1 /* 2 * linux/fs/proc/base.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * proc base directory handling functions 7 * 8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 9 * Instead of using magical inumbers to determine the kind of object 10 * we allocate and fill in-core inodes upon lookup. They don't even 11 * go into icache. We cache the reference to task_struct upon lookup too. 12 * Eventually it should become a filesystem in its own. We don't use the 13 * rest of procfs anymore. 14 * 15 * 16 * Changelog: 17 * 17-Jan-2005 18 * Allan Bezerra 19 * Bruna Moreira <bruna.moreira@indt.org.br> 20 * Edjard Mota <edjard.mota@indt.org.br> 21 * Ilias Biris <ilias.biris@indt.org.br> 22 * Mauricio Lin <mauricio.lin@indt.org.br> 23 * 24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 25 * 26 * A new process specific entry (smaps) included in /proc. It shows the 27 * size of rss for each memory area. The maps entry lacks information 28 * about physical memory size (rss) for each mapped file, i.e., 29 * rss information for executables and library files. 30 * This additional information is useful for any tools that need to know 31 * about physical memory consumption for a process specific library. 32 * 33 * Changelog: 34 * 21-Feb-2005 35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 36 * Pud inclusion in the page table walking. 37 * 38 * ChangeLog: 39 * 10-Mar-2005 40 * 10LE Instituto Nokia de Tecnologia - INdT: 41 * A better way to walks through the page table as suggested by Hugh Dickins. 42 * 43 * Simo Piiroinen <simo.piiroinen@nokia.com>: 44 * Smaps information related to shared, private, clean and dirty pages. 45 * 46 * Paul Mundt <paul.mundt@nokia.com>: 47 * Overall revision about smaps. 48 */ 49 50 #include <asm/uaccess.h> 51 52 #include <linux/errno.h> 53 #include <linux/time.h> 54 #include <linux/proc_fs.h> 55 #include <linux/stat.h> 56 #include <linux/init.h> 57 #include <linux/capability.h> 58 #include <linux/file.h> 59 #include <linux/string.h> 60 #include <linux/seq_file.h> 61 #include <linux/namei.h> 62 #include <linux/mnt_namespace.h> 63 #include <linux/mm.h> 64 #include <linux/smp_lock.h> 65 #include <linux/rcupdate.h> 66 #include <linux/kallsyms.h> 67 #include <linux/mount.h> 68 #include <linux/security.h> 69 #include <linux/ptrace.h> 70 #include <linux/seccomp.h> 71 #include <linux/cpuset.h> 72 #include <linux/audit.h> 73 #include <linux/poll.h> 74 #include <linux/nsproxy.h> 75 #include <linux/oom.h> 76 #include "internal.h" 77 78 /* NOTE: 79 * Implementing inode permission operations in /proc is almost 80 * certainly an error. Permission checks need to happen during 81 * each system call not at open time. The reason is that most of 82 * what we wish to check for permissions in /proc varies at runtime. 83 * 84 * The classic example of a problem is opening file descriptors 85 * in /proc for a task before it execs a suid executable. 86 */ 87 88 89 /* Worst case buffer size needed for holding an integer. */ 90 #define PROC_NUMBUF 13 91 92 struct pid_entry { 93 int len; 94 char *name; 95 mode_t mode; 96 struct inode_operations *iop; 97 struct file_operations *fop; 98 union proc_op op; 99 }; 100 101 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 102 .len = sizeof(NAME) - 1, \ 103 .name = (NAME), \ 104 .mode = MODE, \ 105 .iop = IOP, \ 106 .fop = FOP, \ 107 .op = OP, \ 108 } 109 110 #define DIR(NAME, MODE, OTYPE) \ 111 NOD(NAME, (S_IFDIR|(MODE)), \ 112 &proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations, \ 113 {} ) 114 #define LNK(NAME, OTYPE) \ 115 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 116 &proc_pid_link_inode_operations, NULL, \ 117 { .proc_get_link = &proc_##OTYPE##_link } ) 118 #define REG(NAME, MODE, OTYPE) \ 119 NOD(NAME, (S_IFREG|(MODE)), NULL, \ 120 &proc_##OTYPE##_operations, {}) 121 #define INF(NAME, MODE, OTYPE) \ 122 NOD(NAME, (S_IFREG|(MODE)), \ 123 NULL, &proc_info_file_operations, \ 124 { .proc_read = &proc_##OTYPE } ) 125 126 static struct fs_struct *get_fs_struct(struct task_struct *task) 127 { 128 struct fs_struct *fs; 129 task_lock(task); 130 fs = task->fs; 131 if(fs) 132 atomic_inc(&fs->count); 133 task_unlock(task); 134 return fs; 135 } 136 137 static int get_nr_threads(struct task_struct *tsk) 138 { 139 /* Must be called with the