1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/generic-radix-tree.h> 63 #include <linux/string.h> 64 #include <linux/seq_file.h> 65 #include <linux/namei.h> 66 #include <linux/mnt_namespace.h> 67 #include <linux/mm.h> 68 #include <linux/swap.h> 69 #include <linux/rcupdate.h> 70 #include <linux/kallsyms.h> 71 #include <linux/stacktrace.h> 72 #include <linux/resource.h> 73 #include <linux/module.h> 74 #include <linux/mount.h> 75 #include <linux/security.h> 76 #include <linux/ptrace.h> 77 #include <linux/printk.h> 78 #include <linux/cache.h> 79 #include <linux/cgroup.h> 80 #include <linux/cpuset.h> 81 #include <linux/audit.h> 82 #include <linux/poll.h> 83 #include <linux/nsproxy.h> 84 #include <linux/oom.h> 85 #include <linux/elf.h> 86 #include <linux/pid_namespace.h> 87 #include <linux/user_namespace.h> 88 #include <linux/fs_parser.h> 89 #include <linux/fs_struct.h> 90 #include <linux/slab.h> 91 #include <linux/sched/autogroup.h> 92 #include <linux/sched/mm.h> 93 #include <linux/sched/coredump.h> 94 #include <linux/sched/debug.h> 95 #include <linux/sched/stat.h> 96 #include <linux/posix-timers.h> 97 #include <linux/time_namespace.h> 98 #include <linux/resctrl.h> 99 #include <linux/cn_proc.h> 100 #include <linux/ksm.h> 101 #include <uapi/linux/lsm.h> 102 #include <trace/events/oom.h> 103 #include "internal.h" 104 #include "fd.h" 105 106 #include "../../lib/kstrtox.h" 107 108 /* NOTE: 109 * Implementing inode permission operations in /proc is almost 110 * certainly an error. Permission checks need to happen during 111 * each system call not at open time. The reason is that most of 112 * what we wish to check for permissions in /proc varies at runtime. 113 * 114 * The classic example of a problem is opening file descriptors 115 * in /proc for a task before it execs a suid executable. 116 */ 117 118 static u8 nlink_tid __ro_after_init; 119 static u8 nlink_tgid __ro_after_init; 120 121 enum proc_mem_force { 122 PROC_MEM_FORCE_ALWAYS, 123 PROC_MEM_FORCE_PTRACE, 124 PROC_MEM_FORCE_NEVER 125 }; 126 127 static enum proc_mem_force proc_mem_force_override __ro_after_init = 128 IS_ENABLED(CONFIG_PROC_MEM_NO_FORCE) ? PROC_MEM_FORCE_NEVER : 129 IS_ENABLED(CONFIG_PROC_MEM_FORCE_PTRACE) ? PROC_MEM_FORCE_PTRACE : 130 PROC_MEM_FORCE_ALWAYS; 131 132 static const struct constant_table proc_mem_force_table[] __initconst = { 133 { "always", PROC_MEM_FORCE_ALWAYS }, 134 { "ptrace", PROC_MEM_FORCE_PTRACE }, 135 { "never", PROC_MEM_FORCE_NEVER }, 136 { } 137 }; 138 139 static int __init early_proc_mem_force_override(char *buf) 140 { 141 if (!buf) 142 return -EINVAL; 143 144 /* 145 * lookup_constant() defaults to proc_mem_force_override to preseve 146 * the initial Kconfig choice in case an invalid param gets passed. 147 */ 148 proc_mem_force_override = lookup_constant(proc_mem_force_table, 149 buf, proc_mem_force_override); 150 151 return 0; 152 } 153 early_param("proc_mem.force_override", early_proc_mem_force_override); 154 155 struct pid_entry { 156 const char *name; 157 unsigned int len; 158 umode_t mode; 159 const struct inode_operations *iop; 160 const struct file_operations *fop; 161 union proc_op op; 162 }; 163 164 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 165 .name = (NAME), \ 166 .len = sizeof(NAME) - 1, \ 167 .mode = MODE, \ 168 .iop = IOP, \ 169 .fop = FOP, \ 170 .op = OP, \ 171 } 172 173 #define DIR(NAME, MODE, iops, fops) \ 174 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 175 #define LNK(NAME, get_link) \ 176 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 177 &proc_pid_link_inode_operations, NULL, \ 178 { .proc_get_link = get_link } ) 179 #define REG(NAME, MODE, fops) \ 180 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 181 #define ONE(NAME, MODE, show) \ 182 NOD(NAME, (S_IFREG|(MODE)), \ 183 NULL, &proc_single_file_operations, \ 184 { .proc_show = show } ) 185 #define ATTR(LSMID, NAME, MODE) \ 186 NOD(NAME, (S_IFREG|(MODE)), \ 187 NULL, &proc_pid_attr_operations, \ 188 { .lsmid = LSMID }) 189 190 /* 191 * Count the number of hardlinks for the pid_entry table, excluding the . 192 * and .. links. 193 */ 194 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 195 unsigned int n) 196 { 197 unsigned int i; 198 unsigned int count; 199 200 count = 2; 201 for (i = 0; i < n; ++i) { 202 if (S_ISDIR(entries[i].mode)) 203 ++count; 204 } 205 206 return count; 207 } 208 209 static int get_task_root(struct task_struct *task, struct path *root) 210 { 211 int result = -ENOENT; 212 213 task_lock(task); 214 if (task->fs) { 215 get_fs_root(task->fs, root); 216 result = 0; 217 } 218 task_unlock(task); 219 return result; 220 } 221 222 static int proc_cwd_link(struct dentry *dentry, struct path *path) 223 { 224 struct task_struct *task = get_proc_task(d_inode(dentry)); 225 int result = -ENOENT; 226 227 if (task) { 228 task_lock(task); 229 if (task->fs) { 230 get_fs_pwd(task->fs, path); 231 result = 0; 232 } 233 task_unlock(task); 234 put_task_struct(task); 235 } 236 return result; 237 } 238 239 static int proc_root_link(struct dentry *dentry, struct path *path) 240 { 241 struct task_struct *task = get_proc_task(d_inode(dentry)); 242 int result = -ENOENT; 243 244 if (task) { 245 result = get_task_root(task, path); 246 put_task_struct(task); 247 } 248 return result; 249 } 250 251 /* 252 * If the user used setproctitle(), we just get the string from 253 * user space at arg_start, and limit it to a maximum of one page. 254 */ 255 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 256 size_t count, unsigned long pos, 257 unsigned long arg_start) 258 { 259 char *page; 260 int ret, got; 261 262 if (pos >= PAGE_SIZE) 263 return 0; 264 265 page = (char *)__get_free_page(GFP_KERNEL); 266 if (!page) 267 return -ENOMEM; 268 269 ret = 0; 270 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 271 if (got > 0) { 272 int len = strnlen(page, got); 273 274 /* Include the NUL character if it was found */ 275 if (len < got) 276 len++; 277 278 if (len > pos) { 279 len -= pos; 280 if (len > count) 281 len = count; 282 len -= copy_to_user(buf, page+pos, len); 283 if (!len) 284 len = -EFAULT; 285 ret = len; 286 } 287 } 288 free_page((unsigned long)page); 289 return ret; 290 } 291 292 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 293 size_t count, loff_t *ppos) 294 { 295 unsigned long arg_start, arg_end, env_start, env_end; 296 unsigned long pos, len; 297 char *page, c; 298 299 /* Check if process spawned far enough to have cmdline. */ 300 if (!mm->env_end) 301 return 0; 302 303 spin_lock(&mm->arg_lock); 304 arg_start = mm->arg_start; 305 arg_end = mm->arg_end; 306 env_start = mm->env_start; 307 env_end = mm->env_end; 308 spin_unlock(&mm->arg_lock); 309 310 if (arg_start >= arg_end) 311 return 0; 312 313 /* 314 * We allow setproctitle() to overwrite the argument 315 * strings, and overflow past the original end. But 316 * only when it overflows into the environment area. 317 */ 318 if (env_start != arg_end || env_end < env_start) 319 env_start = env_end = arg_end; 320 len = env_end - arg_start; 321 322 /* We're not going to care if "*ppos" has high bits set */ 323 pos = *ppos; 324 if (pos >= len) 325 return 0; 326 if (count > len - pos) 327 count = len - pos; 328 if (!count) 329 return 0; 330 331 /* 332 * Magical special case: if the argv[] end byte is not 333 * zero, the user has overwritten it with setproctitle(3). 334 * 335 * Possible future enhancement: do this only once when 336 * pos is 0, and set a flag in the 'struct file'. 337 */ 338 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 339 return get_mm_proctitle(mm, buf, count, pos, arg_start); 340 341 /* 342 * For the non-setproctitle() case we limit things strictly 343 * to the [arg_start, arg_end[ range. 344 */ 345 pos += arg_start; 346 if (pos < arg_start || pos >= arg_end) 347 return 0; 348 if (count > arg_end - pos) 349 count = arg_end - pos; 350 351 page = (char *)__get_free_page(GFP_KERNEL); 352 if (!page) 353 return -ENOMEM; 354 355 len = 0; 356 while (count) { 357 int got; 358 size_t size = min_t(size_t, PAGE_SIZE, count); 359 360 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 361 if (got <= 0) 362 break; 363 got -= copy_to_user(buf, page, got); 364 if (unlikely(!got)) { 365 if (!len) 366 len = -EFAULT; 367 break; 368 } 369 pos += got; 370 buf += got; 371 len += got; 372 count -= got; 373 } 374 375 free_page((unsigned long)page); 376 return len; 377 } 378 379 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 380 size_t count, loff_t *pos) 381 { 382 struct mm_struct *mm; 383 ssize_t ret; 384 385 mm = get_task_mm(tsk); 386 if (!mm) 387 return 0; 388 389 ret = get_mm_cmdline(mm, buf, count, pos); 390 mmput(mm); 391 return ret; 392 } 393 394 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 395 size_t count, loff_t *pos) 396 { 397 struct task_struct *tsk; 398 ssize_t ret; 399 400 BUG_ON(*pos < 0); 401 402 tsk = get_proc_task(file_inode(file)); 403 if (!tsk) 404 return -ESRCH; 405 ret = get_task_cmdline(tsk, buf, count, pos); 406 put_task_struct(tsk); 407 if (ret > 0) 408 *pos += ret; 409 return ret; 410 } 411 412 static const struct file_operations proc_pid_cmdline_ops = { 413 .read = proc_pid_cmdline_read, 414 .llseek = generic_file_llseek, 415 }; 416 417 #ifdef CONFIG_KALLSYMS 418 /* 419 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 420 * Returns the resolved symbol. If that fails, simply return the address. 421 */ 422 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 423 struct pid *pid, struct task_struct *task) 424 { 425 unsigned long wchan; 426 char symname[KSYM_NAME_LEN]; 427 428 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 429 goto print0; 430 431 wchan = get_wchan(task); 432 if (wchan && !lookup_symbol_name(wchan, symname)) { 433 seq_puts(m, symname); 434 return 0; 435 } 436 437 print0: 438 seq_putc(m, '0'); 439 return 0; 440 } 441 #endif /* CONFIG_KALLSYMS */ 442 443 static int lock_trace(struct task_struct *task) 444 { 445 int err = down_read_killable(&task->signal->exec_update_lock); 446 if (err) 447 return err; 448 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 449 up_read(&task->signal->exec_update_lock); 450 return -EPERM; 451 } 452 return 0; 453 } 454 455 static void unlock_trace(struct task_struct *task) 456 { 457 up_read(&task->signal->exec_update_lock); 458 } 459 460 #ifdef CONFIG_STACKTRACE 461 462 #define MAX_STACK_TRACE_DEPTH 64 463 464 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 465 struct pid *pid, struct task_struct *task) 466 { 467 unsigned long *entries; 468 int err; 469 470 /* 471 * The ability to racily run the kernel stack unwinder on a running task 472 * and then observe the unwinder output is scary; while it is useful for 473 * debugging kernel issues, it can also allow an attacker to leak kernel 474 * stack contents. 475 * Doing this in a manner that is at least safe from races would require 476 * some work to ensure that the remote task can not be scheduled; and 477 * even then, this would still expose the unwinder as local attack 478 * surface. 479 * Therefore, this interface is restricted to root. 480 */ 481 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 482 return -EACCES; 483 484 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 485 GFP_KERNEL); 486 if (!entries) 487 return -ENOMEM; 488 489 err = lock_trace(task); 490 if (!err) { 491 unsigned int i, nr_entries; 492 493 nr_entries = stack_trace_save_tsk(task, entries, 494 MAX_STACK_TRACE_DEPTH, 0); 495 496 for (i = 0; i < nr_entries; i++) { 497 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 498 } 499 500 unlock_trace(task); 501 } 502 kfree(entries); 503 504 return err; 505 } 506 #endif 507 508 #ifdef CONFIG_SCHED_INFO 509 /* 510 * Provides /proc/PID/schedstat 511 */ 512 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 513 struct pid *pid, struct task_struct *task) 514 { 515 if (unlikely(!sched_info_on())) 516 seq_puts(m, "0 0 0\n"); 517 else 518 seq_printf(m, "%llu %llu %lu\n", 519 (unsigned long long)task->se.sum_exec_runtime, 520 (unsigned long long)task->sched_info.run_delay, 521 task->sched_info.pcount); 522 523 return 0; 524 } 525 #endif 526 527 #ifdef CONFIG_LATENCYTOP 528 static int lstats_show_proc(struct seq_file *m, void *v) 529 { 530 int i; 531 struct inode *inode = m->private; 532 struct task_struct *task = get_proc_task(inode); 533 534 if (!task) 535 return -ESRCH; 536 seq_puts(m, "Latency Top version : v0.1\n"); 537 for (i = 0; i < LT_SAVECOUNT; i++) { 538 struct latency_record *lr = &task->latency_record[i]; 539 if (lr->backtrace[0]) { 540 int q; 541 seq_printf(m, "%i %li %li", 542 lr->count, lr->time, lr->max); 543 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 544 unsigned long bt = lr->backtrace[q]; 545 546 if (!bt) 547 break; 548 seq_printf(m, " %ps", (void *)bt); 549 } 550 seq_putc(m, '\n'); 551 } 552 553 } 554 put_task_struct(task); 555 return 0; 556 } 557 558 static int lstats_open(struct inode *inode, struct file *file) 559 { 560 return single_open(file, lstats_show_proc, inode); 561 } 562 563 static ssize_t lstats_write(struct file *file, const char __user *buf, 564 size_t count, loff_t *offs) 565 { 566 struct task_struct *task = get_proc_task(file_inode(file)); 567 568 if (!task) 569 return -ESRCH; 570 clear_tsk_latency_tracing(task); 571 put_task_struct(task); 572 573 return count; 574 } 575 576 static const struct file_operations proc_lstats_operations = { 577 .open = lstats_open, 578 .read = seq_read, 579 .write = lstats_write, 580 .llseek = seq_lseek, 581 .release = single_release, 582 }; 583 584 #endif 585 586 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 587 struct pid *pid, struct task_struct *task) 588 { 589 unsigned long totalpages = totalram_pages() + total_swap_pages; 590 unsigned long points = 0; 591 long badness; 592 593 badness = oom_badness(task, totalpages); 594 /* 595 * Special case OOM_SCORE_ADJ_MIN for all others scale the 596 * badness value into [0, 2000] range which we have been 597 * exporting for a long time so userspace might depend on it. 598 */ 599 if (badness != LONG_MIN) 600 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3; 601 602 seq_printf(m, "%lu\n", points); 603 604 return 0; 605 } 606 607 struct limit_names { 608 const char *name; 609 const char *unit; 610 }; 611 612 static const struct limit_names lnames[RLIM_NLIMITS] = { 613 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 614 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 615 [RLIMIT_DATA] = {"Max data size", "bytes"}, 616 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 617 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 618 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 619 [RLIMIT_NPROC] = {"Max processes", "processes"}, 620 [RLIMIT_NOFILE] = {"Max open files", "files"}, 621 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 622 [RLIMIT_AS] = {"Max address space", "bytes"}, 623 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 624 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 625 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 626 [RLIMIT_NICE] = {"Max nice priority", NULL}, 627 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 628 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 629 }; 630 631 /* Display limits for a process */ 632 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 633 struct pid *pid, struct task_struct *task) 634 { 635 unsigned int i; 636 unsigned long flags; 637 638 struct rlimit rlim[RLIM_NLIMITS]; 639 640 if (!lock_task_sighand(task, &flags)) 641 return 0; 642 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 643 unlock_task_sighand(task, &flags); 644 645 /* 646 * print the file header 647 */ 648 seq_puts(m, "Limit " 649 "Soft Limit " 650 "Hard Limit " 651 "Units \n"); 652 653 for (i = 0; i < RLIM_NLIMITS; i++) { 654 if (rlim[i].rlim_cur == RLIM_INFINITY) 655 seq_printf(m, "%-25s %-20s ", 656 lnames[i].name, "unlimited"); 657 else 658 seq_printf(m, "%-25s %-20lu ", 659 lnames[i].name, rlim[i].rlim_cur); 660 661 if (rlim[i].rlim_max == RLIM_INFINITY) 662 seq_printf(m, "%-20s ", "unlimited"); 663 else 664 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 665 666 if (lnames[i].unit) 667 seq_printf(m, "%-10s\n", lnames[i].unit); 668 else 669 seq_putc(m, '\n'); 670 } 671 672 return 0; 673 } 674 675 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 676 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 677 struct pid *pid, struct task_struct *task) 678 { 679 struct syscall_info info; 680 u64 *args = &info.data.args[0]; 681 int res; 682 683 res = lock_trace(task); 684 if (res) 685 return res; 686 687 if (task_current_syscall(task, &info)) 688 seq_puts(m, "running\n"); 689 else if (info.data.nr < 0) 690 seq_printf(m, "%d 0x%llx 0x%llx\n", 691 info.data.nr, info.sp, info.data.instruction_pointer); 692 else 693 seq_printf(m, 694 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 695 info.data.nr, 696 args[0], args[1], args[2], args[3], args[4], args[5], 697 info.sp, info.data.instruction_pointer); 698 unlock_trace(task); 699 700 return 0; 701 } 702 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 703 704 /************************************************************************/ 705 /* Here the fs part begins */ 706 /************************************************************************/ 707 708 /* permission checks */ 709 static bool proc_fd_access_allowed(struct inode *inode) 710 { 711 struct task_struct *task; 712 bool allowed = false; 713 /* Allow access to a task's file descriptors if it is us or we 714 * may use ptrace attach to the process and find out that 715 * information. 716 */ 717 task = get_proc_task(inode); 718 if (task) { 719 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 720 put_task_struct(task); 721 } 722 return allowed; 723 } 724 725 int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 726 struct iattr *attr) 727 { 728 int error; 729 struct inode *inode = d_inode(dentry); 730 731 if (attr->ia_valid & ATTR_MODE) 732 return -EPERM; 733 734 error = setattr_prepare(&nop_mnt_idmap, dentry, attr); 735 if (error) 736 return error; 737 738 setattr_copy(&nop_mnt_idmap, inode, attr); 739 return 0; 740 } 741 742 /* 743 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 744 * or euid/egid (for hide_pid_min=2)? 745 */ 746 static bool has_pid_permissions(struct proc_fs_info *fs_info, 747 struct task_struct *task, 748 enum proc_hidepid hide_pid_min) 749 { 750 /* 751 * If 'hidpid' mount option is set force a ptrace check, 752 * we indicate that we are using a filesystem syscall 753 * by passing PTRACE_MODE_READ_FSCREDS 754 */ 755 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) 756 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 757 758 if (fs_info->hide_pid < hide_pid_min) 759 return true; 760 if (in_group_p(fs_info->pid_gid)) 761 return true; 762 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 763 } 764 765 766 static int proc_pid_permission(struct mnt_idmap *idmap, 767 struct inode *inode, int mask) 768 { 769 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 770 struct task_struct *task; 771 bool has_perms; 772 773 task = get_proc_task(inode); 774 if (!task) 775 return -ESRCH; 776 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS); 777 put_task_struct(task); 778 779 if (!has_perms) { 780 if (fs_info->hide_pid == HIDEPID_INVISIBLE) { 781 /* 782 * Let's make getdents(), stat(), and open() 783 * consistent with each other. If a process 784 * may not stat() a file, it shouldn't be seen 785 * in procfs at all. 786 */ 787 return -ENOENT; 788 } 789 790 return -EPERM; 791 } 792 return generic_permission(&nop_mnt_idmap, inode, mask); 793 } 794 795 796 797 static const struct inode_operations proc_def_inode_operations = { 798 .setattr = proc_setattr, 799 }; 800 801 static int proc_single_show(struct seq_file *m, void *v) 802 { 803 struct inode *inode = m->private; 804 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 805 struct pid *pid = proc_pid(inode); 806 struct task_struct *task; 807 int ret; 808 809 task = get_pid_task(pid, PIDTYPE_PID); 810 if (!task) 811 return -ESRCH; 812 813 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 814 815 put_task_struct(task); 816 return ret; 817 } 818 819 static int proc_single_open(struct inode *inode, struct file *filp) 820 { 821 return single_open(filp, proc_single_show, inode); 822 } 823 824 static const struct file_operations proc_single_file_operations = { 825 .open = proc_single_open, 826 .read = seq_read, 827 .llseek = seq_lseek, 828 .release = single_release, 829 }; 830 831 832 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 833 { 834 struct task_struct *task = get_proc_task(inode); 835 struct mm_struct *mm = ERR_PTR(-ESRCH); 836 837 if (task) { 838 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 839 put_task_struct(task); 840 841 if (!IS_ERR_OR_NULL(mm)) { 842 /* ensure this mm_struct can't be freed */ 843 mmgrab(mm); 844 /* but do not pin its memory */ 845 mmput(mm); 846 } 847 } 848 849 return mm; 850 } 851 852 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 853 { 854 struct mm_struct *mm = proc_mem_open(inode, mode); 855 856 if (IS_ERR(mm)) 857 return PTR_ERR(mm); 858 859 file->private_data = mm; 860 return 0; 861 } 862 863 static int mem_open(struct inode *inode, struct file *file) 864 { 865 if (WARN_ON_ONCE(!(file->f_op->fop_flags & FOP_UNSIGNED_OFFSET))) 866 return -EINVAL; 867 return __mem_open(inode, file, PTRACE_MODE_ATTACH); 868 } 869 870 static bool proc_mem_foll_force(struct file *file, struct mm_struct *mm) 871 { 872 struct task_struct *task; 873 bool ptrace_active = false; 874 875 switch (proc_mem_force_override) { 876 case PROC_MEM_FORCE_NEVER: 877 return false; 878 case PROC_MEM_FORCE_PTRACE: 879 task = get_proc_task(file_inode(file)); 880 if (task) { 881 ptrace_active = READ_ONCE(task->ptrace) && 882 READ_ONCE(task->mm) == mm && 883 READ_ONCE(task->parent) == current; 884 put_task_struct(task); 885 } 886 return ptrace_active; 887 default: 888 return true; 889 } 890 } 891 892 static ssize_t mem_rw(struct file *file, char __user *buf, 893 size_t count, loff_t *ppos, int write) 894 { 895 struct mm_struct *mm = file->private_data; 896 unsigned long addr = *ppos; 897 ssize_t copied; 898 char *page; 899 unsigned int flags; 900 901 if (!mm) 902 return 0; 903 904 page = (char *)__get_free_page(GFP_KERNEL); 905 if (!page) 906 return -ENOMEM; 907 908 copied = 0; 909 if (!mmget_not_zero(mm)) 910 goto free; 911 912 flags = write ? FOLL_WRITE : 0; 913 if (proc_mem_foll_force(file, mm)) 914 flags |= FOLL_FORCE; 915 916 while (count > 0) { 917 size_t this_len = min_t(size_t, count, PAGE_SIZE); 918 919 if (write && copy_from_user(page, buf, this_len)) { 920 copied = -EFAULT; 921 break; 922 } 923 924 this_len = access_remote_vm(mm, addr, page, this_len, flags); 925 if (!this_len) { 926 if (!copied) 927 copied = -EIO; 928 break; 929 } 930 931 if (!write && copy_to_user(buf, page, this_len)) { 932 copied = -EFAULT; 933 break; 934 } 935 936 buf += this_len; 937 addr += this_len; 938 copied += this_len; 939 count -= this_len; 940 } 941 *ppos = addr; 942 943 mmput(mm); 944 free: 945 free_page((unsigned long) page); 946 return copied; 947 } 948 949 static ssize_t mem_read(struct file *file, char __user *buf, 950 size_t count, loff_t *ppos) 951 { 952 return mem_rw(file, buf, count, ppos, 0); 953 } 954 955 static ssize_t mem_write(struct file *file, const char __user *buf, 956 size_t count, loff_t *ppos) 957 { 958 return mem_rw(file, (char __user*)buf, count, ppos, 1); 959 } 960 961 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 962 { 963 switch (orig) { 964 case 0: 965 file->f_pos = offset; 966 break; 967 case 1: 968 file->f_pos += offset; 969 break; 970 default: 971 return -EINVAL; 972 } 973 force_successful_syscall_return(); 974 return file->f_pos; 975 } 976 977 static int mem_release(struct inode *inode, struct file *file) 978 { 979 struct mm_struct *mm = file->private_data; 980 if (mm) 981 mmdrop(mm); 982 return 0; 983 } 984 985 static const struct file_operations proc_mem_operations = { 986 .llseek = mem_lseek, 987 .read = mem_read, 988 .write = mem_write, 989 .open = mem_open, 990 .release = mem_release, 991 .fop_flags = FOP_UNSIGNED_OFFSET, 992 }; 993 994 static int environ_open(struct inode *inode, struct file *file) 995 { 996 return __mem_open(inode, file, PTRACE_MODE_READ); 997 } 998 999 static ssize_t environ_read(struct file *file, char __user *buf, 1000 size_t count, loff_t *ppos) 1001 { 1002 char *page; 1003 unsigned long src = *ppos; 1004 int ret = 0; 1005 struct mm_struct *mm = file->private_data; 1006 unsigned long env_start, env_end; 1007 1008 /* Ensure the process spawned far enough to have an environment. */ 1009 if (!mm || !mm->env_end) 1010 return 0; 1011 1012 page = (char *)__get_free_page(GFP_KERNEL); 1013 if (!page) 1014 return -ENOMEM; 1015 1016 ret = 0; 1017 if (!mmget_not_zero(mm)) 1018 goto free; 1019 1020 spin_lock(&mm->arg_lock); 1021 env_start = mm->env_start; 1022 env_end = mm->env_end; 1023 spin_unlock(&mm->arg_lock); 1024 1025 while (count > 0) { 1026 size_t this_len, max_len; 1027 int retval; 1028 1029 if (src >= (env_end - env_start)) 1030 break; 1031 1032 this_len = env_end - (env_start + src); 1033 1034 max_len = min_t(size_t, PAGE_SIZE, count); 1035 this_len = min(max_len, this_len); 1036 1037 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 1038 1039 if (retval <= 0) { 1040 ret = retval; 1041 break; 1042 } 1043 1044 if (copy_to_user(buf, page, retval)) { 1045 ret = -EFAULT; 1046 break; 1047 } 1048 1049 ret += retval; 1050 src += retval; 1051 buf += retval; 1052 count -= retval; 1053 } 1054 *ppos = src; 1055 mmput(mm); 1056 1057 free: 1058 free_page((unsigned long) page); 1059 return ret; 1060 } 1061 1062 static const struct file_operations proc_environ_operations = { 1063 .open = environ_open, 1064 .read = environ_read, 1065 .llseek = generic_file_llseek, 1066 .release = mem_release, 1067 }; 1068 1069 static int auxv_open(struct inode *inode, struct file *file) 1070 { 1071 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 1072 } 1073 1074 static ssize_t auxv_read(struct file *file, char __user *buf, 1075 size_t count, loff_t *ppos) 1076 { 1077 struct mm_struct *mm = file->private_data; 1078 unsigned int nwords = 0; 1079 1080 if (!mm) 1081 return 0; 1082 do { 1083 nwords += 2; 1084 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1085 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1086 nwords * sizeof(mm->saved_auxv[0])); 1087 } 1088 1089 static const struct file_operations proc_auxv_operations = { 1090 .open = auxv_open, 1091 .read = auxv_read, 1092 .llseek = generic_file_llseek, 1093 .release = mem_release, 1094 }; 1095 1096 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1097 loff_t *ppos) 1098 { 1099 struct task_struct *task = get_proc_task(file_inode(file)); 1100 char buffer[PROC_NUMBUF]; 1101 int oom_adj = OOM_ADJUST_MIN; 1102 size_t len; 1103 1104 if (!task) 1105 return -ESRCH; 1106 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1107 oom_adj = OOM_ADJUST_MAX; 1108 else 1109 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1110 OOM_SCORE_ADJ_MAX; 1111 put_task_struct(task); 1112 if (oom_adj > OOM_ADJUST_MAX) 1113 oom_adj = OOM_ADJUST_MAX; 1114 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1115 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1116 } 1117 1118 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1119 { 1120 struct mm_struct *mm = NULL; 1121 struct task_struct *task; 1122 int err = 0; 1123 1124 task = get_proc_task(file_inode(file)); 1125 if (!task) 1126 return -ESRCH; 1127 1128 mutex_lock(&oom_adj_mutex); 1129 if (legacy) { 1130 if (oom_adj < task->signal->oom_score_adj && 1131 !capable(CAP_SYS_RESOURCE)) { 1132 err = -EACCES; 1133 goto err_unlock; 1134 } 1135 /* 1136 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1137 * /proc/pid/oom_score_adj instead. 