xref: /linux/fs/proc/base.c (revision 2d6ffcca623a9a16df6cdfbe8250b7a5904a5f5e)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/init.h>
57 #include <linux/capability.h>
58 #include <linux/file.h>
59 #include <linux/fdtable.h>
60 #include <linux/string.h>
61 #include <linux/seq_file.h>
62 #include <linux/namei.h>
63 #include <linux/mnt_namespace.h>
64 #include <linux/mm.h>
65 #include <linux/rcupdate.h>
66 #include <linux/kallsyms.h>
67 #include <linux/resource.h>
68 #include <linux/module.h>
69 #include <linux/mount.h>
70 #include <linux/security.h>
71 #include <linux/ptrace.h>
72 #include <linux/cgroup.h>
73 #include <linux/cpuset.h>
74 #include <linux/audit.h>
75 #include <linux/poll.h>
76 #include <linux/nsproxy.h>
77 #include <linux/oom.h>
78 #include <linux/elf.h>
79 #include <linux/pid_namespace.h>
80 #include "internal.h"
81 
82 /* NOTE:
83  *	Implementing inode permission operations in /proc is almost
84  *	certainly an error.  Permission checks need to happen during
85  *	each system call not at open time.  The reason is that most of
86  *	what we wish to check for permissions in /proc varies at runtime.
87  *
88  *	The classic example of a problem is opening file descriptors
89  *	in /proc for a task before it execs a suid executable.
90  */
91 
92 struct pid_entry {
93 	char *name;
94 	int len;
95 	mode_t mode;
96 	const struct inode_operations *iop;
97 	const struct file_operations *fop;
98 	union proc_op op;
99 };
100 
101 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
102 	.name = (NAME),					\
103 	.len  = sizeof(NAME) - 1,			\
104 	.mode = MODE,					\
105 	.iop  = IOP,					\
106 	.fop  = FOP,					\
107 	.op   = OP,					\
108 }
109 
110 #define DIR(NAME, MODE, OTYPE)							\
111 	NOD(NAME, (S_IFDIR|(MODE)),						\
112 		&proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations,	\
113 		{} )
114 #define LNK(NAME, OTYPE)					\
115 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
116 		&proc_pid_link_inode_operations, NULL,		\
117 		{ .proc_get_link = &proc_##OTYPE##_link } )
118 #define REG(NAME, MODE, OTYPE)				\
119 	NOD(NAME, (S_IFREG|(MODE)), NULL,		\
120 		&proc_##OTYPE##_operations, {})
121 #define INF(NAME, MODE, OTYPE)				\
122 	NOD(NAME, (S_IFREG|(MODE)), 			\
123 		NULL, &proc_info_file_operations,	\
124 		{ .proc_read = &proc_##OTYPE } )
125 #define ONE(NAME, MODE, OTYPE)				\
126 	NOD(NAME, (S_IFREG|(MODE)), 			\
127 		NULL, &proc_single_file_operations,	\
128 		{ .proc_show = &proc_##OTYPE } )
129 
130 /*
131  * Count the number of hardlinks for the pid_entry table, excluding the .
132  * and .. links.
133  */
134 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
135 	unsigned int n)
136 {
137 	unsigned int i;
138 	unsigned int count;
139 
140 	count = 0;
141 	for (i = 0; i < n; ++i) {
142 		if (S_ISDIR(entries[i].mode))
143 			++count;
144 	}
145 
146 	return count;
147 }
148 
149 int maps_protect;
150 EXPORT_SYMBOL(maps_protect);
151 
152 static struct fs_struct *get_fs_struct(struct task_struct *task)
153 {
154 	struct fs_struct *fs;
155 	task_lock(task);
156 	fs = task->fs;
157 	if(fs)
158 		atomic_inc(&fs->count);
159 	task_unlock(task);
160 	return fs;
161 }
162 
163 static int get_nr_threads(struct task_struct *tsk)
164 {
165 	/* Must be called with the rcu_read_lock held */
166 	unsigned long flags;
167 	int count = 0;
168 
169 	if (lock_task_sighand(tsk, &flags)) {
170 		count = atomic_read(&tsk->signal->count);
171 		unlock_task_sighand(tsk, &flags);
172 	}
173 	return count;
174 }
175 
176 static int proc_cwd_link(struct inode *inode, struct path *path)
177 {
178 	struct task_struct *task = get_proc_task(inode);
179 	struct fs_struct *fs = NULL;
180 	int result = -ENOENT;
181 
182 	if (task) {
183 		fs = get_fs_struct(task);
184 		put_task_struct(task);
185 	}
186 	if (fs) {
187 		read_lock(&fs->lock);
188 		*path = fs->pwd;
189 		path_get(&fs->pwd);
190 		read_unlock(&fs->lock);
191 		result = 0;
192 		put_fs_struct(fs);
193 	}
194 	return result;
195 }
196 
197 static int proc_root_link(struct inode *inode, struct path *path)
198 {
199 	struct task_struct *task = get_proc_task(inode);
200 	struct fs_struct *fs = NULL;
201 	int result = -ENOENT;
202 
203 	if (task) {
204 		fs = get_fs_struct(task);
205 		put_task_struct(task);
206 	}
207 	if (fs) {
208 		read_lock(&fs->lock);
209 		*path = fs->root;
210 		path_get(&fs->root);
211 		read_unlock(&fs->lock);
212 		result = 0;
213 		put_fs_struct(fs);
214 	}
215 	return result;
216 }
217 
218 /*
219  * Return zero if current may access user memory in @task, -error if not.
220  */
221 static int check_mem_permission(struct task_struct *task)
222 {
223 	/*
224 	 * A task can always look at itself, in case it chooses
225 	 * to use system calls instead of load instructions.
226 	 */
227 	if (task == current)
228 		return 0;
229 
230 	/*
231 	 * If current is actively ptrace'ing, and would also be
232 	 * permitted to freshly attach with ptrace now, permit it.
233 	 */
234 	if (task->parent == current && (task->ptrace & PT_PTRACED) &&
235 	    task_is_stopped_or_traced(task) &&
236 	    ptrace_may_access(task, PTRACE_MODE_ATTACH))
237 		return 0;
238 
239 	/*
240 	 * Noone else is allowed.
241 	 */
242 	return -EPERM;
243 }
244 
245 struct mm_struct *mm_for_maps(struct task_struct *task)
246 {
247 	struct mm_struct *mm = get_task_mm(task);
248 	if (!mm)
249 		return NULL;
250 	down_read(&mm->mmap_sem);
251 	task_lock(task);
252 	if (task->mm != mm)
253 		goto out;
254 	if (task->mm != current->mm &&
255 	    __ptrace_may_access(task, PTRACE_MODE_READ) < 0)
256 		goto out;
257 	task_unlock(task);
258 	return mm;
259 out:
260 	task_unlock(task);
261 	up_read(&mm->mmap_sem);
262 	mmput(mm);
263 	return NULL;
264 }
265 
266 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
267 {
268 	int res = 0;
269 	unsigned int len;
270 	struct mm_struct *mm = get_task_mm(task);
271 	if (!mm)
272 		goto out;
273 	if (!mm->arg_end)
274 		goto out_mm;	/* Shh! No looking before we're done */
275 
276  	len = mm->arg_end - mm->arg_start;
277 
278 	if (len > PAGE_SIZE)
279 		len = PAGE_SIZE;
280 
281 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
282 
283 	// If the nul at the end of args has been overwritten, then
284 	// assume application is using setproctitle(3).
285 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
286 		len = strnlen(buffer, res);
287 		if (len < res) {
288 		    res = len;
289 		} else {
290 			len = mm->env_end - mm->env_start;
291 			if (len > PAGE_SIZE - res)
292 				len = PAGE_SIZE - res;
293 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
294 			res = strnlen(buffer, res);
295 		}
296 	}
297 out_mm:
298 	mmput(mm);
299 out:
300 	return res;
301 }
302 
303 static int proc_pid_auxv(struct task_struct *task, char *buffer)
304 {
305 	int res = 0;
306 	struct mm_struct *mm = get_task_mm(task);
307 	if (mm) {
308 		unsigned int nwords = 0;
309 		do
310 			nwords += 2;
311 		while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
312 		res = nwords * sizeof(mm->saved_auxv[0]);
313 		if (res > PAGE_SIZE)
314 			res = PAGE_SIZE;
315 		memcpy(buffer, mm->saved_auxv, res);
316 		mmput(mm);
317 	}
318 	return res;
319 }
320 
321 
322 #ifdef CONFIG_KALLSYMS
323 /*
324  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
325  * Returns the resolved symbol.  If that fails, simply return the address.
326  */
327 static int proc_pid_wchan(struct task_struct *task, char *buffer)
328 {
329 	unsigned long wchan;
330 	char symname[KSYM_NAME_LEN];
331 
332 	wchan = get_wchan(task);
333 
334 	if (lookup_symbol_name(wchan, symname) < 0)
335 		return sprintf(buffer, "%lu", wchan);
336 	else
337 		return sprintf(buffer, "%s", symname);
338 }
339 #endif /* CONFIG_KALLSYMS */
340 
341 #ifdef CONFIG_SCHEDSTATS
342 /*
343  * Provides /proc/PID/schedstat
344  */
345 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
346 {
347 	return sprintf(buffer, "%llu %llu %lu\n",
348 			task->sched_info.cpu_time,
349 			task->sched_info.run_delay,
350 			task->sched_info.pcount);
351 }
352 #endif
353 
354 #ifdef CONFIG_LATENCYTOP
355 static int lstats_show_proc(struct seq_file *m, void *v)
356 {
357 	int i;
358 	struct inode *inode = m->private;
359 	struct task_struct *task = get_proc_task(inode);
360 
361 	if (!task)
362 		return -ESRCH;
363 	seq_puts(m, "Latency Top version : v0.1\n");
364 	for (i = 0; i < 32; i++) {
365 		if (task->latency_record[i].backtrace[0]) {
366 			int q;
367 			seq_printf(m, "%i %li %li ",
368 				task->latency_record[i].count,
369 				task->latency_record[i].time,
370 				task->latency_record[i].max);
371 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
372 				char sym[KSYM_NAME_LEN];
373 				char *c;
374 				if (!task->latency_record[i].backtrace[q])
375 					break;
376 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
377 					break;
378 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
379 				c = strchr(sym, '+');
380 				if (c)
381 					*c = 0;
382 				seq_printf(m, "%s ", sym);
383 			}
384 			seq_printf(m, "\n");
385 		}
386 
387 	}
388 	put_task_struct(task);
389 	return 0;
390 }
391 
392 static int lstats_open(struct inode *inode, struct file *file)
393 {
394 	return single_open(file, lstats_show_proc, inode);
395 }
396 
397 static ssize_t lstats_write(struct file *file, const char __user *buf,
398 			    size_t count, loff_t *offs)
399 {
400 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
401 
402 	if (!task)
403 		return -ESRCH;
404 	clear_all_latency_tracing(task);
405 	put_task_struct(task);
406 
407 	return count;
408 }
409 
410 static const struct file_operations proc_lstats_operations = {
411 	.open		= lstats_open,
412 	.read		= seq_read,
413 	.write		= lstats_write,
414 	.llseek		= seq_lseek,
415 	.release	= single_release,
416 };
417 
418 #endif
419 
420 /* The badness from the OOM killer */
421 unsigned long badness(struct task_struct *p, unsigned long uptime);
422 static int proc_oom_score(struct task_struct *task, char *buffer)
423 {
424 	unsigned long points;
425 	struct timespec uptime;
426 
427 	do_posix_clock_monotonic_gettime(&uptime);
428 	read_lock(&tasklist_lock);
429 	points = badness(task, uptime.tv_sec);
430 	read_unlock(&tasklist_lock);
431 	return sprintf(buffer, "%lu\n", points);
432 }
433 
434 struct limit_names {
435 	char *name;
436 	char *unit;
437 };
438 
439 static const struct limit_names lnames[RLIM_NLIMITS] = {
440 	[RLIMIT_CPU] = {"Max cpu time", "ms"},
441 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
442 	[RLIMIT_DATA] = {"Max data size", "bytes"},
443 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
444 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
445 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
446 	[RLIMIT_NPROC] = {"Max processes", "processes"},
447 	[RLIMIT_NOFILE] = {"Max open files", "files"},
448 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
449 	[RLIMIT_AS] = {"Max address space", "bytes"},
450 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
451 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
452 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
453 	[RLIMIT_NICE] = {"Max nice priority", NULL},
454 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
455 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
456 };
457 
458 /* Display limits for a process */
459 static int proc_pid_limits(struct task_struct *task, char *buffer)
460 {
461 	unsigned int i;
462 	int count = 0;
463 	unsigned long flags;
464 	char *bufptr = buffer;
465 
466 	struct rlimit rlim[RLIM_NLIMITS];
467 
468 	rcu_read_lock();
469 	if (!lock_task_sighand(task,&flags)) {
470 		rcu_read_unlock();
471 		return 0;
472 	}
473 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
474 	unlock_task_sighand(task, &flags);
475 	rcu_read_unlock();
476 
477 	/*
478 	 * print the file header
479 	 */
480 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
481 			"Limit", "Soft Limit", "Hard Limit", "Units");
482 
483 	for (i = 0; i < RLIM_NLIMITS; i++) {
484 		if (rlim[i].rlim_cur == RLIM_INFINITY)
485 			count += sprintf(&bufptr[count], "%-25s %-20s ",
486 					 lnames[i].name, "unlimited");
487 		else
488 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
489 					 lnames[i].name, rlim[i].rlim_cur);
490 
491 		if (rlim[i].rlim_max == RLIM_INFINITY)
492 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
493 		else
494 			count += sprintf(&bufptr[count], "%-20lu ",
495 					 rlim[i].rlim_max);
496 
497 		if (lnames[i].unit)
498 			count += sprintf(&bufptr[count], "%-10s\n",
499 					 lnames[i].unit);
500 		else
501 			count += sprintf(&bufptr[count], "\n");
502 	}
503 
504 	return count;
505 }
506 
507 /************************************************************************/
508 /*                       Here the fs part begins                        */
509 /************************************************************************/
510 
511 /* permission checks */
512 static int proc_fd_access_allowed(struct inode *inode)
513 {
514 	struct task_struct *task;
515 	int allowed = 0;
516 	/* Allow access to a task's file descriptors if it is us or we
517 	 * may use ptrace attach to the process and find out that
518 	 * information.
