 LSM##_attr_dir_stuff, \ 2867 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2868 } \ 2869 \ 2870 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2871 .read = generic_read_dir, \ 2872 .iterate_shared = proc_##LSM##_attr_dir_iterate, \ 2873 .llseek = default_llseek, \ 2874 }; \ 2875 \ 2876 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2877 struct dentry *dentry, unsigned int flags) \ 2878 { \ 2879 return proc_pident_lookup(dir, dentry, \ 2880 LSM##_attr_dir_stuff, \ 2881 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2882 } \ 2883 \ 2884 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2885 .lookup = proc_##LSM##_attr_dir_lookup, \ 2886 .getattr = pid_getattr, \ 2887 .setattr = proc_setattr, \ 2888 } 2889 2890 #ifdef CONFIG_SECURITY_SMACK 2891 static const struct pid_entry smack_attr_dir_stuff[] = { 2892 ATTR(LSM_ID_SMACK, "current", 0666), 2893 }; 2894 LSM_DIR_OPS(smack); 2895 #endif 2896 2897 #ifdef CONFIG_SECURITY_APPARMOR 2898 static const struct pid_entry apparmor_attr_dir_stuff[] = { 2899 ATTR(LSM_ID_APPARMOR, "current", 0666), 2900 ATTR(LSM_ID_APPARMOR, "prev", 0444), 2901 ATTR(LSM_ID_APPARMOR, "exec", 0666), 2902 }; 2903 LSM_DIR_OPS(apparmor); 2904 #endif 2905 2906 static const struct pid_entry attr_dir_stuff[] = { 2907 ATTR(LSM_ID_UNDEF, "current", 0666), 2908 ATTR(LSM_ID_UNDEF, "prev", 0444), 2909 ATTR(LSM_ID_UNDEF, "exec", 0666), 2910 ATTR(LSM_ID_UNDEF, "fscreate", 0666), 2911 ATTR(LSM_ID_UNDEF, "keycreate", 0666), 2912 ATTR(LSM_ID_UNDEF, "sockcreate", 0666), 2913 #ifdef CONFIG_SECURITY_SMACK 2914 DIR("smack", 0555, 2915 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2916 #endif 2917 #ifdef CONFIG_SECURITY_APPARMOR 2918 DIR("apparmor", 0555, 2919 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops), 2920 #endif 2921 }; 2922 2923 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2924 { 2925 return proc_pident_readdir(file, ctx, 2926 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2927 } 2928 2929 static const struct file_operations proc_attr_dir_operations = { 2930 .read = generic_read_dir, 2931 .iterate_shared = proc_attr_dir_readdir, 2932 .llseek = generic_file_llseek, 2933 }; 2934 2935 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2936 struct dentry *dentry, unsigned int flags) 2937 { 2938 return proc_pident_lookup(dir, dentry, 2939 attr_dir_stuff, 2940 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2941 } 2942 2943 static const struct inode_operations proc_attr_dir_inode_operations = { 2944 .lookup = proc_attr_dir_lookup, 2945 .getattr = pid_getattr, 2946 .setattr = proc_setattr, 2947 }; 2948 2949 #endif 2950 2951 #ifdef CONFIG_ELF_CORE 2952 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2953 size_t count, loff_t *ppos) 2954 { 2955 struct task_struct *task = get_proc_task(file_inode(file)); 2956 struct mm_struct *mm; 2957 char buffer[PROC_NUMBUF]; 2958 size_t len; 2959 int ret; 2960 2961 if (!task) 2962 return -ESRCH; 2963 2964 ret = 0; 2965 mm = get_task_mm(task); 2966 if (mm) { 2967 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2968 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2969 MMF_DUMP_FILTER_SHIFT)); 2970 mmput(mm); 2971 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2972 } 2973 2974 put_task_struct(task); 2975 2976 return ret; 2977 } 2978 2979 static ssize_t proc_coredump_filter_write(struct file *file, 2980 const char __user *buf, 2981 size_t count, 2982 loff_t *ppos) 2983 { 2984 struct task_struct *task; 2985 struct mm_struct *mm; 2986 unsigned int val; 2987 int ret; 2988 int i; 2989 unsigned long mask; 2990 2991 ret = kstrtouint_from_user(buf, count, 0, &val); 2992 if (ret < 0) 2993 return ret; 2994 2995 ret = -ESRCH; 2996 task = get_proc_task(file_inode(file)); 2997 if (!task) 2998 goto out_no_task; 2999 3000 mm = get_task_mm(task); 3001 if (!mm) 3002 goto out_no_mm; 3003 ret = 0; 3004 3005 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 3006 if (val & mask) 3007 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 3008 else 3009 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 3010 } 3011 3012 mmput(mm); 3013 out_no_mm: 3014 put_task_struct(task); 3015 out_no_task: 3016 if (ret < 0) 3017 return ret; 3018 return count; 3019 } 3020 3021 static const struct file_operations proc_coredump_filter_operations = { 3022 .read = proc_coredump_filter_read, 3023 .write = proc_coredump_filter_write, 3024 .llseek = generic_file_llseek, 3025 }; 3026 #endif 3027 3028 #ifdef CONFIG_TASK_IO_ACCOUNTING 3029 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 3030 { 3031 struct task_io_accounting acct; 3032 int result; 3033 3034 result = down_read_killable(&task->signal->exec_update_lock); 3035 if (result) 3036 return result; 3037 3038 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 3039 result = -EACCES; 3040 goto out_unlock; 3041 } 3042 3043 if (whole) { 3044 struct signal_struct *sig = task->signal; 3045 struct task_struct *t; 3046 unsigned int seq = 1; 3047 unsigned long flags; 3048 3049 rcu_read_lock(); 3050 do { 3051 seq++; /* 2 on the 1st/lockless path, otherwise odd */ 3052 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 3053 3054 acct = sig->ioac; 3055 __for_each_thread(sig, t) 3056 task_io_accounting_add(&acct, &t->ioac); 3057 3058 } while (need_seqretry(&sig->stats_lock, seq)); 3059 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 3060 rcu_read_unlock(); 3061 } else { 3062 acct = task->ioac; 3063 } 3064 3065 seq_printf(m, 3066 "rchar: %llu\n" 3067 "wchar: %llu\n" 3068 "syscr: %llu\n" 3069 "syscw: %llu\n" 3070 "read_bytes: %llu\n" 3071 "write_bytes: %llu\n" 3072 "cancelled_write_bytes: %llu\n", 3073 (unsigned long long)acct.rchar, 3074 (unsigned long long)acct.wchar, 3075 (unsigned long long)acct.syscr, 3076 (unsigned long long)acct.syscw, 3077 (unsigned long long)acct.read_bytes, 3078 (unsigned long long)acct.write_bytes, 3079 (unsigned long long)acct.cancelled_write_bytes); 3080 result = 0; 3081 3082 out_unlock: 3083 up_read(&task->signal->exec_update_lock); 3084 return result; 3085 } 3086 3087 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 3088 struct pid *pid, struct task_struct *task) 3089 { 3090 return do_io_accounting(task, m, 0); 3091 } 3092 3093 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 3094 struct pid *pid, struct task_struct *task) 3095 { 3096 return do_io_accounting(task, m, 1); 3097 } 3098 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 3099 3100 #ifdef CONFIG_USER_NS 3101 static int proc_id_map_open(struct inode *inode, struct file *file, 3102 const struct seq_operations *seq_ops) 3103 { 3104 struct user_namespace *ns = NULL; 3105 struct task_struct *task; 3106 struct seq_file *seq; 3107 int ret = -EINVAL; 3108 3109 task = get_proc_task(inode); 3110 if (task) { 3111 rcu_read_lock(); 3112 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3113 rcu_read_unlock(); 3114 put_task_struct(task); 3115 } 3116 if (!ns) 3117 goto err; 3118 3119 ret = seq_open(file, seq_ops); 3120 if (ret) 3121 goto err_put_ns; 3122 3123 seq = file->private_data; 3124 seq->private = ns; 3125 3126 return 0; 3127 err_put_ns: 3128 put_user_ns(ns); 3129 err: 3130 return ret; 3131 } 3132 3133 static int proc_id_map_release(struct inode *inode, struct file *file) 3134 { 3135 struct seq_file *seq = file->private_data; 3136 struct user_namespace *ns = seq->private; 3137 put_user_ns(ns); 3138 return seq_release(inode, file); 3139 } 3140 3141 static int proc_uid_map_open(struct inode *inode, struct file *file) 3142 { 3143 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 3144 } 3145 3146 static int proc_gid_map_open(struct inode *inode, struct file *file) 3147 { 3148 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 3149 } 3150 3151 static int proc_projid_map_open(struct inode *inode, struct file *file) 3152 { 3153 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 3154 } 3155 3156 static const struct file_operations proc_uid_map_operations = { 3157 .open = proc_uid_map_open, 3158 .write = proc_uid_map_write, 3159 .read = seq_read, 3160 .llseek = seq_lseek, 3161 .release = proc_id_map_release, 3162 }; 3163 3164 static const struct file_operations proc_gid_map_operations = { 3165 .open = proc_gid_map_open, 3166 .write = proc_gid_map_write, 3167 .read = seq_read, 3168 .llseek = seq_lseek, 3169 .release = proc_id_map_release, 3170 }; 3171 3172 static const struct file_operations proc_projid_map_operations = { 3173 .open = proc_projid_map_open, 3174 .write = proc_projid_map_write, 3175 .read = seq_read, 3176 .llseek = seq_lseek, 3177 .release = proc_id_map_release, 3178 }; 3179 3180 static int proc_setgroups_open(struct inode *inode, struct file *file) 3181 { 3182 struct user_namespace *ns = NULL; 3183 struct task_struct *task; 3184 int ret; 