1138 */ 1139 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1140 current->comm, task_pid_nr(current), task_pid_nr(task), 1141 task_pid_nr(task)); 1142 } else { 1143 if ((short)oom_adj < task->signal->oom_score_adj_min && 1144 !capable(CAP_SYS_RESOURCE)) { 1145 err = -EACCES; 1146 goto err_unlock; 1147 } 1148 } 1149 1150 /* 1151 * Make sure we will check other processes sharing the mm if this is 1152 * not vfrok which wants its own oom_score_adj. 1153 * pin the mm so it doesn't go away and get reused after task_unlock 1154 */ 1155 if (!task->vfork_done) { 1156 struct task_struct *p = find_lock_task_mm(task); 1157 1158 if (p) { 1159 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) { 1160 mm = p->mm; 1161 mmgrab(mm); 1162 } 1163 task_unlock(p); 1164 } 1165 } 1166 1167 task->signal->oom_score_adj = oom_adj; 1168 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1169 task->signal->oom_score_adj_min = (short)oom_adj; 1170 trace_oom_score_adj_update(task); 1171 1172 if (mm) { 1173 struct task_struct *p; 1174 1175 rcu_read_lock(); 1176 for_each_process(p) { 1177 if (same_thread_group(task, p)) 1178 continue; 1179 1180 /* do not touch kernel threads or the global init */ 1181 if (p->flags & PF_KTHREAD || is_global_init(p)) 1182 continue; 1183 1184 task_lock(p); 1185 if (!p->vfork_done && process_shares_mm(p, mm)) { 1186 p->signal->oom_score_adj = oom_adj; 1187 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1188 p->signal->oom_score_adj_min = (short)oom_adj; 1189 } 1190 task_unlock(p); 1191 } 1192 rcu_read_unlock(); 1193 mmdrop(mm); 1194 } 1195 err_unlock: 1196 mutex_unlock(&oom_adj_mutex); 1197 put_task_struct(task); 1198 return err; 1199 } 1200 1201 /* 1202 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1203 * kernels. The effective policy is defined by oom_score_adj, which has a 1204 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1205 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1206 * Processes that become oom disabled via oom_adj will still be oom disabled 1207 * with this implementation. 1208 * 1209 * oom_adj cannot be removed since existing userspace binaries use it. 1210 */ 1211 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1212 size_t count, loff_t *ppos) 1213 { 1214 char buffer[PROC_NUMBUF] = {}; 1215 int oom_adj; 1216 int err; 1217 1218 if (count > sizeof(buffer) - 1) 1219 count = sizeof(buffer) - 1; 1220 if (copy_from_user(buffer, buf, count)) { 1221 err = -EFAULT; 1222 goto out; 1223 } 1224 1225 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1226 if (err) 1227 goto out; 1228 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1229 oom_adj != OOM_DISABLE) { 1230 err = -EINVAL; 1231 goto out; 1232 } 1233 1234 /* 1235 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1236 * value is always attainable. 1237 */ 1238 if (oom_adj == OOM_ADJUST_MAX) 1239 oom_adj = OOM_SCORE_ADJ_MAX; 1240 else 1241 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1242 1243 err = __set_oom_adj(file, oom_adj, true); 1244 out: 1245 return err < 0 ? err : count; 1246 } 1247 1248 static const struct file_operations proc_oom_adj_operations = { 1249 .read = oom_adj_read, 1250 .write = oom_adj_write, 1251 .llseek = generic_file_llseek, 1252 }; 1253 1254 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1255 size_t count, loff_t *ppos) 1256 { 1257 struct task_struct *task = get_proc_task(file_inode(file)); 1258 char buffer[PROC_NUMBUF]; 1259 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1260 size_t len; 1261 1262 if (!task) 1263 return -ESRCH; 1264 oom_score_adj = task->signal->oom_score_adj; 1265 put_task_struct(task); 1266 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1267 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1268 } 1269 1270 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1271 size_t count, loff_t *ppos) 1272 { 1273 char buffer[PROC_NUMBUF] = {}; 1274 int oom_score_adj; 1275 int err; 1276 1277 if (count > sizeof(buffer) - 1) 1278 count = sizeof(buffer) - 1; 1279 if (copy_from_user(buffer, buf, count)) { 1280 err = -EFAULT; 1281 goto out; 1282 } 1283 1284 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1285 if (err) 1286 goto out; 1287 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1288 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1289 err = -EINVAL; 1290 goto out; 1291 } 1292 1293 err = __set_oom_adj(file, oom_score_adj, false); 1294 out: 1295 return err < 0 ? err : count; 1296 } 1297 1298 static const struct file_operations proc_oom_score_adj_operations = { 1299 .read = oom_score_adj_read, 1300 .write = oom_score_adj_write, 1301 .llseek = default_llseek, 1302 }; 1303 1304 #ifdef CONFIG_AUDIT 1305 #define TMPBUFLEN 11 1306 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1307 size_t count, loff_t *ppos) 1308 { 1309 struct inode * inode = file_inode(file); 1310 struct task_struct *task = get_proc_task(inode); 1311 ssize_t length; 1312 char tmpbuf[TMPBUFLEN]; 1313 1314 if (!task) 1315 return -ESRCH; 1316 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1317 from_kuid(file->f_cred->user_ns, 1318 audit_get_loginuid(task))); 1319 put_task_struct(task); 1320 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1321 } 1322 1323 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1324 size_t count, loff_t *ppos) 1325 { 1326 struct inode * inode = file_inode(file); 1327 uid_t loginuid; 1328 kuid_t kloginuid; 1329 int rv; 1330 1331 /* Don't let kthreads write their own loginuid */ 1332 if (current->flags & PF_KTHREAD) 1333 return -EPERM; 1334 1335 rcu_read_lock(); 1336 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1337 rcu_read_unlock(); 1338 return -EPERM; 1339 } 1340 rcu_read_unlock(); 1341 1342 if (*ppos != 0) { 1343 /* No partial writes. */ 1344 return -EINVAL; 1345 } 1346 1347 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1348 if (rv < 0) 1349 return rv; 1350 1351 /* is userspace tring to explicitly UNSET the loginuid? */ 1352 if (loginuid == AUDIT_UID_UNSET) { 1353 kloginuid = INVALID_UID; 1354 } else { 1355 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1356 if (!uid_valid(kloginuid)) 1357 return -EINVAL; 1358 } 1359 1360 rv = audit_set_loginuid(kloginuid); 1361 if (rv < 0) 1362 return rv; 1363 return count; 1364 } 1365 1366 static const struct file_operations proc_loginuid_operations = { 1367 .read = proc_loginuid_read, 1368 .write = proc_loginuid_write, 1369 .llseek = generic_file_llseek, 1370 }; 1371 1372 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1373 size_t count, loff_t *ppos) 1374 { 1375 struct inode * inode = file_inode(file); 1376 struct task_struct *task = get_proc_task(inode); 1377 ssize_t length; 1378 char tmpbuf[TMPBUFLEN]; 1379 1380 if (!task) 1381 return -ESRCH; 1382 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1383 audit_get_sessionid(task)); 1384 put_task_struct(task); 1385 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1386 } 1387 1388 static const struct file_operations proc_sessionid_operations = { 1389 .read = proc_sessionid_read, 1390 .llseek = generic_file_llseek, 1391 }; 1392 #endif 1393 1394 #ifdef CONFIG_FAULT_INJECTION 1395 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1396 size_t count, loff_t *ppos) 1397 { 1398 struct task_struct *task = get_proc_task(file_inode(file)); 1399 char buffer[PROC_NUMBUF]; 1400 size_t len; 1401 int make_it_fail; 1402 1403 if (!task) 1404 return -ESRCH; 1405 make_it_fail = task->make_it_fail; 1406 put_task_struct(task); 1407 1408 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1409 1410 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1411 } 1412 1413 static ssize_t proc_fault_inject_write(struct file * file, 1414 const char __user * buf, size_t count, loff_t *ppos) 1415 { 1416 struct task_struct *task; 1417 char buffer[PROC_NUMBUF] = {}; 1418 int make_it_fail; 1419 int rv; 1420 1421 if (!capable(CAP_SYS_RESOURCE)) 1422 return -EPERM; 1423 1424 if (count > sizeof(buffer) - 1) 1425 count = sizeof(buffer) - 1; 1426 if (copy_from_user(buffer, buf, count)) 1427 return -EFAULT; 1428 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1429 if (rv < 0) 1430 return rv; 1431 if (make_it_fail < 0 || make_it_fail > 1) 1432 return -EINVAL; 1433 1434 task = get_proc_task(file_inode(file)); 1435 if (!task) 1436 return -ESRCH; 1437 task->make_it_fail = make_it_fail; 1438 put_task_struct(task); 1439 1440 return count; 1441 } 1442 1443 static const struct file_operations proc_fault_inject_operations = { 1444 .read = proc_fault_inject_read, 1445 .write = proc_fault_inject_write, 1446 .llseek = generic_file_llseek, 1447 }; 1448 1449 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1450 size_t count, loff_t *ppos) 1451 { 1452 struct task_struct *task; 1453 int err; 1454 unsigned int n; 1455 1456 err = kstrtouint_from_user(buf, count, 0, &n); 1457 if (err) 1458 return err; 1459 1460 task = get_proc_task(file_inode(file)); 1461 if (!task) 1462 return -ESRCH; 1463 task->fail_nth = n; 1464 put_task_struct(task); 1465 1466 return count; 1467 } 1468 1469 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1470 size_t count, loff_t *ppos) 1471 { 1472 struct task_struct *task; 1473 char numbuf[PROC_NUMBUF]; 1474 ssize_t len; 1475 1476 task = get_proc_task(file_inode(file)); 1477 if (!task) 1478 return -ESRCH; 1479 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1480 put_task_struct(task); 1481 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1482 } 1483 1484 static const struct file_operations proc_fail_nth_operations = { 1485 .read = proc_fail_nth_read, 1486 .write = proc_fail_nth_write, 1487 }; 1488 #endif 1489 1490 1491 #ifdef CONFIG_SCHED_DEBUG 1492 /* 1493 * Print out various scheduling related per-task fields: 1494 */ 1495 static int sched_show(struct seq_file *m, void *v) 1496 { 1497 struct inode *inode = m->private; 1498 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 1499 struct task_struct *p; 1500 1501 p = get_proc_task(inode); 1502 if (!p) 1503 return -ESRCH; 1504 proc_sched_show_task(p, ns, m); 1505 1506 put_task_struct(p); 1507 1508 return 0; 1509 } 1510 1511 static ssize_t 1512 sched_write(struct file *file, const char __user *buf, 1513 size_t count, loff_t *offset) 1514 { 1515 struct inode *inode = file_inode(file); 1516 struct task_struct *p; 1517 1518 p = get_proc_task(inode); 1519 if (!p) 1520 return -ESRCH; 1521 proc_sched_set_task(p); 1522 1523 put_task_struct(p); 1524 1525 return count; 1526 } 1527 1528 static int sched_open(struct inode *inode, struct file *filp) 1529 { 1530 return single_open(filp, sched_show, inode); 1531 } 1532 1533 static const struct file_operations proc_pid_sched_operations = { 1534 .open = sched_open, 1535 .read = seq_read, 1536 .write = sched_write, 1537 .llseek = seq_lseek, 1538 .release = single_release, 1539 }; 1540 1541 #endif 1542 1543 #ifdef CONFIG_SCHED_AUTOGROUP 1544 /* 1545 * Print out autogroup related information: 1546 */ 1547 static int sched_autogroup_show(struct seq_file *m, void *v) 1548 { 1549 struct inode *inode = m->private; 1550 struct task_struct *p; 1551 1552 p = get_proc_task(inode); 1553 if (!p) 1554 return -ESRCH; 1555 proc_sched_autogroup_show_task(p, m); 1556 1557 put_task_struct(p); 1558 1559 return 0; 1560 } 1561 1562 static ssize_t 1563 sched_autogroup_write(struct file *file, const char __user *buf, 1564 size_t count, loff_t *offset) 1565 { 1566 struct inode *inode = file_inode(file); 1567 struct task_struct *p; 1568 char buffer[PROC_NUMBUF] = {}; 1569 int nice; 1570 int err; 1571 1572 if (count > sizeof(buffer) - 1) 1573 count = sizeof(buffer) - 1; 1574 if (copy_from_user(buffer, buf, count)) 1575 return -EFAULT; 1576 1577 err = kstrtoint(strstrip(buffer), 0, &nice); 1578 if (err < 0) 1579 return err; 1580 1581 p = get_proc_task(inode); 1582 if (!p) 1583 return -ESRCH; 1584 1585 err = proc_sched_autogroup_set_nice(p, nice); 1586 if (err) 1587 count = err; 1588 1589 put_task_struct(p); 1590 1591 return count; 1592 } 1593 1594 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1595 { 1596 int ret; 1597 1598 ret = single_open(filp, sched_autogroup_show, NULL); 1599 if (!ret) { 1600 struct seq_file *m = filp->private_data; 1601 1602 m->private = inode; 1603 } 1604 return ret; 1605 } 1606 1607 static const struct file_operations proc_pid_sched_autogroup_operations = { 1608 .open = sched_autogroup_open, 1609 .read = seq_read, 1610 .write = sched_autogroup_write, 1611 .llseek = seq_lseek, 1612 .release = single_release, 1613 }; 1614 1615 #endif /* CONFIG_SCHED_AUTOGROUP */ 1616 1617 #ifdef CONFIG_TIME_NS 1618 static int timens_offsets_show(struct seq_file *m, void *v) 1619 { 1620 struct task_struct *p; 1621 1622 p = get_proc_task(file_inode(m->file)); 1623 if (!p) 1624 return -ESRCH; 1625 proc_timens_show_offsets(p, m); 1626 1627 put_task_struct(p); 1628 1629 return 0; 1630 } 1631 1632 static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1633 size_t count, loff_t *ppos) 1634 { 1635 struct inode *inode = file_inode(file); 1636 struct proc_timens_offset offsets[2]; 1637 char *kbuf = NULL, *pos, *next_line; 1638 struct task_struct *p; 1639 int ret, noffsets; 1640 1641 /* Only allow < page size writes at the beginning of the file */ 1642 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1643 return -EINVAL; 1644 1645 /* Slurp in the user data */ 1646 kbuf = memdup_user_nul(buf, count); 1647 if (IS_ERR(kbuf)) 1648 return PTR_ERR(kbuf); 1649 1650 /* Parse the user data */ 1651 ret = -EINVAL; 1652 noffsets = 0; 1653 for (pos = kbuf; pos; pos = next_line) { 1654 struct proc_timens_offset *off = &offsets[noffsets]; 1655 char clock[10]; 1656 int err; 1657 1658 /* Find the end of line and ensure we don't look past it */ 1659 next_line = strchr(pos, '\n'); 1660 if (next_line) { 1661 *next_line = '\0'; 1662 next_line++; 1663 if (*next_line == '\0') 1664 next_line = NULL; 1665 } 1666 1667 err = sscanf(pos, "%9s %lld %lu", clock, 1668 &off->val.tv_sec, &off->val.tv_nsec); 1669 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1670 goto out; 1671 1672 clock[sizeof(clock) - 1] = 0; 1673 if (strcmp(clock, "monotonic") == 0 || 1674 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1675 off->clockid = CLOCK_MONOTONIC; 1676 else if (strcmp(clock, "boottime") == 0 || 1677 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1678 off->clockid = CLOCK_BOOTTIME; 1679 else 1680 goto out; 1681 1682 noffsets++; 1683 if (noffsets == ARRAY_SIZE(offsets)) { 1684 if (next_line) 1685 count = next_line - kbuf; 1686 break; 1687 } 1688 } 1689 1690 ret = -ESRCH; 1691 p = get_proc_task(inode); 1692 if (!p) 1693 goto out; 1694 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1695 put_task_struct(p); 1696 if (ret) 1697 goto out; 1698 1699 ret = count; 1700 out: 1701 kfree(kbuf); 1702 return ret; 1703 } 1704 1705 static int timens_offsets_open(struct inode *inode, struct file *filp) 1706 { 1707 return single_open(filp, timens_offsets_show, inode); 1708 } 1709 1710 static const struct file_operations proc_timens_offsets_operations = { 1711 .open = timens_offsets_open, 1712 .read = seq_read, 1713 .write = timens_offsets_write, 1714 .llseek = seq_lseek, 1715 .release = single_release, 1716 }; 1717 #endif /* CONFIG_TIME_NS */ 1718 1719 static ssize_t comm_write(struct file *file, const char __user *buf, 1720 size_t count, loff_t *offset) 1721 { 1722 struct inode *inode = file_inode(file); 1723 struct task_struct *p; 1724 char buffer[TASK_COMM_LEN] = {}; 1725 const size_t maxlen = sizeof(buffer) - 1; 1726 1727 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1728 return -EFAULT; 1729 1730 p = get_proc_task(inode); 1731 if (!p) 1732 return -ESRCH; 1733 1734 if (same_thread_group(current, p)) { 1735 set_task_comm(p, buffer); 1736 proc_comm_connector(p); 1737 } 1738 else 1739 count = -EINVAL; 1740 1741 put_task_struct(p); 1742 1743 return count; 1744 } 1745 1746 static int comm_show(struct seq_file *m, void *v) 1747 { 1748 struct inode *inode = m->private; 1749 struct task_struct *p; 1750 1751 p = get_proc_task(inode); 1752 if (!p) 1753 return -ESRCH; 1754 1755 proc_task_name(m, p, false); 1756 seq_putc(m, '\n'); 1757 1758 put_task_struct(p); 1759 1760 return 0; 1761 } 1762 1763 static int comm_open(struct inode *inode, struct file *filp) 1764 { 1765 return single_open(filp, comm_show, inode); 1766 } 1767 1768 static const struct file_operations proc_pid_set_comm_operations = { 1769 .open = comm_open, 1770 .read = seq_read, 1771 .write = comm_write, 1772 .llseek = seq_lseek, 1773 .release = single_release, 1774 }; 1775 1776 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1777 { 1778 struct task_struct *task; 1779 struct file *exe_file; 1780 1781 task = get_proc_task(d_inode(dentry)); 1782 if (!task) 1783 return -ENOENT; 1784 exe_file = get_task_exe_file(task); 1785 put_task_struct(task); 1786 if (exe_file) { 1787 *exe_path = exe_file->f_path; 1788 path_get(&exe_file->f_path); 1789 fput(exe_file); 1790 return 0; 1791 } else 1792 return -ENOENT; 1793 } 1794 1795 static const char *proc_pid_get_link(struct dentry *dentry, 1796 struct inode *inode, 1797 struct delayed_call *done) 1798 { 1799 struct path path; 1800 int error = -EACCES; 1801 1802 if (!dentry) 1803 return ERR_PTR(-ECHILD); 1804 1805 /* Are we allowed to snoop on the tasks file descriptors? */ 1806 if (!proc_fd_access_allowed(inode)) 1807 goto out; 1808 1809 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1810 if (error) 1811 goto out; 1812 1813 error = nd_jump_link(&path); 1814 out: 1815 return ERR_PTR(error); 1816 } 1817 1818 static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen) 1819 { 1820 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL); 1821 char *pathname; 1822 int len; 1823 1824 if (!tmp) 1825 return -ENOMEM; 1826 1827 pathname = d_path(path, tmp, PATH_MAX); 1828 len = PTR_ERR(pathname); 1829 if (IS_ERR(pathname)) 1830 goto out; 1831 len = tmp + PATH_MAX - 1 - pathname; 1832 1833 if (len > buflen) 1834 len = buflen; 1835 if (copy_to_user(buffer, pathname, len)) 1836 len = -EFAULT; 1837 out: 1838 kfree(tmp); 1839 return len; 1840 } 1841 1842 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1843 { 1844 int error = -EACCES; 1845 struct inode *inode = d_inode(dentry); 1846 struct path path; 1847 1848 /* Are we allowed to snoop on the tasks file descriptors? */ 1849 if (!proc_fd_access_allowed(inode)) 1850 goto out; 1851 1852 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1853 if (error) 1854 goto out; 1855 1856 error = do_proc_readlink(&path, buffer, buflen); 1857 path_put(&path); 1858 out: 1859 return error; 1860 } 1861 1862 const struct inode_operations proc_pid_link_inode_operations = { 1863 .readlink = proc_pid_readlink, 1864 .get_link = proc_pid_get_link, 1865 .setattr = proc_setattr, 1866 }; 1867 1868 1869 /* building an inode */ 1870 1871 void task_dump_owner(struct task_struct *task, umode_t mode, 1872 kuid_t *ruid, kgid_t *rgid) 1873 { 1874 /* Depending on the state of dumpable compute who should own a 1875 * proc file for a task. 1876 */ 1877 const struct cred *cred; 1878 kuid_t uid; 1879 kgid_t gid; 1880 1881 if (unlikely(task->flags & PF_KTHREAD)) { 1882 *ruid = GLOBAL_ROOT_UID; 1883 *rgid = GLOBAL_ROOT_GID; 1884 return; 1885 } 1886 1887 /* Default to the tasks effective ownership */ 1888 rcu_read_lock(); 1889 cred = __task_cred(task); 1890 uid = cred->euid; 1891 gid = cred->egid; 1892 rcu_read_unlock(); 1893 1894 /* 1895 * Before the /proc/pid/status file was created the only way to read 1896 * the effective uid of a /process was to stat /proc/pid. Reading 1897 * /proc/pid/status is slow enough that procps and other packages 1898 * kept stating /proc/pid. To keep the rules in /proc simple I have 1899 * made this apply to all per process world readable and executable 1900 * directories. 1901 */ 1902 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1903 struct mm_struct *mm; 1904 task_lock(task); 1905 mm = task->mm; 1906 /* Make non-dumpable tasks owned by some root */ 1907 if (mm) { 1908 if (get_dumpable(mm) != SUID_DUMP_USER) { 1909 struct user_namespace *user_ns = mm->user_ns; 1910 1911 uid = make_kuid(user_ns, 0); 1912 if (!uid_valid(uid)) 1913 uid = GLOBAL_ROOT_UID; 1914 1915 gid = make_kgid(user_ns, 0); 1916 if (!gid_valid(gid)) 1917 gid = GLOBAL_ROOT_GID; 1918 } 1919 } else { 1920 uid = GLOBAL_ROOT_UID; 1921 gid = GLOBAL_ROOT_GID; 1922 } 1923 task_unlock(task); 1924 } 1925 *ruid = uid; 1926 *rgid = gid; 1927 } 1928 1929 void proc_pid_evict_inode(struct proc_inode *ei) 1930 { 1931 struct pid *pid = ei->pid; 1932 1933 if (S_ISDIR(ei->vfs_inode.i_mode)) { 1934 spin_lock(&pid->lock); 1935 hlist_del_init_rcu(&ei->sibling_inodes); 1936 spin_unlock(&pid->lock); 1937 } 1938 } 1939 1940 struct inode *proc_pid_make_inode(struct super_block *sb, 1941 struct task_struct *task, umode_t mode) 1942 { 1943 struct inode * inode; 1944 struct proc_inode *ei; 1945 struct pid *pid; 1946 1947 /* We need a new inode */ 1948 1949 inode = new_inode(sb); 1950 if (!inode) 1951 goto out; 1952 1953 /* Common stuff */ 1954 ei = PROC_I(inode); 1955 inode->i_mode = mode; 1956 inode->i_ino = get_next_ino(); 1957 simple_inode_init_ts(inode); 1958 inode->i_op = &proc_def_inode_operations; 1959 1960 /* 1961 * grab the reference to task. 1962 */ 1963 pid = get_task_pid(task, PIDTYPE_PID); 1964 if (!pid) 1965 goto out_unlock; 1966 1967 /* Let the pid remember us for quick removal */ 1968 ei->pid = pid; 1969 1970 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1971 security_task_to_inode(task, inode); 1972 1973 out: 1974 return inode; 1975 1976 out_unlock: 1977 iput(inode); 1978 return NULL; 1979 } 1980 1981 /* 1982 * Generating an inode and adding it into @pid->inodes, so that task will 1983 * invalidate inode's dentry before being released. 1984 * 1985 * This helper is used for creating dir-type entries under '/proc' and 1986 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>' 1987 * can be released by invalidating '/proc/<tgid>' dentry. 1988 * In theory, dentries under '/proc/<tgid>/task' can also be released by 1989 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single 1990 * thread exiting situation: Any one of threads should invalidate its 1991 * '/proc/<tgid>/task/<pid>' dentry before released. 1992 */ 1993 static struct inode *proc_pid_make_base_inode(struct super_block *sb, 1994 struct task_struct *task, umode_t mode) 1995 { 1996 struct inode *inode; 1997 struct proc_inode *ei; 1998 struct pid *pid; 1999 2000 inode = proc_pid_make_inode(sb, task, mode); 2001 if (!inode) 2002 return NULL; 2003 2004 /* Let proc_flush_pid find this directory inode */ 2005 ei = PROC_I(inode); 2006 pid = ei->pid; 2007 spin_lock(&pid->lock); 2008 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); 2009 spin_unlock(&pid->lock); 2010 2011 return inode; 2012 } 2013 2014 int pid_getattr(struct mnt_idmap *idmap, const struct path *path, 2015 struct kstat *stat, u32 request_mask, unsigned int query_flags) 2016 { 2017 struct inode *inode = d_inode(path->dentry); 2018 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 2019 struct task_struct *task; 2020 2021 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 2022 2023 stat->uid = GLOBAL_ROOT_UID; 2024 stat->gid = GLOBAL_ROOT_GID; 2025 rcu_read_lock(); 2026 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2027 if (task) { 2028 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) { 2029 rcu_read_unlock(); 2030 /* 2031 * This doesn't prevent learning whether PID exists, 2032 * it only makes getattr() consistent with readdir(). 2033 */ 2034 return -ENOENT; 2035 } 2036 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 2037 } 2038 rcu_read_unlock(); 2039 return 0; 2040 } 2041 2042 /* dentry stuff */ 2043 2044 /* 2045 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 2046 */ 2047 void pid_update_inode(struct task_struct *task, struct inode *inode) 2048 { 2049 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 2050 2051 inode->i_mode &= ~(S_ISUID | S_ISGID); 2052 security_task_to_inode(task, inode); 2053 } 2054 2055 /* 2056 * Rewrite the inode's ownerships here because the owning task may have 2057 * performed a setuid(), etc. 2058 * 2059 */ 2060 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 2061 { 2062 struct inode *inode; 2063 struct task_struct *task; 2064 int ret = 0; 2065 2066 rcu_read_lock(); 2067 inode = d_inode_rcu(dentry); 2068 if (!inode) 2069 goto out; 2070 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2071 2072 if (task) { 2073 pid_update_inode(task, inode); 2074 ret = 1; 2075 } 2076 out: 2077 rcu_read_unlock(); 2078 return ret; 2079 } 2080 2081 static inline bool proc_inode_is_dead(struct inode *inode) 2082 { 2083 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 2084 } 2085 2086 int pid_delete_dentry(const struct dentry *dentry) 2087 { 2088 /* Is the task we represent dead? 2089 * If so, then don't put the dentry on the lru list, 2090 * kill it immediately. 2091 */ 2092 return proc_inode_is_dead(d_inode(dentry)); 2093 } 2094 2095 const struct dentry_operations pid_dentry_operations = 2096 { 2097 .d_revalidate = pid_revalidate, 2098 .d_delete = pid_delete_dentry, 2099 }; 2100 2101 /* Lookups */ 2102 2103 /* 2104 * Fill a directory entry. 2105 * 2106 * If possible create the dcache entry and derive our inode number and 2107 * file type from dcache entry. 