519 	 */
520 	task = get_proc_task(inode);
521 	if (task) {
522 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
523 		put_task_struct(task);
524 	}
525 	return allowed;
526 }
527 
528 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
529 {
530 	int error;
531 	struct inode *inode = dentry->d_inode;
532 
533 	if (attr->ia_valid & ATTR_MODE)
534 		return -EPERM;
535 
536 	error = inode_change_ok(inode, attr);
537 	if (!error)
538 		error = inode_setattr(inode, attr);
539 	return error;
540 }
541 
542 static const struct inode_operations proc_def_inode_operations = {
543 	.setattr	= proc_setattr,
544 };
545 
546 static int mounts_open_common(struct inode *inode, struct file *file,
547 			      const struct seq_operations *op)
548 {
549 	struct task_struct *task = get_proc_task(inode);
550 	struct nsproxy *nsp;
551 	struct mnt_namespace *ns = NULL;
552 	struct fs_struct *fs = NULL;
553 	struct path root;
554 	struct proc_mounts *p;
555 	int ret = -EINVAL;
556 
557 	if (task) {
558 		rcu_read_lock();
559 		nsp = task_nsproxy(task);
560 		if (nsp) {
561 			ns = nsp->mnt_ns;
562 			if (ns)
563 				get_mnt_ns(ns);
564 		}
565 		rcu_read_unlock();
566 		if (ns)
567 			fs = get_fs_struct(task);
568 		put_task_struct(task);
569 	}
570 
571 	if (!ns)
572 		goto err;
573 	if (!fs)
574 		goto err_put_ns;
575 
576 	read_lock(&fs->lock);
577 	root = fs->root;
578 	path_get(&root);
579 	read_unlock(&fs->lock);
580 	put_fs_struct(fs);
581 
582 	ret = -ENOMEM;
583 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
584 	if (!p)
585 		goto err_put_path;
586 
587 	file->private_data = &p->m;
588 	ret = seq_open(file, op);
589 	if (ret)
590 		goto err_free;
591 
592 	p->m.private = p;
593 	p->ns = ns;
594 	p->root = root;
595 	p->event = ns->event;
596 
597 	return 0;
598 
599  err_free:
600 	kfree(p);
601  err_put_path:
602 	path_put(&root);
603  err_put_ns:
604 	put_mnt_ns(ns);
605  err:
606 	return ret;
607 }
608 
609 static int mounts_release(struct inode *inode, struct file *file)
610 {
611 	struct proc_mounts *p = file->private_data;
612 	path_put(&p->root);
613 	put_mnt_ns(p->ns);
614 	return seq_release(inode, file);
615 }
616 
617 static unsigned mounts_poll(struct file *file, poll_table *wait)
618 {
619 	struct proc_mounts *p = file->private_data;
620 	struct mnt_namespace *ns = p->ns;
621 	unsigned res = 0;
622 
623 	poll_wait(file, &ns->poll, wait);
624 
625 	spin_lock(&vfsmount_lock);
626 	if (p->event != ns->event) {
627 		p->event = ns->event;
628 		res = POLLERR;
629 	}
630 	spin_unlock(&vfsmount_lock);
631 
632 	return res;
633 }
634 
635 static int mounts_open(struct inode *inode, struct file *file)
636 {
637 	return mounts_open_common(inode, file, &mounts_op);
638 }
639 
640 static const struct file_operations proc_mounts_operations = {
641 	.open		= mounts_open,
642 	.read		= seq_read,
643 	.llseek		= seq_lseek,
644 	.release	= mounts_release,
645 	.poll		= mounts_poll,
646 };
647 
648 static int mountinfo_open(struct inode *inode, struct file *file)
649 {
650 	return mounts_open_common(inode, file, &mountinfo_op);
651 }
652 
653 static const struct file_operations proc_mountinfo_operations = {
654 	.open		= mountinfo_open,
655 	.read		= seq_read,
656 	.llseek		= seq_lseek,
657 	.release	= mounts_release,
658 	.poll		= mounts_poll,
659 };
660 
661 static int mountstats_open(struct inode *inode, struct file *file)
662 {
663 	return mounts_open_common(inode, file, &mountstats_op);
664 }
665 
666 static const struct file_operations proc_mountstats_operations = {
667 	.open		= mountstats_open,
668 	.read		= seq_read,
669 	.llseek		= seq_lseek,
670 	.release	= mounts_release,
671 };
672 
673 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
674 
675 static ssize_t proc_info_read(struct file * file, char __user * buf,
676 			  size_t count, loff_t *ppos)
677 {
678 	struct inode * inode = file->f_path.dentry->d_inode;
679 	unsigned long page;
680 	ssize_t length;
681 	struct task_struct *task = get_proc_task(inode);
682 
683 	length = -ESRCH;
684 	if (!task)
685 		goto out_no_task;
686 
687 	if (count > PROC_BLOCK_SIZE)
688 		count = PROC_BLOCK_SIZE;
689 
690 	length = -ENOMEM;
691 	if (!(page = __get_free_page(GFP_TEMPORARY)))
692 		goto out;
693 
694 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
695 
696 	if (length >= 0)
697 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
698 	free_page(page);
699 out:
700 	put_task_struct(task);
701 out_no_task:
702 	return length;
703 }
704 
705 static const struct file_operations proc_info_file_operations = {
706 	.read		= proc_info_read,
707 };
708 
709 static int proc_single_show(struct seq_file *m, void *v)
710 {
711 	struct inode *inode = m->private;
712 	struct pid_namespace *ns;
713 	struct pid *pid;
714 	struct task_struct *task;
715 	int ret;
716 
717 	ns = inode->i_sb->s_fs_info;
718 	pid = proc_pid(inode);
719 	task = get_pid_task(pid, PIDTYPE_PID);
720 	if (!task)
721 		return -ESRCH;
722 
723 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
724 
725 	put_task_struct(task);
726 	return ret;
727 }
728 
729 static int proc_single_open(struct inode *inode, struct file *filp)
730 {
731 	int ret;
732 	ret = single_open(filp, proc_single_show, NULL);
733 	if (!ret) {
734 		struct seq_file *m = filp->private_data;
735 
736 		m->private = inode;
737 	}
738 	return ret;
739 }
740 
741 static const struct file_operations proc_single_file_operations = {
742 	.open		= proc_single_open,
743 	.read		= seq_read,
744 	.llseek		= seq_lseek,
745 	.release	= single_release,
746 };
747 
748 static int mem_open(struct inode* inode, struct file* file)
749 {
750 	file->private_data = (void*)((long)current->self_exec_id);
751 	return 0;
752 }
753 
754 static ssize_t mem_read(struct file * file, char __user * buf,
755 			size_t count, loff_t *ppos)
756 {
757 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
758 	char *page;
759 	unsigned long src = *ppos;
760 	int ret = -ESRCH;
761 	struct mm_struct *mm;
762 
763 	if (!task)
764 		goto out_no_task;
765 
766 	if (check_mem_permission(task))
767 		goto out;
768 
769 	ret = -ENOMEM;
770 	page = (char *)__get_free_page(GFP_TEMPORARY);
771 	if (!page)
772 		goto out;
773 
774 	ret = 0;
775 
776 	mm = get_task_mm(task);
777 	if (!mm)
778 		goto out_free;
779 
780 	ret = -EIO;
781 
782 	if (file->private_data != (void*)((long)current->self_exec_id))
783 		goto out_put;
784 
785 	ret = 0;
786 
787 	while (count > 0) {
788 		int this_len, retval;
789 
790 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
791 		retval = access_process_vm(task, src, page, this_len, 0);
792 		if (!retval || check_mem_permission(task)) {
793 			if (!ret)
794 				ret = -EIO;
795 			break;
796 		}
797 
798 		if (copy_to_user(buf, page, retval)) {
799 			ret = -EFAULT;
800 			break;
801 		}
802 
803 		ret += retval;
804 		src += retval;
805 		buf += retval;
806 		count -= retval;
807 	}
808 	*ppos = src;
809 
810 out_put:
811 	mmput(mm);
812 out_free:
813 	free_page((unsigned long) page);
814 out:
815 	put_task_struct(task);
816 out_no_task:
817 	return ret;
818 }
819 
820 #define mem_write NULL
821 
822 #ifndef mem_write
823 /* This is a security hazard */
824 static ssize_t mem_write(struct file * file, const char __user *buf,
825 			 size_t count, loff_t *ppos)
826 {
827 	int copied;
828 	char *page;
829 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
830 	unsigned long dst = *ppos;
831 
832 	copied = -ESRCH;
833 	if (!task)
834 		goto out_no_task;
835 
836 	if (check_mem_permission(task))
837 		goto out;
838 
839 	copied = -ENOMEM;
840 	page = (char *)__get_free_page(GFP_TEMPORARY);
841 	if (!page)
842 		goto out;
843 
844 	copied = 0;
845 	while (count > 0) {
846 		int this_len, retval;
847 
848 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
849 		if (copy_from_user(page, buf, this_len)) {
850 			copied = -EFAULT;
851 			break;
852 		}
853 		retval = access_process_vm(task, dst, page, this_len, 1);
854 		if (!retval) {
855 			if (!copied)
856 				copied = -EIO;
857 			break;
858 		}
859 		copied += retval;
860 		buf += retval;
861 		dst += retval;
862 		count -= retval;
863 	}
864 	*ppos = dst;
865 	free_page((unsigned long) page);
866 out:
867 	put_task_struct(task);
868 out_no_task:
869 	return copied;
870 }
871 #endif
872 
873 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
874 {
875 	switch (orig) {
876 	case 0:
877 		file->f_pos = offset;
878 		break;
879 	case 1:
880 		file->f_pos += offset;
881 		break;
882 	default:
883 		return -EINVAL;
884 	}
885 	force_successful_syscall_return();
886 	return file->f_pos;
887 }
888 
889 static const struct file_operations proc_mem_operations = {
890 	.llseek		= mem_lseek,
891 	.read		= mem_read,