3185 3186 ret = -ESRCH; 3187 task = get_proc_task(inode); 3188 if (task) { 3189 rcu_read_lock(); 3190 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3191 rcu_read_unlock(); 3192 put_task_struct(task); 3193 } 3194 if (!ns) 3195 goto err; 3196 3197 if (file->f_mode & FMODE_WRITE) { 3198 ret = -EACCES; 3199 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3200 goto err_put_ns; 3201 } 3202 3203 ret = single_open(file, &proc_setgroups_show, ns); 3204 if (ret) 3205 goto err_put_ns; 3206 3207 return 0; 3208 err_put_ns: 3209 put_user_ns(ns); 3210 err: 3211 return ret; 3212 } 3213 3214 static int proc_setgroups_release(struct inode *inode, struct file *file) 3215 { 3216 struct seq_file *seq = file->private_data; 3217 struct user_namespace *ns = seq->private; 3218 int ret = single_release(inode, file); 3219 put_user_ns(ns); 3220 return ret; 3221 } 3222 3223 static const struct file_operations proc_setgroups_operations = { 3224 .open = proc_setgroups_open, 3225 .write = proc_setgroups_write, 3226 .read = seq_read, 3227 .llseek = seq_lseek, 3228 .release = proc_setgroups_release, 3229 }; 3230 #endif /* CONFIG_USER_NS */ 3231 3232 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3233 struct pid *pid, struct task_struct *task) 3234 { 3235 int err = lock_trace(task); 3236 if (!err) { 3237 seq_printf(m, "%08x\n", task->personality); 3238 unlock_trace(task); 3239 } 3240 return err; 3241 } 3242 3243 #ifdef CONFIG_LIVEPATCH 3244 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3245 struct pid *pid, struct task_struct *task) 3246 { 3247 seq_printf(m, "%d\n", task->patch_state); 3248 return 0; 3249 } 3250 #endif /* CONFIG_LIVEPATCH */ 3251 3252 #ifdef CONFIG_KSM 3253 static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns, 3254 struct pid *pid, struct task_struct *task) 3255 { 3256 struct mm_struct *mm; 3257 3258 mm = get_task_mm(task); 3259 if (mm) { 3260 seq_printf(m, "%lu\n", mm->ksm_merging_pages); 3261 mmput(mm); 3262 } 3263 3264 return 0; 3265 } 3266 static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns, 3267 struct pid *pid, struct task_struct *task) 3268 { 3269 struct mm_struct *mm; 3270 3271 mm = get_task_mm(task); 3272 if (mm) { 3273 seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items); 3274 seq_printf(m, "ksm_zero_pages %ld\n", mm_ksm_zero_pages(mm)); 3275 seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages); 3276 seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm)); 3277 mmput(mm); 3278 } 3279 3280 return 0; 3281 } 3282 #endif /* CONFIG_KSM */ 3283 3284 #ifdef CONFIG_STACKLEAK_METRICS 3285 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3286 struct pid *pid, struct task_struct *task) 3287 { 3288 unsigned long prev_depth = THREAD_SIZE - 3289 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3290 unsigned long depth = THREAD_SIZE - 3291 (task->lowest_stack & (THREAD_SIZE - 1)); 3292 3293 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3294 prev_depth, depth); 3295 return 0; 3296 } 3297 #endif /* CONFIG_STACKLEAK_METRICS */ 3298 3299 /* 3300 * Thread groups 3301 */ 3302 static const struct file_operations proc_task_operations; 3303 static const struct inode_operations proc_task_inode_operations; 3304 3305 static const struct pid_entry tgid_base_stuff[] = { 3306 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3307 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3308 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3309 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3310 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3311 #ifdef CONFIG_NET 3312 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3313 #endif 3314 REG("environ", S_IRUSR, proc_environ_operations), 3315 REG("auxv", S_IRUSR, proc_auxv_operations), 3316 ONE("status", S_IRUGO, proc_pid_status), 3317 ONE("personality", S_IRUSR, proc_pid_personality), 3318 ONE("limits", S_IRUGO, proc_pid_limits), 3319 #ifdef CONFIG_SCHED_DEBUG 3320 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3321 #endif 3322 #ifdef CONFIG_SCHED_AUTOGROUP 3323 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3324 #endif 3325 #ifdef CONFIG_TIME_NS 3326 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3327 #endif 3328 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3329 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3330 ONE("syscall", S_IRUSR, proc_pid_syscall), 3331 #endif 3332 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3333 ONE("stat", S_IRUGO, proc_tgid_stat), 3334 ONE("statm", S_IRUGO, proc_pid_statm), 3335 REG("maps", S_IRUGO, proc_pid_maps_operations), 3336 #ifdef CONFIG_NUMA 3337 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3338 #endif 3339 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3340 LNK("cwd", proc_cwd_link), 3341 LNK("root", proc_root_link), 3342 LNK("exe", proc_exe_link), 3343 REG("mounts", S_IRUGO, proc_mounts_operations), 3344 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3345 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3346 #ifdef CONFIG_PROC_PAGE_MONITOR 3347 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3348 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3349 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3350 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3351 #endif 3352 #ifdef CONFIG_SECURITY 3353 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3354 #endif 3355 #ifdef CONFIG_KALLSYMS 3356 ONE("wchan", S_IRUGO, proc_pid_wchan), 3357 #endif 3358 #ifdef CONFIG_STACKTRACE 3359 ONE("stack", S_IRUSR, proc_pid_stack), 3360 #endif 3361 #ifdef CONFIG_SCHED_INFO 3362 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3363 #endif 3364 #ifdef CONFIG_LATENCYTOP 3365 REG("latency", S_IRUGO, proc_lstats_operations), 3366 #endif 3367 #ifdef CONFIG_PROC_PID_CPUSET 3368 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3369 #endif 3370 #ifdef CONFIG_CGROUPS 3371 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3372 #endif 3373 #ifdef CONFIG_PROC_CPU_RESCTRL 3374 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3375 #endif 3376 ONE("oom_score", S_IRUGO, proc_oom_score), 3377 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3378 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3379 #ifdef CONFIG_AUDIT 3380 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3381 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3382 #endif 3383 #ifdef CONFIG_FAULT_INJECTION 3384 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3385 REG("fail-nth", 0644, proc_fail_nth_operations), 3386 #endif 3387 #ifdef CONFIG_ELF_CORE 3388 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3389 #endif 3390 #ifdef CONFIG_TASK_IO_ACCOUNTING 3391 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3392 #endif 3393 #ifdef CONFIG_USER_NS 3394 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3395 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3396 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3397 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3398 #endif 3399 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3400 REG("timers", S_IRUGO, proc_timers_operations), 3401 #endif 3402 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3403 #ifdef CONFIG_LIVEPATCH 3404 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3405 #endif 3406 #ifdef CONFIG_STACKLEAK_METRICS 3407 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3408 #endif 3409 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3410 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3411 #endif 3412 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3413 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3414 #endif 3415 #ifdef CONFIG_KSM 3416 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages), 3417 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat), 3418 #endif 3419 }; 3420 3421 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3422 { 3423 return proc_pident_readdir(file, ctx, 3424 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3425 } 3426 3427 static const struct file_operations proc_tgid_base_operations = { 3428 .read = generic_read_dir, 3429 .iterate_shared = proc_tgid_base_readdir, 3430 .llseek = generic_file_llseek, 3431 }; 3432 3433 struct pid *tgid_pidfd_to_pid(const struct file *file) 3434 { 3435 if (file->f_op != &proc_tgid_base_operations) 3436 return ERR_PTR(-EBADF); 3437 3438 return proc_pid(file_inode(file)); 3439 } 3440 3441 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3442 { 3443 return proc_pident_lookup(dir, dentry, 3444 tgid_base_stuff, 3445 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3446 } 3447 3448 static const struct inode_operations proc_tgid_base_inode_operations = { 3449 .lookup = proc_tgid_base_lookup, 3450 .getattr = pid_getattr, 3451 .setattr = proc_setattr, 3452 .permission = proc_pid_permission, 3453 }; 3454 3455 /** 3456 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. 