xref: /linux/fs/proc/base.c (revision 31af04cd60d3162a58213363fd740a2b0cf0a08e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/flex_array.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100 
101 #include "../../lib/kstrtox.h"
102 
103 /* NOTE:
104  *	Implementing inode permission operations in /proc is almost
105  *	certainly an error.  Permission checks need to happen during
106  *	each system call not at open time.  The reason is that most of
107  *	what we wish to check for permissions in /proc varies at runtime.
108  *
109  *	The classic example of a problem is opening file descriptors
110  *	in /proc for a task before it execs a suid executable.
111  */
112 
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115 
116 struct pid_entry {
117 	const char *name;
118 	unsigned int len;
119 	umode_t mode;
120 	const struct inode_operations *iop;
121 	const struct file_operations *fop;
122 	union proc_op op;
123 };
124 
125 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
126 	.name = (NAME),					\
127 	.len  = sizeof(NAME) - 1,			\
128 	.mode = MODE,					\
129 	.iop  = IOP,					\
130 	.fop  = FOP,					\
131 	.op   = OP,					\
132 }
133 
134 #define DIR(NAME, MODE, iops, fops)	\
135 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link)					\
137 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
138 		&proc_pid_link_inode_operations, NULL,		\
139 		{ .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops)				\
141 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show)				\
143 	NOD(NAME, (S_IFREG|(MODE)), 			\
144 		NULL, &proc_single_file_operations,	\
145 		{ .proc_show = show } )
146 
147 /*
148  * Count the number of hardlinks for the pid_entry table, excluding the .
149  * and .. links.
150  */
151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
152 	unsigned int n)
153 {
154 	unsigned int i;
155 	unsigned int count;
156 
157 	count = 2;
158 	for (i = 0; i < n; ++i) {
159 		if (S_ISDIR(entries[i].mode))
160 			++count;
161 	}
162 
163 	return count;
164 }
165 
166 static int get_task_root(struct task_struct *task, struct path *root)
167 {
168 	int result = -ENOENT;
169 
170 	task_lock(task);
171 	if (task->fs) {
172 		get_fs_root(task->fs, root);
173 		result = 0;
174 	}
175 	task_unlock(task);
176 	return result;
177 }
178 
179 static int proc_cwd_link(struct dentry *dentry, struct path *path)
180 {
181 	struct task_struct *task = get_proc_task(d_inode(dentry));
182 	int result = -ENOENT;
183 
184 	if (task) {
185 		task_lock(task);
186 		if (task->fs) {
187 			get_fs_pwd(task->fs, path);
188 			result = 0;
189 		}
190 		task_unlock(task);
191 		put_task_struct(task);
192 	}
193 	return result;
194 }
195 
196 static int proc_root_link(struct dentry *dentry, struct path *path)
197 {
198 	struct task_struct *task = get_proc_task(d_inode(dentry));
199 	int result = -ENOENT;
200 
201 	if (task) {
202 		result = get_task_root(task, path);
203 		put_task_struct(task);
204 	}
205 	return result;
206 }
207 
208 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
209 			      size_t count, loff_t *ppos)
210 {
211 	unsigned long arg_start, arg_end, env_start, env_end;
212 	unsigned long pos, len;
213 	char *page;
214 
215 	/* Check if process spawned far enough to have cmdline. */
216 	if (!mm->env_end)
217 		return 0;
218 
219 	spin_lock(&mm->arg_lock);
220 	arg_start = mm->arg_start;
221 	arg_end = mm->arg_end;
222 	env_start = mm->env_start;
223 	env_end = mm->env_end;
224 	spin_unlock(&mm->arg_lock);
225 
226 	if (arg_start >= arg_end)
227 		return 0;
228 
229 	/*
230 	 * We have traditionally allowed the user to re-write
231 	 * the argument strings and overflow the end result
232 	 * into the environment section. But only do that if
233 	 * the environment area is contiguous to the arguments.
234 	 */
235 	if (env_start != arg_end || env_start >= env_end)
236 		env_start = env_end = arg_end;
237 
238 	/* .. and limit it to a maximum of one page of slop */
239 	if (env_end >= arg_end + PAGE_SIZE)
240 		env_end = arg_end + PAGE_SIZE - 1;
241 
242 	/* We're not going to care if "*ppos" has high bits set */
243 	pos = arg_start + *ppos;
244 
245 	/* .. but we do check the result is in the proper range */
246 	if (pos < arg_start || pos >= env_end)
247 		return 0;
248 
249 	/* .. and we never go past env_end */
250 	if (env_end - pos < count)
251 		count = env_end - pos;
252 
253 	page = (char *)__get_free_page(GFP_KERNEL);
254 	if (!page)
255 		return -ENOMEM;
256 
257 	len = 0;
258 	while (count) {
259 		int got;
260 		size_t size = min_t(size_t, PAGE_SIZE, count);
261 		long offset;
262 
263 		/*
264 		 * Are we already starting past the official end?
265 		 * We always include the last byte that is *supposed*
266 		 * to be NUL
267 		 */
268 		offset = (pos >= arg_end) ? pos - arg_end + 1 : 0;
269 
270 		got = access_remote_vm(mm, pos - offset, page, size + offset, FOLL_ANON);
271 		if (got <= offset)
272 			break;
273 		got -= offset;
274 
275 		/* Don't walk past a NUL character once you hit arg_end */
276 		if (pos + got >= arg_end) {
277 			int n = 0;
278 
279 			/*
280 			 * If we started before 'arg_end' but ended up
281 			 * at or after it, we start the NUL character
282 			 * check at arg_end-1 (where we expect the normal
283 			 * EOF to be).
284 			 *
285 			 * NOTE! This is smaller than 'got', because
286 			 * pos + got >= arg_end
287 			 */
288 			if (pos < arg_end)
289 				n = arg_end - pos - 1;
290 
291 			/* Cut off at first NUL after 'n' */
292 			got = n + strnlen(page+n, offset+got-n);
293 			if (got < offset)
294 				break;
295 			got -= offset;
296 
297 			/* Include the NUL if it existed */
298 			if (got < size)
299 				got++;
300 		}
301 
302 		got -= copy_to_user(buf, page+offset, got);
303 		if (unlikely(!got)) {
304 			if (!len)
305 				len = -EFAULT;
306 			break;
307 		}
308 		pos += got;
309 		buf += got;
310 		len += got;
311 		count -= got;
312 	}
313 
314 	free_page((unsigned long)page);
315 	return len;
316 }
317 
318 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
319 				size_t count, loff_t *pos)
320 {
321 	struct mm_struct *mm;
322 	ssize_t ret;
323 
324 	mm = get_task_mm(tsk);
325 	if (!mm)
326 		return 0;
327 
328 	ret = get_mm_cmdline(mm, buf, count, pos);
329 	mmput(mm);
330 	return ret;
331 }
332 
333 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
334 				     size_t count, loff_t *pos)
335 {
336 	struct task_struct *tsk;
337 	ssize_t ret;
338 
339 	BUG_ON(*pos < 0);
340 
341 	tsk = get_proc_task(file_inode(file));
342 	if (!tsk)
343 		return -ESRCH;
344 	ret = get_task_cmdline(tsk, buf, count, pos);
345 	put_task_struct(tsk);
346 	if (ret > 0)
347 		*pos += ret;
348 	return ret;
349 }
350 
351 static const struct file_operations proc_pid_cmdline_ops = {
352 	.read	= proc_pid_cmdline_read,
353 	.llseek	= generic_file_llseek,
354 };
355 
356 #ifdef CONFIG_KALLSYMS
357 /*
358  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
359  * Returns the resolved symbol.  If that fails, simply return the address.
360  */
361 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
362 			  struct pid *pid, struct task_struct *task)
363 {
364 	unsigned long wchan;
365 	char symname[KSYM_NAME_LEN];
366 
367 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
368 		goto print0;
369 
370 	wchan = get_wchan(task);
371 	if (wchan && !lookup_symbol_name(wchan, symname)) {
372 		seq_puts(m, symname);
373 		return 0;
374 	}
375 
376 print0:
377 	seq_putc(m, '0');
378 	return 0;
379 }
380 #endif /* CONFIG_KALLSYMS */
381 
382 static int lock_trace(struct task_struct *task)
383 {
384 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
385 	if (err)
386 		return err;
387 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
388 		mutex_unlock(&task->signal->cred_guard_mutex);
389 		return -EPERM;
390 	}
391 	return 0;
392 }
393 
394 static void unlock_trace(struct task_struct *task)
395 {
396 	mutex_unlock(&task->signal->cred_guard_mutex);
397 }
398 
399 #ifdef CONFIG_STACKTRACE
400 
401 #define MAX_STACK_TRACE_DEPTH	64
402 
403 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
404 			  struct pid *pid, struct task_struct *task)
405 {
406 	struct stack_trace trace;
407 	unsigned long *entries;
408 	int err;
409 
410 	/*
411 	 * The ability to racily run the kernel stack unwinder on a running task
412 	 * and then observe the unwinder output is scary; while it is useful for
413 	 * debugging kernel issues, it can also allow an attacker to leak kernel
414 	 * stack contents.
415 	 * Doing this in a manner that is at least safe from races would require
416 	 * some work to ensure that the remote task can not be scheduled; and
417 	 * even then, this would still expose the unwinder as local attack
418 	 * surface.
419 	 * Therefore, this interface is restricted to root.
420 	 */
421 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
422 		return -EACCES;
423 
424 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
425 				GFP_KERNEL);
426 	if (!entries)
427 		return -ENOMEM;
428 
429 	trace.nr_entries	= 0;
430 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
431 	trace.entries		= entries;
432 	trace.skip		= 0;
433 
434 	err = lock_trace(task);
435 	if (!err) {
436 		unsigned int i;
437 
438 		save_stack_trace_tsk(task, &trace);
439 
440 		for (i = 0; i < trace.nr_entries; i++) {
441 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
442 		}
443 		unlock_trace(task);
444 	}
445 	kfree(entries);
446 
447 	return err;
448 }
449 #endif
450 
451 #ifdef CONFIG_SCHED_INFO
452 /*
453  * Provides /proc/PID/schedstat
454  */
455 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
456 			      struct pid *pid, struct task_struct *task)
457 {
458 	if (unlikely(!sched_info_on()))
459 		seq_printf(m, "0 0 0\n");
460 	else
461 		seq_printf(m, "%llu %llu %lu\n",
462 		   (unsigned long long)task->se.sum_exec_runtime,
463 		   (unsigned long long)task->sched_info.run_delay,
464 		   task->sched_info.pcount);
465 
466 	return 0;
467 }
468 #endif
469 
470 #ifdef CONFIG_LATENCYTOP
471 static int lstats_show_proc(struct seq_file *m, void *v)
472 {
473 	int i;
474 	struct inode *inode = m->private;
475 	struct task_struct *task = get_proc_task(inode);
476 
477 	if (!task)
478 		return -ESRCH;
479 	seq_puts(m, "Latency Top version : v0.1\n");
480 	for (i = 0; i < LT_SAVECOUNT; i++) {
481 		struct latency_record *lr = &task->latency_record[i];
482 		if (lr->backtrace[0]) {
483 			int q;
484 			seq_printf(m, "%i %li %li",
485 				   lr->count, lr->time, lr->max);
486 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
487 				unsigned long bt = lr->backtrace[q];
488 				if (!bt)
489 					break;
490 				if (bt == ULONG_MAX)
491 					break;
492 				seq_printf(m, " %ps", (void *)bt);
493 			}
494 			seq_putc(m, '\n');
495 		}
496 
497 	}
498 	put_task_struct(task);
499 	return 0;
500 }
501 
502 static int lstats_open(struct inode *inode, struct file *file)
503 {
504 	return single_open(file, lstats_show_proc, inode);
505 }
506 
507 static ssize_t lstats_write(struct file *file, const char __user *buf,
508 			    size_t count, loff_t *offs)
509 {
510 	struct task_struct *task = get_proc_task(file_inode(file));
511 
512 	if (!task)
513 		return -ESRCH;
514 	clear_all_latency_tracing(task);
515 	put_task_struct(task);
516 
517 	return count;
518 }
519 
520 static const struct file_operations proc_lstats_operations = {
521 	.open		= lstats_open,
522 	.read		= seq_read,
523 	.write		= lstats_write,
524 	.llseek		= seq_lseek,
525 	.release	= single_release,
526 };
527 
528 #endif
529 
530 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
531 			  struct pid *pid, struct task_struct *task)
532 {
533 	unsigned long totalpages = totalram_pages() + total_swap_pages;
534 	unsigned long points = 0;
535 
536 	points = oom_badness(task, NULL, NULL, totalpages) *
537 					1000 / totalpages;
538 	seq_printf(m, "%lu\n", points);
539 
540 	return 0;
541 }
542 
543 struct limit_names {
544 	const char *name;
545 	const char *unit;
546 };
547 
548 static const struct limit_names lnames[RLIM_NLIMITS] = {
549 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
550 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
551 	[RLIMIT_DATA] = {"Max data size", "bytes"},
552 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
553 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
554 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
555 	[RLIMIT_NPROC] = {"Max processes", "processes"},
556 	[RLIMIT_NOFILE] = {"Max open files", "files"},
557 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
558 	[RLIMIT_AS] = {"Max address space", "bytes"},
559 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
560 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
561 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
562 	[RLIMIT_NICE] = {"Max nice priority", NULL},
563 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
564 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
565 };
566 
567 /* Display limits for a process */
568 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
569 			   struct pid *pid, struct task_struct *task)
570 {
571 	unsigned int i;
572 	unsigned long flags;
573 
574 	struct rlimit rlim[RLIM_NLIMITS];
575 
576 	if (!lock_task_sighand(task, &flags))
577 		return 0;
578 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
579 	unlock_task_sighand(task, &flags);
580 
581 	/*
582 	 * print the file header
583 	 */
584 	seq_puts(m, "Limit                     "
585 		"Soft Limit           "
586 		"Hard Limit           "
587 		"Units     \n");
588 
589 	for (i = 0; i < RLIM_NLIMITS; i++) {
590 		if (rlim[i].rlim_cur == RLIM_INFINITY)
591 			seq_printf(m, "%-25s %-20s ",
592 				   lnames[i].name, "unlimited");
593 		else
594 			seq_printf(m, "%-25s %-20lu ",
595 				   lnames[i].name, rlim[i].rlim_cur);
596 
597 		if (rlim[i].rlim_max == RLIM_INFINITY)
598 			seq_printf(m, "%-20s ", "unlimited");
599 		else
600 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
601 
602 		if (lnames[i].unit)
603 			seq_printf(m, "%-10s\n", lnames[i].unit);
604 		else
605 			seq_putc(m, '\n');
606 	}
607 
608 	return 0;
609 }
610 
611 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
612 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
613 			    struct pid *pid, struct task_struct *task)
614 {
615 	long nr;
616 	unsigned long args[6], sp, pc;
617 	int res;
618 
619 	res = lock_trace(task);
620 	if (res)
621 		return res;
622 
623 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
624 		seq_puts(m, "running\n");
625 	else if (nr < 0)
626 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
627 	else
628 		seq_printf(m,
629 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
630 		       nr,
631 		       args[0], args[1], args[2], args[3], args[4], args[5],
632 		       sp, pc);
633 	unlock_trace(task);
634 
635 	return 0;
636 }
637 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
638 
639 /************************************************************************/
640 /*                       Here the fs part begins                        */
641 /************************************************************************/
642 
643 /* permission checks */
644 static int proc_fd_access_allowed(struct inode *inode)
645 {
646 	struct task_struct *task;
647 	int allowed = 0;
648 	/* Allow access to a task's file descriptors if it is us or we
649 	 * may use ptrace attach to the process and find out that
650 	 * information.