rcu_read_lock held */ 140 unsigned long flags; 141 int count = 0; 142 143 if (lock_task_sighand(tsk, &flags)) { 144 count = atomic_read(&tsk->signal->count); 145 unlock_task_sighand(tsk, &flags); 146 } 147 return count; 148 } 149 150 static int proc_cwd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt) 151 { 152 struct task_struct *task = get_proc_task(inode); 153 struct fs_struct *fs = NULL; 154 int result = -ENOENT; 155 156 if (task) { 157 fs = get_fs_struct(task); 158 put_task_struct(task); 159 } 160 if (fs) { 161 read_lock(&fs->lock); 162 *mnt = mntget(fs->pwdmnt); 163 *dentry = dget(fs->pwd); 164 read_unlock(&fs->lock); 165 result = 0; 166 put_fs_struct(fs); 167 } 168 return result; 169 } 170 171 static int proc_root_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt) 172 { 173 struct task_struct *task = get_proc_task(inode); 174 struct fs_struct *fs = NULL; 175 int result = -ENOENT; 176 177 if (task) { 178 fs = get_fs_struct(task); 179 put_task_struct(task); 180 } 181 if (fs) { 182 read_lock(&fs->lock); 183 *mnt = mntget(fs->rootmnt); 184 *dentry = dget(fs->root); 185 read_unlock(&fs->lock); 186 result = 0; 187 put_fs_struct(fs); 188 } 189 return result; 190 } 191 192 #define MAY_PTRACE(task) \ 193 (task == current || \ 194 (task->parent == current && \ 195 (task->ptrace & PT_PTRACED) && \ 196 (task->state == TASK_STOPPED || task->state == TASK_TRACED) && \ 197 security_ptrace(current,task) == 0)) 198 199 static int proc_pid_environ(struct task_struct *task, char * buffer) 200 { 201 int res = 0; 202 struct mm_struct *mm = get_task_mm(task); 203 if (mm) { 204 unsigned int len = mm->env_end - mm->env_start; 205 if (len > PAGE_SIZE) 206 len = PAGE_SIZE; 207 res = access_process_vm(task, mm->env_start, buffer, len, 0); 208 if (!ptrace_may_attach(task)) 209 res = -ESRCH; 210 mmput(mm); 211 } 212 return res; 213 } 214 215 static int proc_pid_cmdline(struct task_struct *task, char * buffer) 216 { 217 int res = 0; 218 unsigned int len; 219 struct mm_struct *mm = get_task_mm(task); 220 if (!mm) 221 goto out; 222 if (!mm->arg_end) 223 goto out_mm; /* Shh! No looking before we're done */ 224 225 len = mm->arg_end - mm->arg_start; 226 227 if (len > PAGE_SIZE) 228 len = PAGE_SIZE; 229 230 res = access_process_vm(task, mm->arg_start, buffer, len, 0); 231 232 // If the nul at the end of args has been overwritten, then 233 // assume application is using setproctitle(3). 234 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) { 235 len = strnlen(buffer, res); 236 if (len < res) { 237 res = len; 238 } else { 239 len = mm->env_end - mm->env_start; 240 if (len > PAGE_SIZE - res) 241 len = PAGE_SIZE - res; 242 res += access_process_vm(task, mm->env_start, buffer+res, len, 0); 243 res = strnlen(buffer, res); 244 } 245 } 246 out_mm: 247 mmput(mm); 248 out: 249 return res; 250 } 251 252 static int proc_pid_auxv(struct task_struct *task, char *buffer) 253 { 254 int res = 0; 255 struct mm_struct *mm = get_task_mm(task); 256 if (mm) { 257 unsigned int nwords = 0; 258 do 259 nwords += 2; 260 while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 261 res = nwords * sizeof(mm->saved_auxv[0]); 262 if (res > PAGE_SIZE) 263 res = PAGE_SIZE; 264 memcpy(buffer, mm->saved_auxv, res); 265 mmput(mm); 266 } 267 return res; 268 } 269 270 271 #ifdef CONFIG_KALLSYMS 272 /* 273 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 274 * Returns the resolved symbol. If that fails, simply return the address. 275 */ 276 static int proc_pid_wchan(struct task_struct *task, char *buffer) 277 { 278 char *modname; 279 const char *sym_name; 280 unsigned long wchan, size, offset; 281 char namebuf[KSYM_NAME_LEN+1]; 282 283 wchan = get_wchan(task); 284 285 sym_name = kallsyms_lookup(wchan, &size, &offset, &modname, namebuf); 286 if (sym_name) 287 return sprintf(buffer, "%s", sym_name); 288 return sprintf(buffer, "%lu", wchan); 289 } 290 #endif /* CONFIG_KALLSYMS */ 291 292 #ifdef CONFIG_SCHEDSTATS 293 /* 294 * Provides /proc/PID/schedstat 295 */ 296 static int proc_pid_schedstat(struct task_struct *task, char *buffer) 297 { 298 return sprintf(buffer, "%lu %lu %lu\n", 299 task->sched_info.cpu_time, 300 task->sched_info.run_delay, 301 task->sched_info.pcnt); 302 } 303 #endif 304 305 /* The badness from the OOM killer */ 306 unsigned long badness(struct