892 	.write		= mem_write,
893 	.open		= mem_open,
894 };
895 
896 static ssize_t environ_read(struct file *file, char __user *buf,
897 			size_t count, loff_t *ppos)
898 {
899 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
900 	char *page;
901 	unsigned long src = *ppos;
902 	int ret = -ESRCH;
903 	struct mm_struct *mm;
904 
905 	if (!task)
906 		goto out_no_task;
907 
908 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
909 		goto out;
910 
911 	ret = -ENOMEM;
912 	page = (char *)__get_free_page(GFP_TEMPORARY);
913 	if (!page)
914 		goto out;
915 
916 	ret = 0;
917 
918 	mm = get_task_mm(task);
919 	if (!mm)
920 		goto out_free;
921 
922 	while (count > 0) {
923 		int this_len, retval, max_len;
924 
925 		this_len = mm->env_end - (mm->env_start + src);
926 
927 		if (this_len <= 0)
928 			break;
929 
930 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
931 		this_len = (this_len > max_len) ? max_len : this_len;
932 
933 		retval = access_process_vm(task, (mm->env_start + src),
934 			page, this_len, 0);
935 
936 		if (retval <= 0) {
937 			ret = retval;
938 			break;
939 		}
940 
941 		if (copy_to_user(buf, page, retval)) {
942 			ret = -EFAULT;
943 			break;
944 		}
945 
946 		ret += retval;
947 		src += retval;
948 		buf += retval;
949 		count -= retval;
950 	}
951 	*ppos = src;
952 
953 	mmput(mm);
954 out_free:
955 	free_page((unsigned long) page);
956 out:
957 	put_task_struct(task);
958 out_no_task:
959 	return ret;
960 }
961 
962 static const struct file_operations proc_environ_operations = {
963 	.read		= environ_read,
964 };
965 
966 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
967 				size_t count, loff_t *ppos)
968 {
969 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
970 	char buffer[PROC_NUMBUF];
971 	size_t len;
972 	int oom_adjust;
973 
974 	if (!task)
975 		return -ESRCH;
976 	oom_adjust = task->oomkilladj;
977 	put_task_struct(task);
978 
979 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
980 
981 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
982 }
983 
984 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
985 				size_t count, loff_t *ppos)
986 {
987 	struct task_struct *task;
988 	char buffer[PROC_NUMBUF], *end;
989 	int oom_adjust;
990 
991 	memset(buffer, 0, sizeof(buffer));
992 	if (count > sizeof(buffer) - 1)
993 		count = sizeof(buffer) - 1;
994 	if (copy_from_user(buffer, buf, count))
995 		return -EFAULT;
996 	oom_adjust = simple_strtol(buffer, &end, 0);
997 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
998 	     oom_adjust != OOM_DISABLE)
999 		return -EINVAL;
1000 	if (*end == '\n')
1001 		end++;
1002 	task = get_proc_task(file->f_path.dentry->d_inode);
1003 	if (!task)
1004 		return -ESRCH;
1005 	if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
1006 		put_task_struct(task);
1007 		return -EACCES;
1008 	}
1009 	task->oomkilladj = oom_adjust;
1010 	put_task_struct(task);
1011 	if (end - buffer == 0)
1012 		return -EIO;
1013 	return end - buffer;
1014 }
1015 
1016 static const struct file_operations proc_oom_adjust_operations = {
1017 	.read		= oom_adjust_read,
1018 	.write		= oom_adjust_write,
1019 };
1020 
1021 #ifdef CONFIG_AUDITSYSCALL
1022 #define TMPBUFLEN 21
1023 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1024 				  size_t count, loff_t *ppos)
1025 {
1026 	struct inode * inode = file->f_path.dentry->d_inode;
1027 	struct task_struct *task = get_proc_task(inode);
1028 	ssize_t length;
1029 	char tmpbuf[TMPBUFLEN];
1030 
1031 	if (!task)
1032 		return -ESRCH;
1033 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1034 				audit_get_loginuid(task));
1035 	put_task_struct(task);
1036 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1037 }
1038 
1039 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1040 				   size_t count, loff_t *ppos)
1041 {
1042 	struct inode * inode = file->f_path.dentry->d_inode;
1043 	char *page, *tmp;
1044 	ssize_t length;
1045 	uid_t loginuid;
1046 
1047 	if (!capable(CAP_AUDIT_CONTROL))
1048 		return -EPERM;
1049 
1050 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1051 		return -EPERM;
1052 
1053 	if (count >= PAGE_SIZE)
1054 		count = PAGE_SIZE - 1;
1055 
1056 	if (*ppos != 0) {
1057 		/* No partial writes. */
1058 		return -EINVAL;
1059 	}
1060 	page = (char*)__get_free_page(GFP_TEMPORARY);
1061 	if (!page)
1062 		return -ENOMEM;
1063 	length = -EFAULT;
1064 	if (copy_from_user(page, buf, count))
1065 		goto out_free_page;
1066 
1067 	page[count] = '\0';
1068 	loginuid = simple_strtoul(page, &tmp, 10);
1069 	if (tmp == page) {
1070 		length = -EINVAL;
1071 		goto out_free_page;
1072 
1073 	}
1074 	length = audit_set_loginuid(current, loginuid);
1075 	if (likely(length == 0))
1076 		length = count;
1077 
1078 out_free_page:
1079 	free_page((unsigned long) page);
1080 	return length;
1081 }
1082 
1083 static const struct file_operations proc_loginuid_operations = {
1084 	.read		= proc_loginuid_read,
1085 	.write		= proc_loginuid_write,
1086 };
1087 
1088 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1089 				  size_t count, loff_t *ppos)
1090 {
1091 	struct inode * inode = file->f_path.dentry->d_inode;
1092 	struct task_struct *task = get_proc_task(inode);
1093 	ssize_t length;
1094 	char tmpbuf[TMPBUFLEN];
1095 
1096 	if (!task)
1097 		return -ESRCH;
1098 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1099 				audit_get_sessionid(task));
1100 	put_task_struct(task);
1101 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1102 }
1103 
1104 static const struct file_operations proc_sessionid_operations = {
1105 	.read		= proc_sessionid_read,
1106 };
1107 #endif
1108 
1109 #ifdef CONFIG_FAULT_INJECTION
1110 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1111 				      size_t count, loff_t *ppos)
1112 {
1113 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1114 	char buffer[PROC_NUMBUF];
1115 	size_t len;
1116 	int make_it_fail;
1117 
1118 	if (!task)
1119 		return -ESRCH;
1120 	make_it_fail = task->make_it_fail;
1121 	put_task_struct(task);
1122 
1123 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1124 
1125 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1126 }
1127 
1128 static ssize_t proc_fault_inject_write(struct file * file,
1129 			const char __user * buf, size_t count, loff_t *ppos)
1130 {
1131 	struct task_struct *task;
1132 	char buffer[PROC_NUMBUF], *end;
1133 	int make_it_fail;
1134 
1135 	if (!capable(CAP_SYS_RESOURCE))
1136 		return -EPERM;
1137 	memset(buffer, 0, sizeof(buffer));
1138 	if (count > sizeof(buffer) - 1)
1139 		count = sizeof(buffer) - 1;
1140 	if (copy_from_user(buffer, buf, count))
1141 		return -EFAULT;
1142 	make_it_fail = simple_strtol(buffer, &end, 0);
1143 	if (*end == '\n')
1144 		end++;
1145 	task = get_proc_task(file->f_dentry->d_inode);
1146 	if (!task)
1147 		return -ESRCH;
1148 	task->make_it_fail = make_it_fail;
1149 	put_task_struct(task);
1150 	if (end - buffer == 0)
1151 		return -EIO;
1152 	return end - buffer;
1153 }
1154 
1155 static const struct file_operations proc_fault_inject_operations = {
1156 	.read		= proc_fault_inject_read,
1157 	.write		= proc_fault_inject_write,
1158 };
1159 #endif
1160 
1161 
1162 #ifdef CONFIG_SCHED_DEBUG
1163 /*
1164  * Print out various scheduling related per-task fields:
1165  */
1166 static int sched_show(struct seq_file *m, void *v)
1167 {
1168 	struct inode *inode = m->private;
1169 	struct task_struct *p;
1170 
1171 	WARN_ON(!inode);
1172 
1173 	p = get_proc_task(inode);
1174 	if (!p)
1175 		return -ESRCH;
1176 	proc_sched_show_task(p, m);
1177 
1178 	put_task_struct(p);
1179 
1180 	return 0;
1181 }
1182 
1183 static ssize_t
1184 sched_write(struct file *file, const char __user *buf,
1185 	    size_t count, loff_t *offset)
1186 {
1187 	struct inode *inode = file->f_path.dentry->d_inode;
1188 	struct task_struct *p;
1189 
1190 	WARN_ON(!inode);
1191 
1192 	p = get_proc_task(inode);
1193 	if (!p)
1194 		return -ESRCH;
1195 	proc_sched_set_task(p);
1196 
1197 	put_task_struct(p);
1198 
1199 	return count;
1200 }
1201 
1202 static int sched_open(struct inode *inode, struct file *filp)
1203 {
1204 	int ret;
1205 
1206 	ret = single_open(filp, sched_show, NULL);
1207 	if (!ret) {
1208 		struct seq_file *m = filp->private_data;
1209 
1210 		m->private = inode;
1211 	}
1212 	return ret;
1213 }
1214 
1215 static const struct file_operations proc_pid_sched_operations = {
1216 	.open		= sched_open,
1217 	.read		= seq_read,
1218 	.write		= sched_write,
1219 	.llseek		= seq_lseek,
1220 	.release	= single_release,
1221 };
1222 
1223 #endif
1224 
1225 /*
1226  * We added or removed a vma mapping the executable. The vmas are only mapped
1227  * during exec and are not mapped with the mmap system call.