651 	 */
652 	task = get_proc_task(inode);
653 	if (task) {
654 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
655 		put_task_struct(task);
656 	}
657 	return allowed;
658 }
659 
660 int proc_setattr(struct dentry *dentry, struct iattr *attr)
661 {
662 	int error;
663 	struct inode *inode = d_inode(dentry);
664 
665 	if (attr->ia_valid & ATTR_MODE)
666 		return -EPERM;
667 
668 	error = setattr_prepare(dentry, attr);
669 	if (error)
670 		return error;
671 
672 	setattr_copy(inode, attr);
673 	mark_inode_dirty(inode);
674 	return 0;
675 }
676 
677 /*
678  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
679  * or euid/egid (for hide_pid_min=2)?
680  */
681 static bool has_pid_permissions(struct pid_namespace *pid,
682 				 struct task_struct *task,
683 				 int hide_pid_min)
684 {
685 	if (pid->hide_pid < hide_pid_min)
686 		return true;
687 	if (in_group_p(pid->pid_gid))
688 		return true;
689 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
690 }
691 
692 
693 static int proc_pid_permission(struct inode *inode, int mask)
694 {
695 	struct pid_namespace *pid = proc_pid_ns(inode);
696 	struct task_struct *task;
697 	bool has_perms;
698 
699 	task = get_proc_task(inode);
700 	if (!task)
701 		return -ESRCH;
702 	has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
703 	put_task_struct(task);
704 
705 	if (!has_perms) {
706 		if (pid->hide_pid == HIDEPID_INVISIBLE) {
707 			/*
708 			 * Let's make getdents(), stat(), and open()
709 			 * consistent with each other.  If a process
710 			 * may not stat() a file, it shouldn't be seen
711 			 * in procfs at all.
712 			 */
713 			return -ENOENT;
714 		}
715 
716 		return -EPERM;
717 	}
718 	return generic_permission(inode, mask);
719 }
720 
721 
722 
723 static const struct inode_operations proc_def_inode_operations = {
724 	.setattr	= proc_setattr,
725 };
726 
727 static int proc_single_show(struct seq_file *m, void *v)
728 {
729 	struct inode *inode = m->private;
730 	struct pid_namespace *ns = proc_pid_ns(inode);
731 	struct pid *pid = proc_pid(inode);
732 	struct task_struct *task;
733 	int ret;
734 
735 	task = get_pid_task(pid, PIDTYPE_PID);
736 	if (!task)
737 		return -ESRCH;
738 
739 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
740 
741 	put_task_struct(task);
742 	return ret;
743 }
744 
745 static int proc_single_open(struct inode *inode, struct file *filp)
746 {
747 	return single_open(filp, proc_single_show, inode);
748 }
749 
750 static const struct file_operations proc_single_file_operations = {
751 	.open		= proc_single_open,
752 	.read		= seq_read,
753 	.llseek		= seq_lseek,
754 	.release	= single_release,
755 };
756 
757 
758 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
759 {
760 	struct task_struct *task = get_proc_task(inode);
761 	struct mm_struct *mm = ERR_PTR(-ESRCH);
762 
763 	if (task) {
764 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
765 		put_task_struct(task);
766 
767 		if (!IS_ERR_OR_NULL(mm)) {
768 			/* ensure this mm_struct can't be freed */
769 			mmgrab(mm);
770 			/* but do not pin its memory */
771 			mmput(mm);
772 		}
773 	}
774 
775 	return mm;
776 }
777 
778 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
779 {
780 	struct mm_struct *mm = proc_mem_open(inode, mode);
781 
782 	if (IS_ERR(mm))
783 		return PTR_ERR(mm);
784 
785 	file->private_data = mm;
786 	return 0;
787 }
788 
789 static int mem_open(struct inode *inode, struct file *file)
790 {
791 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
792 
793 	/* OK to pass negative loff_t, we can catch out-of-range */
794 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
795 
796 	return ret;
797 }
798 
799 static ssize_t mem_rw(struct file *file, char __user *buf,
800 			size_t count, loff_t *ppos, int write)
801 {
802 	struct mm_struct *mm = file->private_data;
803 	unsigned long addr = *ppos;
804 	ssize_t copied;
805 	char *page;
806 	unsigned int flags;
807 
808 	if (!mm)
809 		return 0;
810 
811 	page = (char *)__get_free_page(GFP_KERNEL);
812 	if (!page)
813 		return -ENOMEM;
814 
815 	copied = 0;
816 	if (!mmget_not_zero(mm))
817 		goto free;
818 
819 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
820 
821 	while (count > 0) {
822 		int this_len = min_t(int, count, PAGE_SIZE);
823 
824 		if (write && copy_from_user(page, buf, this_len)) {
825 			copied = -EFAULT;
826 			break;
827 		}
828 
829 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
830 		if (!this_len) {
831 			if (!copied)
832 				copied = -EIO;
833 			break;
834 		}
835 
836 		if (!write && copy_to_user(buf, page, this_len)) {
837 			copied = -EFAULT;
838 			break;
839 		}
840 
841 		buf += this_len;
842 		addr += this_len;
843 		copied += this_len;
844 		count -= this_len;
845 	}
846 	*ppos = addr;
847 
848 	mmput(mm);
849 free:
850 	free_page((unsigned long) page);
851 	return copied;
852 }
853 
854 static ssize_t mem_read(struct file *file, char __user *buf,
855 			size_t count, loff_t *ppos)
856 {
857 	return mem_rw(file, buf, count, ppos, 0);
858 }
859 
860 static ssize_t mem_write(struct file *file, const char __user *buf,
861 			 size_t count, loff_t *ppos)
862 {
863 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
864 }
865 
866 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
867 {
868 	switch (orig) {
869 	case 0:
870 		file->f_pos = offset;
871 		break;
872 	case 1:
873 		file->f_pos += offset;
874 		break;
875 	default:
876 		return -EINVAL;
877 	}
878 	force_successful_syscall_return();
879 	return file->f_pos;
880 }
881 
882 static int mem_release(struct inode *inode, struct file *file)
883 {
884 	struct mm_struct *mm = file->private_data;
885 	if (mm)
886 		mmdrop(mm);
887 	return 0;
888 }
889 
890 static const struct file_operations proc_mem_operations = {
891 	.llseek		= mem_lseek,
892 	.read		= mem_read,
893 	.write		= mem_write,
894 	.open		= mem_open,
895 	.release	= mem_release,
896 };
897 
898 static int environ_open(struct inode *inode, struct file *file)
899 {
900 	return __mem_open(inode, file, PTRACE_MODE_READ);
901 }
902 
903 static ssize_t environ_read(struct file *file, char __user *buf,
904 			size_t count, loff_t *ppos)
905 {
906 	char *page;
907 	unsigned long src = *ppos;
908 	int ret = 0;
909 	struct mm_struct *mm = file->private_data;
910 	unsigned long env_start, env_end;
911 
912 	/* Ensure the process spawned far enough to have an environment. */
913 	if (!mm || !mm->env_end)
914 		return 0;
915 
916 	page = (char *)__get_free_page(GFP_KERNEL);
917 	if (!page)
918 		return -ENOMEM;
919 
920 	ret = 0;
921 	if (!mmget_not_zero(mm))
922 		goto free;
923 
924 	spin_lock(&mm->arg_lock);
925 	env_start = mm->env_start;
926 	env_end = mm->env_end;
927 	spin_unlock(&mm->arg_lock);
928 
929 	while (count > 0) {
930 		size_t this_len, max_len;
931 		int retval;
932 
933 		if (src >= (env_end - env_start))
934 			break;
935 
936 		this_len = env_end - (env_start + src);
937 
938 		max_len = min_t(size_t, PAGE_SIZE, count);
939 		this_len = min(max_len, this_len);
940 
941 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
942 
943 		if (retval <= 0) {
944 			ret = retval;
945 			break;
946 		}
947 
948 		if (copy_to_user(buf, page, retval)) {
949 			ret = -EFAULT;
950 			break;
951 		}
952 
953 		ret += retval;
954 		src += retval;
955 		buf += retval;
956 		count -= retval;
957 	}
958 	*ppos = src;
959 	mmput(mm);
960 
961 free:
962 	free_page((unsigned long) page);
963 	return ret;
964 }
965 
966 static const struct file_operations proc_environ_operations = {
967 	.open		= environ_open,
968 	.read		= environ_read,
969 	.llseek		= generic_file_llseek,
970 	.release	= mem_release,
971 };
972 
973 static int auxv_open(struct inode *inode, struct file *file)
974 {
975 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
976 }
977 
978 static ssize_t auxv_read(struct file *file, char __user *buf,
979 			size_t count, loff_t *ppos)
980 {
981 	struct mm_struct *mm = file->private_data;
982 	unsigned int nwords = 0;
983 
984 	if (!mm)
985 		return 0;
986 	do {
987 		nwords += 2;
988 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
989 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
990 				       nwords * sizeof(mm->saved_auxv[0]));
991 }
992 
993 static const struct file_operations proc_auxv_operations = {
994 	.open		= auxv_open,
995 	.read		= auxv_read,
996 	.llseek		= generic_file_llseek,
997 	.release	= mem_release,
998 };
999 
1000 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1001 			    loff_t *ppos)
1002 {
1003 	struct task_struct *task = get_proc_task(file_inode(file));
1004 	char buffer[PROC_NUMBUF];
1005 	int oom_adj = OOM_ADJUST_MIN;
1006 	size_t len;
1007 
1008 	if (!task)
1009 		return -ESRCH;
1010 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1011 		oom_adj = OOM_ADJUST_MAX;
1012 	else
1013 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1014 			  OOM_SCORE_ADJ_MAX;
1015 	put_task_struct(task);
1016 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1017 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1018 }
1019 
1020 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1021 {
1022 	static DEFINE_MUTEX(oom_adj_mutex);
1023 	struct mm_struct *mm = NULL;
1024 	struct task_struct *task;
1025 	int err = 0;
1026 
1027 	task = get_proc_task(file_inode(file));
1028 	if (!task)
1029 		return -ESRCH;
1030 
1031 	mutex_lock(&oom_adj_mutex);
1032 	if (legacy) {
1033 		if (oom_adj < task->signal->oom_score_adj &&
1034 				!capable(CAP_SYS_RESOURCE)) {
1035 			err = -EACCES;
1036 			goto err_unlock;
1037 		}
1038 		/*
1039 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1040 		 * /proc/pid/oom_score_adj instead.