task_struct *p, unsigned long uptime); 307 static int proc_oom_score(struct task_struct *task, char *buffer) 308 { 309 unsigned long points; 310 struct timespec uptime; 311 312 do_posix_clock_monotonic_gettime(&uptime); 313 points = badness(task, uptime.tv_sec); 314 return sprintf(buffer, "%lu\n", points); 315 } 316 317 /************************************************************************/ 318 /* Here the fs part begins */ 319 /************************************************************************/ 320 321 /* permission checks */ 322 static int proc_fd_access_allowed(struct inode *inode) 323 { 324 struct task_struct *task; 325 int allowed = 0; 326 /* Allow access to a task's file descriptors if it is us or we 327 * may use ptrace attach to the process and find out that 328 * information. 329 */ 330 task = get_proc_task(inode); 331 if (task) { 332 allowed = ptrace_may_attach(task); 333 put_task_struct(task); 334 } 335 return allowed; 336 } 337 338 static int proc_setattr(struct dentry *dentry, struct iattr *attr) 339 { 340 int error; 341 struct inode *inode = dentry->d_inode; 342 343 if (attr->ia_valid & ATTR_MODE) 344 return -EPERM; 345 346 error = inode_change_ok(inode, attr); 347 if (!error) { 348 error = security_inode_setattr(dentry, attr); 349 if (!error) 350 error = inode_setattr(inode, attr); 351 } 352 return error; 353 } 354 355 static struct inode_operations proc_def_inode_operations = { 356 .setattr = proc_setattr, 357 }; 358 359 extern struct seq_operations mounts_op; 360 struct proc_mounts { 361 struct seq_file m; 362 int event; 363 }; 364 365 static int mounts_open(struct inode *inode, struct file *file) 366 { 367 struct task_struct *task = get_proc_task(inode); 368 struct mnt_namespace *ns = NULL; 369 struct proc_mounts *p; 370 int ret = -EINVAL; 371 372 if (task) { 373 task_lock(task); 374 ns = task->nsproxy->mnt_ns; 375 if (ns) 376 get_mnt_ns(ns); 377 task_unlock(task); 378 put_task_struct(task); 379 } 380 381 if (ns) { 382 ret = -ENOMEM; 383 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL); 384 if (p) { 385 file->private_data = &p->m; 386 ret = seq_open(file, &mounts_op); 387 if (!ret) { 388 p->m.private = ns; 389 p->event = ns->event; 390 return 0; 391 } 392 kfree(p); 393 } 394 put_mnt_ns(ns); 395 } 396 return ret; 397 } 398 399 static int mounts_release(struct inode *inode, struct file *file) 400 { 401 struct seq_file *m = file->private_data; 402 struct mnt_namespace *ns = m->private; 403 put_mnt_ns(ns); 404 return seq_release(inode, file); 405 } 406 407 static unsigned mounts_poll(struct file *file, poll_table *wait) 408 { 409 struct proc_mounts *p = file->private_data; 410 struct mnt_namespace *ns = p->m.private; 411 unsigned res = 0; 412 413 poll_wait(file, &ns->poll, wait); 414 415 spin_lock(&vfsmount_lock); 416 if (p->event != ns->event) { 417 p->event = ns->event; 418 res = POLLERR; 419 } 420 spin_unlock(&vfsmount_lock); 421 422 return res; 423 } 424 425 static struct file_operations proc_mounts_operations = { 426 .open = mounts_open, 427 .read = seq_read, 428 .llseek = seq_lseek, 429 .release = mounts_release, 430 .poll = mounts_poll, 431 }; 432 433 extern struct seq_operations mountstats_op; 434 static int mountstats_open(struct inode *inode, struct file *file) 435 { 436 int ret = seq_open(file, &mountstats_op); 437 438 if (!ret) { 439 struct seq_file *m = file->private_data; 440 struct mnt_namespace *mnt_ns = NULL; 441 struct task_struct *task = get_proc_task(inode); 442 443 if (task) { 444 task_lock(task); 445 if (task->nsproxy) 446 mnt_ns = task->nsproxy->mnt_ns; 447 if (mnt_ns) 448 get_mnt_ns(mnt_ns); 449 task_unlock(task); 450 put_task_struct(task); 451 } 452 453 if (mnt_ns) 454 m->private = mnt_ns; 455 else { 456 seq_release(inode, file); 457 ret = -EINVAL; 458 } 459 } 460 return ret; 461 } 462 463 static struct file_operations proc_mountstats_operations = { 464 .open = mountstats_open, 465 .read = seq_read, 466 .llseek = seq_lseek, 467 .release = mounts_release, 468 }; 469 470 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ 471 472 static ssize_t proc_info_read(struct file * file, char __user * buf, 473 size_t count, loff_t *ppos) 474 { 475 struct inode * inode = file->f_path.dentry->d_inode; 476 unsigned long page; 477 ssize_t length; 478 struct task_struct *task = get_proc_task(inode); 479 480 length = -ESRCH; 481 if (!task) 482 goto out_no_task; 483 484 if (count > PROC_BLOCK_SIZE) 485 count = PROC_BLOCK_SIZE; 486 487 length = -ENOMEM; 488 if (!