1228  * Callers must hold down_write() on the mm's mmap_sem for these
1229  */
1230 void added_exe_file_vma(struct mm_struct *mm)
1231 {
1232 	mm->num_exe_file_vmas++;
1233 }
1234 
1235 void removed_exe_file_vma(struct mm_struct *mm)
1236 {
1237 	mm->num_exe_file_vmas--;
1238 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1239 		fput(mm->exe_file);
1240 		mm->exe_file = NULL;
1241 	}
1242 
1243 }
1244 
1245 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1246 {
1247 	if (new_exe_file)
1248 		get_file(new_exe_file);
1249 	if (mm->exe_file)
1250 		fput(mm->exe_file);
1251 	mm->exe_file = new_exe_file;
1252 	mm->num_exe_file_vmas = 0;
1253 }
1254 
1255 struct file *get_mm_exe_file(struct mm_struct *mm)
1256 {
1257 	struct file *exe_file;
1258 
1259 	/* We need mmap_sem to protect against races with removal of
1260 	 * VM_EXECUTABLE vmas */
1261 	down_read(&mm->mmap_sem);
1262 	exe_file = mm->exe_file;
1263 	if (exe_file)
1264 		get_file(exe_file);
1265 	up_read(&mm->mmap_sem);
1266 	return exe_file;
1267 }
1268 
1269 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1270 {
1271 	/* It's safe to write the exe_file pointer without exe_file_lock because
1272 	 * this is called during fork when the task is not yet in /proc */
1273 	newmm->exe_file = get_mm_exe_file(oldmm);
1274 }
1275 
1276 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1277 {
1278 	struct task_struct *task;
1279 	struct mm_struct *mm;
1280 	struct file *exe_file;
1281 
1282 	task = get_proc_task(inode);
1283 	if (!task)
1284 		return -ENOENT;
1285 	mm = get_task_mm(task);
1286 	put_task_struct(task);
1287 	if (!mm)
1288 		return -ENOENT;
1289 	exe_file = get_mm_exe_file(mm);
1290 	mmput(mm);
1291 	if (exe_file) {
1292 		*exe_path = exe_file->f_path;
1293 		path_get(&exe_file->f_path);
1294 		fput(exe_file);
1295 		return 0;
1296 	} else
1297 		return -ENOENT;
1298 }
1299 
1300 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1301 {
1302 	struct inode *inode = dentry->d_inode;
1303 	int error = -EACCES;
1304 
1305 	/* We don't need a base pointer in the /proc filesystem */
1306 	path_put(&nd->path);
1307 
1308 	/* Are we allowed to snoop on the tasks file descriptors? */
1309 	if (!proc_fd_access_allowed(inode))
1310 		goto out;
1311 
1312 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1313 	nd->last_type = LAST_BIND;
1314 out:
1315 	return ERR_PTR(error);
1316 }
1317 
1318 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1319 {
1320 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1321 	char *pathname;
1322 	int len;
1323 
1324 	if (!tmp)
1325 		return -ENOMEM;
1326 
1327 	pathname = d_path(path, tmp, PAGE_SIZE);
1328 	len = PTR_ERR(pathname);
1329 	if (IS_ERR(pathname))
1330 		goto out;
1331 	len = tmp + PAGE_SIZE - 1 - pathname;
1332 
1333 	if (len > buflen)
1334 		len = buflen;
1335 	if (copy_to_user(buffer, pathname, len))
1336 		len = -EFAULT;
1337  out:
1338 	free_page((unsigned long)tmp);
1339 	return len;
1340 }
1341 
1342 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1343 {
1344 	int error = -EACCES;
1345 	struct inode *inode = dentry->d_inode;
1346 	struct path path;
1347 
1348 	/* Are we allowed to snoop on the tasks file descriptors? */
1349 	if (!proc_fd_access_allowed(inode))
1350 		goto out;
1351 
1352 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1353 	if (error)
1354 		goto out;
1355 
1356 	error = do_proc_readlink(&path, buffer, buflen);
1357 	path_put(&path);
1358 out:
1359 	return error;
1360 }
1361 
1362 static const struct inode_operations proc_pid_link_inode_operations = {
1363 	.readlink	= proc_pid_readlink,
1364 	.follow_link	= proc_pid_follow_link,
1365 	.setattr	= proc_setattr,
1366 };
1367 
1368 
1369 /* building an inode */
1370 
1371 static int task_dumpable(struct task_struct *task)
1372 {
1373 	int dumpable = 0;
1374 	struct mm_struct *mm;
1375 
1376 	task_lock(task);
1377 	mm = task->mm;
1378 	if (mm)
1379 		dumpable = get_dumpable(mm);
1380 	task_unlock(task);
1381 	if(dumpable == 1)
1382 		return 1;
1383 	return 0;
1384 }
1385 
1386 
1387 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1388 {
1389 	struct inode * inode;
1390 	struct proc_inode *ei;
1391 
1392 	/* We need a new inode */
1393 
1394 	inode = new_inode(sb);
1395 	if (!inode)
1396 		goto out;
1397 
1398 	/* Common stuff */
1399 	ei = PROC_I(inode);
1400 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1401 	inode->i_op = &proc_def_inode_operations;
1402 
1403 	/*
1404 	 * grab the reference to task.
1405 	 */
1406 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1407 	if (!ei->pid)
1408 		goto out_unlock;
1409 
1410 	inode->i_uid = 0;
1411 	inode->i_gid = 0;
1412 	if (task_dumpable(task)) {
1413 		inode->i_uid = task->euid;
1414 		inode->i_gid = task->egid;
1415 	}
1416 	security_task_to_inode(task, inode);
1417 
1418 out:
1419 	return inode;
1420 
1421 out_unlock:
1422 	iput(inode);
1423 	return NULL;
1424 }
1425 
1426 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1427 {
1428 	struct inode *inode = dentry->d_inode;
1429 	struct task_struct *task;
1430 	generic_fillattr(inode, stat);
1431 
1432 	rcu_read_lock();
1433 	stat->uid = 0;
1434 	stat->gid = 0;
1435 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1436 	if (task) {
1437 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1438 		    task_dumpable(task)) {
1439 			stat->uid = task->euid;
1440 			stat->gid = task->egid;
1441 		}
1442 	}
1443 	rcu_read_unlock();
1444 	return 0;
1445 }
1446 
1447 /* dentry stuff */
1448 
1449 /*
1450  *	Exceptional case: normally we are not allowed to unhash a busy
1451  * directory. In this case, however, we can do it - no aliasing problems
1452  * due to the way we treat inodes.
1453  *
1454  * Rewrite the inode's ownerships here because the owning task may have
1455  * performed a setuid(), etc.
1456  *
1457  * Before the /proc/pid/status file was created the only way to read
1458  * the effective uid of a /process was to stat /proc/pid.  Reading
1459  * /proc/pid/status is slow enough that procps and other packages
1460  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1461  * made this apply to all per process world readable and executable
1462  * directories.
1463  */
1464 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1465 {
1466 	struct inode *inode = dentry->d_inode;
1467 	struct task_struct *task = get_proc_task(inode);
1468 	if (task) {
1469 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1470 		    task_dumpable(task)) {
1471 			inode->i_uid = task->euid;
1472 			inode->i_gid = task->egid;
1473 		} else {
1474 			inode->i_uid = 0;
1475 			inode->i_gid = 0;
1476 		}
1477 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1478 		security_task_to_inode(task, inode);
1479 		put_task_struct(task);
1480 		return 1;
1481 	}
1482 	d_drop(dentry);
1483 	return 0;
1484 }
1485 
1486 static int pid_delete_dentry(struct dentry * dentry)
1487 {
1488 	/* Is the task we represent dead?
1489 	 * If so, then don't put the dentry on the lru list,
1490 	 * kill it immediately.
1491 	 */
1492 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1493 }
1494 
1495 static struct dentry_operations pid_dentry_operations =
1496 {
1497 	.d_revalidate	= pid_revalidate,
1498 	.d_delete	= pid_delete_dentry,
1499 };
1500 
1501 /* Lookups */
1502 
1503 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1504 				struct task_struct *, const void *);
1505 
1506 /*
1507  * Fill a directory entry.
1508  *
1509  * If possible create the dcache entry and derive our inode number and
1510  * file type from dcache entry.
1511  *
1512  * Since all of the proc inode numbers are dynamically generated, the inode
1513  * numbers do not exist until the inode is cache.  This means creating the
1514  * the dcache entry in readdir is necessary to keep the inode numbers
1515  * reported by readdir in sync with the inode numbers reported
1516  * by stat.
1517  */
1518 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1519 	char *name, int len,
1520 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1521 {
1522 	struct dentry *child, *dir = filp->f_path.dentry;
1523 	struct inode *inode;
1524 	struct qstr qname;
1525 	ino_t ino = 0;
1526 	unsigned type = DT_UNKNOWN;
1527 
1528 	qname.name = name;
1529 	qname.len  = len;
1530 	qname.hash = full_name_hash(name, len);
1531 
1532 	child = d_lookup(dir, &qname);
1533 	if (!child) {
1534 		struct dentry *new;
1535 		new = d_alloc(dir, &qname);
1536 		if (new) {
1537 			child = instantiate(dir->d_inode, new, task, ptr);
1538 			if (child)
1539 				dput(new);
1540 			else
1541 				child = new;
1542 		}
1543 	}
1544 	if (!child || IS_ERR(child) || !child->d_inode)
1545 		goto end_instantiate;
1546 	inode = child->d_inode;
1547 	if (inode) {
1548 		ino = inode->i_ino;
1549 		type = inode->i_mode >> 12;
1550 	}
1551 	dput(child);
1552 end_instantiate:
1553 	if (!ino)
1554 		ino = find_inode_number(dir, &qname);
1555 	if (!ino)
1556 		ino = 1;
1557 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1558 }
1559 
1560 static unsigned name_to_int(struct dentry *dentry)
1561 {
1562 	const char *name = dentry->d_name.name;
1563 	int len = dentry->d_name.len;
1564 	unsigned n = 0;
1565 
1566 	if (len > 1 && *name == '0')
1567 		goto out;
1568 	while (len-- > 0) {
1569 		unsigned c = *name++ - '0';
1570 		if (c > 9)
1571 			goto out;
1572 		if (n >= (~0U-9)/10)
1573 			goto out;
1574 		n *= 10;
1575 		n += c;
1576 	}
1577 	return n;
1578 out:
1579 	return ~0U;
1580 }
1581 
1582 #define PROC_FDINFO_MAX 64
1583 
1584 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1585 {
1586 	struct task_struct *task = get_proc_task(inode);
1587 	struct files_struct *files = NULL;
1588 	struct file *file;
1589 	int fd = proc_fd(inode);
1590 
1591 	if (task) {
1592 		files = get_files_struct(task);
1593 		put_task_struct(task);
1594 	}
1595 	if (files) {
1596 		/*
1597 		 * We are not taking a ref to the file structure, so we must
1598 		 * hold ->file_lock.
1599 		 */
1600 		spin_lock(&files->file_lock);
1601 		file = fcheck_files(files, fd);
1602 		if (file) {
1603 			if (path) {
1604 				*path = file->f_path;
1605 				path_get(&file->f_path);
1606 			}
1607 			if (info)
1608 				snprintf(info, PROC_FDINFO_MAX,
1609 					 "pos:\t%lli\n"
1610 					 "flags:\t0%o\n",
1611 					 (long long) file->f_pos,
1612 					 file->f_flags);
1613 			spin_unlock(&files->file_lock);
1614 			put_files_struct(files);
1615 			return 0;
1616 		}
1617 		spin_unlock(&files->file_lock);
1618 		put_files_struct(files);
1619 	}
1620 	return -ENOENT;
1621 }
1622 
1623 static int proc_fd_link(struct inode *inode, struct path *path)
1624 {
1625 	return proc_fd_info(inode, path, NULL);
1626 }
1627 
1628 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1629 {
1630 	struct inode *inode = dentry->d_inode;
1631 	struct task_struct *task = get_proc_task(inode);
1632 	int fd = proc_fd(inode);
1633 	struct files_struct *files;
1634 
1635 	if (task) {
1636 		files = get_files_struct(task);
1637 		if (files) {
1638 			rcu_read_lock();
1639 			if (fcheck_files(files, fd)) {
1640 				rcu_read_unlock();
1641 				put_files_struct(files);
1642 				if (task_dumpable(task)) {
1643 					inode->i_uid = task->euid;
1644 					inode->i_gid = task->egid;
1645 				} else {
1646 					inode->i_uid = 0;
1647 					inode->i_gid = 0;
1648 				}
1649 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1650 				security_task_to_inode(task, inode);
1651 				put_task_struct(task);
1652 				return 1;
1653 			}
1654 			rcu_read_unlock();
1655 			put_files_struct(files);
1656 		}
1657 		put_task_struct(task);
1658 	}
1659 	d_drop(dentry);
1660 	return 0;
1661 }
1662 
1663 static struct dentry_operations tid_fd_dentry_operations =
1664 {
1665 	.d_revalidate	= tid_fd_revalidate,
1666 	.d_delete	= pid_delete_dentry,
1667 };
1668 
1669 static struct dentry *proc_fd_instantiate(struct inode *dir,
1670 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1671 {
1672 	unsigned fd = *(const unsigned *)ptr;
1673 	struct file *file;
1674 	struct files_struct *files;
1675  	struct inode *inode;
1676  	struct proc_inode *ei;
1677 	struct dentry *error = ERR_PTR(-ENOENT);
1678 
1679 	inode = proc_pid_make_inode(dir->i_sb, task);
1680 	if (!inode)
1681 		goto out;
1682 	ei = PROC_I(inode);
1683 	ei->fd = fd;
1684 	files = get_files_struct(task);
1685 	if (!files)
1686 		goto out_iput;
1687 	inode->i_mode = S_IFLNK;
1688 
1689 	/*
1690 	 * We are not taking a ref to the file structure, so we must
1691 	 * hold ->file_lock.