2108 * 2109 * Since all of the proc inode numbers are dynamically generated, the inode 2110 * numbers do not exist until the inode is cache. This means creating 2111 * the dcache entry in readdir is necessary to keep the inode numbers 2112 * reported by readdir in sync with the inode numbers reported 2113 * by stat. 2114 */ 2115 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 2116 const char *name, unsigned int len, 2117 instantiate_t instantiate, struct task_struct *task, const void *ptr) 2118 { 2119 struct dentry *child, *dir = file->f_path.dentry; 2120 struct qstr qname = QSTR_INIT(name, len); 2121 struct inode *inode; 2122 unsigned type = DT_UNKNOWN; 2123 ino_t ino = 1; 2124 2125 child = d_hash_and_lookup(dir, &qname); 2126 if (!child) { 2127 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2128 child = d_alloc_parallel(dir, &qname, &wq); 2129 if (IS_ERR(child)) 2130 goto end_instantiate; 2131 if (d_in_lookup(child)) { 2132 struct dentry *res; 2133 res = instantiate(child, task, ptr); 2134 d_lookup_done(child); 2135 if (unlikely(res)) { 2136 dput(child); 2137 child = res; 2138 if (IS_ERR(child)) 2139 goto end_instantiate; 2140 } 2141 } 2142 } 2143 inode = d_inode(child); 2144 ino = inode->i_ino; 2145 type = inode->i_mode >> 12; 2146 dput(child); 2147 end_instantiate: 2148 return dir_emit(ctx, name, len, ino, type); 2149 } 2150 2151 /* 2152 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2153 * which represent vma start and end addresses. 2154 */ 2155 static int dname_to_vma_addr(struct dentry *dentry, 2156 unsigned long *start, unsigned long *end) 2157 { 2158 const char *str = dentry->d_name.name; 2159 unsigned long long sval, eval; 2160 unsigned int len; 2161 2162 if (str[0] == '0' && str[1] != '-') 2163 return -EINVAL; 2164 len = _parse_integer(str, 16, &sval); 2165 if (len & KSTRTOX_OVERFLOW) 2166 return -EINVAL; 2167 if (sval != (unsigned long)sval) 2168 return -EINVAL; 2169 str += len; 2170 2171 if (*str != '-') 2172 return -EINVAL; 2173 str++; 2174 2175 if (str[0] == '0' && str[1]) 2176 return -EINVAL; 2177 len = _parse_integer(str, 16, &eval); 2178 if (len & KSTRTOX_OVERFLOW) 2179 return -EINVAL; 2180 if (eval != (unsigned long)eval) 2181 return -EINVAL; 2182 str += len; 2183 2184 if (*str != '\0') 2185 return -EINVAL; 2186 2187 *start = sval; 2188 *end = eval; 2189 2190 return 0; 2191 } 2192 2193 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 2194 { 2195 unsigned long vm_start, vm_end; 2196 bool exact_vma_exists = false; 2197 struct mm_struct *mm = NULL; 2198 struct task_struct *task; 2199 struct inode *inode; 2200 int status = 0; 2201 2202 if (flags & LOOKUP_RCU) 2203 return -ECHILD; 2204 2205 inode = d_inode(dentry); 2206 task = get_proc_task(inode); 2207 if (!task) 2208 goto out_notask; 2209 2210 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2211 if (IS_ERR_OR_NULL(mm)) 2212 goto out; 2213 2214 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2215 status = mmap_read_lock_killable(mm); 2216 if (!status) { 2217 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2218 vm_end); 2219 mmap_read_unlock(mm); 2220 } 2221 } 2222 2223 mmput(mm); 2224 2225 if (exact_vma_exists) { 2226 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2227 2228 security_task_to_inode(task, inode); 2229 status = 1; 2230 } 2231 2232 out: 2233 put_task_struct(task); 2234 2235 out_notask: 2236 return status; 2237 } 2238 2239 static const struct dentry_operations tid_map_files_dentry_operations = { 2240 .d_revalidate = map_files_d_revalidate, 2241 .d_delete = pid_delete_dentry, 2242 }; 2243 2244 static int map_files_get_link(struct dentry *dentry, struct path *path) 2245 { 2246 unsigned long vm_start, vm_end; 2247 struct vm_area_struct *vma; 2248 struct task_struct *task; 2249 struct mm_struct *mm; 2250 int rc; 2251 2252 rc = -ENOENT; 2253 task = get_proc_task(d_inode(dentry)); 2254 if (!task) 2255 goto out; 2256 2257 mm = get_task_mm(task); 2258 put_task_struct(task); 2259 if (!mm) 2260 goto out; 2261 2262 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2263 if (rc) 2264 goto out_mmput; 2265 2266 rc = mmap_read_lock_killable(mm); 2267 if (rc) 2268 goto out_mmput; 2269 2270 rc = -ENOENT; 2271 vma = find_exact_vma(mm, vm_start, vm_end); 2272 if (vma && vma->vm_file) { 2273 *path = *file_user_path(vma->vm_file); 2274 path_get(path); 2275 rc = 0; 2276 } 2277 mmap_read_unlock(mm); 2278 2279 out_mmput: 2280 mmput(mm); 2281 out: 2282 return rc; 2283 } 2284 2285 struct map_files_info { 2286 unsigned long start; 2287 unsigned long end; 2288 fmode_t mode; 2289 }; 2290 2291 /* 2292 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due 2293 * to concerns about how the symlinks may be used to bypass permissions on 2294 * ancestor directories in the path to the file in question. 2295 */ 2296 static const char * 2297 proc_map_files_get_link(struct dentry *dentry, 2298 struct inode *inode, 2299 struct delayed_call *done) 2300 { 2301 if (!checkpoint_restore_ns_capable(&init_user_ns)) 2302 return ERR_PTR(-EPERM); 2303 2304 return proc_pid_get_link(dentry, inode, done); 2305 } 2306 2307 /* 2308 * Identical to proc_pid_link_inode_operations except for get_link() 2309 */ 2310 static const struct inode_operations proc_map_files_link_inode_operations = { 2311 .readlink = proc_pid_readlink, 2312 .get_link = proc_map_files_get_link, 2313 .setattr = proc_setattr, 2314 }; 2315 2316 static struct dentry * 2317 proc_map_files_instantiate(struct dentry *dentry, 2318 struct task_struct *task, const void *ptr) 2319 { 2320 fmode_t mode = (fmode_t)(unsigned long)ptr; 2321 struct proc_inode *ei; 2322 struct inode *inode; 2323 2324 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2325 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2326 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2327 if (!inode) 2328 return ERR_PTR(-ENOENT); 2329 2330 ei = PROC_I(inode); 2331 ei->op.proc_get_link = map_files_get_link; 2332 2333 inode->i_op = &proc_map_files_link_inode_operations; 2334 inode->i_size = 64; 2335 2336 return proc_splice_unmountable(inode, dentry, 2337 &tid_map_files_dentry_operations); 2338 } 2339 2340 static struct dentry *proc_map_files_lookup(struct inode *dir, 2341 struct dentry *dentry, unsigned int flags) 2342 { 2343 unsigned long vm_start, vm_end; 2344 struct vm_area_struct *vma; 2345 struct task_struct *task; 2346 struct dentry *result; 2347 struct mm_struct *mm; 2348 2349 result = ERR_PTR(-ENOENT); 2350 task = get_proc_task(dir); 2351 if (!task) 2352 goto out; 2353 2354 result = ERR_PTR(-EACCES); 2355 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2356 goto out_put_task; 2357 2358 result = ERR_PTR(-ENOENT); 2359 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2360 goto out_put_task; 2361 2362 mm = get_task_mm(task); 2363 if (!mm) 2364 goto out_put_task; 2365 2366 result = ERR_PTR(-EINTR); 2367 if (mmap_read_lock_killable(mm)) 2368 goto out_put_mm; 2369 2370 result = ERR_PTR(-ENOENT); 2371 vma = find_exact_vma(mm, vm_start, vm_end); 2372 if (!vma) 2373 goto out_no_vma; 2374 2375 if (vma->vm_file) 2376 result = proc_map_files_instantiate(dentry, task, 2377 (void *)(unsigned long)vma->vm_file->f_mode); 2378 2379 out_no_vma: 2380 mmap_read_unlock(mm); 2381 out_put_mm: 2382 mmput(mm); 2383 out_put_task: 2384 put_task_struct(task); 2385 out: 2386 return result; 2387 } 2388 2389 static const struct inode_operations proc_map_files_inode_operations = { 2390 .lookup = proc_map_files_lookup, 2391 .permission = proc_fd_permission, 2392 .setattr = proc_setattr, 2393 }; 2394 2395 static int 2396 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2397 { 2398 struct vm_area_struct *vma; 2399 struct task_struct *task; 2400 struct mm_struct *mm; 2401 unsigned long nr_files, pos, i; 2402 GENRADIX(struct map_files_info) fa; 2403 struct map_files_info *p; 2404 int ret; 2405 struct vma_iterator vmi; 2406 2407 genradix_init(&fa); 2408 2409 ret = -ENOENT; 2410 task = get_proc_task(file_inode(file)); 2411 if (!task) 2412 goto out; 2413 2414 ret = -EACCES; 2415 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2416 goto out_put_task; 2417 2418 ret = 0; 2419 if (!dir_emit_dots(file, ctx)) 2420 goto out_put_task; 2421 2422 mm = get_task_mm(task); 2423 if (!mm) 2424 goto out_put_task; 2425 2426 ret = mmap_read_lock_killable(mm); 2427 if (ret) { 2428 mmput(mm); 2429 goto out_put_task; 2430 } 2431 2432 nr_files = 0; 2433 2434 /* 2435 * We need two passes here: 2436 * 2437 * 1) Collect vmas of mapped files with mmap_lock taken 2438 * 2) Release mmap_lock and instantiate entries 2439 * 2440 * otherwise we get lockdep complained, since filldir() 2441 * routine might require mmap_lock taken in might_fault(). 2442 */ 2443 2444 pos = 2; 2445 vma_iter_init(&vmi, mm, 0); 2446 for_each_vma(vmi, vma) { 2447 if (!vma->vm_file) 2448 continue; 2449 if (++pos <= ctx->pos) 2450 continue; 2451 2452 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2453 if (!p) { 2454 ret = -ENOMEM; 2455 mmap_read_unlock(mm); 2456 mmput(mm); 2457 goto out_put_task; 2458 } 2459 2460 p->start = vma->vm_start; 2461 p->end = vma->vm_end; 2462 p->mode = vma->vm_file->f_mode; 2463 } 2464 mmap_read_unlock(mm); 2465 mmput(mm); 2466 2467 for (i = 0; i < nr_files; i++) { 2468 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2469 unsigned int len; 2470 2471 p = genradix_ptr(&fa, i); 2472 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2473 if (!proc_fill_cache(file, ctx, 2474 buf, len, 2475 proc_map_files_instantiate, 2476 task, 2477 (void *)(unsigned long)p->mode)) 2478 break; 2479 ctx->pos++; 2480 } 2481 2482 out_put_task: 2483 put_task_struct(task); 2484 out: 2485 genradix_free(&fa); 2486 return ret; 2487 } 2488 2489 static const struct file_operations proc_map_files_operations = { 2490 .read = generic_read_dir, 2491 .iterate_shared = proc_map_files_readdir, 2492 .llseek = generic_file_llseek, 2493 }; 2494 2495 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2496 struct timers_private { 2497 struct pid *pid; 2498 struct task_struct *task; 2499 struct sighand_struct *sighand; 2500 struct pid_namespace *ns; 2501 unsigned long flags; 2502 }; 2503 2504 static void *timers_start(struct seq_file *m, loff_t *pos) 2505 { 2506 struct timers_private *tp = m->private; 2507 2508 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2509 if (!tp->task) 2510 return ERR_PTR(-ESRCH); 2511 2512 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2513 if (!tp->sighand) 2514 return ERR_PTR(-ESRCH); 2515 2516 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2517 } 2518 2519 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2520 { 2521 struct timers_private *tp = m->private; 2522 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2523 } 2524 2525 static void timers_stop(struct seq_file *m, void *v) 2526 { 2527 struct timers_private *tp = m->private; 2528 2529 if (tp->sighand) { 2530 unlock_task_sighand(tp->task, &tp->flags); 2531 tp->sighand = NULL; 2532 } 2533 2534 if (tp->task) { 2535 put_task_struct(tp->task); 2536 tp->task = NULL; 2537 } 2538 } 2539 2540 static int show_timer(struct seq_file *m, void *v) 2541 { 2542 struct k_itimer *timer; 2543 struct timers_private *tp = m->private; 2544 int notify; 2545 static const char * const nstr[] = { 2546 [SIGEV_SIGNAL] = "signal", 2547 [SIGEV_NONE] = "none", 2548 [SIGEV_THREAD] = "thread", 2549 }; 2550 2551 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2552 notify = timer->it_sigev_notify; 2553 2554 seq_printf(m, "ID: %d\n", timer->it_id); 2555 seq_printf(m, "signal: %d/%px\n", 2556 timer->sigq->info.si_signo, 2557 timer->sigq->info.si_value.sival_ptr); 2558 seq_printf(m, "notify: %s/%s.%d\n", 2559 nstr[notify & ~SIGEV_THREAD_ID], 2560 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2561 pid_nr_ns(timer->it_pid, tp->ns)); 2562 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2563 2564 return 0; 2565 } 2566 2567 static const struct seq_operations proc_timers_seq_ops = { 2568 .start = timers_start, 2569 .next = timers_next, 2570 .stop = timers_stop, 2571 .show = show_timer, 2572 }; 2573 2574 static int proc_timers_open(struct inode *inode, struct file *file) 2575 { 2576 struct timers_private *tp; 2577 2578 tp = __seq_open_private(file, &proc_timers_seq_ops, 2579 sizeof(struct timers_private)); 2580 if (!tp) 2581 return -ENOMEM; 2582 2583 tp->pid = proc_pid(inode); 2584 tp->ns = proc_pid_ns(inode->i_sb); 2585 return 0; 2586 } 2587 2588 static const struct file_operations proc_timers_operations = { 2589 .open = proc_timers_open, 2590 .read = seq_read, 2591 .llseek = seq_lseek, 2592 .release = seq_release_private, 2593 }; 2594 #endif 2595 2596 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2597 size_t count, loff_t *offset) 2598 { 2599 struct inode *inode = file_inode(file); 2600 struct task_struct *p; 2601 u64 slack_ns; 2602 int err; 2603 2604 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2605 if (err < 0) 2606 return err; 2607 2608 p = get_proc_task(inode); 2609 if (!p) 2610 return -ESRCH; 2611 2612 if (p != current) { 2613 rcu_read_lock(); 2614 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2615 rcu_read_unlock(); 2616 count = -EPERM; 2617 goto out; 2618 } 2619 rcu_read_unlock(); 2620 2621 err = security_task_setscheduler(p); 2622 if (err) { 2623 count = err; 2624 goto out; 2625 } 2626 } 2627 2628 task_lock(p); 2629 if (slack_ns == 0) 2630 p->timer_slack_ns = p->default_timer_slack_ns; 2631 else 2632 p->timer_slack_ns = slack_ns; 2633 task_unlock(p); 2634 2635 out: 2636 put_task_struct(p); 2637 2638 return count; 2639 } 2640 2641 static int timerslack_ns_show(struct seq_file *m, void *v) 2642 { 2643 struct inode *inode = m->private; 2644 struct task_struct *p; 2645 int err = 0; 2646 2647 p = get_proc_task(inode); 2648 if (!p) 2649 return -ESRCH; 2650 2651 if (p != current) { 2652 rcu_read_lock(); 2653 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2654 rcu_read_unlock(); 2655 err = -EPERM; 2656 goto out; 2657 } 2658 rcu_read_unlock(); 2659 2660 err = security_task_getscheduler(p); 2661 if (err) 2662 goto out; 2663 } 2664 2665 task_lock(p); 2666 seq_printf(m, "%llu\n", p->timer_slack_ns); 2667 task_unlock(p); 2668 2669 out: 2670 put_task_struct(p); 2671 2672 return err; 2673 } 2674 2675 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2676 { 2677 return single_open(filp, timerslack_ns_show, inode); 2678 } 2679 2680 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2681 .open = timerslack_ns_open, 2682 .read = seq_read, 2683 .write = timerslack_ns_write, 2684 .llseek = seq_lseek, 2685 .release = single_release, 2686 }; 2687 2688 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2689 struct task_struct *task, const void *ptr) 2690 { 2691 const struct pid_entry *p = ptr; 2692 struct inode *inode; 2693 struct proc_inode *ei; 2694 2695 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2696 if (!inode) 2697 return ERR_PTR(-ENOENT); 2698 2699 ei = PROC_I(inode); 2700 if (S_ISDIR(inode->i_mode)) 2701 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2702 if (p->iop) 2703 inode->i_op = p->iop; 2704 if (p->fop) 2705 inode->i_fop = p->fop; 2706 ei->op = p->op; 2707 pid_update_inode(task, inode); 2708 d_set_d_op(dentry, &pid_dentry_operations); 2709 return d_splice_alias(inode, dentry); 2710 } 2711 2712 static struct dentry *proc_pident_lookup(struct inode *dir, 2713 struct dentry *dentry, 2714 const struct pid_entry *p, 2715 const struct pid_entry *end) 2716 { 2717 struct task_struct *task = get_proc_task(dir); 2718 struct dentry *res = ERR_PTR(-ENOENT); 2719 2720 if (!task) 2721 goto out_no_task; 2722 2723 /* 2724 * Yes, it does not scale. And it should not. Don't add 2725 * new entries into /proc/<tgid>/ without very good reasons. 