(page = __get_free_page(GFP_KERNEL))) 489 goto out; 490 491 length = PROC_I(inode)->op.proc_read(task, (char*)page); 492 493 if (length >= 0) 494 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 495 free_page(page); 496 out: 497 put_task_struct(task); 498 out_no_task: 499 return length; 500 } 501 502 static struct file_operations proc_info_file_operations = { 503 .read = proc_info_read, 504 }; 505 506 static int mem_open(struct inode* inode, struct file* file) 507 { 508 file->private_data = (void*)((long)current->self_exec_id); 509 return 0; 510 } 511 512 static ssize_t mem_read(struct file * file, char __user * buf, 513 size_t count, loff_t *ppos) 514 { 515 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 516 char *page; 517 unsigned long src = *ppos; 518 int ret = -ESRCH; 519 struct mm_struct *mm; 520 521 if (!task) 522 goto out_no_task; 523 524 if (!MAY_PTRACE(task) || !ptrace_may_attach(task)) 525 goto out; 526 527 ret = -ENOMEM; 528 page = (char *)__get_free_page(GFP_USER); 529 if (!page) 530 goto out; 531 532 ret = 0; 533 534 mm = get_task_mm(task); 535 if (!mm) 536 goto out_free; 537 538 ret = -EIO; 539 540 if (file->private_data != (void*)((long)current->self_exec_id)) 541 goto out_put; 542 543 ret = 0; 544 545 while (count > 0) { 546 int this_len, retval; 547 548 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 549 retval = access_process_vm(task, src, page, this_len, 0); 550 if (!retval || !MAY_PTRACE(task) || !ptrace_may_attach(task)) { 551 if (!ret) 552 ret = -EIO; 553 break; 554 } 555 556 if (copy_to_user(buf, page, retval)) { 557 ret = -EFAULT; 558 break; 559 } 560 561 ret += retval; 562 src += retval; 563 buf += retval; 564 count -= retval; 565 } 566 *ppos = src; 567 568 out_put: 569 mmput(mm); 570 out_free: 571 free_page((unsigned long) page); 572 out: 573 put_task_struct(task); 574 out_no_task: 575 return ret; 576 } 577 578 #define mem_write NULL 579 580 #ifndef mem_write 581 /* This is a security hazard */ 582 static ssize_t mem_write(struct file * file, const char * buf, 583 size_t count, loff_t *ppos) 584 { 585 int copied; 586 char *page; 587 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 588 unsigned long dst = *ppos; 589 590 copied = -ESRCH; 591 if (!task) 592 goto out_no_task; 593 594 if (!MAY_PTRACE(task) || !ptrace_may_attach(task)) 595 goto out; 596 597 copied = -ENOMEM; 598 page = (char *)__get_free_page(GFP_USER); 599 if (!page) 600 goto out; 601 602 copied = 0; 603 while (count > 0) { 604 int this_len, retval; 605 606 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 607 if (copy_from_user(page, buf, this_len)) { 608 copied = -EFAULT; 609 break; 610 } 611 retval = access_process_vm(task, dst, page, this_len, 1); 612 if (!retval) { 613 if (!copied) 614 copied = -EIO; 615 break; 616 } 617 copied += retval; 618 buf += retval; 619 dst += retval; 620 count -= retval; 621 } 622 *ppos = dst; 623 free_page((unsigned long) page); 624 out: 625 put_task_struct(task); 626 out_no_task: 627 return copied; 628 } 629 #endif 630 631 static loff_t mem_lseek(struct file * file, loff_t offset, int orig) 632 { 633 switch (orig) { 634 case 0: 635 file->f_pos = offset; 636 break; 637 case 1: 638 file->f_pos += offset; 639 break; 640 default: 641 return -EINVAL; 642 } 643 force_successful_syscall_return(); 644 return file->f_pos; 645 } 646 647 static struct file_operations proc_mem_operations = { 648 .llseek = mem_lseek, 649 .read = mem_read, 650 .write = mem_write, 651 .open = mem_open, 652 }; 653 654 static ssize_t oom_adjust_read(struct file *file, char __user *buf, 655 size_t count, loff_t *ppos) 656 { 657 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 658 char buffer[PROC_NUMBUF]; 659 size_t len; 660 int oom_adjust; 661 loff_t __ppos = *ppos; 662 663 if (!task) 664 return -ESRCH; 665 oom_adjust = task->oomkilladj; 666 put_task_struct(task); 667 668 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust); 669 if (__ppos >= len) 670 return 0; 671 if (count > len-__ppos) 672 count = len-__ppos; 673 if (copy_to_user(buf, buffer + __ppos, count)) 674 return -EFAULT; 675 *ppos = __ppos + count; 676 return count; 677 } 678 679 static ssize_t oom_adjust_write(struct file *file, const char __user *buf, 680 size_t count, loff_t *ppos) 681 { 682 struct task_struct *task; 683 char buffer[PROC_NUMBUF], *end; 684 int oom_adjust; 685 686 memset(buffer, 0, sizeof(buffer)); 687 if (count > sizeof(buffer) - 1) 688 count = sizeof(buffer) - 1; 689 if (copy_from_user(buffer, buf, count)) 690 return -EFAULT; 691 oom_adjust = simple_strtol(buffer, &end, 0); 692 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) && 693 oom_adjust != OOM_DISABLE) 694 return -EINVAL; 695 if (*end == '\n') 696 end++; 697 task = get_proc_task(file->f_path.dentry->d_inode); 698 if (!task) 699 return -ESRCH; 700 if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) { 701 put_task_struct(task); 702 return -EACCES; 703 } 704 task->oomkilladj = oom_adjust; 705 put_task_struct(task); 706 if (end - buffer == 0) 707 return -EIO; 708 return end - buffer; 709 } 710 711 static struct file_operations proc_oom_adjust_operations = { 712 .read = oom_adjust_read, 713 .write = oom_adjust_write, 714 }; 715 716 #ifdef CONFIG_AUDITSYSCALL 717 #define TMPBUFLEN 21 718 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 719 size_t count, loff_t *ppos) 720 { 721 struct inode * inode = file->f_path.dentry->d_inode; 722 struct task_struct *task = get_proc_task(inode); 723 ssize_t length; 724 char tmpbuf[TMPBUFLEN]; 725 726 if (!task) 727 return -ESRCH; 728 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 729 audit_get_loginuid(task->audit_context)); 730 put_task_struct(task); 731 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 732 } 733 734 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 735 size_t count, loff_t *ppos) 736 { 737 struct inode * inode = file->f_path.dentry->d_inode; 738 char *page, *tmp; 739 ssize_t length; 740 uid_t loginuid; 741 742 if (!capable(CAP_AUDIT_CONTROL)) 743 return -EPERM; 744 745 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) 746 return -EPERM; 747 748 if (count >= PAGE_SIZE) 749 count = PAGE_SIZE - 1; 750 751 if (*ppos != 0) { 752 /* No partial writes. */ 753 return -EINVAL; 754 } 755 page = (char*)__get_free_page(GFP_USER); 756 if (!page) 757 return -ENOMEM; 758 length = -EFAULT; 759 if (copy_from_user(page, buf, count)) 760 goto out_free_page; 761 762 page[count] = '\0'; 763 loginuid = simple_strtoul(page, &tmp, 10); 764 if (tmp == page) { 765 length = -EINVAL; 766 goto out_free_page; 767 768 } 769 length = audit_set_loginuid(current, loginuid); 770 if (likely(length == 0)) 771 length = count; 772 773 out_free_page: 774 free_page((unsigned long) page); 775 return length; 776 } 777 778 static struct file_operations proc_loginuid_operations = { 779 .read = proc_loginuid_read, 780 .write = proc_loginuid_write, 781 }; 782 #endif 783 784 #ifdef CONFIG_SECCOMP 785 static ssize_t seccomp_read(struct file *file, char __user *buf, 786 size_t count, loff_t *ppos) 787 { 788 struct task_struct *tsk = get_proc_task(file->f_dentry->d_inode); 789 char __buf[20]; 790 loff_t __ppos = *ppos; 791 size_t len; 792 793 if (!tsk) 794 return -ESRCH; 795 /* no need to print the trailing zero, so use only len */ 796 len = sprintf(__buf, "%u\n", tsk->seccomp.mode); 797 put_task_struct(tsk); 798 if (__ppos >= len) 799 return 0; 800 if (count > len - __ppos) 801 count = len - __ppos; 802 if (copy_to_user(buf, __buf + __ppos, count)) 803 return -EFAULT; 804 *ppos = __ppos + count; 805 return count; 806 } 807 808 static ssize_t seccomp_write(struct file *file, const char __user *buf, 809 size_t count, loff_t *ppos) 810 { 811 struct task_struct *tsk = get_proc_task(file->f_dentry->d_inode); 812 char __buf[20], *end; 813 unsigned int seccomp_mode; 814 ssize_t result; 815 816 result = -ESRCH; 817 if (!tsk) 818 goto out_no_task; 819 820 /* can set it only once to be even more secure */ 821 result = -EPERM; 822 if (unlikely(tsk->seccomp.mode)) 823 goto out; 824 825 result = -EFAULT; 826 memset(__buf, 0, sizeof(__buf)); 827 count = min(count, sizeof(__buf) - 1); 828 if (copy_from_user(__buf, buf, count)) 829 goto out; 830 831 seccomp_mode = simple_strtoul(__buf, &end, 0); 832 if (*end == '\n') 833 end++; 834 result = -EINVAL; 835 if (seccomp_mode && seccomp_mode <= NR_SECCOMP_MODES) { 836 tsk->seccomp.mode = seccomp_mode; 837 set_tsk_thread_flag(tsk, TIF_SECCOMP); 838 } else 839 goto out; 840 result = -EIO; 841 if (unlikely(!