3457 * @pid: pid that should be flushed. 3458 * 3459 * This function walks a list of inodes (that belong to any proc 3460 * filesystem) that are attached to the pid and flushes them from 3461 * the dentry cache. 3462 * 3463 * It is safe and reasonable to cache /proc entries for a task until 3464 * that task exits. After that they just clog up the dcache with 3465 * useless entries, possibly causing useful dcache entries to be 3466 * flushed instead. This routine is provided to flush those useless 3467 * dcache entries when a process is reaped. 3468 * 3469 * NOTE: This routine is just an optimization so it does not guarantee 3470 * that no dcache entries will exist after a process is reaped 3471 * it just makes it very unlikely that any will persist. 3472 */ 3473 3474 void proc_flush_pid(struct pid *pid) 3475 { 3476 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); 3477 } 3478 3479 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3480 struct task_struct *task, const void *ptr) 3481 { 3482 struct inode *inode; 3483 3484 inode = proc_pid_make_base_inode(dentry->d_sb, task, 3485 S_IFDIR | S_IRUGO | S_IXUGO); 3486 if (!inode) 3487 return ERR_PTR(-ENOENT); 3488 3489 inode->i_op = &proc_tgid_base_inode_operations; 3490 inode->i_fop = &proc_tgid_base_operations; 3491 inode->i_flags|=S_IMMUTABLE; 3492 3493 set_nlink(inode, nlink_tgid); 3494 pid_update_inode(task, inode); 3495 3496 d_set_d_op(dentry, &pid_dentry_operations); 3497 return d_splice_alias(inode, dentry); 3498 } 3499 3500 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3501 { 3502 struct task_struct *task; 3503 unsigned tgid; 3504 struct proc_fs_info *fs_info; 3505 struct pid_namespace *ns; 3506 struct dentry *result = ERR_PTR(-ENOENT); 3507 3508 tgid = name_to_int(&dentry->d_name); 3509 if (tgid == ~0U) 3510 goto out; 3511 3512 fs_info = proc_sb_info(dentry->d_sb); 3513 ns = fs_info->pid_ns; 3514 rcu_read_lock(); 3515 task = find_task_by_pid_ns(tgid, ns); 3516 if (task) 3517 get_task_struct(task); 3518 rcu_read_unlock(); 3519 if (!task) 3520 goto out; 3521 3522 /* Limit procfs to only ptraceable tasks */ 3523 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) { 3524 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS)) 3525 goto out_put_task; 3526 } 3527 3528 result = proc_pid_instantiate(dentry, task, NULL); 3529 out_put_task: 3530 put_task_struct(task); 3531 out: 3532 return result; 3533 } 3534 3535 /* 3536 * Find the first task with tgid >= tgid 3537 * 3538 */ 3539 struct tgid_iter { 3540 unsigned int tgid; 3541 struct task_struct *task; 3542 }; 3543 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3544 { 3545 struct pid *pid; 3546 3547 if (iter.task) 3548 put_task_struct(iter.task); 3549 rcu_read_lock(); 3550 retry: 3551 iter.task = NULL; 3552 pid = find_ge_pid(iter.tgid, ns); 3553 if (pid) { 3554 iter.tgid = pid_nr_ns(pid, ns); 3555 iter.task = pid_task(pid, PIDTYPE_TGID); 3556 if (!iter.task) { 3557 iter.tgid += 1; 3558 goto retry; 3559 } 3560 get_task_struct(iter.task); 3561 } 3562 rcu_read_unlock(); 3563 return iter; 3564 } 3565 3566 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3567 3568 /* for the /proc/ directory itself, after non-process stuff has been done */ 3569 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3570 { 3571 struct tgid_iter iter; 3572 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb); 3573 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb); 3574 loff_t pos = ctx->pos; 3575 3576 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3577 return 0; 3578 3579 if (pos == TGID_OFFSET - 2) { 3580 struct inode *inode = d_inode(fs_info->proc_self); 3581 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3582 return 0; 3583 ctx->pos = pos = pos + 1; 3584 } 3585 if (pos == TGID_OFFSET - 1) { 3586 struct inode *inode = d_inode(fs_info->proc_thread_self); 3587 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3588 return 0; 3589 ctx->pos = pos = pos + 1; 3590 } 3591 iter.tgid = pos - TGID_OFFSET; 3592 iter.task = NULL; 3593 for (iter = next_tgid(ns, iter); 3594 iter.task; 3595 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3596 char name[10 + 1]; 3597 unsigned int len; 3598 3599 cond_resched(); 3600 