1041 		 */
1042 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1043 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1044 			  task_pid_nr(task));
1045 	} else {
1046 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1047 				!capable(CAP_SYS_RESOURCE)) {
1048 			err = -EACCES;
1049 			goto err_unlock;
1050 		}
1051 	}
1052 
1053 	/*
1054 	 * Make sure we will check other processes sharing the mm if this is
1055 	 * not vfrok which wants its own oom_score_adj.
1056 	 * pin the mm so it doesn't go away and get reused after task_unlock
1057 	 */
1058 	if (!task->vfork_done) {
1059 		struct task_struct *p = find_lock_task_mm(task);
1060 
1061 		if (p) {
1062 			if (atomic_read(&p->mm->mm_users) > 1) {
1063 				mm = p->mm;
1064 				mmgrab(mm);
1065 			}
1066 			task_unlock(p);
1067 		}
1068 	}
1069 
1070 	task->signal->oom_score_adj = oom_adj;
1071 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1072 		task->signal->oom_score_adj_min = (short)oom_adj;
1073 	trace_oom_score_adj_update(task);
1074 
1075 	if (mm) {
1076 		struct task_struct *p;
1077 
1078 		rcu_read_lock();
1079 		for_each_process(p) {
1080 			if (same_thread_group(task, p))
1081 				continue;
1082 
1083 			/* do not touch kernel threads or the global init */
1084 			if (p->flags & PF_KTHREAD || is_global_init(p))
1085 				continue;
1086 
1087 			task_lock(p);
1088 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1089 				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1090 						task_pid_nr(p), p->comm,
1091 						p->signal->oom_score_adj, oom_adj,
1092 						task_pid_nr(task), task->comm);
1093 				p->signal->oom_score_adj = oom_adj;
1094 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1095 					p->signal->oom_score_adj_min = (short)oom_adj;
1096 			}
1097 			task_unlock(p);
1098 		}
1099 		rcu_read_unlock();
1100 		mmdrop(mm);
1101 	}
1102 err_unlock:
1103 	mutex_unlock(&oom_adj_mutex);
1104 	put_task_struct(task);
1105 	return err;
1106 }
1107 
1108 /*
1109  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1110  * kernels.  The effective policy is defined by oom_score_adj, which has a
1111  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1112  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1113  * Processes that become oom disabled via oom_adj will still be oom disabled
1114  * with this implementation.
1115  *
1116  * oom_adj cannot be removed since existing userspace binaries use it.
1117  */
1118 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1119 			     size_t count, loff_t *ppos)
1120 {
1121 	char buffer[PROC_NUMBUF];
1122 	int oom_adj;
1123 	int err;
1124 
1125 	memset(buffer, 0, sizeof(buffer));
1126 	if (count > sizeof(buffer) - 1)
1127 		count = sizeof(buffer) - 1;
1128 	if (copy_from_user(buffer, buf, count)) {
1129 		err = -EFAULT;
1130 		goto out;
1131 	}
1132 
1133 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1134 	if (err)
1135 		goto out;
1136 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1137 	     oom_adj != OOM_DISABLE) {
1138 		err = -EINVAL;
1139 		goto out;
1140 	}
1141 
1142 	/*
1143 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1144 	 * value is always attainable.
1145 	 */
1146 	if (oom_adj == OOM_ADJUST_MAX)
1147 		oom_adj = OOM_SCORE_ADJ_MAX;
1148 	else
1149 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1150 
1151 	err = __set_oom_adj(file, oom_adj, true);
1152 out:
1153 	return err < 0 ? err : count;
1154 }
1155 
1156 static const struct file_operations proc_oom_adj_operations = {
1157 	.read		= oom_adj_read,
1158 	.write		= oom_adj_write,
1159 	.llseek		= generic_file_llseek,
1160 };
1161 
1162 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1163 					size_t count, loff_t *ppos)
1164 {
1165 	struct task_struct *task = get_proc_task(file_inode(file));
1166 	char buffer[PROC_NUMBUF];
1167 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1168 	size_t len;
1169 
1170 	if (!task)
1171 		return -ESRCH;
1172 	oom_score_adj = task->signal->oom_score_adj;
1173 	put_task_struct(task);
1174 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1175 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1176 }
1177 
1178 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1179 					size_t count, loff_t *ppos)
1180 {
1181 	char buffer[PROC_NUMBUF];
1182 	int oom_score_adj;
1183 	int err;
1184 
1185 	memset(buffer, 0, sizeof(buffer));
1186 	if (count > sizeof(buffer) - 1)
1187 		count = sizeof(buffer) - 1;
1188 	if (copy_from_user(buffer, buf, count)) {
1189 		err = -EFAULT;
1190 		goto out;
1191 	}
1192 
1193 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1194 	if (err)
1195 		goto out;
1196 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1197 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1198 		err = -EINVAL;
1199 		goto out;
1200 	}
1201 
1202 	err = __set_oom_adj(file, oom_score_adj, false);
1203 out:
1204 	return err < 0 ? err : count;
1205 }
1206 
1207 static const struct file_operations proc_oom_score_adj_operations = {
1208 	.read		= oom_score_adj_read,
1209 	.write		= oom_score_adj_write,
1210 	.llseek		= default_llseek,
1211 };
1212 
1213 #ifdef CONFIG_AUDITSYSCALL
1214 #define TMPBUFLEN 11
1215 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1216 				  size_t count, loff_t *ppos)
1217 {
1218 	struct inode * inode = file_inode(file);
1219 	struct task_struct *task = get_proc_task(inode);
1220 	ssize_t length;
1221 	char tmpbuf[TMPBUFLEN];
1222 
1223 	if (!task)
1224 		return -ESRCH;
1225 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1226 			   from_kuid(file->f_cred->user_ns,
1227 				     audit_get_loginuid(task)));
1228 	put_task_struct(task);
1229 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1230 }
1231 
1232 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1233 				   size_t count, loff_t *ppos)
1234 {
1235 	struct inode * inode = file_inode(file);
1236 	uid_t loginuid;
1237 	kuid_t kloginuid;
1238 	int rv;
1239 
1240 	rcu_read_lock();
1241 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1242 		rcu_read_unlock();
1243 		return -EPERM;
1244 	}
1245 	rcu_read_unlock();
1246 
1247 	if (*ppos != 0) {
1248 		/* No partial writes. */
1249 		return -EINVAL;
1250 	}
1251 
1252 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1253 	if (rv < 0)
1254 		return rv;
1255 
1256 	/* is userspace tring to explicitly UNSET the loginuid? */
1257 	if (loginuid == AUDIT_UID_UNSET) {
1258 		kloginuid = INVALID_UID;
1259 	} else {
1260 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1261 		if (!uid_valid(kloginuid))
1262 			return -EINVAL;
1263 	}
1264 
1265 	rv = audit_set_loginuid(kloginuid);
1266 	if (rv < 0)
1267 		return rv;
1268 	return count;
1269 }
1270 
1271 static const struct file_operations proc_loginuid_operations = {
1272 	.read		= proc_loginuid_read,
1273 	.write		= proc_loginuid_write,
1274 	.llseek		= generic_file_llseek,
1275 };
1276 
1277 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1278 				  size_t count, loff_t *ppos)
1279 {
1280 	struct inode * inode = file_inode(file);
1281 	struct task_struct *task = get_proc_task(inode);
1282 	ssize_t length;
1283 	char tmpbuf[TMPBUFLEN];
1284 
1285 	if (!task)
1286 		return -ESRCH;
1287 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1288 				audit_get_sessionid(task));
1289 	put_task_struct(task);
1290 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1291 }
1292 
1293 static const struct file_operations proc_sessionid_operations = {
1294 	.read		= proc_sessionid_read,
1295 	.llseek		= generic_file_llseek,
1296 };
1297 #endif
1298 
1299 #ifdef CONFIG_FAULT_INJECTION
1300 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1301 				      size_t count, loff_t *ppos)
1302 {
1303 	struct task_struct *task = get_proc_task(file_inode(file));
1304 	char buffer[PROC_NUMBUF];
1305 	size_t len;
1306 	int make_it_fail;
1307 
1308 	if (!task)
1309 		return -ESRCH;
1310 	make_it_fail = task->make_it_fail;
1311 	put_task_struct(task);
1312 
1313 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1314 
1315 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1316 }
1317 
1318 static ssize_t proc_fault_inject_write(struct file * file,
1319 			const char __user * buf, size_t count, loff_t *ppos)
1320 {
1321 	struct task_struct *task;
1322 	char buffer[PROC_NUMBUF];
1323 	int make_it_fail;
1324 	int rv;
1325 
1326 	if (!capable(CAP_SYS_RESOURCE))
1327 		return -EPERM;
1328 	memset(buffer, 0, sizeof(buffer));
1329 	if (count > sizeof(buffer) - 1)
1330 		count = sizeof(buffer) - 1;
1331 	if (copy_from_user(buffer, buf, count))
1332 		return -EFAULT;
1333 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1334 	if (rv < 0)
1335 		return rv;
1336 	if (make_it_fail < 0 || make_it_fail > 1)
1337 		return -EINVAL;
1338 
1339 	task = get_proc_task(file_inode(file));
1340 	if (!task)
1341 		return -ESRCH;
1342 	task->make_it_fail = make_it_fail;
1343 	put_task_struct(task);
1344 
1345 	return count;
1346 }
1347 
1348 static const struct file_operations proc_fault_inject_operations = {
1349 	.read		= proc_fault_inject_read,
1350 	.write		= proc_fault_inject_write,
1351 	.llseek		= generic_file_llseek,
1352 };
1353 
1354 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1355 				   size_t count, loff_t *ppos)
1356 {
1357 	struct task_struct *task;
1358 	int err;
1359 	unsigned int n;
1360 
1361 	err = kstrtouint_from_user(buf, count, 0, &n);
1362 	if (err)
1363 		return err;
1364 
1365 	task = get_proc_task(file_inode(file));
1366 	if (!task)
1367 		return -ESRCH;
1368 	task->fail_nth = n;
1369 	put_task_struct(task);
1370 
1371 	return count;
1372 }
1373 
1374 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1375 				  size_t count, loff_t *ppos)
1376 {
1377 	struct task_struct *task;
1378 	char numbuf[PROC_NUMBUF];
1379 	ssize_t len;
1380 
1381 	task = get_proc_task(file_inode(file));
1382 	if (!task)
1383 		return -ESRCH;
1384 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1385 	put_task_struct(task);
1386 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1387 }
1388 
1389 static const struct file_operations proc_fail_nth_operations = {
1390 	.read		= proc_fail_nth_read,
1391 	.write		= proc_fail_nth_write,
1392 };
1393 #endif
1394 
1395 
1396 #ifdef CONFIG_SCHED_DEBUG
1397 /*
1398  * Print out various scheduling related per-task fields:
1399  */
1400 static int sched_show(struct seq_file *m, void *v)
1401 {
1402 	struct inode *inode = m->private;
1403 	struct pid_namespace *ns = proc_pid_ns(inode);
1404 	struct task_struct *p;
1405 
1406 	p = get_proc_task(inode);
1407 	if (!p)
1408 		return -ESRCH;
1409 	proc_sched_show_task(p, ns, m);
1410 
1411 	put_task_struct(p);
1412 
1413 	return 0;
1414 }
1415 
1416 static ssize_t
1417 sched_write(struct file *file, const char __user *buf,
1418 	    size_t count, loff_t *offset)
1419 {
1420 	struct inode *inode = file_inode(file);
1421 	struct task_struct *p;
1422 
1423 	p = get_proc_task(inode);
1424 	if (!p)
1425 		return -ESRCH;
1426 	proc_sched_set_task(p);
1427 
1428 	put_task_struct(p);
1429 
1430 	return count;
1431 }
1432 
1433 static int sched_open(struct inode *inode, struct file *filp)
1434 {
1435 	return single_open(filp, sched_show, inode);
1436 }
1437 
1438 static const struct file_operations proc_pid_sched_operations = {
1439 	.open		= sched_open,
1440 	.read		= seq_read,
1441 	.write		= sched_write,
1442 	.llseek		= seq_lseek,
1443 	.release	= single_release,
1444 };
1445 
1446 #endif
1447 
1448 #ifdef CONFIG_SCHED_AUTOGROUP
1449 /*
1450  * Print out autogroup related information:
1451  */
1452 static int sched_autogroup_show(struct seq_file *m, void *v)
1453 {
1454 	struct inode *inode = m->private;
1455 	struct task_struct *p;
1456 
1457 	p = get_proc_task(inode);
1458 	if (!p)
1459 		return -ESRCH;
1460 	proc_sched_autogroup_show_task(p, m);
1461 
1462 	put_task_struct(p);