1692 	 */
1693 	spin_lock(&files->file_lock);
1694 	file = fcheck_files(files, fd);
1695 	if (!file)
1696 		goto out_unlock;
1697 	if (file->f_mode & 1)
1698 		inode->i_mode |= S_IRUSR | S_IXUSR;
1699 	if (file->f_mode & 2)
1700 		inode->i_mode |= S_IWUSR | S_IXUSR;
1701 	spin_unlock(&files->file_lock);
1702 	put_files_struct(files);
1703 
1704 	inode->i_op = &proc_pid_link_inode_operations;
1705 	inode->i_size = 64;
1706 	ei->op.proc_get_link = proc_fd_link;
1707 	dentry->d_op = &tid_fd_dentry_operations;
1708 	d_add(dentry, inode);
1709 	/* Close the race of the process dying before we return the dentry */
1710 	if (tid_fd_revalidate(dentry, NULL))
1711 		error = NULL;
1712 
1713  out:
1714 	return error;
1715 out_unlock:
1716 	spin_unlock(&files->file_lock);
1717 	put_files_struct(files);
1718 out_iput:
1719 	iput(inode);
1720 	goto out;
1721 }
1722 
1723 static struct dentry *proc_lookupfd_common(struct inode *dir,
1724 					   struct dentry *dentry,
1725 					   instantiate_t instantiate)
1726 {
1727 	struct task_struct *task = get_proc_task(dir);
1728 	unsigned fd = name_to_int(dentry);
1729 	struct dentry *result = ERR_PTR(-ENOENT);
1730 
1731 	if (!task)
1732 		goto out_no_task;
1733 	if (fd == ~0U)
1734 		goto out;
1735 
1736 	result = instantiate(dir, dentry, task, &fd);
1737 out:
1738 	put_task_struct(task);
1739 out_no_task:
1740 	return result;
1741 }
1742 
1743 static int proc_readfd_common(struct file * filp, void * dirent,
1744 			      filldir_t filldir, instantiate_t instantiate)
1745 {
1746 	struct dentry *dentry = filp->f_path.dentry;
1747 	struct inode *inode = dentry->d_inode;
1748 	struct task_struct *p = get_proc_task(inode);
1749 	unsigned int fd, ino;
1750 	int retval;
1751 	struct files_struct * files;
1752 
1753 	retval = -ENOENT;
1754 	if (!p)
1755 		goto out_no_task;
1756 	retval = 0;
1757 
1758 	fd = filp->f_pos;
1759 	switch (fd) {
1760 		case 0:
1761 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1762 				goto out;
1763 			filp->f_pos++;
1764 		case 1:
1765 			ino = parent_ino(dentry);
1766 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1767 				goto out;
1768 			filp->f_pos++;
1769 		default:
1770 			files = get_files_struct(p);
1771 			if (!files)
1772 				goto out;
1773 			rcu_read_lock();
1774 			for (fd = filp->f_pos-2;
1775 			     fd < files_fdtable(files)->max_fds;
1776 			     fd++, filp->f_pos++) {
1777 				char name[PROC_NUMBUF];
1778 				int len;
1779 
1780 				if (!fcheck_files(files, fd))
1781 					continue;
1782 				rcu_read_unlock();
1783 
1784 				len = snprintf(name, sizeof(name), "%d", fd);
1785 				if (proc_fill_cache(filp, dirent, filldir,
1786 						    name, len, instantiate,
1787 						    p, &fd) < 0) {
1788 					rcu_read_lock();
1789 					break;
1790 				}
1791 				rcu_read_lock();
1792 			}
1793 			rcu_read_unlock();
1794 			put_files_struct(files);
1795 	}
1796 out:
1797 	put_task_struct(p);
1798 out_no_task:
1799 	return retval;
1800 }
1801 
1802 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1803 				    struct nameidata *nd)
1804 {
1805 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1806 }
1807 
1808 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1809 {
1810 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1811 }
1812 
1813 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1814 				      size_t len, loff_t *ppos)
1815 {
1816 	char tmp[PROC_FDINFO_MAX];
1817 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1818 	if (!err)
1819 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1820 	return err;
1821 }
1822 
1823 static const struct file_operations proc_fdinfo_file_operations = {
1824 	.open		= nonseekable_open,
1825 	.read		= proc_fdinfo_read,
1826 };
1827 
1828 static const struct file_operations proc_fd_operations = {
1829 	.read		= generic_read_dir,
1830 	.readdir	= proc_readfd,
1831 };
1832 
1833 /*
1834  * /proc/pid/fd needs a special permission handler so that a process can still
1835  * access /proc/self/fd after it has executed a setuid().
1836  */
1837 static int proc_fd_permission(struct inode *inode, int mask,
1838 				struct nameidata *nd)
1839 {
1840 	int rv;
1841 
1842 	rv = generic_permission(inode, mask, NULL);
1843 	if (rv == 0)
1844 		return 0;
1845 	if (task_pid(current) == proc_pid(inode))
1846 		rv = 0;
1847 	return rv;
1848 }
1849 
1850 /*
1851  * proc directories can do almost nothing..
1852  */
1853 static const struct inode_operations proc_fd_inode_operations = {
1854 	.lookup		= proc_lookupfd,
1855 	.permission	= proc_fd_permission,
1856 	.setattr	= proc_setattr,
1857 };
1858 
1859 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1860 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1861 {
1862 	unsigned fd = *(unsigned *)ptr;
1863  	struct inode *inode;
1864  	struct proc_inode *ei;
1865 	struct dentry *error = ERR_PTR(-ENOENT);
1866 
1867 	inode = proc_pid_make_inode(dir->i_sb, task);
1868 	if (!inode)
1869 		goto out;
1870 	ei = PROC_I(inode);
1871 	ei->fd = fd;
1872 	inode->i_mode = S_IFREG | S_IRUSR;
1873 	inode->i_fop = &proc_fdinfo_file_operations;
1874 	dentry->d_op = &tid_fd_dentry_operations;
1875 	d_add(dentry, inode);
1876 	/* Close the race of the process dying before we return the dentry */
1877 	if (tid_fd_revalidate(dentry, NULL))
1878 		error = NULL;
1879 
1880  out:
1881 	return error;
1882 }
1883 
1884 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1885 					struct dentry *dentry,
1886 					struct nameidata *nd)
1887 {
1888 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1889 }
1890 
1891 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1892 {
1893 	return proc_readfd_common(filp, dirent, filldir,
1894 				  proc_fdinfo_instantiate);
1895 }
1896 
1897 static const struct file_operations proc_fdinfo_operations = {
1898 	.read		= generic_read_dir,
1899 	.readdir	= proc_readfdinfo,
1900 };
1901 
1902 /*
1903  * proc directories can do almost nothing..
1904  */
1905 static const struct inode_operations proc_fdinfo_inode_operations = {
1906 	.lookup		= proc_lookupfdinfo,
1907 	.setattr	= proc_setattr,
1908 };
1909 
1910 
1911 static struct dentry *proc_pident_instantiate(struct inode *dir,
1912 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1913 {
1914 	const struct pid_entry *p = ptr;
1915 	struct inode *inode;
1916 	struct proc_inode *ei;
1917 	struct dentry *error = ERR_PTR(-EINVAL);
1918 
1919 	inode = proc_pid_make_inode(dir->i_sb, task);
1920 	if (!inode)
1921 		goto out;
1922 
1923 	ei = PROC_I(inode);
1924 	inode->i_mode = p->mode;
1925 	if (S_ISDIR(inode->i_mode))
1926 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
1927 	if (p->iop)
1928 		inode->i_op = p->iop;
1929 	if (p->fop)
1930 		inode->i_fop = p->fop;
1931 	ei->op = p->op;
1932 	dentry->d_op = &pid_dentry_operations;
1933 	d_add(dentry, inode);
1934 	/* Close the race of the process dying before we return the dentry */
1935 	if (pid_revalidate(dentry, NULL))
1936 		error = NULL;
1937 out:
1938 	return error;
1939 }
1940 
1941 static struct dentry *proc_pident_lookup(struct inode *dir,
1942 					 struct dentry *dentry,
1943 					 const struct pid_entry *ents,
1944 					 unsigned int nents)
1945 {
1946 	struct inode *inode;
1947 	struct dentry *error;
1948 	struct task_struct *task = get_proc_task(dir);
1949 	const struct pid_entry *p, *last;
1950 
1951 	error = ERR_PTR(-ENOENT);
1952 	inode = NULL;
1953 
1954 	if (!task)
1955 		goto out_no_task;
1956 
1957 	/*
1958 	 * Yes, it does not scale. And it should not. Don't add
1959 	 * new entries into /proc/<tgid>/ without very good reasons.