(end - __buf))) 842 goto out; 843 result = end - __buf; 844 out: 845 put_task_struct(tsk); 846 out_no_task: 847 return result; 848 } 849 850 static struct file_operations proc_seccomp_operations = { 851 .read = seccomp_read, 852 .write = seccomp_write, 853 }; 854 #endif /* CONFIG_SECCOMP */ 855 856 #ifdef CONFIG_FAULT_INJECTION 857 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 858 size_t count, loff_t *ppos) 859 { 860 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 861 char buffer[PROC_NUMBUF]; 862 size_t len; 863 int make_it_fail; 864 loff_t __ppos = *ppos; 865 866 if (!task) 867 return -ESRCH; 868 make_it_fail = task->make_it_fail; 869 put_task_struct(task); 870 871 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 872 if (__ppos >= len) 873 return 0; 874 if (count > len-__ppos) 875 count = len-__ppos; 876 if (copy_to_user(buf, buffer + __ppos, count)) 877 return -EFAULT; 878 *ppos = __ppos + count; 879 return count; 880 } 881 882 static ssize_t proc_fault_inject_write(struct file * file, 883 const char __user * buf, size_t count, loff_t *ppos) 884 { 885 struct task_struct *task; 886 char buffer[PROC_NUMBUF], *end; 887 int make_it_fail; 888 889 if (!capable(CAP_SYS_RESOURCE)) 890 return -EPERM; 891 memset(buffer, 0, sizeof(buffer)); 892 if (count > sizeof(buffer) - 1) 893 count = sizeof(buffer) - 1; 894 if (copy_from_user(buffer, buf, count)) 895 return -EFAULT; 896 make_it_fail = simple_strtol(buffer, &end, 0); 897 if (*end == '\n') 898 end++; 899 task = get_proc_task(file->f_dentry->d_inode); 900 if (!task) 901 return -ESRCH; 902 task->make_it_fail = make_it_fail; 903 put_task_struct(task); 904 if (end - buffer == 0) 905 return -EIO; 906 return end - buffer; 907 } 908 909 static struct file_operations proc_fault_inject_operations = { 910 .read = proc_fault_inject_read, 911 .write = proc_fault_inject_write, 912 }; 913 #endif 914 915 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) 916 { 917 struct inode *inode = dentry->d_inode; 918 int error = -EACCES; 919 920 /* We don't need a base pointer in the /proc filesystem */ 921 path_release(nd); 922 923 /* Are we allowed to snoop on the tasks file descriptors? */ 924 if (!proc_fd_access_allowed(inode)) 925 goto out; 926 927 error = PROC_I(inode)->op.proc_get_link(inode, &nd->dentry, &nd->mnt); 928 nd->last_type = LAST_BIND; 929 out: 930 return ERR_PTR(error); 931 } 932 933 static int do_proc_readlink(struct dentry *dentry, struct vfsmount *mnt, 934 char __user *buffer, int buflen) 935 { 936 struct inode * inode; 937 char *tmp = (char*)__get_free_page(GFP_KERNEL), *path; 938 int len; 939 940 if (!tmp) 941 return -ENOMEM; 942 943 inode = dentry->d_inode; 944 path = d_path(dentry, mnt, tmp, PAGE_SIZE); 945 len = PTR_ERR(path); 946 if (IS_ERR(path)) 947 goto out; 948 len = tmp + PAGE_SIZE - 1 - path; 949 950 if (len > buflen) 951 len = buflen; 952 if (copy_to_user(buffer, path, len)) 953 len = -EFAULT; 954 out: 955 free_page((unsigned long)tmp); 956 return len; 957 } 958 959 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 960 { 961 int error = -EACCES; 962 struct inode *inode = dentry->d_inode; 963 struct dentry *de; 964 struct vfsmount *mnt = NULL; 965 966 /* Are we allowed to snoop on the tasks file descriptors? */ 967 if (!proc_fd_access_allowed(inode)) 968 goto out; 969 970 error = PROC_I(inode)->op.proc_get_link(inode, &de, &mnt); 971 if (error) 972 goto out; 973 974 error = do_proc_readlink(de, mnt, buffer, buflen); 975 dput(de); 976 mntput(mnt); 977 out: 978 return error; 979 } 980 981 static struct inode_operations proc_pid_link_inode_operations = { 982 .readlink = proc_pid_readlink, 983 .follow_link = proc_pid_follow_link, 984 .setattr = proc_setattr, 985 }; 986 987 988 /* building an inode */ 989 990 static int task_dumpable(struct task_struct *task) 991 { 992 int dumpable = 0; 993 struct mm_struct *mm; 994 995 task_lock(task); 996 mm = task->mm; 997 if (mm) 998 dumpable = mm->dumpable; 999 task_unlock(task); 1000 if(dumpable == 1) 1001 return 1; 1002 return 0; 1003 } 1004 1005 1006 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) 1007 { 1008 struct inode * inode; 1009 struct proc_inode *ei; 1010 1011 /* We need a new