2726 */ 2727 for (; p < end; p++) { 2728 if (p->len != dentry->d_name.len) 2729 continue; 2730 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2731 res = proc_pident_instantiate(dentry, task, p); 2732 break; 2733 } 2734 } 2735 put_task_struct(task); 2736 out_no_task: 2737 return res; 2738 } 2739 2740 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2741 const struct pid_entry *ents, unsigned int nents) 2742 { 2743 struct task_struct *task = get_proc_task(file_inode(file)); 2744 const struct pid_entry *p; 2745 2746 if (!task) 2747 return -ENOENT; 2748 2749 if (!dir_emit_dots(file, ctx)) 2750 goto out; 2751 2752 if (ctx->pos >= nents + 2) 2753 goto out; 2754 2755 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2756 if (!proc_fill_cache(file, ctx, p->name, p->len, 2757 proc_pident_instantiate, task, p)) 2758 break; 2759 ctx->pos++; 2760 } 2761 out: 2762 put_task_struct(task); 2763 return 0; 2764 } 2765 2766 #ifdef CONFIG_SECURITY 2767 static int proc_pid_attr_open(struct inode *inode, struct file *file) 2768 { 2769 file->private_data = NULL; 2770 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 2771 return 0; 2772 } 2773 2774 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2775 size_t count, loff_t *ppos) 2776 { 2777 struct inode * inode = file_inode(file); 2778 char *p = NULL; 2779 ssize_t length; 2780 struct task_struct *task = get_proc_task(inode); 2781 2782 if (!task) 2783 return -ESRCH; 2784 2785 length = security_getprocattr(task, PROC_I(inode)->op.lsmid, 2786 file->f_path.dentry->d_name.name, 2787 &p); 2788 put_task_struct(task); 2789 if (length > 0) 2790 length = simple_read_from_buffer(buf, count, ppos, p, length); 2791 kfree(p); 2792 return length; 2793 } 2794 2795 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2796 size_t count, loff_t *ppos) 2797 { 2798 struct inode * inode = file_inode(file); 2799 struct task_struct *task; 2800 void *page; 2801 int rv; 2802 2803 /* A task may only write when it was the opener. */ 2804 if (file->private_data != current->mm) 2805 return -EPERM; 2806 2807 rcu_read_lock(); 2808 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2809 if (!task) { 2810 rcu_read_unlock(); 2811 return -ESRCH; 2812 } 2813 /* A task may only write its own attributes. */ 2814 if (current != task) { 2815 rcu_read_unlock(); 2816 return -EACCES; 2817 } 2818 /* Prevent changes to overridden credentials. */ 2819 if (current_cred() != current_real_cred()) { 2820 rcu_read_unlock(); 2821 return -EBUSY; 2822 } 2823 rcu_read_unlock(); 2824 2825 if (count > PAGE_SIZE) 2826 count = PAGE_SIZE; 2827 2828 /* No partial writes. */ 2829 if (*ppos != 0) 2830 return -EINVAL; 2831 2832 page = memdup_user(buf, count); 2833 if (IS_ERR(page)) { 2834 rv = PTR_ERR(page); 2835 goto out; 2836 } 2837 2838 /* Guard against adverse ptrace interaction */ 2839 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2840 if (rv < 0) 2841 goto out_free; 2842 2843 rv = security_setprocattr(PROC_I(inode)->op.lsmid, 2844 file->f_path.dentry->d_name.name, page, 2845 count); 2846 mutex_unlock(¤t->signal->cred_guard_mutex); 2847 out_free: 2848 kfree(page); 2849 out: 2850 return rv; 2851 } 2852 2853 static const struct file_operations proc_pid_attr_operations = { 2854 .open = proc_pid_attr_open, 2855 .read = proc_pid_attr_read, 2856 .write = proc_pid_attr_write, 2857 .llseek = generic_file_llseek, 2858 .release = mem_release, 2859 }; 2860 2861 #define LSM_DIR_OPS(LSM) \ 2862 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2863 struct dir_context *ctx) \ 2864 { \ 2865 return proc_pident_readdir(filp, ctx, \ 2866 LSM##_attr_dir_stuff, \ 2867 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2868 } \ 2869 \ 2870 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2871 .read = generic_read_dir, \ 2872 .iterate_shared = proc_##LSM##_attr_dir_iterate, \ 2873 .llseek = default_llseek, \ 2874 }; \ 2875 \ 2876 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2877 struct dentry *dentry, unsigned int flags) \ 2878 { \ 2879 return proc_pident_lookup(dir, dentry, \ 2880 LSM##_attr_dir_stuff, \ 2881 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2882 } \ 2883 \ 2884 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2885 .lookup = proc_##LSM##_attr_dir_lookup, \ 2886 .getattr = pid_getattr, \ 2887 .setattr = proc_setattr, \ 2888 } 2889 2890 #ifdef CONFIG_SECURITY_SMACK 2891 static const struct pid_entry smack_attr_dir_stuff[] = { 2892 ATTR(LSM_ID_SMACK, "current", 0666), 2893 }; 2894 LSM_DIR_OPS(smack); 2895 #endif 2896 2897 #ifdef CONFIG_SECURITY_APPARMOR 2898 static const struct pid_entry apparmor_attr_dir_stuff[] = { 2899 ATTR(LSM_ID_APPARMOR, "current", 0666), 2900 ATTR(LSM_ID_APPARMOR, "prev", 0444), 2901 ATTR(LSM_ID_APPARMOR, "exec", 0666), 2902 }; 2903 LSM_DIR_OPS(apparmor); 2904 #endif 2905 2906 static const struct pid_entry attr_dir_stuff[] = { 2907 ATTR(LSM_ID_UNDEF, "current", 0666), 2908 ATTR(LSM_ID_UNDEF, "prev", 0444), 2909 ATTR(LSM_ID_UNDEF, "exec", 0666), 2910 ATTR(LSM_ID_UNDEF, "fscreate", 0666), 2911 ATTR(LSM_ID_UNDEF, "keycreate", 0666), 2912 ATTR(LSM_ID_UNDEF, "sockcreate", 0666), 2913 #ifdef CONFIG_SECURITY_SMACK 2914 DIR("smack", 0555, 2915 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2916 #endif 2917 #ifdef CONFIG_SECURITY_APPARMOR 2918 DIR("apparmor", 0555, 2919 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops), 2920 #endif 2921 }; 2922 2923 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2924 { 2925 return proc_pident_readdir(file, ctx, 2926 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2927 } 2928 2929 static const struct file_operations proc_attr_dir_operations = { 2930 .read = generic_read_dir, 2931 .iterate_shared = proc_attr_dir_readdir, 2932 .llseek = generic_file_llseek, 2933 }; 2934 2935 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2936 struct dentry *dentry, unsigned int flags) 2937 { 2938 return proc_pident_lookup(dir, dentry, 2939 attr_dir_stuff, 2940 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2941 } 2942 2943 static const struct inode_operations proc_attr_dir_inode_operations = { 2944 .lookup = proc_attr_dir_lookup, 2945 .getattr = pid_getattr, 2946 .setattr = proc_setattr, 2947 }; 2948 2949 #endif 2950 2951 #ifdef CONFIG_ELF_CORE 2952 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2953 size_t count, loff_t *ppos) 2954 { 2955 struct task_struct *task = get_proc_task(file_inode(file)); 2956 struct mm_struct *mm; 2957 char buffer[PROC_NUMBUF]; 2958 size_t len; 2959 int ret; 2960 2961 if (!task) 2962 return -ESRCH; 2963 2964 ret = 0; 2965 mm = get_task_mm(task); 2966 if (mm) { 2967 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2968 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2969 MMF_DUMP_FILTER_SHIFT)); 2970 mmput(mm); 2971 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2972 } 2973 2974 put_task_struct(task); 2975 2976 return ret; 2977 } 2978 2979 static ssize_t proc_coredump_filter_write(struct file *file, 2980 const char __user *buf, 2981 size_t count, 2982 loff_t *ppos) 2983 { 2984 struct task_struct *task; 2985 struct mm_struct *mm; 2986 unsigned int val; 2987 int ret; 2988 int i; 2989 unsigned long mask; 2990 2991 ret = kstrtouint_from_user(buf, count, 0, &val); 2992 if (ret < 0) 2993 return ret; 2994 2995 ret = -ESRCH; 2996 task = get_proc_task(file_inode(file)); 2997 if (!task) 2998 goto out_no_task; 2999 3000 mm = get_task_mm(task); 3001 if (!mm) 3002 goto out_no_mm; 3003 ret = 0; 3004 3005 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 3006 if (val & mask) 3007 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 3008 else 3009 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 3010 } 3011 3012 mmput(mm); 3013 out_no_mm: 3014 put_task_struct(task); 3015 out_no_task: 3016 if (ret < 0) 3017 return ret; 3018 return count; 3019 } 3020 3021 static const struct file_operations proc_coredump_filter_operations = { 3022 .read = proc_coredump_filter_read, 3023 .write = proc_coredump_filter_write, 3024 .llseek = generic_file_llseek, 3025 }; 3026 #endif 3027 3028 #ifdef CONFIG_TASK_IO_ACCOUNTING 3029 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 3030 { 3031 struct task_io_accounting acct; 3032 int result; 3033 3034 result = down_read_killable(&task->signal->exec_update_lock); 3035 if (result) 3036 return result; 3037 3038 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 3039 result = -EACCES; 3040 goto out_unlock; 3041 } 3042 3043 if (whole) { 3044 struct signal_struct *sig = task->signal; 3045 struct task_struct *t; 3046 unsigned int seq = 1; 3047 unsigned long flags; 3048 3049 rcu_read_lock(); 3050 do { 3051 seq++; /* 2 on the 1st/lockless path, otherwise odd */ 3052 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 3053 3054 acct = sig->ioac; 3055 __for_each_thread(sig, t) 3056 task_io_accounting_add(&acct, &t->ioac); 3057 3058 } while (need_seqretry(&sig->stats_lock, seq)); 3059 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 3060 rcu_read_unlock(); 3061 } else { 3062 acct = task->ioac; 3063 } 3064 3065 seq_printf(m, 3066 "rchar: %llu\n" 3067 "wchar: %llu\n" 3068 "syscr: %llu\n" 3069 "syscw: %llu\n" 3070 "read_bytes: %llu\n" 3071 "write_bytes: %llu\n" 3072 "cancelled_write_bytes: %llu\n", 3073 (unsigned long long)acct.rchar, 3074 (unsigned long long)acct.wchar, 3075 (unsigned long long)acct.syscr, 3076 (unsigned long long)acct.syscw, 3077 (unsigned long long)acct.read_bytes, 3078 (unsigned long long)acct.write_bytes, 3079 (unsigned long long)acct.cancelled_write_bytes); 3080 result = 0; 3081 3082 out_unlock: 3083 up_read(&task->signal->exec_update_lock); 3084 return result; 3085 } 3086 3087 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 3088 struct pid *pid, struct task_struct *task) 3089 { 3090 return do_io_accounting(task, m, 0); 3091 } 3092 3093 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 3094 struct pid *pid, struct task_struct *task) 3095 { 3096 return do_io_accounting(task, m, 1); 3097 } 3098 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 3099 3100 #ifdef CONFIG_USER_NS 3101 static int proc_id_map_open(struct inode *inode, struct file *file, 3102 const struct seq_operations *seq_ops) 3103 { 3104 struct user_namespace *ns = NULL; 3105 struct task_struct *task; 3106 struct seq_file *seq; 3107 int ret = -EINVAL; 3108 3109 task = get_proc_task(inode); 3110 if (task) { 3111 rcu_read_lock(); 3112 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3113 rcu_read_unlock(); 3114 put_task_struct(task); 3115 } 3116 if (!ns) 3117 goto err; 3118 3119 ret = seq_open(file, seq_ops); 3120 if (ret) 3121 goto err_put_ns; 3122 3123 seq = file->private_data; 3124 seq->private = ns; 3125 3126 return 0; 3127 err_put_ns: 3128 put_user_ns(ns); 3129 err: 3130 return ret; 3131 } 3132 3133 static int proc_id_map_release(struct inode *inode, struct file *file) 3134 { 3135 struct seq_file *seq = file->private_data; 3136 struct user_namespace *ns = seq->private; 3137 put_user_ns(ns); 3138 return seq_release(inode, file); 3139 } 3140 3141 static int proc_uid_map_open(struct inode *inode, struct file *file) 3142 { 3143 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 3144 } 3145 3146 static int proc_gid_map_open(struct inode *inode, struct file *file) 3147 { 3148 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 3149 } 3150 3151 static int proc_projid_map_open(struct inode *inode, struct file *file) 3152 { 3153 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 3154 } 3155 3156 static const struct file_operations proc_uid_map_operations = { 3157 .open = proc_uid_map_open, 3158 .write = proc_uid_map_write, 3159 .read = seq_read, 3160 .llseek = seq_lseek, 3161 .release = proc_id_map_release, 3162 }; 3163 3164 static const struct file_operations