1463 
1464 	return 0;
1465 }
1466 
1467 static ssize_t
1468 sched_autogroup_write(struct file *file, const char __user *buf,
1469 	    size_t count, loff_t *offset)
1470 {
1471 	struct inode *inode = file_inode(file);
1472 	struct task_struct *p;
1473 	char buffer[PROC_NUMBUF];
1474 	int nice;
1475 	int err;
1476 
1477 	memset(buffer, 0, sizeof(buffer));
1478 	if (count > sizeof(buffer) - 1)
1479 		count = sizeof(buffer) - 1;
1480 	if (copy_from_user(buffer, buf, count))
1481 		return -EFAULT;
1482 
1483 	err = kstrtoint(strstrip(buffer), 0, &nice);
1484 	if (err < 0)
1485 		return err;
1486 
1487 	p = get_proc_task(inode);
1488 	if (!p)
1489 		return -ESRCH;
1490 
1491 	err = proc_sched_autogroup_set_nice(p, nice);
1492 	if (err)
1493 		count = err;
1494 
1495 	put_task_struct(p);
1496 
1497 	return count;
1498 }
1499 
1500 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1501 {
1502 	int ret;
1503 
1504 	ret = single_open(filp, sched_autogroup_show, NULL);
1505 	if (!ret) {
1506 		struct seq_file *m = filp->private_data;
1507 
1508 		m->private = inode;
1509 	}
1510 	return ret;
1511 }
1512 
1513 static const struct file_operations proc_pid_sched_autogroup_operations = {
1514 	.open		= sched_autogroup_open,
1515 	.read		= seq_read,
1516 	.write		= sched_autogroup_write,
1517 	.llseek		= seq_lseek,
1518 	.release	= single_release,
1519 };
1520 
1521 #endif /* CONFIG_SCHED_AUTOGROUP */
1522 
1523 static ssize_t comm_write(struct file *file, const char __user *buf,
1524 				size_t count, loff_t *offset)
1525 {
1526 	struct inode *inode = file_inode(file);
1527 	struct task_struct *p;
1528 	char buffer[TASK_COMM_LEN];
1529 	const size_t maxlen = sizeof(buffer) - 1;
1530 
1531 	memset(buffer, 0, sizeof(buffer));
1532 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1533 		return -EFAULT;
1534 
1535 	p = get_proc_task(inode);
1536 	if (!p)
1537 		return -ESRCH;
1538 
1539 	if (same_thread_group(current, p))
1540 		set_task_comm(p, buffer);
1541 	else
1542 		count = -EINVAL;
1543 
1544 	put_task_struct(p);
1545 
1546 	return count;
1547 }
1548 
1549 static int comm_show(struct seq_file *m, void *v)
1550 {
1551 	struct inode *inode = m->private;
1552 	struct task_struct *p;
1553 
1554 	p = get_proc_task(inode);
1555 	if (!p)
1556 		return -ESRCH;
1557 
1558 	proc_task_name(m, p, false);
1559 	seq_putc(m, '\n');
1560 
1561 	put_task_struct(p);
1562 
1563 	return 0;
1564 }
1565 
1566 static int comm_open(struct inode *inode, struct file *filp)
1567 {
1568 	return single_open(filp, comm_show, inode);
1569 }
1570 
1571 static const struct file_operations proc_pid_set_comm_operations = {
1572 	.open		= comm_open,
1573 	.read		= seq_read,
1574 	.write		= comm_write,
1575 	.llseek		= seq_lseek,
1576 	.release	= single_release,
1577 };
1578 
1579 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1580 {
1581 	struct task_struct *task;
1582 	struct file *exe_file;
1583 
1584 	task = get_proc_task(d_inode(dentry));
1585 	if (!task)
1586 		return -ENOENT;
1587 	exe_file = get_task_exe_file(task);
1588 	put_task_struct(task);
1589 	if (exe_file) {
1590 		*exe_path = exe_file->f_path;
1591 		path_get(&exe_file->f_path);
1592 		fput(exe_file);
1593 		return 0;
1594 	} else
1595 		return -ENOENT;
1596 }
1597 
1598 static const char *proc_pid_get_link(struct dentry *dentry,
1599 				     struct inode *inode,
1600 				     struct delayed_call *done)
1601 {
1602 	struct path path;
1603 	int error = -EACCES;
1604 
1605 	if (!dentry)
1606 		return ERR_PTR(-ECHILD);
1607 
1608 	/* Are we allowed to snoop on the tasks file descriptors? */
1609 	if (!proc_fd_access_allowed(inode))
1610 		goto out;
1611 
1612 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1613 	if (error)
1614 		goto out;
1615 
1616 	nd_jump_link(&path);
1617 	return NULL;
1618 out:
1619 	return ERR_PTR(error);
1620 }
1621 
1622 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1623 {
1624 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1625 	char *pathname;
1626 	int len;
1627 
1628 	if (!tmp)
1629 		return -ENOMEM;
1630 
1631 	pathname = d_path(path, tmp, PAGE_SIZE);
1632 	len = PTR_ERR(pathname);
1633 	if (IS_ERR(pathname))
1634 		goto out;
1635 	len = tmp + PAGE_SIZE - 1 - pathname;
1636 
1637 	if (len > buflen)
1638 		len = buflen;
1639 	if (copy_to_user(buffer, pathname, len))
1640 		len = -EFAULT;
1641  out:
1642 	free_page((unsigned long)tmp);
1643 	return len;
1644 }
1645 
1646 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1647 {
1648 	int error = -EACCES;
1649 	struct inode *inode = d_inode(dentry);
1650 	struct path path;
1651 
1652 	/* Are we allowed to snoop on the tasks file descriptors? */
1653 	if (!proc_fd_access_allowed(inode))
1654 		goto out;
1655 
1656 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1657 	if (error)
1658 		goto out;
1659 
1660 	error = do_proc_readlink(&path, buffer, buflen);
1661 	path_put(&path);
1662 out:
1663 	return error;
1664 }
1665 
1666 const struct inode_operations proc_pid_link_inode_operations = {
1667 	.readlink	= proc_pid_readlink,
1668 	.get_link	= proc_pid_get_link,
1669 	.setattr	= proc_setattr,
1670 };
1671 
1672 
1673 /* building an inode */
1674 
1675 void task_dump_owner(struct task_struct *task, umode_t mode,
1676 		     kuid_t *ruid, kgid_t *rgid)
1677 {
1678 	/* Depending on the state of dumpable compute who should own a
1679 	 * proc file for a task.
1680 	 */
1681 	const struct cred *cred;
1682 	kuid_t uid;
1683 	kgid_t gid;
1684 
1685 	if (unlikely(task->flags & PF_KTHREAD)) {
1686 		*ruid = GLOBAL_ROOT_UID;
1687 		*rgid = GLOBAL_ROOT_GID;
1688 		return;
1689 	}
1690 
1691 	/* Default to the tasks effective ownership */
1692 	rcu_read_lock();
1693 	cred = __task_cred(task);
1694 	uid = cred->euid;
1695 	gid = cred->egid;
1696 	rcu_read_unlock();
1697 
1698 	/*
1699 	 * Before the /proc/pid/status file was created the only way to read
1700 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1701 	 * /proc/pid/status is slow enough that procps and other packages
1702 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1703 	 * made this apply to all per process world readable and executable
1704 	 * directories.
1705 	 */
1706 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1707 		struct mm_struct *mm;
1708 		task_lock(task);
1709 		mm = task->mm;
1710 		/* Make non-dumpable tasks owned by some root */
1711 		if (mm) {
1712 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1713 				struct user_namespace *user_ns = mm->user_ns;
1714 
1715 				uid = make_kuid(user_ns, 0);
1716 				if (!uid_valid(uid))
1717 					uid = GLOBAL_ROOT_UID;
1718 
1719 				gid = make_kgid(user_ns, 0);
1720 				if (!gid_valid(gid))
1721 					gid = GLOBAL_ROOT_GID;
1722 			}
1723 		} else {
1724 			uid = GLOBAL_ROOT_UID;
1725 			gid = GLOBAL_ROOT_GID;
1726 		}
1727 		task_unlock(task);
1728 	}
1729 	*ruid = uid;
1730 	*rgid = gid;
1731 }
1732 
1733 struct inode *proc_pid_make_inode(struct super_block * sb,
1734 				  struct task_struct *task, umode_t mode)
1735 {
1736 	struct inode * inode;
1737 	struct proc_inode *ei;
1738 
1739 	/* We need a new inode */
1740 
1741 	inode = new_inode(sb);
1742 	if (!inode)
1743 		goto out;
1744 
1745 	/* Common stuff */
1746 	ei = PROC_I(inode);
1747 	inode->i_mode = mode;
1748 	inode->i_ino = get_next_ino();
1749 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1750 	inode->i_op = &proc_def_inode_operations;
1751 
1752 	/*
1753 	 * grab the reference to task.
1754 	 */
1755 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1756 	if (!ei->pid)
1757 		goto out_unlock;
1758 
1759 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1760 	security_task_to_inode(task, inode);
1761 
1762 out:
1763 	return inode;
1764 
1765 out_unlock:
1766 	iput(inode);
1767 	return NULL;
1768 }
1769 
1770 int pid_getattr(const struct path *path, struct kstat *stat,
1771 		u32 request_mask, unsigned int query_flags)
1772 {
1773 	struct inode *inode = d_inode(path->dentry);
1774 	struct pid_namespace *pid = proc_pid_ns(inode);
1775 	struct task_struct *task;
1776 
1777 	generic_fillattr(inode, stat);
1778 
1779 	stat->uid = GLOBAL_ROOT_UID;
1780 	stat->gid = GLOBAL_ROOT_GID;
1781 	rcu_read_lock();
1782 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1783 	if (task) {
1784 		if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1785 			rcu_read_unlock();
1786 			/*
1787 			 * This doesn't prevent learning whether PID exists,
1788 			 * it only makes getattr() consistent with readdir().
1789 			 */
1790 			return -ENOENT;
1791 		}
1792 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1793 	}
1794 	rcu_read_unlock();
1795 	return 0;
1796 }
1797 
1798 /* dentry stuff */
1799 
1800 /*
1801  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1802  */
1803 void pid_update_inode(struct task_struct *task, struct inode *inode)
1804 {
1805 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1806 
1807 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1808 	security_task_to_inode(task, inode);
1809 }
1810 
1811 /*
1812  * Rewrite the inode's ownerships here because the owning task may have
1813  * performed a setuid(), etc.
1814  *
1815  */
1816 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1817 {
1818 	struct inode *inode;
1819 	struct task_struct *task;
1820 
1821 	if (flags & LOOKUP_RCU)
1822 		return -ECHILD;
1823 
1824 	inode = d_inode(dentry);
1825 	task = get_proc_task(inode);
1826 
1827 	if (task) {
1828 		pid_update_inode(task, inode);
1829 		put_task_struct(task);
1830 		return 1;
1831 	}
1832 	return 0;
1833 }
1834 
1835 static inline bool proc_inode_is_dead(struct inode *inode)
1836 {
1837 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1838 }
1839 
1840 int pid_delete_dentry(const struct dentry *dentry)
1841 {
1842 	/* Is the task we represent dead?
1843 	 * If so, then don't put the dentry on the lru list,
1844 	 * kill it immediately.
1845 	 */
1846 	return proc_inode_is_dead(d_inode(dentry));
1847 }
1848 
1849 const struct dentry_operations pid_dentry_operations =
1850 {
1851 	.d_revalidate	= pid_revalidate,
1852 	.d_delete	= pid_delete_dentry,
1853 };
1854 
1855 /* Lookups */
1856 
1857 /*
1858  * Fill a directory entry.
1859  *
1860  * If possible create the dcache entry and derive our inode number and
1861  * file type from dcache entry.
1862  *
1863  * Since all of the proc inode numbers are dynamically generated, the inode
1864  * numbers do not exist until the inode is cache.  This means creating the
1865  * the dcache entry in readdir is necessary to keep the inode numbers
1866  * reported by readdir in sync with the inode numbers reported
1867  * by stat.
1868  */
1869 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1870 	const char *name, unsigned int len,
1871 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1872 {
1873 	struct dentry *child, *dir = file->f_path.dentry;
1874 	struct qstr qname = QSTR_INIT(name, len);
1875 	struct inode *inode;
1876 	unsigned type = DT_UNKNOWN;
1877 	ino_t ino = 1;
1878 
1879 	child = d_hash_and_lookup(dir, &qname);
1880 	if (!child) {
1881 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1882 		child = d_alloc_parallel(dir, &qname, &wq);
1883 		if (IS_ERR(child))
1884 			goto end_instantiate;
1885 		if (d_in_lookup(child)) {
1886 			struct dentry *res;
1887 			res = instantiate(child, task, ptr);
1888 			d_lookup_done(child);
1889 			if (unlikely(res)) {
1890 				dput(child);
1891 				child = res;
1892 				if (IS_ERR(child))
1893 					goto end_instantiate;
1894 			}
1895 		}
1896 	}
1897 	inode = d_inode(child);
1898 	ino = inode->i_ino;
1899 	type = inode->i_mode >> 12;
1900 	dput(child);
1901 end_instantiate:
1902 	return dir_emit(ctx, name, len, ino, type);
1903 }
1904 
1905 /*
1906  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1907  * which represent vma start and end addresses.