inode */ 1012 1013 inode = new_inode(sb); 1014 if (!inode) 1015 goto out; 1016 1017 /* Common stuff */ 1018 ei = PROC_I(inode); 1019 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1020 inode->i_op = &proc_def_inode_operations; 1021 1022 /* 1023 * grab the reference to task. 1024 */ 1025 ei->pid = get_task_pid(task, PIDTYPE_PID); 1026 if (!ei->pid) 1027 goto out_unlock; 1028 1029 inode->i_uid = 0; 1030 inode->i_gid = 0; 1031 if (task_dumpable(task)) { 1032 inode->i_uid = task->euid; 1033 inode->i_gid = task->egid; 1034 } 1035 security_task_to_inode(task, inode); 1036 1037 out: 1038 return inode; 1039 1040 out_unlock: 1041 iput(inode); 1042 return NULL; 1043 } 1044 1045 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 1046 { 1047 struct inode *inode = dentry->d_inode; 1048 struct task_struct *task; 1049 generic_fillattr(inode, stat); 1050 1051 rcu_read_lock(); 1052 stat->uid = 0; 1053 stat->gid = 0; 1054 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1055 if (task) { 1056 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1057 task_dumpable(task)) { 1058 stat->uid = task->euid; 1059 stat->gid = task->egid; 1060 } 1061 } 1062 rcu_read_unlock(); 1063 return 0; 1064 } 1065 1066 /* dentry stuff */ 1067 1068 /* 1069 * Exceptional case: normally we are not allowed to unhash a busy 1070 * directory. In this case, however, we can do it - no aliasing problems 1071 * due to the way we treat inodes. 1072 * 1073 * Rewrite the inode's ownerships here because the owning task may have 1074 * performed a setuid(), etc. 1075 * 1076 * Before the /proc/pid/status file was created the only way to read 1077 * the effective uid of a /process was to stat /proc/pid. Reading 1078 * /proc/pid/status is slow enough that procps and other packages 1079 * kept stating /proc/pid. To keep the rules in /proc simple I have 1080 * made this apply to all per process world readable and executable 1081 * directories. 1082 */ 1083 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd) 1084 { 1085 struct inode *inode = dentry->d_inode; 1086 struct task_struct *task = get_proc_task(inode); 1087 if (task) { 1088 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1089 task_dumpable(task)) { 1090 inode->i_uid = task->euid; 1091 inode->i_gid = task->egid; 1092 } else { 1093 inode->i_uid = 0; 1094 inode->i_gid = 0; 1095 } 1096 inode->i_mode &= ~(S_ISUID | S_ISGID); 1097 security_task_to_inode(task, inode); 1098 put_task_struct(task); 1099 return 1; 1100 } 1101 d_drop(dentry); 1102 return 0; 1103 } 1104 1105 static int pid_delete_dentry(struct dentry * dentry) 1106 { 1107 /* Is the task we represent dead? 1108 * If so, then don't put the dentry on the lru list, 1109 * kill it immediately. 1110 */ 1111 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first; 1112 } 1113 1114 static struct dentry_operations pid_dentry_operations = 1115 { 1116 .d_revalidate = pid_revalidate, 1117 .d_delete = pid_delete_dentry, 1118 }; 1119 1120 /* Lookups */ 1121 1122 typedef struct dentry *instantiate_t(struct inode *, struct dentry *, struct task_struct *, void *); 1123 1124 /* 1125 * Fill a directory entry. 1126 * 1127 * If possible create the dcache entry and derive our inode number and 1128 * file type from dcache entry. 1129 * 1130 * Since all of the proc inode numbers are dynamically generated, the inode 1131 * numbers do not exist until the inode is cache. This means creating the 1132 * the dcache entry in readdir is necessary to keep the inode numbers 1133 * reported by readdir in sync with the inode numbers reported 1134 * by stat. 1135 */ 1136 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1137 char *name, int len, 1138 instantiate_t instantiate, struct task_struct *task, void *ptr) 1139 { 1140 struct dentry *child, *dir = filp->f_path.dentry; 1141 struct inode *inode; 1142 struct qstr qname; 1143 ino_t ino = 0; 1144 unsigned type = DT_UNKNOWN; 1145 1146 qname.name = name; 1147 qname.len = len; 1148 qname.hash = full_name_hash(name, len); 1149 1150 child = d_lookup(dir, &qname); 1151 if (!child) { 1152 struct dentry *new; 1153 new = d_alloc(dir, &qname); 1154 if (new) { 1155 child = instantiate(dir->d_inode, new, task, ptr); 1156 if (child) 1157 dput(new); 1158 else 1159 child = new; 1160 } 1161 } 1162 if (!child || IS_ERR(child) || !child->d_inode) 