proc_gid_map_operations = { 3165 .open = proc_gid_map_open, 3166 .write = proc_gid_map_write, 3167 .read = seq_read, 3168 .llseek = seq_lseek, 3169 .release = proc_id_map_release, 3170 }; 3171 3172 static const struct file_operations proc_projid_map_operations = { 3173 .open = proc_projid_map_open, 3174 .write = proc_projid_map_write, 3175 .read = seq_read, 3176 .llseek = seq_lseek, 3177 .release = proc_id_map_release, 3178 }; 3179 3180 static int proc_setgroups_open(struct inode *inode, struct file *file) 3181 { 3182 struct user_namespace *ns = NULL; 3183 struct task_struct *task; 3184 int ret; 3185 3186 ret = -ESRCH; 3187 task = get_proc_task(inode); 3188 if (task) { 3189 rcu_read_lock(); 3190 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3191 rcu_read_unlock(); 3192 put_task_struct(task); 3193 } 3194 if (!ns) 3195 goto err; 3196 3197 if (file->f_mode & FMODE_WRITE) { 3198 ret = -EACCES; 3199 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3200 goto err_put_ns; 3201 } 3202 3203 ret = single_open(file, &proc_setgroups_show, ns); 3204 if (ret) 3205 goto err_put_ns; 3206 3207 return 0; 3208 err_put_ns: 3209 put_user_ns(ns); 3210 err: 3211 return ret; 3212 } 3213 3214 static int proc_setgroups_release(struct inode *inode, struct file *file) 3215 { 3216 struct seq_file *seq = file->private_data; 3217 struct user_namespace *ns = seq->private; 3218 int ret = single_release(inode, file); 3219 put_user_ns(ns); 3220 return ret; 3221 } 3222 3223 static const struct file_operations proc_setgroups_operations = { 3224 .open = proc_setgroups_open, 3225 .write = proc_setgroups_write, 3226 .read = seq_read, 3227 .llseek = seq_lseek, 3228 .release = proc_setgroups_release, 3229 }; 3230 #endif /* CONFIG_USER_NS */ 3231 3232 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3233 struct pid *pid, struct task_struct *task) 3234 { 3235 int err = lock_trace(task); 3236 if (!err) { 3237 seq_printf(m, "%08x\n", task->personality); 3238 unlock_trace(task); 3239 } 3240 return err; 3241 } 3242 3243 #ifdef CONFIG_LIVEPATCH 3244 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3245 struct pid *pid, struct task_struct *task) 3246 { 3247 seq_printf(m, "%d\n", task->patch_state); 3248 return 0; 3249 } 3250 #endif /* CONFIG_LIVEPATCH */ 3251 3252 #ifdef CONFIG_KSM 3253 static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns, 3254 struct pid *pid, struct task_struct *task) 3255 { 3256 struct mm_struct *mm; 3257 3258 mm = get_task_mm(task); 3259 if (mm) { 3260 seq_printf(m, "%lu\n", mm->ksm_merging_pages); 3261 mmput(mm); 3262 } 3263 3264 return 0; 3265 } 3266 static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns, 3267 struct pid *pid, struct task_struct *task) 3268 { 3269 struct mm_struct *mm; 3270 3271 mm = get_task_mm(task); 3272 if (mm) { 3273 seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items); 3274 seq_printf(m, "ksm_zero_pages %ld\n", mm_ksm_zero_pages(mm)); 3275 seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages); 3276 seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm)); 3277 mmput(mm); 3278 } 3279 3280 return 0; 3281 } 3282 #endif /* CONFIG_KSM */ 3283 3284 #ifdef CONFIG_STACKLEAK_METRICS 3285 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3286 struct pid *pid, struct task_struct *task) 3287 { 3288 unsigned long prev_depth = THREAD_SIZE - 3289 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3290 unsigned long depth = THREAD_SIZE - 3291 (task->lowest_stack & (THREAD_SIZE - 1)); 3292 3293 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3294 prev_depth, depth); 3295 return 0; 3296 } 3297 #endif /* CONFIG_STACKLEAK_METRICS */ 3298 3299 /* 3300 * Thread groups 3301 */ 3302 static const struct file_operations proc_task_operations; 3303 static const struct inode_operations proc_task_inode_operations; 3304 3305 static const struct pid_entry tgid_base_stuff[] = { 3306 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3307 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3308 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3309 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3310 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3311 #ifdef CONFIG_NET 3312 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3313 #endif 3314 REG("environ", S_IRUSR, proc_environ_operations), 3315 REG("auxv", S_IRUSR, proc_auxv_operations), 3316 ONE("status", S_IRUGO, proc_pid_status), 3317 ONE("personality", S_IRUSR, proc_pid_personality), 3318 ONE("limits", S_IRUGO, proc_pid_limits), 3319 #ifdef CONFIG_SCHED_DEBUG 3320 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3321 #endif 3322 #ifdef CONFIG_SCHED_AUTOGROUP 3323 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3324 #endif 3325 #ifdef CONFIG_TIME_NS 3326 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3327 #endif 3328 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3329 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3330 ONE("syscall", S_IRUSR, proc_pid_syscall), 3331 #endif 3332 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3333 ONE("stat", S_IRUGO, proc_tgid_stat), 3334 ONE("statm", S_IRUGO, proc_pid_statm), 3335 REG("maps", S_IRUGO, proc_pid_maps_operations), 3336 #ifdef CONFIG_NUMA 3337 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3338 #endif 3339 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3340 LNK("cwd", proc_cwd_link), 3341 LNK("root", proc_root_link), 3342 LNK("exe", proc_exe_link), 3343 REG("mounts", S_IRUGO, proc_mounts_operations), 3344 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3345 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3346 #ifdef CONFIG_PROC_PAGE_MONITOR 3347 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3348 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3349 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3350 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3351 #endif 3352 #ifdef CONFIG_SECURITY 3353 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3354 #endif 3355 #ifdef CONFIG_KALLSYMS 3356 ONE("wchan", S_IRUGO, proc_pid_wchan), 3357 #endif 3358 #ifdef CONFIG_STACKTRACE 3359 ONE("stack", S_IRUSR, proc_pid_stack), 3360 #endif 3361 #ifdef CONFIG_SCHED_INFO 3362 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3363 #endif 3364 #ifdef CONFIG_LATENCYTOP 3365 REG("latency", S_IRUGO, proc_lstats_operations), 3366 #endif 3367 #ifdef CONFIG_PROC_PID_CPUSET 3368 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3369 #endif 3370 #ifdef CONFIG_CGROUPS 3371 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3372 #endif 3373 #ifdef CONFIG_PROC_CPU_RESCTRL 3374 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3375 #endif 3376 ONE("oom_score", S_IRUGO, proc_oom_score), 3377 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3378 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3379 #ifdef CONFIG_AUDIT 3380 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3381 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3382 #endif 3383 #ifdef CONFIG_FAULT_INJECTION 3384 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3385 REG("fail-nth", 0644, proc_fail_nth_operations), 3386 #endif 3387 #ifdef CONFIG_ELF_CORE 3388 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3389 #endif 3390 #ifdef CONFIG_TASK_IO_ACCOUNTING 3391 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3392 #endif 3393 #ifdef CONFIG_USER_NS 3394 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3395 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3396 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3397 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3398 #endif 3399 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3400 REG("timers", S_IRUGO, proc_timers_operations), 3401 #endif 3402 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3403 #ifdef CONFIG_LIVEPATCH 3404 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3405 #endif 3406 #ifdef CONFIG_STACKLEAK_METRICS 3407 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3408 #endif 3409 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3410 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3411 #endif 3412 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3413 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3414 #endif 3415 #ifdef CONFIG_KSM 3416 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages), 3417 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat), 3418 #endif 3419 }; 3420 3421 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3422 { 3423 return proc_pident_readdir(file, ctx, 3424 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3425 } 3426 3427 static const struct file_operations proc_tgid_base_operations = { 3428 .read = generic_read_dir, 3429 .iterate_shared = proc_tgid_base_readdir, 3430 .llseek = generic_file_llseek, 3431 }; 3432 3433 struct pid *tgid_pidfd_to_pid(const struct file *file) 3434 { 3435 if (file->f_op != &proc_tgid_base_operations) 3436 return ERR_PTR(-EBADF); 3437 3438 return proc_pid(file_inode(file)); 3439 } 3440 3441 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3442 { 3443 return proc_pident_lookup(dir, dentry, 3444 tgid_base_stuff, 3445 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3446 } 3447 3448 static const struct inode_operations proc_tgid_base_inode_operations = { 3449 .lookup = proc_tgid_base_lookup, 3450 .getattr = pid_getattr, 3451 .setattr = proc_setattr, 3452 .permission = proc_pid_permission, 3453 }; 3454 3455 /** 3456 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. 3457 * @pid: pid that should be flushed. 3458 * 3459 * This function walks a list of inodes (that belong to any proc 3460 * filesystem) that are attached to the pid and flushes them from 3461 * the dentry cache. 3462 * 3463 * It is safe and reasonable to cache /proc entries for a task until 3464 * that task exits. After that they just clog up the dcache with 3465 * useless entries, possibly causing useful dcache entries to be 3466 * flushed instead. This routine is provided to flush those useless 3467 * dcache entries when a process is reaped. 3468 * 3469 * NOTE: This routine is just an optimization so it does not guarantee 3470 * that no dcache entries will exist after a process is reaped 3471 * it just makes it very unlikely that any will persist. 3472 */ 3473 3474 void proc_flush_pid(struct pid *pid) 3475 { 3476 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); 3477 } 3478 3479 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3480 struct task_struct *task, const void *ptr) 3481 { 3482 struct inode *inode; 3483 3484 inode = proc_pid_make_base_inode(dentry->d_sb, task, 3485 S_IFDIR | S_IRUGO | S_IXUGO); 3486 if (!inode) 3487 return ERR_PTR(-ENOENT); 3488 3489 inode->i_op = &proc_tgid_base_inode_operations; 3490 inode->i_fop = &proc_tgid_base_operations; 3491 inode->i_flags|=S_IMMUTABLE; 3492 3493 set_nlink(inode, nlink_tgid); 3494 pid_update_inode(task, inode); 3495 3496 d_set_d_op(dentry, &pid_dentry_operations); 3497 return d_splice_alias(inode, dentry); 3498 } 3499 3500 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3501 { 3502 struct task_struct *task; 3503 unsigned tgid; 3504 struct proc_fs_info *fs_info; 3505 struct pid_namespace *ns; 3506 struct dentry *result = ERR_PTR(-ENOENT); 3507 3508 tgid = name_to_int(&dentry->d_name); 3509 if (tgid == ~0U) 3510 goto out; 3511 3512 fs_info = proc_sb_info(dentry->d_sb); 3513 ns = fs_info->pid_ns; 3514 rcu_read_lock(); 3515 task = find_task_by_pid_ns(tgid, ns); 3516 if (task) 3517 get_task_struct(task); 3518 rcu_read_unlock(); 3519 if (!task) 3520 goto out; 3521 3522 /* Limit procfs to only ptraceable tasks */ 3523 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) { 3524 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS)) 3525 goto out_put_task; 3526 } 3527 3528 result = proc_pid_instantiate(dentry, task, NULL); 3529 out_put_task: 3530 put_task_struct(task); 3531 out: 3532 return result; 3533 } 3534 3535 /* 3536 * Find the first task with tgid >= tgid 3537 * 3538 */ 3539 struct tgid_iter { 3540 unsigned int tgid; 3541 struct task_struct *task; 3542 }; 3543 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3544 { 3545 struct pid *pid; 3546 3547 if (iter.task) 3548 put_task_struct(iter.task); 3549 rcu_read_lock(); 3550 retry: 3551 iter.task = NULL; 3552 pid = find_ge_pid(iter.tgid, ns); 3553 if (pid) { 3554 iter.tgid = pid_nr_ns(pid, ns); 3555 iter.task = pid_task(pid, PIDTYPE_TGID); 3556 if (!iter.task) { 3557 iter.tgid += 1; 3558 goto retry; 3559 } 3560 get_task_struct(iter.task); 3561 } 3562 rcu_read_unlock(); 3563 return iter; 3564 } 3565 3566 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3567 3568 /* for the /proc/ directory itself, after non-process stuff has been done */ 3569 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3570 { 3571 struct tgid_iter iter; 3572 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb); 3573 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb); 3574 loff_t pos = ctx->pos; 3575 3576 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3577 return 0; 3578 3579 if (pos == TGID_OFFSET - 2) { 3580 struct inode *inode = d_inode(fs_info->proc_self); 3581 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3582 return 0; 3583 ctx->pos = pos = pos + 1; 3584 } 3585 if (pos == TGID_OFFSET - 1) { 3586 struct inode *inode = d_inode(fs_info->proc_thread_self); 3587 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3588 return 0; 3589 ctx->pos = pos = pos + 1; 3590 } 3591 iter.tgid = pos - TGID_OFFSET; 3592 iter.task = NULL; 3593 for (iter = next_tgid(ns, iter); 3594 iter.task; 3595 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3596 char name[10 + 1]; 3597 unsigned int len; 3598 3599 cond_resched(); 3600 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE)) 3601 continue; 3602 3603 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3604 ctx->pos = iter.tgid + TGID_OFFSET; 3605 if (!proc_fill_cache(file, ctx, name, len, 3606 proc_pid_instantiate, iter.task, NULL)) { 3607 put_task_struct(iter.task); 3608 return 0; 3609 } 3610 } 3611 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3612 return 0; 3613 } 3614 3615 /* 3616 * proc_tid_comm_permission is a special permission function exclusively 3617 * used for the node /proc/<pid>/task/<tid>/comm. 3618 * It bypasses generic permission checks in the case where a task of the same 3619 * task group attempts to access the node. 3620 * The rationale behind this is that glibc and bionic access this node for 3621 * cross thread naming (pthread_set/getname_np(!self)). However, if 3622 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3623 * which locks out the cross thread naming implementation. 