1960 	 */
1961 	last = &ents[nents - 1];
1962 	for (p = ents; p <= last; p++) {
1963 		if (p->len != dentry->d_name.len)
1964 			continue;
1965 		if (!memcmp(dentry->d_name.name, p->name, p->len))
1966 			break;
1967 	}
1968 	if (p > last)
1969 		goto out;
1970 
1971 	error = proc_pident_instantiate(dir, dentry, task, p);
1972 out:
1973 	put_task_struct(task);
1974 out_no_task:
1975 	return error;
1976 }
1977 
1978 static int proc_pident_fill_cache(struct file *filp, void *dirent,
1979 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
1980 {
1981 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
1982 				proc_pident_instantiate, task, p);
1983 }
1984 
1985 static int proc_pident_readdir(struct file *filp,
1986 		void *dirent, filldir_t filldir,
1987 		const struct pid_entry *ents, unsigned int nents)
1988 {
1989 	int i;
1990 	struct dentry *dentry = filp->f_path.dentry;
1991 	struct inode *inode = dentry->d_inode;
1992 	struct task_struct *task = get_proc_task(inode);
1993 	const struct pid_entry *p, *last;
1994 	ino_t ino;
1995 	int ret;
1996 
1997 	ret = -ENOENT;
1998 	if (!task)
1999 		goto out_no_task;
2000 
2001 	ret = 0;
2002 	i = filp->f_pos;
2003 	switch (i) {
2004 	case 0:
2005 		ino = inode->i_ino;
2006 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2007 			goto out;
2008 		i++;
2009 		filp->f_pos++;
2010 		/* fall through */
2011 	case 1:
2012 		ino = parent_ino(dentry);
2013 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2014 			goto out;
2015 		i++;
2016 		filp->f_pos++;
2017 		/* fall through */
2018 	default:
2019 		i -= 2;
2020 		if (i >= nents) {
2021 			ret = 1;
2022 			goto out;
2023 		}
2024 		p = ents + i;
2025 		last = &ents[nents - 1];
2026 		while (p <= last) {
2027 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2028 				goto out;
2029 			filp->f_pos++;
2030 			p++;
2031 		}
2032 	}
2033 
2034 	ret = 1;
2035 out:
2036 	put_task_struct(task);
2037 out_no_task:
2038 	return ret;
2039 }
2040 
2041 #ifdef CONFIG_SECURITY
2042 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2043 				  size_t count, loff_t *ppos)
2044 {
2045 	struct inode * inode = file->f_path.dentry->d_inode;
2046 	char *p = NULL;
2047 	ssize_t length;
2048 	struct task_struct *task = get_proc_task(inode);
2049 
2050 	if (!task)
2051 		return -ESRCH;
2052 
2053 	length = security_getprocattr(task,
2054 				      (char*)file->f_path.dentry->d_name.name,
2055 				      &p);
2056 	put_task_struct(task);
2057 	if (length > 0)
2058 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2059 	kfree(p);
2060 	return length;
2061 }
2062 
2063 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2064 				   size_t count, loff_t *ppos)
2065 {
2066 	struct inode * inode = file->f_path.dentry->d_inode;
2067 	char *page;
2068 	ssize_t length;
2069 	struct task_struct *task = get_proc_task(inode);
2070 
2071 	length = -ESRCH;
2072 	if (!task)
2073 		goto out_no_task;
2074 	if (count > PAGE_SIZE)
2075 		count = PAGE_SIZE;
2076 
2077 	/* No partial writes. */
2078 	length = -EINVAL;
2079 	if (*ppos != 0)
2080 		goto out;
2081 
2082 	length = -ENOMEM;
2083 	page = (char*)__get_free_page(GFP_TEMPORARY);
2084 	if (!page)
2085 		goto out;
2086 
2087 	length = -EFAULT;
2088 	if (copy_from_user(page, buf, count))
2089 		goto out_free;
2090 
2091 	length = security_setprocattr(task,
2092 				      (char*)file->f_path.dentry->d_name.name,
2093 				      (void*)page, count);
2094 out_free:
2095 	free_page((unsigned long) page);
2096 out:
2097 	put_task_struct(task);
2098 out_no_task:
2099 	return length;
2100 }
2101 
2102 static const struct file_operations proc_pid_attr_operations = {
2103 	.read		= proc_pid_attr_read,
2104 	.write		= proc_pid_attr_write,
2105 };
2106 
2107 static const struct pid_entry attr_dir_stuff[] = {
2108 	REG("current",    S_IRUGO|S_IWUGO, pid_attr),
2109 	REG("prev",       S_IRUGO,	   pid_attr),
2110 	REG("exec",       S_IRUGO|S_IWUGO, pid_attr),
2111 	REG("fscreate",   S_IRUGO|S_IWUGO, pid_attr),
2112 	REG("keycreate",  S_IRUGO|S_IWUGO, pid_attr),
2113 	REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
2114 };
2115 
2116 static int proc_attr_dir_readdir(struct file * filp,
2117 			     void * dirent, filldir_t filldir)
2118 {
2119 	return proc_pident_readdir(filp,dirent,filldir,
2120 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2121 }
2122 
2123 static const struct file_operations proc_attr_dir_operations = {
2124 	.read		= generic_read_dir,
2125 	.readdir	= proc_attr_dir_readdir,
2126 };
2127 
2128 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2129 				struct dentry *dentry, struct nameidata *nd)
2130 {
2131 	return proc_pident_lookup(dir, dentry,
2132 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2133 }
2134 
2135 static const struct inode_operations proc_attr_dir_inode_operations = {
2136 	.lookup		= proc_attr_dir_lookup,
2137 	.getattr	= pid_getattr,
2138 	.setattr	= proc_setattr,
2139 };
2140 
2141 #endif
2142 
2143 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2144 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2145 					 size_t count, loff_t *ppos)
2146 {
2147 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2148 	struct mm_struct *mm;
2149 	char buffer[PROC_NUMBUF];
2150 	size_t len;
2151 	int ret;
2152 
2153 	if (!task)
2154 		return -ESRCH;
2155 
2156 	ret = 0;
2157 	mm = get_task_mm(task);
2158 	if (mm) {
2159 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2160 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2161 				MMF_DUMP_FILTER_SHIFT));
2162 		mmput(mm);
2163 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2164 	}
2165 
2166 	put_task_struct(task);
2167 
2168 	return ret;
2169 }
2170 
2171 static ssize_t proc_coredump_filter_write(struct file *file,
2172 					  const char __user *buf,
2173 					  size_t count,
2174 					  loff_t *ppos)
2175 {
2176 	struct task_struct *task;
2177 	struct mm_struct *mm;
2178 	char buffer[PROC_NUMBUF], *end;
2179 	unsigned int val;
2180 	int ret;
2181 	int i;
2182 	unsigned long mask;
2183 
2184 	ret = -EFAULT;
2185 	memset(buffer, 0, sizeof(buffer));
2186 	if (count > sizeof(buffer) - 1)
2187 		count = sizeof(buffer) - 1;
2188 	if (copy_from_user(buffer, buf, count))
2189 		goto out_no_task;
2190 
2191 	ret = -EINVAL;
2192 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2193 	if (*end == '\n')
2194 		end++;
2195 	if (end - buffer == 0)
2196 		goto out_no_task;
2197 
2198 	ret = -ESRCH;
2199 	task = get_proc_task(file->f_dentry->d_inode);
2200 	if (!task)
2201 		goto out_no_task;
2202 
2203 	ret = end - buffer;
2204 	mm = get_task_mm(task);
2205 	if (!mm)
2206 		goto out_no_mm;
2207 
2208 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2209 		if (val & mask)
2210 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2211 		else
2212 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2213 	}
2214 
2215 	mmput(mm);
2216  out_no_mm:
2217 	put_task_struct(task);
2218  out_no_task:
2219 	return ret;
2220 }
2221 
2222 static const struct file_operations proc_coredump_filter_operations = {
2223 	.read		= proc_coredump_filter_read,
2224 	.write		= proc_coredump_filter_write,
2225 };
2226 #endif
2227 
2228 /*
2229  * /proc/self:
2230  */
2231 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2232 			      int buflen)
2233 {
2234 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2235 	pid_t tgid = task_tgid_nr_ns(current, ns);
2236 	char tmp[PROC_NUMBUF];
2237 	if (!tgid)
2238 		return -ENOENT;
2239 	sprintf(tmp, "%d", tgid);
2240 	return vfs_readlink(dentry,buffer,buflen,tmp);
2241 }
2242 
2243 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2244 {
2245 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2246 	pid_t tgid = task_tgid_nr_ns(current, ns);
2247 	char tmp[PROC_NUMBUF];
2248 	if (!tgid)
2249 		return ERR_PTR(-ENOENT);
2250 	sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2251 	return ERR_PTR(vfs_follow_link(nd,tmp));
2252 }
2253 
2254 static const struct inode_operations proc_self_inode_operations = {
2255 	.readlink	= proc_self_readlink,
2256 	.follow_link	= proc_self_follow_link,
2257 };
2258 
2259 /*
2260  * proc base
2261  *
2262  * These are the directory entries in the root directory of /proc
2263  * that properly belong to the /proc filesystem, as they describe
2264  * describe something that is process related.
2265  */
2266 static const struct pid_entry proc_base_stuff[] = {
2267 	NOD("self", S_IFLNK|S_IRWXUGO,
2268 		&proc_self_inode_operations, NULL, {}),
2269 };
2270 
2271 /*
2272  *	Exceptional case: normally we are not allowed to unhash a busy
2273  * directory. In this case, however, we can do it - no aliasing problems
2274  * due to the way we treat inodes.
2275  */
2276 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2277 {
2278 	struct inode *inode = dentry->d_inode;
2279 	struct task_struct *task = get_proc_task(inode);
2280 	if (task) {
2281 		put_task_struct(task);
2282 		return 1;
2283 	}
2284 	d_drop(dentry);
2285 	return 0;
2286 }
2287 
2288 static struct dentry_operations proc_base_dentry_operations =
2289 {
2290 	.d_revalidate	= proc_base_revalidate,
2291 	.d_delete	= pid_delete_dentry,
2292 };
2293 
2294 static struct dentry *proc_base_instantiate(struct inode *dir,
2295 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2296 {
2297 	const struct pid_entry *p = ptr;
2298 	struct inode *inode;
2299 	struct proc_inode *ei;
2300 	struct dentry *error = ERR_PTR(-EINVAL);
2301 
2302 	/* Allocate the inode */
2303 	error = ERR_PTR(-ENOMEM);
2304 	inode = new_inode(dir->i_sb);
2305 	if (!inode)
2306 		goto out;
2307 
2308 	/* Initialize the inode */
2309 	ei = PROC_I(inode);
2310 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2311 
2312 	/*
2313 	 * grab the reference to the task.