1908  */
1909 static int dname_to_vma_addr(struct dentry *dentry,
1910 			     unsigned long *start, unsigned long *end)
1911 {
1912 	const char *str = dentry->d_name.name;
1913 	unsigned long long sval, eval;
1914 	unsigned int len;
1915 
1916 	if (str[0] == '0' && str[1] != '-')
1917 		return -EINVAL;
1918 	len = _parse_integer(str, 16, &sval);
1919 	if (len & KSTRTOX_OVERFLOW)
1920 		return -EINVAL;
1921 	if (sval != (unsigned long)sval)
1922 		return -EINVAL;
1923 	str += len;
1924 
1925 	if (*str != '-')
1926 		return -EINVAL;
1927 	str++;
1928 
1929 	if (str[0] == '0' && str[1])
1930 		return -EINVAL;
1931 	len = _parse_integer(str, 16, &eval);
1932 	if (len & KSTRTOX_OVERFLOW)
1933 		return -EINVAL;
1934 	if (eval != (unsigned long)eval)
1935 		return -EINVAL;
1936 	str += len;
1937 
1938 	if (*str != '\0')
1939 		return -EINVAL;
1940 
1941 	*start = sval;
1942 	*end = eval;
1943 
1944 	return 0;
1945 }
1946 
1947 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1948 {
1949 	unsigned long vm_start, vm_end;
1950 	bool exact_vma_exists = false;
1951 	struct mm_struct *mm = NULL;
1952 	struct task_struct *task;
1953 	struct inode *inode;
1954 	int status = 0;
1955 
1956 	if (flags & LOOKUP_RCU)
1957 		return -ECHILD;
1958 
1959 	inode = d_inode(dentry);
1960 	task = get_proc_task(inode);
1961 	if (!task)
1962 		goto out_notask;
1963 
1964 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1965 	if (IS_ERR_OR_NULL(mm))
1966 		goto out;
1967 
1968 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1969 		down_read(&mm->mmap_sem);
1970 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1971 		up_read(&mm->mmap_sem);
1972 	}
1973 
1974 	mmput(mm);
1975 
1976 	if (exact_vma_exists) {
1977 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1978 
1979 		security_task_to_inode(task, inode);
1980 		status = 1;
1981 	}
1982 
1983 out:
1984 	put_task_struct(task);
1985 
1986 out_notask:
1987 	return status;
1988 }
1989 
1990 static const struct dentry_operations tid_map_files_dentry_operations = {
1991 	.d_revalidate	= map_files_d_revalidate,
1992 	.d_delete	= pid_delete_dentry,
1993 };
1994 
1995 static int map_files_get_link(struct dentry *dentry, struct path *path)
1996 {
1997 	unsigned long vm_start, vm_end;
1998 	struct vm_area_struct *vma;
1999 	struct task_struct *task;
2000 	struct mm_struct *mm;
2001 	int rc;
2002 
2003 	rc = -ENOENT;
2004 	task = get_proc_task(d_inode(dentry));
2005 	if (!task)
2006 		goto out;
2007 
2008 	mm = get_task_mm(task);
2009 	put_task_struct(task);
2010 	if (!mm)
2011 		goto out;
2012 
2013 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2014 	if (rc)
2015 		goto out_mmput;
2016 
2017 	rc = -ENOENT;
2018 	down_read(&mm->mmap_sem);
2019 	vma = find_exact_vma(mm, vm_start, vm_end);
2020 	if (vma && vma->vm_file) {
2021 		*path = vma->vm_file->f_path;
2022 		path_get(path);
2023 		rc = 0;
2024 	}
2025 	up_read(&mm->mmap_sem);
2026 
2027 out_mmput:
2028 	mmput(mm);
2029 out:
2030 	return rc;
2031 }
2032 
2033 struct map_files_info {
2034 	unsigned long	start;
2035 	unsigned long	end;
2036 	fmode_t		mode;
2037 };
2038 
2039 /*
2040  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2041  * symlinks may be used to bypass permissions on ancestor directories in the
2042  * path to the file in question.
2043  */
2044 static const char *
2045 proc_map_files_get_link(struct dentry *dentry,
2046 			struct inode *inode,
2047 		        struct delayed_call *done)
2048 {
2049 	if (!capable(CAP_SYS_ADMIN))
2050 		return ERR_PTR(-EPERM);
2051 
2052 	return proc_pid_get_link(dentry, inode, done);
2053 }
2054 
2055 /*
2056  * Identical to proc_pid_link_inode_operations except for get_link()
2057  */
2058 static const struct inode_operations proc_map_files_link_inode_operations = {
2059 	.readlink	= proc_pid_readlink,
2060 	.get_link	= proc_map_files_get_link,
2061 	.setattr	= proc_setattr,
2062 };
2063 
2064 static struct dentry *
2065 proc_map_files_instantiate(struct dentry *dentry,
2066 			   struct task_struct *task, const void *ptr)
2067 {
2068 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2069 	struct proc_inode *ei;
2070 	struct inode *inode;
2071 
2072 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2073 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2074 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2075 	if (!inode)
2076 		return ERR_PTR(-ENOENT);
2077 
2078 	ei = PROC_I(inode);
2079 	ei->op.proc_get_link = map_files_get_link;
2080 
2081 	inode->i_op = &proc_map_files_link_inode_operations;
2082 	inode->i_size = 64;
2083 
2084 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2085 	return d_splice_alias(inode, dentry);
2086 }
2087 
2088 static struct dentry *proc_map_files_lookup(struct inode *dir,
2089 		struct dentry *dentry, unsigned int flags)
2090 {
2091 	unsigned long vm_start, vm_end;
2092 	struct vm_area_struct *vma;
2093 	struct task_struct *task;
2094 	struct dentry *result;
2095 	struct mm_struct *mm;
2096 
2097 	result = ERR_PTR(-ENOENT);
2098 	task = get_proc_task(dir);
2099 	if (!task)
2100 		goto out;
2101 
2102 	result = ERR_PTR(-EACCES);
2103 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2104 		goto out_put_task;
2105 
2106 	result = ERR_PTR(-ENOENT);
2107 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2108 		goto out_put_task;
2109 
2110 	mm = get_task_mm(task);
2111 	if (!mm)
2112 		goto out_put_task;
2113 
2114 	down_read(&mm->mmap_sem);
2115 	vma = find_exact_vma(mm, vm_start, vm_end);
2116 	if (!vma)
2117 		goto out_no_vma;
2118 
2119 	if (vma->vm_file)
2120 		result = proc_map_files_instantiate(dentry, task,
2121 				(void *)(unsigned long)vma->vm_file->f_mode);
2122 
2123 out_no_vma:
2124 	up_read(&mm->mmap_sem);
2125 	mmput(mm);
2126 out_put_task:
2127 	put_task_struct(task);
2128 out:
2129 	return result;
2130 }
2131 
2132 static const struct inode_operations proc_map_files_inode_operations = {
2133 	.lookup		= proc_map_files_lookup,
2134 	.permission	= proc_fd_permission,
2135 	.setattr	= proc_setattr,
2136 };
2137 
2138 static int
2139 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2140 {
2141 	struct vm_area_struct *vma;
2142 	struct task_struct *task;
2143 	struct mm_struct *mm;
2144 	unsigned long nr_files, pos, i;
2145 	struct flex_array *fa = NULL;
2146 	struct map_files_info info;
2147 	struct map_files_info *p;
2148 	int ret;
2149 
2150 	ret = -ENOENT;
2151 	task = get_proc_task(file_inode(file));
2152 	if (!task)
2153 		goto out;
2154 
2155 	ret = -EACCES;
2156 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2157 		goto out_put_task;
2158 
2159 	ret = 0;
2160 	if (!dir_emit_dots(file, ctx))
2161 		goto out_put_task;
2162 
2163 	mm = get_task_mm(task);
2164 	if (!mm)
2165 		goto out_put_task;
2166 	down_read(&mm->mmap_sem);
2167 
2168 	nr_files = 0;
2169 
2170 	/*
2171 	 * We need two passes here:
2172 	 *
2173 	 *  1) Collect vmas of mapped files with mmap_sem taken
2174 	 *  2) Release mmap_sem and instantiate entries
2175 	 *
2176 	 * otherwise we get lockdep complained, since filldir()
2177 	 * routine might require mmap_sem taken in might_fault().
2178 	 */
2179 
2180 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2181 		if (vma->vm_file && ++pos > ctx->pos)
2182 			nr_files++;
2183 	}
2184 
2185 	if (nr_files) {
2186 		fa = flex_array_alloc(sizeof(info), nr_files,
2187 					GFP_KERNEL);
2188 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2189 						GFP_KERNEL)) {
2190 			ret = -ENOMEM;
2191 			if (fa)
2192 				flex_array_free(fa);
2193 			up_read(&mm->mmap_sem);
2194 			mmput(mm);
2195 			goto out_put_task;
2196 		}
2197 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2198 				vma = vma->vm_next) {
2199 			if (!vma->vm_file)
2200 				continue;
2201 			if (++pos <= ctx->pos)
2202 				continue;
2203 
2204 			info.start = vma->vm_start;
2205 			info.end = vma->vm_end;
2206 			info.mode = vma->vm_file->f_mode;
2207 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2208 				BUG();
2209 		}
2210 	}
2211 	up_read(&mm->mmap_sem);
2212 	mmput(mm);
2213 
2214 	for (i = 0; i < nr_files; i++) {
2215 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2216 		unsigned int len;
2217 
2218 		p = flex_array_get(fa, i);
2219 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2220 		if (!proc_fill_cache(file, ctx,
2221 				      buf, len,
2222 				      proc_map_files_instantiate,
2223 				      task,
2224 				      (void *)(unsigned long)p->mode))
2225 			break;
2226 		ctx->pos++;
2227 	}
2228 	if (fa)
2229 		flex_array_free(fa);
2230 
2231 out_put_task:
2232 	put_task_struct(task);
2233 out:
2234 	return ret;
2235 }
2236 
2237 static const struct file_operations proc_map_files_operations = {
2238 	.read		= generic_read_dir,
2239 	.iterate_shared	= proc_map_files_readdir,
2240 	.llseek		= generic_file_llseek,
2241 };
2242 
2243 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2244 struct timers_private {
2245 	struct pid *pid;
2246 	struct task_struct *task;
2247 	struct sighand_struct *sighand;
2248 	struct pid_namespace *ns;
2249 	unsigned long flags;
2250 };
2251 
2252 static void *timers_start(struct seq_file *m, loff_t *pos)
2253 {
2254 	struct timers_private *tp = m->private;
2255 
2256 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2257 	if (!tp->task)
2258 		return ERR_PTR(-ESRCH);
2259 
2260 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2261 	if (!tp->sighand)
2262 		return ERR_PTR(-ESRCH);
2263 
2264 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2265 }
2266 
2267 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2268 {
2269 	struct timers_private *tp = m->private;
2270 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2271 }
2272 
2273 static void timers_stop(struct seq_file *m, void *v)
2274 {
2275 	struct timers_private *tp = m->private;
2276 
2277 	if (tp->sighand) {
2278 		unlock_task_sighand(tp->task, &tp->flags);
2279 		tp->sighand = NULL;
2280 	}
2281 
2282 	if (tp->task) {
2283 		put_task_struct(tp->task);
2284 		tp->task = NULL;
2285 	}
2286 }
2287 
2288 static int show_timer(struct seq_file *m, void *v)
2289 {
2290 	struct k_itimer *timer;
2291 	struct timers_private *tp = m->private;
2292 	int notify;
2293 	static const char * const nstr[] = {
2294 		[SIGEV_SIGNAL] = "signal",
2295 		[SIGEV_NONE] = "none",
2296 		[SIGEV_THREAD] = "thread",
2297 	};
2298 
2299 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2300 	notify = timer->it_sigev_notify;
2301 
2302 	seq_printf(m, "ID: %d\n", timer->it_id);
2303 	seq_printf(m, "signal: %d/%px\n",
2304 		   timer->sigq->info.si_signo,
2305 		   timer->sigq->info.si_value.sival_ptr);
2306 	seq_printf(m, "notify: %s/%s.%d\n",
2307 		   nstr[notify & ~SIGEV_THREAD_ID],
2308 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2309 		   pid_nr_ns(timer->it_pid, tp->ns));
2310 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2311 
2312 	return 0;
2313 }
2314 
2315 static const struct seq_operations proc_timers_seq_ops = {
2316 	.start	= timers_start,
2317 	.next	= timers_next,
2318 	.stop	= timers_stop,
2319 	.show	= show_timer,
2320 };
2321 
2322 static int proc_timers_open(struct inode *inode, struct file *file)
2323 {
2324 	struct timers_private *tp;
2325 
2326 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2327 			sizeof(struct timers_private));
2328 	if (!tp)
2329 		return -ENOMEM;
2330 
2331 	tp->pid = proc_pid(inode);
2332 	tp->ns = proc_pid_ns(inode);
2333 	return 0;
2334 }
2335 
2336 static const struct file_operations proc_timers_operations = {
2337 	.open		= proc_timers_open,
2338 	.read		= seq_read,
2339 	.llseek		= seq_lseek,
2340 	.release	= seq_release_private,
2341 };
2342 #endif
2343 
2344 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2345 					size_t count, loff_t *offset)
2346 {
2347 	struct inode *inode = file_inode(file);
2348 	struct task_struct *p;
2349 	u64 slack_ns;
2350 	int err;
2351 
2352 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2353 	if (err < 0)
2354 		return err;
2355 
2356 	p = get_proc_task(inode);
2357 	if (!p)
2358 		return -ESRCH;
2359 
2360 	if (p != current) {
2361 		rcu_read_lock();
2362 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2363 			rcu_read_unlock();
2364 			count = -EPERM;
2365 			goto out;
2366 		}
2367 		rcu_read_unlock();
2368 
2369 		err = security_task_setscheduler(p);
2370 		if (err) {
2371 			count = err;
2372 			goto out;
2373 		}
2374 	}
2375 
2376 	task_lock(p);
2377 	if (slack_ns == 0)
2378 		p->timer_slack_ns = p->default_timer_slack_ns;
2379 	else
2380 		p->timer_slack_ns = slack_ns;
2381 	task_unlock(p);
2382 
2383 out:
2384 	put_task_struct(p);
2385 
2386 	return count;
2387 }
2388 
2389 static int timerslack_ns_show(struct seq_file *m, void *v)
2390 {
2391 	struct inode *inode = m->private;
2392 	struct task_struct *p;
2393 	int err = 0;
2394 
2395 	p = get_proc_task(inode);
2396 	if (!p)
2397 		return -ESRCH;
2398 
2399 	if (p != current) {
2400 		rcu_read_lock();
2401 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2402 			rcu_read_unlock();
2403 			err = -EPERM;
2404 			goto out;
2405 		}
2406 		rcu_read_unlock();
2407 
2408 		err = security_task_getscheduler(p);
2409 		if (err)
2410 			goto out;
2411 	}
2412 
2413 	task_lock(p);
2414 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2415 	task_unlock(p);
2416 
2417 out:
2418 	put_task_struct(p);
2419 
2420 	return err;
2421 }
2422 
2423 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2424 {
2425 	return single_open(filp, timerslack_ns_show, inode);
2426 }
2427 
2428 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2429 	.open		= timerslack_ns_open,
2430 	.read		= seq_read,
2431 	.write		= timerslack_ns_write,
2432 	.llseek		= seq_lseek,
2433 	.release	= single_release,
2434 };
2435 
2436 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2437 	struct task_struct *task, const void *ptr)
2438 {
2439 	const struct pid_entry *p = ptr;
2440 	struct inode *inode;
2441 	struct proc_inode *ei;
2442 
2443 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2444 	if (!inode)
2445 		return ERR_PTR(-ENOENT);
2446 
2447 	ei = PROC_I(inode);
2448 	if (S_ISDIR(inode->i_mode))
2449 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2450 	if (p->iop)
2451 		inode->i_op = p->iop;
2452 	if (p->fop)
2453 		inode->i_fop = p->fop;
2454 	ei->op = p->op;
2455 	pid_update_inode(task, inode);
2456 	d_set_d_op(dentry, &pid_dentry_operations);
2457 	return d_splice_alias(inode, dentry);
2458 }
2459 
2460 static struct dentry *proc_pident_lookup(struct inode *dir,
2461 					 struct dentry *dentry,
2462 					 const struct pid_entry *ents,
2463 					 unsigned int nents)
2464 {
2465 	struct task_struct *task = get_proc_task(dir);
2466 	const struct pid_entry *p, *last;
2467 	struct dentry *res = ERR_PTR(-ENOENT);
2468 
2469 	if (!task)
2470 		goto out_no_task;
2471 
2472 	/*
2473 	 * Yes, it does not scale. And it should not. Don't add
2474 	 * new entries into /proc/<tgid>/ without very good reasons.