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE)) 3601 continue; 3602 3603 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3604 ctx->pos = iter.tgid + TGID_OFFSET; 3605 if (!proc_fill_cache(file, ctx, name, len, 3606 proc_pid_instantiate, iter.task, NULL)) { 3607 put_task_struct(iter.task); 3608 return 0; 3609 } 3610 } 3611 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3612 return 0; 3613 } 3614 3615 /* 3616 * proc_tid_comm_permission is a special permission function exclusively 3617 * used for the node /proc/<pid>/task/<tid>/comm. 3618 * It bypasses generic permission checks in the case where a task of the same 3619 * task group attempts to access the node. 3620 * The rationale behind this is that glibc and bionic access this node for 3621 * cross thread naming (pthread_set/getname_np(!self)). However, if 3622 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3623 * which locks out the cross thread naming implementation. 3624 * This function makes sure that the node is always accessible for members of 3625 * same thread group. 3626 */ 3627 static int proc_tid_comm_permission(struct mnt_idmap *idmap, 3628 struct inode *inode, int mask) 3629 { 3630 bool is_same_tgroup; 3631 struct task_struct *task; 3632 3633 task = get_proc_task(inode); 3634 if (!task) 3635 return -ESRCH; 3636 is_same_tgroup = same_thread_group(current, task); 3637 put_task_struct(task); 3638 3639 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3640 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3641 * read or written by the members of the corresponding 3642 * thread group. 3643 */ 3644 return 0; 3645 } 3646 3647 return generic_permission(&nop_mnt_idmap, inode, mask); 3648 } 3649 3650 static const struct inode_operations proc_tid_comm_inode_operations = { 3651 .setattr = proc_setattr, 3652 .permission = proc_tid_comm_permission, 3653 }; 3654 3655 /* 3656 * Tasks 3657 */ 3658 static const struct pid_entry tid_base_stuff[] = { 3659 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3660 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3661 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3662 #ifdef CONFIG_NET 3663 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3664 #endif 3665 REG("environ", S_IRUSR, proc_environ_operations), 3666 REG("auxv", S_IRUSR, proc_auxv_operations), 3667 ONE("status", S_IRUGO, proc_pid_status), 3668 ONE("personality", S_IRUSR, proc_pid_personality), 3669 ONE("limits", S_IRUGO, proc_pid_limits), 3670 #ifdef CONFIG_SCHED_DEBUG 3671 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3672 #endif 3673 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3674 &proc_tid_comm_inode_operations, 3675 &proc_pid_set_comm_operations, {}), 3676 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3677 ONE("syscall", S_IRUSR, proc_pid_syscall), 3678 #endif 3679 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3680 ONE("stat", S_IRUGO, proc_tid_stat), 3681 ONE("statm", S_IRUGO, proc_pid_statm), 3682 REG("maps", S_IRUGO, proc_pid_maps_operations), 3683 #ifdef CONFIG_PROC_CHILDREN 3684 REG("children", S_IRUGO, proc_tid_children_operations), 3685 #endif 3686 #ifdef CONFIG_NUMA 3687 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3688 #endif 3689 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3690 LNK("cwd", proc_cwd_link), 3691 LNK("root", proc_root_link), 3692 LNK("exe", proc_exe_link), 3693 REG("mounts", S_IRUGO, proc_mounts_operations), 3694 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3695 #ifdef CONFIG_PROC_PAGE_MONITOR 3696 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3697 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3698 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3699 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3700 #endif 3701 #ifdef CONFIG_SECURITY 3702 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3703 #endif 3704 #ifdef CONFIG_KALLSYMS 3705 ONE("wchan", S_IRUGO, proc_pid_wchan), 3706 #endif 3707 #ifdef CONFIG_STACKTRACE 3708 ONE("stack", S_IRUSR, proc_pid_stack), 3709 #endif 3710 #ifdef CONFIG_SCHED_INFO 3711 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3712 #endif 3713 #ifdef CONFIG_LATENCYTOP 3714 REG("latency", S_IRUGO, proc_lstats_operations), 3715 #endif 3716 #ifdef CONFIG_PROC_PID_CPUSET 3717 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3718 #endif 3719 #ifdef CONFIG_CGROUPS 3720 