2314 	 */
2315 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2316 	if (!ei->pid)
2317 		goto out_iput;
2318 
2319 	inode->i_uid = 0;
2320 	inode->i_gid = 0;
2321 	inode->i_mode = p->mode;
2322 	if (S_ISDIR(inode->i_mode))
2323 		inode->i_nlink = 2;
2324 	if (S_ISLNK(inode->i_mode))
2325 		inode->i_size = 64;
2326 	if (p->iop)
2327 		inode->i_op = p->iop;
2328 	if (p->fop)
2329 		inode->i_fop = p->fop;
2330 	ei->op = p->op;
2331 	dentry->d_op = &proc_base_dentry_operations;
2332 	d_add(dentry, inode);
2333 	error = NULL;
2334 out:
2335 	return error;
2336 out_iput:
2337 	iput(inode);
2338 	goto out;
2339 }
2340 
2341 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2342 {
2343 	struct dentry *error;
2344 	struct task_struct *task = get_proc_task(dir);
2345 	const struct pid_entry *p, *last;
2346 
2347 	error = ERR_PTR(-ENOENT);
2348 
2349 	if (!task)
2350 		goto out_no_task;
2351 
2352 	/* Lookup the directory entry */
2353 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2354 	for (p = proc_base_stuff; p <= last; p++) {
2355 		if (p->len != dentry->d_name.len)
2356 			continue;
2357 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2358 			break;
2359 	}
2360 	if (p > last)
2361 		goto out;
2362 
2363 	error = proc_base_instantiate(dir, dentry, task, p);
2364 
2365 out:
2366 	put_task_struct(task);
2367 out_no_task:
2368 	return error;
2369 }
2370 
2371 static int proc_base_fill_cache(struct file *filp, void *dirent,
2372 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2373 {
2374 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2375 				proc_base_instantiate, task, p);
2376 }
2377 
2378 #ifdef CONFIG_TASK_IO_ACCOUNTING
2379 static int proc_pid_io_accounting(struct task_struct *task, char *buffer)
2380 {
2381 	return sprintf(buffer,
2382 #ifdef CONFIG_TASK_XACCT
2383 			"rchar: %llu\n"
2384 			"wchar: %llu\n"
2385 			"syscr: %llu\n"
2386 			"syscw: %llu\n"
2387 #endif
2388 			"read_bytes: %llu\n"
2389 			"write_bytes: %llu\n"
2390 			"cancelled_write_bytes: %llu\n",
2391 #ifdef CONFIG_TASK_XACCT
2392 			(unsigned long long)task->rchar,
2393 			(unsigned long long)task->wchar,
2394 			(unsigned long long)task->syscr,
2395 			(unsigned long long)task->syscw,
2396 #endif
2397 			(unsigned long long)task->ioac.read_bytes,
2398 			(unsigned long long)task->ioac.write_bytes,
2399 			(unsigned long long)task->ioac.cancelled_write_bytes);
2400 }
2401 #endif
2402 
2403 /*
2404  * Thread groups
2405  */
2406 static const struct file_operations proc_task_operations;
2407 static const struct inode_operations proc_task_inode_operations;
2408 
2409 static const struct pid_entry tgid_base_stuff[] = {
2410 	DIR("task",       S_IRUGO|S_IXUGO, task),
2411 	DIR("fd",         S_IRUSR|S_IXUSR, fd),
2412 	DIR("fdinfo",     S_IRUSR|S_IXUSR, fdinfo),
2413 #ifdef CONFIG_NET
2414 	DIR("net",        S_IRUGO|S_IXUGO, net),
2415 #endif
2416 	REG("environ",    S_IRUSR, environ),
2417 	INF("auxv",       S_IRUSR, pid_auxv),
2418 	ONE("status",     S_IRUGO, pid_status),
2419 	INF("limits",	  S_IRUSR, pid_limits),
2420 #ifdef CONFIG_SCHED_DEBUG
2421 	REG("sched",      S_IRUGO|S_IWUSR, pid_sched),
2422 #endif
2423 	INF("cmdline",    S_IRUGO, pid_cmdline),
2424 	ONE("stat",       S_IRUGO, tgid_stat),
2425 	ONE("statm",      S_IRUGO, pid_statm),
2426 	REG("maps",       S_IRUGO, maps),
2427 #ifdef CONFIG_NUMA
2428 	REG("numa_maps",  S_IRUGO, numa_maps),
2429 #endif
2430 	REG("mem",        S_IRUSR|S_IWUSR, mem),
2431 	LNK("cwd",        cwd),
2432 	LNK("root",       root),
2433 	LNK("exe",        exe),
2434 	REG("mounts",     S_IRUGO, mounts),
2435 	REG("mountinfo",  S_IRUGO, mountinfo),
2436 	REG("mountstats", S_IRUSR, mountstats),
2437 #ifdef CONFIG_PROC_PAGE_MONITOR
2438 	REG("clear_refs", S_IWUSR, clear_refs),
2439 	REG("smaps",      S_IRUGO, smaps),
2440 	REG("pagemap",    S_IRUSR, pagemap),
2441 #endif
2442 #ifdef CONFIG_SECURITY
2443 	DIR("attr",       S_IRUGO|S_IXUGO, attr_dir),
2444 #endif
2445 #ifdef CONFIG_KALLSYMS
2446 	INF("wchan",      S_IRUGO, pid_wchan),
2447 #endif
2448 #ifdef CONFIG_SCHEDSTATS
2449 	INF("schedstat",  S_IRUGO, pid_schedstat),
2450 #endif
2451 #ifdef CONFIG_LATENCYTOP
2452 	REG("latency",  S_IRUGO, lstats),
2453 #endif
2454 #ifdef CONFIG_PROC_PID_CPUSET
2455 	REG("cpuset",     S_IRUGO, cpuset),
2456 #endif
2457 #ifdef CONFIG_CGROUPS
2458 	REG("cgroup",  S_IRUGO, cgroup),
2459 #endif
2460 	INF("oom_score",  S_IRUGO, oom_score),
2461 	REG("oom_adj",    S_IRUGO|S_IWUSR, oom_adjust),
2462 #ifdef CONFIG_AUDITSYSCALL
2463 	REG("loginuid",   S_IWUSR|S_IRUGO, loginuid),
2464 	REG("sessionid",  S_IRUGO, sessionid),
2465 #endif
2466 #ifdef CONFIG_FAULT_INJECTION
2467 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2468 #endif
2469 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2470 	REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
2471 #endif
2472 #ifdef CONFIG_TASK_IO_ACCOUNTING
2473 	INF("io",	S_IRUGO, pid_io_accounting),
2474 #endif
2475 };
2476 
2477 static int proc_tgid_base_readdir(struct file * filp,
2478 			     void * dirent, filldir_t filldir)
2479 {
2480 	return proc_pident_readdir(filp,dirent,filldir,
2481 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2482 }
2483 
2484 static const struct file_operations proc_tgid_base_operations = {
2485 	.read		= generic_read_dir,
2486 	.readdir	= proc_tgid_base_readdir,
2487 };
2488 
2489 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2490 	return proc_pident_lookup(dir, dentry,
2491 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2492 }
2493 
2494 static const struct inode_operations proc_tgid_base_inode_operations = {
2495 	.lookup		= proc_tgid_base_lookup,
2496 	.getattr	= pid_getattr,
2497 	.setattr	= proc_setattr,
2498 };
2499 
2500 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2501 {
2502 	struct dentry *dentry, *leader, *dir;
2503 	char buf[PROC_NUMBUF];
2504 	struct qstr name;
2505 
2506 	name.name = buf;
2507 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2508 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2509 	if (dentry) {
2510 		if (!(current->flags & PF_EXITING))
2511 			shrink_dcache_parent(dentry);
2512 		d_drop(dentry);
2513 		dput(dentry);
2514 	}
2515 
2516 	if (tgid == 0)
2517 		goto out;
2518 
2519 	name.name = buf;
2520 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2521 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2522 	if (!leader)
2523 		goto out;
2524 
2525 	name.name = "task";
2526 	name.len = strlen(name.name);
2527 	dir = d_hash_and_lookup(leader, &name);
2528 	if (!dir)
2529 		goto out_put_leader;
2530 
2531 	name.name = buf;
2532 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2533 	dentry = d_hash_and_lookup(dir, &name);
2534 	if (dentry) {
2535 		shrink_dcache_parent(dentry);
2536 		d_drop(dentry);
2537 		dput(dentry);
2538 	}
2539 
2540 	dput(dir);
2541 out_put_leader:
2542 	dput(leader);
2543 out:
2544 	return;
2545 }
2546 
2547 /**
2548  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2549  * @task: task that should be flushed.
2550  *
2551  * When flushing dentries from proc, one needs to flush them from global
2552  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2553  * in. This call is supposed to do all of this job.
2554  *
2555  * Looks in the dcache for
2556  * /proc/@pid
2557  * /proc/@tgid/task/@pid
2558  * if either directory is present flushes it and all of it'ts children
2559  * from the dcache.
2560  *
2561  * It is safe and reasonable to cache /proc entries for a task until
2562  * that task exits.  After that they just clog up the dcache with
2563  * useless entries, possibly causing useful dcache entries to be
2564  * flushed instead.  This routine is proved to flush those useless
2565  * dcache entries at process exit time.
2566  *
2567  * NOTE: This routine is just an optimization so it does not guarantee
2568  *       that no dcache entries will exist at process exit time it
2569  *       just makes it very unlikely that any will persist.
2570  */
2571 
2572 void proc_flush_task(struct task_struct *task)
2573 {
2574 	int i;
2575 	struct pid *pid, *tgid = NULL;
2576 	struct upid *upid;
2577 
2578 	pid = task_pid(task);
2579 	if (thread_group_leader(task))
2580 		tgid = task_tgid(task);
2581 
2582 	for (i = 0; i <= pid->level; i++) {
2583 		upid = &pid->numbers[i];
2584 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2585 			tgid ? tgid->numbers[i].nr : 0);
2586 	}
2587 
2588 	upid = &pid->numbers[pid->level];
2589 	if (upid->nr == 1)
2590 		pid_ns_release_proc(upid->ns);
2591 }
2592 
2593 static struct dentry *proc_pid_instantiate(struct inode *dir,
2594 					   struct dentry * dentry,
2595 					   struct task_struct *task, const void *ptr)
2596 {
2597 	struct dentry *error = ERR_PTR(-ENOENT);
2598 	struct inode *inode;
2599 
2600 	inode = proc_pid_make_inode(dir->i_sb, task);
2601 	if (!inode)
2602 		goto out;
2603 
2604 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2605 	inode->i_op = &proc_tgid_base_inode_operations;
2606 	inode->i_fop = &proc_tgid_base_operations;
2607 	inode->i_flags|=S_IMMUTABLE;
2608 
2609 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2610 		ARRAY_SIZE(tgid_base_stuff));
2611 
2612 	dentry->d_op = &pid_dentry_operations;
2613 
2614 	d_add(dentry, inode);
2615 	/* Close the race of the process dying before we return the dentry */
2616 	if (pid_revalidate(dentry, NULL))
2617 		error = NULL;
2618 out:
2619 	return error;
2620 }
2621 
2622 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2623 {
2624 	struct dentry *result = ERR_PTR(-ENOENT);
2625 	struct task_struct *task;
2626 	unsigned tgid;
2627 	struct pid_namespace *ns;
2628 
2629 	result = proc_base_lookup(dir, dentry);
2630 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2631 		goto out;
2632 
2633 	tgid = name_to_int(dentry);
2634 	if (tgid == ~0U)
2635 		goto out;
2636 
2637 	ns = dentry->d_sb->s_fs_info;
2638 	rcu_read_lock();
2639 	task = find_task_by_pid_ns(tgid, ns);
2640 	if (task)
2641 		get_task_struct(task);
2642 	rcu_read_unlock();
2643 	if (!task)
2644 		goto out;
2645 
2646 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2647 	put_task_struct(task);
2648 out:
2649 	return result;
2650 }
2651 
2652 /*
2653  * Find the first task with tgid >= tgid
2654  *
2655  */
2656 struct tgid_iter {
2657 	unsigned int tgid;
2658 	struct task_struct *task;
2659 };
2660 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2661 {
2662 	struct pid *pid;
2663 
2664 	if (iter.task)
2665 		put_task_struct(iter.task);
2666 	rcu_read_lock();
2667 retry:
2668 	iter.task = NULL;
2669 	pid = find_ge_pid(iter.tgid, ns);
2670 	if (pid) {
2671 		iter.tgid = pid_nr_ns(pid, ns);
2672 		iter.task = pid_task(pid, PIDTYPE_PID);
2673 		/* What we to know is if the pid we have find is the
2674 		 * pid of a thread_group_leader.  Testing for task
2675 		 * being a thread_group_leader is the obvious thing
2676 		 * todo but there is a window when it fails, due to
2677 		 * the pid transfer logic in de_thread.
2678 		 *
2679 		 * So we perform the straight forward test of seeing
2680 		 * if the pid we have found is the pid of a thread
2681 		 * group leader, and don't worry if the task we have
2682 		 * found doesn't happen to be a thread group leader.
2683 		 * As we don't care in the case of readdir.