2475 	 */
2476 	last = &ents[nents];
2477 	for (p = ents; p < last; p++) {
2478 		if (p->len != dentry->d_name.len)
2479 			continue;
2480 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2481 			res = proc_pident_instantiate(dentry, task, p);
2482 			break;
2483 		}
2484 	}
2485 	put_task_struct(task);
2486 out_no_task:
2487 	return res;
2488 }
2489 
2490 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2491 		const struct pid_entry *ents, unsigned int nents)
2492 {
2493 	struct task_struct *task = get_proc_task(file_inode(file));
2494 	const struct pid_entry *p;
2495 
2496 	if (!task)
2497 		return -ENOENT;
2498 
2499 	if (!dir_emit_dots(file, ctx))
2500 		goto out;
2501 
2502 	if (ctx->pos >= nents + 2)
2503 		goto out;
2504 
2505 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2506 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2507 				proc_pident_instantiate, task, p))
2508 			break;
2509 		ctx->pos++;
2510 	}
2511 out:
2512 	put_task_struct(task);
2513 	return 0;
2514 }
2515 
2516 #ifdef CONFIG_SECURITY
2517 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2518 				  size_t count, loff_t *ppos)
2519 {
2520 	struct inode * inode = file_inode(file);
2521 	char *p = NULL;
2522 	ssize_t length;
2523 	struct task_struct *task = get_proc_task(inode);
2524 
2525 	if (!task)
2526 		return -ESRCH;
2527 
2528 	length = security_getprocattr(task,
2529 				      (char*)file->f_path.dentry->d_name.name,
2530 				      &p);
2531 	put_task_struct(task);
2532 	if (length > 0)
2533 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2534 	kfree(p);
2535 	return length;
2536 }
2537 
2538 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2539 				   size_t count, loff_t *ppos)
2540 {
2541 	struct inode * inode = file_inode(file);
2542 	struct task_struct *task;
2543 	void *page;
2544 	int rv;
2545 
2546 	rcu_read_lock();
2547 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2548 	if (!task) {
2549 		rcu_read_unlock();
2550 		return -ESRCH;
2551 	}
2552 	/* A task may only write its own attributes. */
2553 	if (current != task) {
2554 		rcu_read_unlock();
2555 		return -EACCES;
2556 	}
2557 	rcu_read_unlock();
2558 
2559 	if (count > PAGE_SIZE)
2560 		count = PAGE_SIZE;
2561 
2562 	/* No partial writes. */
2563 	if (*ppos != 0)
2564 		return -EINVAL;
2565 
2566 	page = memdup_user(buf, count);
2567 	if (IS_ERR(page)) {
2568 		rv = PTR_ERR(page);
2569 		goto out;
2570 	}
2571 
2572 	/* Guard against adverse ptrace interaction */
2573 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2574 	if (rv < 0)
2575 		goto out_free;
2576 
2577 	rv = security_setprocattr(file->f_path.dentry->d_name.name, page, count);
2578 	mutex_unlock(&current->signal->cred_guard_mutex);
2579 out_free:
2580 	kfree(page);
2581 out:
2582 	return rv;
2583 }
2584 
2585 static const struct file_operations proc_pid_attr_operations = {
2586 	.read		= proc_pid_attr_read,
2587 	.write		= proc_pid_attr_write,
2588 	.llseek		= generic_file_llseek,
2589 };
2590 
2591 static const struct pid_entry attr_dir_stuff[] = {
2592 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2593 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2594 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2595 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2596 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2597 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2598 };
2599 
2600 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2601 {
2602 	return proc_pident_readdir(file, ctx,
2603 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2604 }
2605 
2606 static const struct file_operations proc_attr_dir_operations = {
2607 	.read		= generic_read_dir,
2608 	.iterate_shared	= proc_attr_dir_readdir,
2609 	.llseek		= generic_file_llseek,
2610 };
2611 
2612 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2613 				struct dentry *dentry, unsigned int flags)
2614 {
2615 	return proc_pident_lookup(dir, dentry,
2616 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2617 }
2618 
2619 static const struct inode_operations proc_attr_dir_inode_operations = {
2620 	.lookup		= proc_attr_dir_lookup,
2621 	.getattr	= pid_getattr,
2622 	.setattr	= proc_setattr,
2623 };
2624 
2625 #endif
2626 
2627 #ifdef CONFIG_ELF_CORE
2628 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2629 					 size_t count, loff_t *ppos)
2630 {
2631 	struct task_struct *task = get_proc_task(file_inode(file));
2632 	struct mm_struct *mm;
2633 	char buffer[PROC_NUMBUF];
2634 	size_t len;
2635 	int ret;
2636 
2637 	if (!task)
2638 		return -ESRCH;
2639 
2640 	ret = 0;
2641 	mm = get_task_mm(task);
2642 	if (mm) {
2643 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2644 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2645 				MMF_DUMP_FILTER_SHIFT));
2646 		mmput(mm);
2647 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2648 	}
2649 
2650 	put_task_struct(task);
2651 
2652 	return ret;
2653 }
2654 
2655 static ssize_t proc_coredump_filter_write(struct file *file,
2656 					  const char __user *buf,
2657 					  size_t count,
2658 					  loff_t *ppos)
2659 {
2660 	struct task_struct *task;
2661 	struct mm_struct *mm;
2662 	unsigned int val;
2663 	int ret;
2664 	int i;
2665 	unsigned long mask;
2666 
2667 	ret = kstrtouint_from_user(buf, count, 0, &val);
2668 	if (ret < 0)
2669 		return ret;
2670 
2671 	ret = -ESRCH;
2672 	task = get_proc_task(file_inode(file));
2673 	if (!task)
2674 		goto out_no_task;
2675 
2676 	mm = get_task_mm(task);
2677 	if (!mm)
2678 		goto out_no_mm;
2679 	ret = 0;
2680 
2681 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2682 		if (val & mask)
2683 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2684 		else
2685 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2686 	}
2687 
2688 	mmput(mm);
2689  out_no_mm:
2690 	put_task_struct(task);
2691  out_no_task:
2692 	if (ret < 0)
2693 		return ret;
2694 	return count;
2695 }
2696 
2697 static const struct file_operations proc_coredump_filter_operations = {
2698 	.read		= proc_coredump_filter_read,
2699 	.write		= proc_coredump_filter_write,
2700 	.llseek		= generic_file_llseek,
2701 };
2702 #endif
2703 
2704 #ifdef CONFIG_TASK_IO_ACCOUNTING
2705 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2706 {
2707 	struct task_io_accounting acct = task->ioac;
2708 	unsigned long flags;
2709 	int result;
2710 
2711 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2712 	if (result)
2713 		return result;
2714 
2715 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2716 		result = -EACCES;
2717 		goto out_unlock;
2718 	}
2719 
2720 	if (whole && lock_task_sighand(task, &flags)) {
2721 		struct task_struct *t = task;
2722 
2723 		task_io_accounting_add(&acct, &task->signal->ioac);
2724 		while_each_thread(task, t)
2725 			task_io_accounting_add(&acct, &t->ioac);
2726 
2727 		unlock_task_sighand(task, &flags);
2728 	}
2729 	seq_printf(m,
2730 		   "rchar: %llu\n"
2731 		   "wchar: %llu\n"
2732 		   "syscr: %llu\n"
2733 		   "syscw: %llu\n"
2734 		   "read_bytes: %llu\n"
2735 		   "write_bytes: %llu\n"
2736 		   "cancelled_write_bytes: %llu\n",
2737 		   (unsigned long long)acct.rchar,
2738 		   (unsigned long long)acct.wchar,
2739 		   (unsigned long long)acct.syscr,
2740 		   (unsigned long long)acct.syscw,
2741 		   (unsigned long long)acct.read_bytes,
2742 		   (unsigned long long)acct.write_bytes,
2743 		   (unsigned long long)acct.cancelled_write_bytes);
2744 	result = 0;
2745 
2746 out_unlock:
2747 	mutex_unlock(&task->signal->cred_guard_mutex);
2748 	return result;
2749 }
2750 
2751 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2752 				  struct pid *pid, struct task_struct *task)
2753 {
2754 	return do_io_accounting(task, m, 0);
2755 }
2756 
2757 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2758 				   struct pid *pid, struct task_struct *task)
2759 {
2760 	return do_io_accounting(task, m, 1);
2761 }
2762 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2763 
2764 #ifdef CONFIG_USER_NS
2765 static int proc_id_map_open(struct inode *inode, struct file *file,
2766 	const struct seq_operations *seq_ops)
2767 {
2768 	struct user_namespace *ns = NULL;
2769 	struct task_struct *task;
2770 	struct seq_file *seq;
2771 	int ret = -EINVAL;
2772 
2773 	task = get_proc_task(inode);
2774 	if (task) {
2775 		rcu_read_lock();
2776 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2777 		rcu_read_unlock();
2778 		put_task_struct(task);
2779 	}
2780 	if (!ns)
2781 		goto err;
2782 
2783 	ret = seq_open(file, seq_ops);
2784 	if (ret)
2785 		goto err_put_ns;
2786 
2787 	seq = file->private_data;
2788 	seq->private = ns;
2789 
2790 	return 0;
2791 err_put_ns:
2792 	put_user_ns(ns);
2793 err:
2794 	return ret;
2795 }
2796 
2797 static int proc_id_map_release(struct inode *inode, struct file *file)
2798 {
2799 	struct seq_file *seq = file->private_data;
2800 	struct user_namespace *ns = seq->private;
2801 	put_user_ns(ns);
2802 	return seq_release(inode, file);
2803 }
2804 
2805 static int proc_uid_map_open(struct inode *inode, struct file *file)
2806 {
2807 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2808 }
2809 
2810 static int proc_gid_map_open(struct inode *inode, struct file *file)
2811 {
2812 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2813 }
2814 
2815 static int proc_projid_map_open(struct inode *inode, struct file *file)
2816 {
2817 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2818 }
2819 
2820 static const struct file_operations proc_uid_map_operations = {
2821 	.open		= proc_uid_map_open,
2822 	.write		= proc_uid_map_write,
2823 	.read		= seq_read,
2824 	.llseek		= seq_lseek,
2825 	.release	= proc_id_map_release,
2826 };
2827 
2828 static const struct file_operations proc_gid_map_operations = {
2829 	.open		= proc_gid_map_open,
2830 	.write		= proc_gid_map_write,
2831 	.read		= seq_read,
2832 	.llseek		= seq_lseek,
2833 	.release	= proc_id_map_release,
2834 };
2835 
2836 static const struct file_operations proc_projid_map_operations = {
2837 	.open		= proc_projid_map_open,
2838 	.write		= proc_projid_map_write,
2839 	.read		= seq_read,
2840 	.llseek		= seq_lseek,
2841 	.release	= proc_id_map_release,
2842 };
2843 
2844 static int proc_setgroups_open(struct inode *inode, struct file *file)
2845 {
2846 	struct user_namespace *ns = NULL;
2847 	struct task_struct *task;
2848 	int ret;
2849 
2850 	ret = -ESRCH;
2851 	task = get_proc_task(inode);
2852 	if (task) {
2853 		rcu_read_lock();
2854 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2855 		rcu_read_unlock();
2856 		put_task_struct(task);
2857 	}
2858 	if (!ns)
2859 		goto err;
2860 
2861 	if (file->f_mode & FMODE_WRITE) {
2862 		ret = -EACCES;
2863 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2864 			goto err_put_ns;
2865 	}
2866 
2867 	ret = single_open(file, &proc_setgroups_show, ns);
2868 	if (ret)
2869 		goto err_put_ns;
2870 
2871 	return 0;
2872 err_put_ns:
2873 	put_user_ns(ns);
2874 err:
2875 	return ret;
2876 }
2877 
2878 static int proc_setgroups_release(struct inode *inode, struct file *file)
2879 {
2880 	struct seq_file *seq = file->private_data;
2881 	struct user_namespace *ns = seq->private;
2882 	int ret = single_release(inode, file);
2883 	put_user_ns(ns);
2884 	return ret;
2885 }
2886 