3624 * This function makes sure that the node is always accessible for members of 3625 * same thread group. 3626 */ 3627 static int proc_tid_comm_permission(struct mnt_idmap *idmap, 3628 struct inode *inode, int mask) 3629 { 3630 bool is_same_tgroup; 3631 struct task_struct *task; 3632 3633 task = get_proc_task(inode); 3634 if (!task) 3635 return -ESRCH; 3636 is_same_tgroup = same_thread_group(current, task); 3637 put_task_struct(task); 3638 3639 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3640 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3641 * read or written by the members of the corresponding 3642 * thread group. 3643 */ 3644 return 0; 3645 } 3646 3647 return generic_permission(&nop_mnt_idmap, inode, mask); 3648 } 3649 3650 static const struct inode_operations proc_tid_comm_inode_operations = { 3651 .setattr = proc_setattr, 3652 .permission = proc_tid_comm_permission, 3653 }; 3654 3655 /* 3656 * Tasks 3657 */ 3658 static const struct pid_entry tid_base_stuff[] = { 3659 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3660 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3661 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3662 #ifdef CONFIG_NET 3663 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3664 #endif 3665 REG("environ", S_IRUSR, proc_environ_operations), 3666 REG("auxv", S_IRUSR, proc_auxv_operations), 3667 ONE("status", S_IRUGO, proc_pid_status), 3668 ONE("personality", S_IRUSR, proc_pid_personality), 3669 ONE("limits", S_IRUGO, proc_pid_limits), 3670 #ifdef CONFIG_SCHED_DEBUG 3671 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3672 #endif 3673 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3674 &proc_tid_comm_inode_operations, 3675 &proc_pid_set_comm_operations, {}), 3676 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3677 ONE("syscall", S_IRUSR, proc_pid_syscall), 3678 #endif 3679 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3680 ONE("stat", S_IRUGO, proc_tid_stat), 3681 ONE("statm", S_IRUGO, proc_pid_statm), 3682 REG("maps", S_IRUGO, proc_pid_maps_operations), 3683 #ifdef CONFIG_PROC_CHILDREN 3684 REG("children", S_IRUGO, proc_tid_children_operations), 3685 #endif 3686 #ifdef CONFIG_NUMA 3687 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3688 #endif 3689 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3690 LNK("cwd", proc_cwd_link), 3691 LNK("root", proc_root_link), 3692 LNK("exe", proc_exe_link), 3693 REG("mounts", S_IRUGO, proc_mounts_operations), 3694 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3695 #ifdef CONFIG_PROC_PAGE_MONITOR 3696 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3697 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3698 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3699 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3700 #endif 3701 #ifdef CONFIG_SECURITY 3702 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3703 #endif 3704 #ifdef CONFIG_KALLSYMS 3705 ONE("wchan", S_IRUGO, proc_pid_wchan), 3706 #endif 3707 #ifdef CONFIG_STACKTRACE 3708 ONE("stack", S_IRUSR, proc_pid_stack), 3709 #endif 3710 #ifdef CONFIG_SCHED_INFO 3711 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3712 #endif 3713 #ifdef CONFIG_LATENCYTOP 3714 REG("latency", S_IRUGO, proc_lstats_operations), 3715 #endif 3716 #ifdef CONFIG_PROC_PID_CPUSET 3717 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3718 #endif 3719 #ifdef CONFIG_CGROUPS 3720 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3721 #endif 3722 #ifdef CONFIG_PROC_CPU_RESCTRL 3723 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3724 #endif 3725 ONE("oom_score", S_IRUGO, proc_oom_score), 3726 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3727 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3728 #ifdef CONFIG_AUDIT 3729 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3730 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3731 #endif 3732 #ifdef CONFIG_FAULT_INJECTION 3733 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3734 REG("fail-nth", 0644, proc_fail_nth_operations), 3735 #endif 3736 #ifdef CONFIG_TASK_IO_ACCOUNTING 3737 ONE("io", S_IRUSR, proc_tid_io_accounting), 3738 #endif 3739 #ifdef CONFIG_USER_NS 3740 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3741 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3742 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3743 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3744 #endif 3745 #ifdef CONFIG_LIVEPATCH 3746 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3747 #endif 3748 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3749 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3750 #endif 3751 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3752 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3753 #endif 3754 #ifdef CONFIG_KSM 3755 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages), 3756 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat), 3757 #endif 3758 }; 3759 3760 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3761 { 3762 return proc_pident_readdir(file, ctx, 3763 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3764 } 3765 3766 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3767 { 3768 return proc_pident_lookup(dir, dentry, 3769 tid_base_stuff, 3770 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3771 } 3772 3773 static const struct file_operations proc_tid_base_operations = { 3774 .read = generic_read_dir, 3775 .iterate_shared = proc_tid_base_readdir, 3776 .llseek = generic_file_llseek, 3777 }; 3778 3779 static const struct inode_operations proc_tid_base_inode_operations = { 3780 .lookup = proc_tid_base_lookup, 3781 .getattr = pid_getattr, 3782 .setattr = proc_setattr, 3783 }; 3784 3785 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3786 struct task_struct *task, const void *ptr) 3787 { 3788 struct inode *inode; 3789 inode = proc_pid_make_base_inode(dentry->d_sb, task, 3790 S_IFDIR | S_IRUGO | S_IXUGO); 3791 if (!inode) 3792 return ERR_PTR(-ENOENT); 3793 3794 inode->i_op = &proc_tid_base_inode_operations; 3795 inode->i_fop = &proc_tid_base_operations; 3796 inode->i_flags |= S_IMMUTABLE; 3797 3798 set_nlink(inode, nlink_tid); 3799 pid_update_inode(task, inode); 3800 3801 d_set_d_op(dentry, &pid_dentry_operations); 3802 return d_splice_alias(inode, dentry); 3803 } 3804 3805 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3806 { 3807 struct task_struct *task; 3808 struct task_struct *leader = get_proc_task(dir); 3809 unsigned tid; 3810 struct proc_fs_info *fs_info; 3811 struct pid_namespace *ns; 3812 struct dentry *result = ERR_PTR(-ENOENT); 3813 3814 if (!leader) 3815 goto out_no_task; 3816 3817 tid = name_to_int(&dentry->d_name); 3818 if (tid == ~0U) 3819 goto out; 3820 3821 fs_info = proc_sb_info(dentry->d_sb); 3822 ns = fs_info->pid_ns; 3823 rcu_read_lock(); 3824 task = find_task_by_pid_ns(tid, ns); 3825 if (task) 3826 get_task_struct(task); 3827 rcu_read_unlock(); 3828 if (!task) 3829 goto out; 3830 if (!same_thread_group(leader, task)) 3831 goto out_drop_task; 3832 3833 result = proc_task_instantiate(dentry, task, NULL); 3834 out_drop_task: 3835 put_task_struct(task); 3836 out: 3837 put_task_struct(leader); 3838 out_no_task: 3839 return result; 3840 } 3841 3842 /* 3843 * Find the first tid of a thread group to return to user space. 3844 * 3845 * Usually this is just the thread group leader, but if the users 3846 * buffer was too small or there was a seek into the middle of the 3847 * directory we have more work todo. 3848 * 3849 * In the case of a short read we start with find_task_by_pid. 3850 * 3851 * In the case of a seek we start with the leader and walk nr 3852 * threads past it. 3853 */ 3854 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3855 struct pid_namespace *ns) 3856 { 3857 struct task_struct *pos, *task; 3858 unsigned long nr = f_pos; 3859 3860 if (nr != f_pos) /* 32bit overflow? */ 3861 return NULL; 3862 3863 rcu_read_lock(); 3864 task = pid_task(pid, PIDTYPE_PID); 3865 if (!task) 3866 goto fail; 3867 3868 /* Attempt to start with the tid of a thread */ 3869 if (tid && nr) { 3870 pos = find_task_by_pid_ns(tid, ns); 3871 if (pos && same_thread_group(pos, task)) 3872 goto found; 3873 } 3874 3875 /* If nr exceeds the number of threads there is nothing todo */ 3876 if (nr >= get_nr_threads(task)) 3877 goto fail; 3878 3879 /* If we haven't found our starting place yet start 3880 * with the leader and walk nr threads forward. 3881 */ 3882 for_each_thread(task, pos) { 3883 if (!nr--) 3884 goto found; 3885 } 3886 fail: 3887 pos = NULL; 3888 goto out; 3889 found: 3890 get_task_struct(pos); 3891 out: 3892 rcu_read_unlock(); 3893 return pos; 3894 } 3895 3896 /* 3897 * Find the next thread in the thread list. 3898 * Return NULL if there is an error or no next thread. 3899 * 3900 * The reference to the input task_struct is released. 3901 */ 3902 static struct task_struct *next_tid(struct task_struct *start) 3903 { 3904 struct task_struct *pos = NULL; 3905 rcu_read_lock(); 3906 if (pid_alive(start)) { 3907 pos = __next_thread(start); 3908 if (pos) 3909 get_task_struct(pos); 3910 } 3911 rcu_read_unlock(); 3912 put_task_struct(start); 3913 return pos; 3914 } 3915 3916 /* for the /proc/TGID/task/ directories */ 3917 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3918 { 3919 struct inode *inode = file_inode(file); 3920 struct task_struct *task; 3921 struct pid_namespace *ns; 3922 int tid; 3923 3924 if (proc_inode_is_dead(inode)) 3925 return -ENOENT; 3926 3927 if (!dir_emit_dots(file, ctx)) 3928 return 0; 3929 3930 /* We cache the tgid value that the last readdir call couldn't 3931 * return and lseek resets it to 0. 3932 */ 3933 ns = proc_pid_ns(inode->i_sb); 3934 tid = (int)(intptr_t)file->private_data; 3935 file->private_data = NULL; 3936 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3937 task; 3938 task = next_tid(task), ctx->pos++) { 3939 char name[10 + 1]; 3940 unsigned int len; 3941 3942 tid = task_pid_nr_ns(task, ns); 3943 if (!tid) 3944 continue; /* The task has just exited. */ 3945 len = snprintf(name, sizeof(name), "%u", tid); 3946 if (!proc_fill_cache(file, ctx, name, len, 3947 proc_task_instantiate, task, NULL)) { 3948 /* returning this tgid failed, save it as the first 3949 * pid for the next readir call */ 3950 file->private_data = (void *)(intptr_t)tid; 3951 put_task_struct(task); 3952 break; 3953 } 3954 } 3955 3956 return 0; 3957 } 3958 3959 static int proc_task_getattr(struct mnt_idmap *idmap, 3960 const struct path *path, struct kstat *stat, 3961 u32 request_mask, unsigned int query_flags) 3962 { 3963 struct inode *inode = d_inode(path->dentry); 3964 struct task_struct *p = get_proc_task(inode); 3965 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 3966 3967 if (p) { 3968 stat->nlink += get_nr_threads(p); 3969 put_task_struct(p); 3970 } 3971 3972 return 0; 3973 } 3974 3975 /* 3976 * proc_task_readdir() set @file->private_data to a positive integer 3977 * value, so casting that to u64 is safe. generic_llseek_cookie() will 3978 * set @cookie to 0, so casting to an int is safe. The WARN_ON_ONCE() is 3979 * here to catch any unexpected change in behavior either in 3980 * proc_task_readdir() or generic_llseek_cookie(). 3981 */ 3982 static loff_t proc_dir_llseek(struct file *file, loff_t offset, int whence) 3983 { 3984 u64 cookie = (u64)(intptr_t)file->private_data; 3985 loff_t off; 3986 3987 off = generic_llseek_cookie(file, offset, whence, &cookie); 3988 WARN_ON_ONCE(cookie > INT_MAX); 3989 file->private_data = (void *)(intptr_t)cookie; /* serialized by f_pos_lock */ 3990 return off; 3991 } 3992 3993 static const struct inode_operations proc_task_inode_operations = { 3994 .lookup = proc_task_lookup, 3995 .getattr = proc_task_getattr, 3996 .setattr = proc_setattr, 3997 .permission = proc_pid_permission, 3998 }; 3999 4000 static const struct file_operations proc_task_operations = { 4001 .read = generic_read_dir, 4002 .iterate_shared = proc_task_readdir, 4003 .llseek = proc_dir_llseek, 4004 }; 4005 4006 void __init set_proc_pid_nlink(void) 4007 { 4008 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 4009 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 4010 } 4011