2684 		 */
2685 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2686 			iter.tgid += 1;
2687 			goto retry;
2688 		}
2689 		get_task_struct(iter.task);
2690 	}
2691 	rcu_read_unlock();
2692 	return iter;
2693 }
2694 
2695 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2696 
2697 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2698 	struct tgid_iter iter)
2699 {
2700 	char name[PROC_NUMBUF];
2701 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2702 	return proc_fill_cache(filp, dirent, filldir, name, len,
2703 				proc_pid_instantiate, iter.task, NULL);
2704 }
2705 
2706 /* for the /proc/ directory itself, after non-process stuff has been done */
2707 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2708 {
2709 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2710 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2711 	struct tgid_iter iter;
2712 	struct pid_namespace *ns;
2713 
2714 	if (!reaper)
2715 		goto out_no_task;
2716 
2717 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2718 		const struct pid_entry *p = &proc_base_stuff[nr];
2719 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2720 			goto out;
2721 	}
2722 
2723 	ns = filp->f_dentry->d_sb->s_fs_info;
2724 	iter.task = NULL;
2725 	iter.tgid = filp->f_pos - TGID_OFFSET;
2726 	for (iter = next_tgid(ns, iter);
2727 	     iter.task;
2728 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2729 		filp->f_pos = iter.tgid + TGID_OFFSET;
2730 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2731 			put_task_struct(iter.task);
2732 			goto out;
2733 		}
2734 	}
2735 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2736 out:
2737 	put_task_struct(reaper);
2738 out_no_task:
2739 	return 0;
2740 }
2741 
2742 /*
2743  * Tasks
2744  */
2745 static const struct pid_entry tid_base_stuff[] = {
2746 	DIR("fd",        S_IRUSR|S_IXUSR, fd),
2747 	DIR("fdinfo",    S_IRUSR|S_IXUSR, fdinfo),
2748 	REG("environ",   S_IRUSR, environ),
2749 	INF("auxv",      S_IRUSR, pid_auxv),
2750 	ONE("status",    S_IRUGO, pid_status),
2751 	INF("limits",	 S_IRUSR, pid_limits),
2752 #ifdef CONFIG_SCHED_DEBUG
2753 	REG("sched",     S_IRUGO|S_IWUSR, pid_sched),
2754 #endif
2755 	INF("cmdline",   S_IRUGO, pid_cmdline),
2756 	ONE("stat",      S_IRUGO, tid_stat),
2757 	ONE("statm",     S_IRUGO, pid_statm),
2758 	REG("maps",      S_IRUGO, maps),
2759 #ifdef CONFIG_NUMA
2760 	REG("numa_maps", S_IRUGO, numa_maps),
2761 #endif
2762 	REG("mem",       S_IRUSR|S_IWUSR, mem),
2763 	LNK("cwd",       cwd),
2764 	LNK("root",      root),
2765 	LNK("exe",       exe),
2766 	REG("mounts",    S_IRUGO, mounts),
2767 	REG("mountinfo",  S_IRUGO, mountinfo),
2768 #ifdef CONFIG_PROC_PAGE_MONITOR
2769 	REG("clear_refs", S_IWUSR, clear_refs),
2770 	REG("smaps",     S_IRUGO, smaps),
2771 	REG("pagemap",    S_IRUSR, pagemap),
2772 #endif
2773 #ifdef CONFIG_SECURITY
2774 	DIR("attr",      S_IRUGO|S_IXUGO, attr_dir),
2775 #endif
2776 #ifdef CONFIG_KALLSYMS
2777 	INF("wchan",     S_IRUGO, pid_wchan),
2778 #endif
2779 #ifdef CONFIG_SCHEDSTATS
2780 	INF("schedstat", S_IRUGO, pid_schedstat),
2781 #endif
2782 #ifdef CONFIG_LATENCYTOP
2783 	REG("latency",  S_IRUGO, lstats),
2784 #endif
2785 #ifdef CONFIG_PROC_PID_CPUSET
2786 	REG("cpuset",    S_IRUGO, cpuset),
2787 #endif
2788 #ifdef CONFIG_CGROUPS
2789 	REG("cgroup",  S_IRUGO, cgroup),
2790 #endif
2791 	INF("oom_score", S_IRUGO, oom_score),
2792 	REG("oom_adj",   S_IRUGO|S_IWUSR, oom_adjust),
2793 #ifdef CONFIG_AUDITSYSCALL
2794 	REG("loginuid",  S_IWUSR|S_IRUGO, loginuid),
2795 	REG("sessionid",  S_IRUSR, sessionid),
2796 #endif
2797 #ifdef CONFIG_FAULT_INJECTION
2798 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2799 #endif
2800 };
2801 
2802 static int proc_tid_base_readdir(struct file * filp,
2803 			     void * dirent, filldir_t filldir)
2804 {
2805 	return proc_pident_readdir(filp,dirent,filldir,
2806 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2807 }
2808 
2809 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2810 	return proc_pident_lookup(dir, dentry,
2811 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2812 }
2813 
2814 static const struct file_operations proc_tid_base_operations = {
2815 	.read		= generic_read_dir,
2816 	.readdir	= proc_tid_base_readdir,
2817 };
2818 
2819 static const struct inode_operations proc_tid_base_inode_operations = {
2820 	.lookup		= proc_tid_base_lookup,
2821 	.getattr	= pid_getattr,
2822 	.setattr	= proc_setattr,
2823 };
2824 
2825 static struct dentry *proc_task_instantiate(struct inode *dir,
2826 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2827 {
2828 	struct dentry *error = ERR_PTR(-ENOENT);
2829 	struct inode *inode;
2830 	inode = proc_pid_make_inode(dir->i_sb, task);
2831 
2832 	if (!inode)
2833 		goto out;
2834 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2835 	inode->i_op = &proc_tid_base_inode_operations;
2836 	inode->i_fop = &proc_tid_base_operations;
2837 	inode->i_flags|=S_IMMUTABLE;
2838 
2839 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2840 		ARRAY_SIZE(tid_base_stuff));
2841 
2842 	dentry->d_op = &pid_dentry_operations;
2843 
2844 	d_add(dentry, inode);
2845 	/* Close the race of the process dying before we return the dentry */
2846 	if (pid_revalidate(dentry, NULL))
2847 		error = NULL;
2848 out:
2849 	return error;
2850 }
2851 
2852 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2853 {
2854 	struct dentry *result = ERR_PTR(-ENOENT);
2855 	struct task_struct *task;
2856 	struct task_struct *leader = get_proc_task(dir);
2857 	unsigned tid;
2858 	struct pid_namespace *ns;
2859 
2860 	if (!leader)
2861 		goto out_no_task;
2862 
2863 	tid = name_to_int(dentry);
2864 	if (tid == ~0U)
2865 		goto out;
2866 
2867 	ns = dentry->d_sb->s_fs_info;
2868 	rcu_read_lock();
2869 	task = find_task_by_pid_ns(tid, ns);
2870 	if (task)
2871 		get_task_struct(task);
2872 	rcu_read_unlock();
2873 	if (!task)
2874 		goto out;
2875 	if (!same_thread_group(leader, task))
2876 		goto out_drop_task;
2877 
2878 	result = proc_task_instantiate(dir, dentry, task, NULL);
2879 out_drop_task:
2880 	put_task_struct(task);
2881 out:
2882 	put_task_struct(leader);
2883 out_no_task:
2884 	return result;
2885 }
2886 
2887 /*
2888  * Find the first tid of a thread group to return to user space.
2889  *
2890  * Usually this is just the thread group leader, but if the users
2891  * buffer was too small or there was a seek into the middle of the
2892  * directory we have more work todo.
2893  *
2894  * In the case of a short read we start with find_task_by_pid.
2895  *
2896  * In the case of a seek we start with the leader and walk nr
2897  * threads past it.
2898  */
2899 static struct task_struct *first_tid(struct task_struct *leader,
2900 		int tid, int nr, struct pid_namespace *ns)
2901 {
2902 	struct task_struct *pos;
2903 
2904 	rcu_read_lock();
2905 	/* Attempt to start with the pid of a thread */
2906 	if (tid && (nr > 0)) {
2907 		pos = find_task_by_pid_ns(tid, ns);
2908 		if (pos && (pos->group_leader == leader))
2909 			goto found;
2910 	}
2911 
2912 	/* If nr exceeds the number of threads there is nothing todo */
2913 	pos = NULL;
2914 	if (nr && nr >= get_nr_threads(leader))
2915 		goto out;
2916 
2917 	/* If we haven't found our starting place yet start
2918 	 * with the leader and walk nr threads forward.
2919 	 */
2920 	for (pos = leader; nr > 0; --nr) {
2921 		pos = next_thread(pos);
2922 		if (pos == leader) {
2923 			pos = NULL;
2924 			goto out;
2925 		}
2926 	}
2927 found:
2928 	get_task_struct(pos);
2929 out:
2930 	rcu_read_unlock();
2931 	return pos;
2932 }
2933 
2934 /*
2935  * Find the next thread in the thread list.
2936  * Return NULL if there is an error or no next thread.
2937  *
2938  * The reference to the input task_struct is released.
2939  */
2940 static struct task_struct *next_tid(struct task_struct *start)
2941 {
2942 	struct task_struct *pos = NULL;
2943 	rcu_read_lock();
2944 	if (pid_alive(start)) {
2945 		pos = next_thread(start);
2946 		if (thread_group_leader(pos))
2947 			pos = NULL;
2948 		else
2949 			get_task_struct(pos);
2950 	}
2951 	rcu_read_unlock();
2952 	put_task_struct(start);
2953 	return pos;
2954 }
2955 
2956 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2957 	struct task_struct *task, int tid)
2958 {
2959 	char name[PROC_NUMBUF];
2960 	int len = snprintf(name, sizeof(name), "%d", tid);
2961 	return proc_fill_cache(filp, dirent, filldir, name, len,
2962 				proc_task_instantiate, task, NULL);
2963 }
2964 
2965 /* for the /proc/TGID/task/ directories */
2966 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
2967 {
2968 	struct dentry *dentry = filp->f_path.dentry;
2969 	struct inode *inode = dentry->d_inode;
2970 	struct task_struct *leader = NULL;
2971 	struct task_struct *task;
2972 	int retval = -ENOENT;
2973 	ino_t ino;
2974 	int tid;
2975 	unsigned long pos = filp->f_pos;  /* avoiding "long long" filp->f_pos */
2976 	struct pid_namespace *ns;
2977 
2978 	task = get_proc_task(inode);
2979 	if (!task)
2980 		goto out_no_task;
2981 	rcu_read_lock();
2982 	if (pid_alive(task)) {
2983 		leader = task->group_leader;
2984 		get_task_struct(leader);
2985 	}
2986 	rcu_read_unlock();
2987 	put_task_struct(task);
2988 	if (!leader)
2989 		goto out_no_task;
2990 	retval = 0;
2991 
2992 	switch (pos) {
2993 	case 0:
2994 		ino = inode->i_ino;
2995 		if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
2996 			goto out;
2997 		pos++;
2998 		/* fall through */
2999 	case 1:
3000 		ino = parent_ino(dentry);
3001 		if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
3002 			goto out;
3003 		pos++;
3004 		/* fall through */
3005 	}
3006 
3007 	/* f_version caches the tgid value that the last readdir call couldn't
3008 	 * return. lseek aka telldir automagically resets f_version to 0.
3009 	 */
3010 	ns = filp->f_dentry->d_sb->s_fs_info;
3011 	tid = (int)filp->f_version;
3012 	filp->f_version = 0;
3013 	for (task = first_tid(leader, tid, pos - 2, ns);
3014 	     task;
3015 	     task = next_tid(task), pos++) {
3016 		tid = task_pid_nr_ns(task, ns);
3017 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3018 			/* returning this tgid failed, save it as the first
3019 			 * pid for the next readir call */
3020 			filp->f_version = (u64)tid;
3021 			put_task_struct(task);
3022 			break;
3023 		}
3024 	}
3025 out:
3026 	filp->f_pos = pos;
3027 	put_task_struct(leader);
3028 out_no_task:
3029 	return retval;
3030 }
3031 
3032 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3033 {
3034 	struct inode *inode = dentry->d_inode;
3035 	struct task_struct *p = get_proc_task(inode);
3036 	generic_fillattr(inode, stat);
3037 
3038 	if (p) {
3039 		rcu_read_lock();
3040 		stat->nlink += get_nr_threads(p);
3041 		rcu_read_unlock();
3042 		put_task_struct(p);
3043 	}
3044 
3045 	return 0;
3046 }
3047 
3048 static const struct inode_operations proc_task_inode_operations = {
3049 	.lookup		= proc_task_lookup,
3050 	.getattr	= proc_task_getattr,
3051 	.setattr	= proc_setattr,
3052 };
3053 
3054 static const struct file_operations proc_task_operations = {
3055 	.read		= generic_read_dir,
3056 	.readdir	= proc_task_readdir,
3057 };
3058