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3721 #endif 3722 #ifdef CONFIG_PROC_CPU_RESCTRL 3723 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3724 #endif 3725 ONE("oom_score", S_IRUGO, proc_oom_score), 3726 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3727 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3728 #ifdef CONFIG_AUDIT 3729 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3730 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3731 #endif 3732 #ifdef CONFIG_FAULT_INJECTION 3733 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3734 REG("fail-nth", 0644, proc_fail_nth_operations), 3735 #endif 3736 #ifdef CONFIG_TASK_IO_ACCOUNTING 3737 ONE("io", S_IRUSR, proc_tid_io_accounting), 3738 #endif 3739 #ifdef CONFIG_USER_NS 3740 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3741 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3742 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3743 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3744 #endif 3745 #ifdef CONFIG_LIVEPATCH 3746 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3747 #endif 3748 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3749 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3750 #endif 3751 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3752 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3753 #endif 3754 #ifdef CONFIG_KSM 3755 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages), 3756 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat), 3757 #endif 3758 }; 3759 3760 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3761 { 3762 return proc_pident_readdir(file, ctx, 3763 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3764 } 3765 3766 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3767 { 3768 return proc_pident_lookup(dir, dentry, 3769 tid_base_stuff, 3770 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3771 } 3772 3773 static const struct file_operations proc_tid_base_operations = { 3774 .read = generic_read_dir, 3775 .iterate_shared = proc_tid_base_readdir, 3776 .llseek = generic_file_llseek, 3777 }; 3778 3779 static const struct inode_operations proc_tid_base_inode_operations = { 3780 .lookup = proc_tid_base_lookup, 3781 .getattr = pid_getattr, 3782 .setattr = proc_setattr, 3783 }; 3784 3785 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3786 struct task_struct *task, const void *ptr) 3787 { 3788 struct inode *inode; 3789 inode = proc_pid_make_base_inode(dentry->d_sb, task, 3790 S_IFDIR | S_IRUGO | S_IXUGO); 3791 if (!inode) 3792 return ERR_PTR(-ENOENT); 3793 3794 inode->i_op = &proc_tid_base_inode_operations; 3795 inode->i_fop = &proc_tid_base_operations; 3796 inode->i_flags |= S_IMMUTABLE; 3797 3798 set_nlink(inode, nlink_tid); 3799 pid_update_inode(task, inode); 3800 3801 d_set_d_op(dentry, &pid_dentry_operations); 3802 return d_splice_alias(inode, dentry); 3803 } 3804 3805 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3806 { 3807 struct task_struct *task; 3808 struct task_struct *leader = get_proc_task(dir); 3809 unsigned tid; 3810 struct proc_fs_info *fs_info; 3811 struct pid_namespace *ns; 3812 struct dentry *result = ERR_PTR(-ENOENT); 3813 3814 if (!leader) 3815 goto out_no_task; 3816 3817 tid = name_to_int(&dentry->d_name); 3818 if (tid == ~0U) 3819 goto out; 3820 3821 fs_info = proc_sb_info(dentry->d_sb); 3822 ns = fs_info->pid_ns; 3823 rcu_read_lock(); 3824 task = find_task_by_pid_ns(tid, ns); 3825 if (task) 3826 get_task_struct(task); 3827 rcu_read_unlock(); 3828 if (!task) 3829 goto out; 3830 if (!same_thread_group(leader, task)) 3831 goto out_drop_task; 3832 3833 result = proc_task_instantiate(dentry, task, NULL); 3834 out_drop_task: 3835 put_task_struct(task); 3836 out: 3837 put_task_struct(leader); 3838 out_no_task: 3839 return result; 3840 } 3841 3842 /* 3843 * Find the first tid of a thread group to return to user space. 