2887 static const struct file_operations proc_setgroups_operations = {
2888 	.open		= proc_setgroups_open,
2889 	.write		= proc_setgroups_write,
2890 	.read		= seq_read,
2891 	.llseek		= seq_lseek,
2892 	.release	= proc_setgroups_release,
2893 };
2894 #endif /* CONFIG_USER_NS */
2895 
2896 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2897 				struct pid *pid, struct task_struct *task)
2898 {
2899 	int err = lock_trace(task);
2900 	if (!err) {
2901 		seq_printf(m, "%08x\n", task->personality);
2902 		unlock_trace(task);
2903 	}
2904 	return err;
2905 }
2906 
2907 #ifdef CONFIG_LIVEPATCH
2908 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2909 				struct pid *pid, struct task_struct *task)
2910 {
2911 	seq_printf(m, "%d\n", task->patch_state);
2912 	return 0;
2913 }
2914 #endif /* CONFIG_LIVEPATCH */
2915 
2916 #ifdef CONFIG_STACKLEAK_METRICS
2917 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
2918 				struct pid *pid, struct task_struct *task)
2919 {
2920 	unsigned long prev_depth = THREAD_SIZE -
2921 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
2922 	unsigned long depth = THREAD_SIZE -
2923 				(task->lowest_stack & (THREAD_SIZE - 1));
2924 
2925 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
2926 							prev_depth, depth);
2927 	return 0;
2928 }
2929 #endif /* CONFIG_STACKLEAK_METRICS */
2930 
2931 /*
2932  * Thread groups
2933  */
2934 static const struct file_operations proc_task_operations;
2935 static const struct inode_operations proc_task_inode_operations;
2936 
2937 static const struct pid_entry tgid_base_stuff[] = {
2938 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2939 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2940 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2941 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2942 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2943 #ifdef CONFIG_NET
2944 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2945 #endif
2946 	REG("environ",    S_IRUSR, proc_environ_operations),
2947 	REG("auxv",       S_IRUSR, proc_auxv_operations),
2948 	ONE("status",     S_IRUGO, proc_pid_status),
2949 	ONE("personality", S_IRUSR, proc_pid_personality),
2950 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2951 #ifdef CONFIG_SCHED_DEBUG
2952 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2953 #endif
2954 #ifdef CONFIG_SCHED_AUTOGROUP
2955 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2956 #endif
2957 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2958 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2959 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2960 #endif
2961 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2962 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2963 	ONE("statm",      S_IRUGO, proc_pid_statm),
2964 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2965 #ifdef CONFIG_NUMA
2966 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2967 #endif
2968 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2969 	LNK("cwd",        proc_cwd_link),
2970 	LNK("root",       proc_root_link),
2971 	LNK("exe",        proc_exe_link),
2972 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2973 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2974 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2975 #ifdef CONFIG_PROC_PAGE_MONITOR
2976 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2977 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2978 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
2979 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2980 #endif
2981 #ifdef CONFIG_SECURITY
2982 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2983 #endif
2984 #ifdef CONFIG_KALLSYMS
2985 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2986 #endif
2987 #ifdef CONFIG_STACKTRACE
2988 	ONE("stack",      S_IRUSR, proc_pid_stack),
2989 #endif
2990 #ifdef CONFIG_SCHED_INFO
2991 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2992 #endif
2993 #ifdef CONFIG_LATENCYTOP
2994 	REG("latency",  S_IRUGO, proc_lstats_operations),
2995 #endif
2996 #ifdef CONFIG_PROC_PID_CPUSET
2997 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2998 #endif
2999 #ifdef CONFIG_CGROUPS
3000 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3001 #endif
3002 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3003 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3004 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3005 #ifdef CONFIG_AUDITSYSCALL
3006 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3007 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3008 #endif
3009 #ifdef CONFIG_FAULT_INJECTION
3010 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3011 	REG("fail-nth", 0644, proc_fail_nth_operations),
3012 #endif
3013 #ifdef CONFIG_ELF_CORE
3014 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3015 #endif
3016 #ifdef CONFIG_TASK_IO_ACCOUNTING
3017 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3018 #endif
3019 #ifdef CONFIG_USER_NS
3020 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3021 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3022 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3023 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3024 #endif
3025 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3026 	REG("timers",	  S_IRUGO, proc_timers_operations),
3027 #endif
3028 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3029 #ifdef CONFIG_LIVEPATCH
3030 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3031 #endif
3032 #ifdef CONFIG_STACKLEAK_METRICS
3033 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3034 #endif
3035 };
3036 
3037 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3038 {
3039 	return proc_pident_readdir(file, ctx,
3040 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3041 }
3042 
3043 static const struct file_operations proc_tgid_base_operations = {
3044 	.read		= generic_read_dir,
3045 	.iterate_shared	= proc_tgid_base_readdir,
3046 	.llseek		= generic_file_llseek,
3047 };
3048 
3049 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3050 {
3051 	return proc_pident_lookup(dir, dentry,
3052 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3053 }
3054 
3055 static const struct inode_operations proc_tgid_base_inode_operations = {
3056 	.lookup		= proc_tgid_base_lookup,
3057 	.getattr	= pid_getattr,
3058 	.setattr	= proc_setattr,
3059 	.permission	= proc_pid_permission,
3060 };
3061 
3062 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3063 {
3064 	struct dentry *dentry, *leader, *dir;
3065 	char buf[10 + 1];
3066 	struct qstr name;
3067 
3068 	name.name = buf;
3069 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3070 	/* no ->d_hash() rejects on procfs */
3071 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3072 	if (dentry) {
3073 		d_invalidate(dentry);
3074 		dput(dentry);
3075 	}
3076 
3077 	if (pid == tgid)
3078 		return;
3079 
3080 	name.name = buf;
3081 	name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3082 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3083 	if (!leader)
3084 		goto out;
3085 
3086 	name.name = "task";
3087 	name.len = strlen(name.name);
3088 	dir = d_hash_and_lookup(leader, &name);
3089 	if (!dir)
3090 		goto out_put_leader;
3091 
3092 	name.name = buf;
3093 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3094 	dentry = d_hash_and_lookup(dir, &name);
3095 	if (dentry) {
3096 		d_invalidate(dentry);
3097 		dput(dentry);
3098 	}
3099 
3100 	dput(dir);
3101 out_put_leader:
3102 	dput(leader);
3103 out:
3104 	return;
3105 }
3106 
3107 /**
3108  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3109  * @task: task that should be flushed.
3110  *
3111  * When flushing dentries from proc, one needs to flush them from global
3112  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3113  * in. This call is supposed to do all of this job.
3114  *
3115  * Looks in the dcache for
3116  * /proc/@pid
3117  * /proc/@tgid/task/@pid
3118  * if either directory is present flushes it and all of it'ts children
3119  * from the dcache.
3120  *
3121  * It is safe and reasonable to cache /proc entries for a task until
3122  * that task exits.  After that they just clog up the dcache with
3123  * useless entries, possibly causing useful dcache entries to be
3124  * flushed instead.  This routine is proved to flush those useless
3125  * dcache entries at process exit time.
3126  *
3127  * NOTE: This routine is just an optimization so it does not guarantee
3128  *       that no dcache entries will exist at process exit time it
3129  *       just makes it very unlikely that any will persist.
3130  */
3131 
3132 void proc_flush_task(struct task_struct *task)
3133 {
3134 	int i;
3135 	struct pid *pid, *tgid;
3136 	struct upid *upid;
3137 
3138 	pid = task_pid(task);
3139 	tgid = task_tgid(task);
3140 
3141 	for (i = 0; i <= pid->level; i++) {
3142 		upid = &pid->numbers[i];
3143 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3144 					tgid->numbers[i].nr);
3145 	}
3146 }
3147 
3148 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3149 				   struct task_struct *task, const void *ptr)
3150 {
3151 	struct inode *inode;
3152 
3153 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3154 	if (!inode)
3155 		return ERR_PTR(-ENOENT);
3156 
3157 	inode->i_op = &proc_tgid_base_inode_operations;
3158 	inode->i_fop = &proc_tgid_base_operations;
3159 	inode->i_flags|=S_IMMUTABLE;
3160 
3161 	set_nlink(inode, nlink_tgid);
3162 	pid_update_inode(task, inode);
3163 
3164 	d_set_d_op(dentry, &pid_dentry_operations);
3165 	return d_splice_alias(inode, dentry);
3166 }
3167 
3168 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3169 {
3170 	struct task_struct *task;
3171 	unsigned tgid;
3172 	struct pid_namespace *ns;
3173 	struct dentry *result = ERR_PTR(-ENOENT);
3174 
3175 	tgid = name_to_int(&dentry->d_name);
3176 	if (tgid == ~0U)
3177 		goto out;
3178 
3179 	ns = dentry->d_sb->s_fs_info;
3180 	rcu_read_lock();
3181 	task = find_task_by_pid_ns(tgid, ns);
3182 	if (task)
3183 		get_task_struct(task);
3184 	rcu_read_unlock();
3185 	if (!task)
3186 		goto out;
3187 
3188 	result = proc_pid_instantiate(dentry, task, NULL);
3189 	put_task_struct(task);
3190 out:
3191 	return result;
3192 }
3193 
3194 /*
3195  * Find the first task with tgid >= tgid
3196  *
3197  */
3198 struct tgid_iter {
3199 	unsigned int tgid;
3200 	struct task_struct *task;
3201 };
3202 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3203 {
3204 	struct pid *pid;
3205 
3206 	if (iter.task)
3207 		put_task_struct(iter.task);
3208 	rcu_read_lock();
3209 retry:
3210 	iter.task = NULL;
3211 	pid = find_ge_pid(iter.tgid, ns);
3212 	if (pid) {
3213 		iter.tgid = pid_nr_ns(pid, ns);
3214 		iter.task = pid_task(pid, PIDTYPE_PID);
3215 		/* What we to know is if the pid we have find is the
3216 		 * pid of a thread_group_leader.  Testing for task
3217 		 * being a thread_group_leader is the obvious thing
3218 		 * todo but there is a window when it fails, due to
3219 		 * the pid transfer logic in de_thread.
3220 		 *
3221 		 * So we perform the straight forward test of seeing
3222 		 * if the pid we have found is the pid of a thread
3223 		 * group leader, and don't worry if the task we have
3224 		 * found doesn't happen to be a thread group leader.