3844 * 3845 * Usually this is just the thread group leader, but if the users 3846 * buffer was too small or there was a seek into the middle of the 3847 * directory we have more work todo. 3848 * 3849 * In the case of a short read we start with find_task_by_pid. 3850 * 3851 * In the case of a seek we start with the leader and walk nr 3852 * threads past it. 3853 */ 3854 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3855 struct pid_namespace *ns) 3856 { 3857 struct task_struct *pos, *task; 3858 unsigned long nr = f_pos; 3859 3860 if (nr != f_pos) /* 32bit overflow? */ 3861 return NULL; 3862 3863 rcu_read_lock(); 3864 task = pid_task(pid, PIDTYPE_PID); 3865 if (!task) 3866 goto fail; 3867 3868 /* Attempt to start with the tid of a thread */ 3869 if (tid && nr) { 3870 pos = find_task_by_pid_ns(tid, ns); 3871 if (pos && same_thread_group(pos, task)) 3872 goto found; 3873 } 3874 3875 /* If nr exceeds the number of threads there is nothing todo */ 3876 if (nr >= get_nr_threads(task)) 3877 goto fail; 3878 3879 /* If we haven't found our starting place yet start 3880 * with the leader and walk nr threads forward. 3881 */ 3882 for_each_thread(task, pos) { 3883 if (!nr--) 3884 goto found; 3885 } 3886 fail: 3887 pos = NULL; 3888 goto out; 3889 found: 3890 get_task_struct(pos); 3891 out: 3892 rcu_read_unlock(); 3893 return pos; 3894 } 3895 3896 /* 3897 * Find the next thread in the thread list. 3898 * Return NULL if there is an error or no next thread. 3899 * 3900 * The reference to the input task_struct is released. 3901 */ 3902 static struct task_struct *next_tid(struct task_struct *start) 3903 { 3904 struct task_struct *pos = NULL; 3905 rcu_read_lock(); 3906 if (pid_alive(start)) { 3907 pos = __next_thread(start); 3908 if (pos) 3909 get_task_struct(pos); 3910 } 3911 rcu_read_unlock(); 3912 put_task_struct(start); 3913 return pos; 3914 } 3915 3916 /* for the /proc/TGID/task/ directories */ 3917 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3918 { 3919 struct inode *inode = file_inode(file); 3920 struct task_struct *task; 3921 struct pid_namespace *ns; 3922 int tid; 3923 3924 if (proc_inode_is_dead(inode)) 3925 return -ENOENT; 3926 3927 if (!dir_emit_dots(file, ctx)) 3928 return 0; 3929 3930 /* We cache the tgid value that the last readdir call couldn't 3931 * return and lseek resets it to 0. 3932 */ 3933 ns = proc_pid_ns(inode->i_sb); 3934 tid = (int)(intptr_t)file->private_data; 3935 file->private_data = NULL; 3936 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3937 task; 3938 task = next_tid(task), ctx->pos++) { 3939 char name[10 + 1]; 3940 unsigned int len; 3941 3942 tid = task_pid_nr_ns(task, ns); 3943 if (!tid) 3944 continue; /* The task has just exited. */ 3945 len = snprintf(name, sizeof(name), "%u", tid); 3946 if (!proc_fill_cache(file, ctx, name, len, 3947 proc_task_instantiate, task, NULL)) { 3948 /* returning this tgid failed, save it as the first 3949 * pid for the next readir call */ 3950 file->private_data = (void *)(intptr_t)tid; 3951 put_task_struct(task); 3952 break; 3953 } 3954 } 3955 3956 return 0; 3957 } 3958 3959 static int proc_task_getattr(struct mnt_idmap *idmap, 3960 const struct path *path, struct kstat *stat, 3961 u32 request_mask, unsigned int query_flags) 3962 { 3963 struct inode *inode = d_inode(path->dentry); 3964 struct task_struct *p = get_proc_task(inode); 3965 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 3966 3967 if (p) { 3968 stat->nlink += get_nr_threads(p); 3969 put_task_struct(p); 3970 } 3971 3972 return 0; 3973 } 3974 3975 /* 3976 * proc_task_readdir() set @file->private_data to a positive integer 3977 * value, so casting that to u64 is safe. generic_llseek_cookie() will 3978 * set @cookie to 0, so casting to an int is safe. The WARN_ON_ONCE() is 3979 * here to catch any unexpected change in behavior either in 3980 * proc_task_readdir() or generic_llseek_cookie(). 3981 */ 3982 static loff_t proc_dir_llseek(struct file *file, loff_t offset, int whence) 3983 { 3984 u64 cookie = (u64)(intptr_t)file->private_data; 3985 loff_t off; 3986 3987 off = generic_llseek_cookie(file, offset, whence, &cookie); 3988 WARN_ON_ONCE(cookie > INT_MAX); 3989 file->private_data = (void *)(intptr_t)cookie; /* serialized by f_pos_lock */ 3990 return off; 3991 } 3992 3993 static const struct inode_operations proc_task_inode_operations = { 3994 .lookup = proc_task_lookup, 3995 .getattr = proc_task_getattr, 3996 .setattr = proc_setattr, 3997 .permission = proc_pid_permission, 3998 }; 3999 4000 static const struct file_operations proc_task_operations = { 4001 .read = generic_read_dir, 4002 .iterate_shared = proc_task_readdir, 4003 .llseek = proc_dir_llseek, 4004 }; 4005 4006 void __init set_proc_pid_nlink(void) 4007 { 4008 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 4009 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 4010 } 4011