3225 		 * As we don't care in the case of readdir.
3226 		 */
3227 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3228 			iter.tgid += 1;
3229 			goto retry;
3230 		}
3231 		get_task_struct(iter.task);
3232 	}
3233 	rcu_read_unlock();
3234 	return iter;
3235 }
3236 
3237 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3238 
3239 /* for the /proc/ directory itself, after non-process stuff has been done */
3240 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3241 {
3242 	struct tgid_iter iter;
3243 	struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3244 	loff_t pos = ctx->pos;
3245 
3246 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3247 		return 0;
3248 
3249 	if (pos == TGID_OFFSET - 2) {
3250 		struct inode *inode = d_inode(ns->proc_self);
3251 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3252 			return 0;
3253 		ctx->pos = pos = pos + 1;
3254 	}
3255 	if (pos == TGID_OFFSET - 1) {
3256 		struct inode *inode = d_inode(ns->proc_thread_self);
3257 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3258 			return 0;
3259 		ctx->pos = pos = pos + 1;
3260 	}
3261 	iter.tgid = pos - TGID_OFFSET;
3262 	iter.task = NULL;
3263 	for (iter = next_tgid(ns, iter);
3264 	     iter.task;
3265 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3266 		char name[10 + 1];
3267 		unsigned int len;
3268 
3269 		cond_resched();
3270 		if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3271 			continue;
3272 
3273 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3274 		ctx->pos = iter.tgid + TGID_OFFSET;
3275 		if (!proc_fill_cache(file, ctx, name, len,
3276 				     proc_pid_instantiate, iter.task, NULL)) {
3277 			put_task_struct(iter.task);
3278 			return 0;
3279 		}
3280 	}
3281 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3282 	return 0;
3283 }
3284 
3285 /*
3286  * proc_tid_comm_permission is a special permission function exclusively
3287  * used for the node /proc/<pid>/task/<tid>/comm.
3288  * It bypasses generic permission checks in the case where a task of the same
3289  * task group attempts to access the node.
3290  * The rationale behind this is that glibc and bionic access this node for
3291  * cross thread naming (pthread_set/getname_np(!self)). However, if
3292  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3293  * which locks out the cross thread naming implementation.
3294  * This function makes sure that the node is always accessible for members of
3295  * same thread group.
3296  */
3297 static int proc_tid_comm_permission(struct inode *inode, int mask)
3298 {
3299 	bool is_same_tgroup;
3300 	struct task_struct *task;
3301 
3302 	task = get_proc_task(inode);
3303 	if (!task)
3304 		return -ESRCH;
3305 	is_same_tgroup = same_thread_group(current, task);
3306 	put_task_struct(task);
3307 
3308 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3309 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3310 		 * read or written by the members of the corresponding
3311 		 * thread group.
3312 		 */
3313 		return 0;
3314 	}
3315 
3316 	return generic_permission(inode, mask);
3317 }
3318 
3319 static const struct inode_operations proc_tid_comm_inode_operations = {
3320 		.permission = proc_tid_comm_permission,
3321 };
3322 
3323 /*
3324  * Tasks
3325  */
3326 static const struct pid_entry tid_base_stuff[] = {
3327 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3328 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3329 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3330 #ifdef CONFIG_NET
3331 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3332 #endif
3333 	REG("environ",   S_IRUSR, proc_environ_operations),
3334 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3335 	ONE("status",    S_IRUGO, proc_pid_status),
3336 	ONE("personality", S_IRUSR, proc_pid_personality),
3337 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3338 #ifdef CONFIG_SCHED_DEBUG
3339 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3340 #endif
3341 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3342 			 &proc_tid_comm_inode_operations,
3343 			 &proc_pid_set_comm_operations, {}),
3344 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3345 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3346 #endif
3347 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3348 	ONE("stat",      S_IRUGO, proc_tid_stat),
3349 	ONE("statm",     S_IRUGO, proc_pid_statm),
3350 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3351 #ifdef CONFIG_PROC_CHILDREN
3352 	REG("children",  S_IRUGO, proc_tid_children_operations),
3353 #endif
3354 #ifdef CONFIG_NUMA
3355 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3356 #endif
3357 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3358 	LNK("cwd",       proc_cwd_link),
3359 	LNK("root",      proc_root_link),
3360 	LNK("exe",       proc_exe_link),
3361 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3362 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3363 #ifdef CONFIG_PROC_PAGE_MONITOR
3364 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3365 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3366 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3367 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3368 #endif
3369 #ifdef CONFIG_SECURITY
3370 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3371 #endif
3372 #ifdef CONFIG_KALLSYMS
3373 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3374 #endif
3375 #ifdef CONFIG_STACKTRACE
3376 	ONE("stack",      S_IRUSR, proc_pid_stack),
3377 #endif
3378 #ifdef CONFIG_SCHED_INFO
3379 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3380 #endif
3381 #ifdef CONFIG_LATENCYTOP
3382 	REG("latency",  S_IRUGO, proc_lstats_operations),
3383 #endif
3384 #ifdef CONFIG_PROC_PID_CPUSET
3385 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3386 #endif
3387 #ifdef CONFIG_CGROUPS
3388 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3389 #endif
3390 	ONE("oom_score", S_IRUGO, proc_oom_score),
3391 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3392 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3393 #ifdef CONFIG_AUDITSYSCALL
3394 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3395 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3396 #endif
3397 #ifdef CONFIG_FAULT_INJECTION
3398 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3399 	REG("fail-nth", 0644, proc_fail_nth_operations),
3400 #endif
3401 #ifdef CONFIG_TASK_IO_ACCOUNTING
3402 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3403 #endif
3404 #ifdef CONFIG_USER_NS
3405 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3406 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3407 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3408 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3409 #endif
3410 #ifdef CONFIG_LIVEPATCH
3411 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3412 #endif
3413 };
3414 
3415 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3416 {
3417 	return proc_pident_readdir(file, ctx,
3418 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3419 }
3420 
3421 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3422 {
3423 	return proc_pident_lookup(dir, dentry,
3424 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3425 }
3426 
3427 static const struct file_operations proc_tid_base_operations = {
3428 	.read		= generic_read_dir,
3429 	.iterate_shared	= proc_tid_base_readdir,
3430 	.llseek		= generic_file_llseek,
3431 };
3432 
3433 static const struct inode_operations proc_tid_base_inode_operations = {
3434 	.lookup		= proc_tid_base_lookup,
3435 	.getattr	= pid_getattr,
3436 	.setattr	= proc_setattr,
3437 };
3438 
3439 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3440 	struct task_struct *task, const void *ptr)
3441 {
3442 	struct inode *inode;
3443 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3444 	if (!inode)
3445 		return ERR_PTR(-ENOENT);
3446 
3447 	inode->i_op = &proc_tid_base_inode_operations;
3448 	inode->i_fop = &proc_tid_base_operations;
3449 	inode->i_flags |= S_IMMUTABLE;
3450 
3451 	set_nlink(inode, nlink_tid);
3452 	pid_update_inode(task, inode);
3453 
3454 	d_set_d_op(dentry, &pid_dentry_operations);
3455 	return d_splice_alias(inode, dentry);
3456 }
3457 
3458 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3459 {
3460 	struct task_struct *task;
3461 	struct task_struct *leader = get_proc_task(dir);
3462 	unsigned tid;
3463 	struct pid_namespace *ns;
3464 	struct dentry *result = ERR_PTR(-ENOENT);
3465 
3466 	if (!leader)
3467 		goto out_no_task;
3468 
3469 	tid = name_to_int(&dentry->d_name);
3470 	if (tid == ~0U)
3471 		goto out;
3472 
3473 	ns = dentry->d_sb->s_fs_info;
3474 	rcu_read_lock();
3475 	task = find_task_by_pid_ns(tid, ns);
3476 	if (task)
3477 		get_task_struct(task);
3478 	rcu_read_unlock();
3479 	if (!task)
3480 		goto out;
3481 	if (!same_thread_group(leader, task))
3482 		goto out_drop_task;
3483 
3484 	result = proc_task_instantiate(dentry, task, NULL);
3485 out_drop_task:
3486 	put_task_struct(task);
3487 out:
3488 	put_task_struct(leader);
3489 out_no_task:
3490 	return result;
3491 }
3492 
3493 /*
3494  * Find the first tid of a thread group to return to user space.
3495  *
3496  * Usually this is just the thread group leader, but if the users
3497  * buffer was too small or there was a seek into the middle of the
3498  * directory we have more work todo.
3499  *
3500  * In the case of a short read we start with find_task_by_pid.
3501  *
3502  * In the case of a seek we start with the leader and walk nr
3503  * threads past it.
3504  */
3505 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3506 					struct pid_namespace *ns)
3507 {
3508 	struct task_struct *pos, *task;
3509 	unsigned long nr = f_pos;
3510 
3511 	if (nr != f_pos)	/* 32bit overflow? */
3512 		return NULL;
3513 
3514 	rcu_read_lock();
3515 	task = pid_task(pid, PIDTYPE_PID);
3516 	if (!task)
3517 		goto fail;
3518 
3519 	/* Attempt to start with the tid of a thread */
3520 	if (tid && nr) {
3521 		pos = find_task_by_pid_ns(tid, ns);
3522 		if (pos && same_thread_group(pos, task))
3523 			goto found;
3524 	}
3525 
3526 	/* If nr exceeds the number of threads there is nothing todo */
3527 	if (nr >= get_nr_threads(task))
3528 		goto fail;
3529 
3530 	/* If we haven't found our starting place yet start
3531 	 * with the leader and walk nr threads forward.
3532 	 */
3533 	pos = task = task->group_leader;
3534 	do {
3535 		if (!nr--)
3536 			goto found;
3537 	} while_each_thread(task, pos);
3538 fail:
3539 	pos = NULL;
3540 	goto out;
3541 found:
3542 	get_task_struct(pos);
3543 out:
3544 	rcu_read_unlock();
3545 	return pos;
3546 }
3547 
3548 /*
3549  * Find the next thread in the thread list.
3550  * Return NULL if there is an error or no next thread.
3551  *
3552  * The reference to the input task_struct is released.
3553  */
3554 static struct task_struct *next_tid(struct task_struct *start)
3555 {
3556 	struct task_struct *pos = NULL;
3557 	rcu_read_lock();
3558 	if (pid_alive(start)) {
3559 		pos = next_thread(start);
3560 		if (thread_group_leader(pos))
3561 			pos = NULL;
3562 		else
3563 			get_task_struct(pos);
3564 	}
3565 	rcu_read_unlock();
3566 	put_task_struct(start);
3567 	return pos;
3568 }
3569 
3570 /* for the /proc/TGID/task/ directories */
3571 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3572 {
3573 	struct inode *inode = file_inode(file);
3574 	struct task_struct *task;
3575 	struct pid_namespace *ns;
3576 	int tid;
3577 
3578 	if (proc_inode_is_dead(inode))
3579 		return -ENOENT;
3580 
3581 	if (!dir_emit_dots(file, ctx))
3582 		return 0;
3583 
3584 	/* f_version caches the tgid value that the last readdir call couldn't
3585 	 * return. lseek aka telldir automagically resets f_version to 0.
3586 	 */
3587 	ns = proc_pid_ns(inode);
3588 	tid = (int)file->f_version;
3589 	file->f_version = 0;
3590 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3591 	     task;
3592 	     task = next_tid(task), ctx->pos++) {
3593 		char name[10 + 1];
3594 		unsigned int len;
3595 		tid = task_pid_nr_ns(task, ns);
3596 		len = snprintf(name, sizeof(name), "%u", tid);
3597 		if (!proc_fill_cache(file, ctx, name, len,
3598 				proc_task_instantiate, task, NULL)) {
3599 			/* returning this tgid failed, save it as the first
3600 			 * pid for the next readir call */
3601 			file->f_version = (u64)tid;
3602 			put_task_struct(task);
3603 			break;
3604 		}
3605 	}
3606 
3607 	return 0;
3608 }
3609 
3610 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3611 			     u32 request_mask, unsigned int query_flags)
3612 {
3613 	struct inode *inode = d_inode(path->dentry);
3614 	struct task_struct *p = get_proc_task(inode);
3615 	generic_fillattr(inode, stat);
3616 
3617 	if (p) {
3618 		stat->nlink += get_nr_threads(p);
3619 		put_task_struct(p);
3620 	}
3621 
3622 	return 0;
3623 }
3624 
3625 static const struct inode_operations proc_task_inode_operations = {
3626 	.lookup		= proc_task_lookup,
3627 	.getattr	= proc_task_getattr,
3628 	.setattr	= proc_setattr,
3629 	.permission	= proc_pid_permission,
3630 };
3631 
3632 static const struct file_operations proc_task_operations = {
3633 	.read		= generic_read_dir,
3634 	.iterate_shared	= proc_task_readdir,
3635 	.llseek		= generic_file_llseek,
3636 };
3637 
3638 void __init set_proc_pid_nlink(void)
3639 {
3640 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3641 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3642 }
3643