1163 goto end_instantiate; 1164 inode = child->d_inode; 1165 if (inode) { 1166 ino = inode->i_ino; 1167 type = inode->i_mode >> 12; 1168 } 1169 dput(child); 1170 end_instantiate: 1171 if (!ino) 1172 ino = find_inode_number(dir, &qname); 1173 if (!ino) 1174 ino = 1; 1175 return filldir(dirent, name, len, filp->f_pos, ino, type); 1176 } 1177 1178 static unsigned name_to_int(struct dentry *dentry) 1179 { 1180 const char *name = dentry->d_name.name; 1181 int len = dentry->d_name.len; 1182 unsigned n = 0; 1183 1184 if (len > 1 && *name == '0') 1185 goto out; 1186 while (len-- > 0) { 1187 unsigned c = *name++ - '0'; 1188 if (c > 9) 1189 goto out; 1190 if (n >= (~0U-9)/10) 1191 goto out; 1192 n *= 10; 1193 n += c; 1194 } 1195 return n; 1196 out: 1197 return ~0U; 1198 } 1199 1200 static int proc_fd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt) 1201 { 1202 struct task_struct *task = get_proc_task(inode); 1203 struct files_struct *files = NULL; 1204 struct file *file; 1205 int fd = proc_fd(inode); 1206 1207 if (task) { 1208 files = get_files_struct(task); 1209 put_task_struct(task); 1210 } 1211 if (files) { 1212 /* 1213 * We are not taking a ref to the file structure, so we must 1214 * hold ->file_lock. 1215 */ 1216 spin_lock(&files->file_lock); 1217 file = fcheck_files(files, fd); 1218 if (file) { 1219 *mnt = mntget(file->f_path.mnt); 1220 *dentry = dget(file->f_path.dentry); 1221 spin_unlock(&files->file_lock); 1222 put_files_struct(files); 1223 return 0; 1224 } 1225 spin_unlock(&files->file_lock); 1226 put_files_struct(files); 1227 } 1228 return -ENOENT; 1229 } 1230 1231 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd) 1232 { 1233 struct inode *inode = dentry->d_inode; 1234 struct task_struct *task = get_proc_task(inode); 1235 int fd = proc_fd(inode); 1236 struct files_struct *files; 1237 1238 if (task) { 1239 files = get_files_struct(task); 1240 if (files) { 1241 rcu_read_lock(); 1242 if (fcheck_files(files, fd)) { 1243 rcu_read_unlock(); 1244 put_files_struct(files); 1245 if (task_dumpable(task)) { 1246 inode->i_uid = task->euid; 1247 inode->i_gid = task->egid; 1248 } else { 1249 inode->i_uid = 0; 1250 inode->i_gid = 0; 1251 } 1252 inode->i_mode &= ~(S_ISUID | S_ISGID); 1253 security_task_to_inode(task, inode); 1254 put_task_struct(task); 1255 return 1; 1256 } 1257 rcu_read_unlock(); 1258 put_files_struct(files); 1259 } 1260 put_task_struct(task); 1261 } 1262 d_drop(dentry); 1263 return 0; 1264 } 1265 1266 static struct dentry_operations tid_fd_dentry_operations = 1267 { 1268 .d_revalidate = tid_fd_revalidate, 1269 .d_delete = pid_delete_dentry, 1270 }; 1271 1272 static struct dentry *proc_fd_instantiate(struct inode *dir, 1273 struct dentry *dentry, struct task_struct *task, void *ptr) 1274 { 1275 unsigned fd = *(unsigned *)ptr; 1276 struct file *file; 1277 struct files_struct *files; 1278 struct inode *inode; 1279 struct proc_inode *ei; 1280 struct dentry *error = ERR_PTR(-ENOENT); 1281 1282 inode = proc_pid_make_inode(dir->i_sb, task); 1283 if (!inode) 1284 goto out; 1285 ei = PROC_I(inode); 1286 ei->fd = fd; 1287 files = get_files_struct(task); 1288 if (!files) 1289 goto out_iput; 1290 inode->i_mode = S_IFLNK; 1291 1292 /* 1293 * We are not taking a ref to the file structure, so we must 1294 * hold ->file_lock. 1295 */ 1296 spin_lock(&files->file_lock); 1297 file = fcheck_files(files, fd); 1298 if (!file) 1299 goto out_unlock; 1300 if (file->f_mode & 1) 1301 inode->i_mode |= S_IRUSR | S_IXUSR; 1302 if (file->f_mode & 2) 1303 inode->i_mode |= S_IWUSR | S_IXUSR; 1304 spin_unlock(&files->file_lock); 1305 put_files_struct(files); 1306 1307 inode->i_op = &proc_pid_link_inode_operations; 1308 inode->i_size = 64; 1309 ei->op.proc_get_link = proc_fd_link; 1310 dentry->d_op = &tid_fd_dentry_operations; 1311 d_add(dentry, inode); 1312 /* Close the race of the process dying before we return the dentry */ 1313 if (tid_fd_revalidate(dentry, NULL)) 1314 error = NULL; 1315 1316 out: 1317 return error; 1318 out_unlock: 1319 spin_unlock(&files->file_lock); 1320 put_files_struct(files); 1321 out_iput: 1322 iput(inode); 1323 goto out; 1324 } 1325 1326 static struct dentry *proc_lookupfd(struct inode * dir, struct dentry * dentry, struct nameidata *nd) 1327 { 1328 struct task_struct *task = get_proc_task(dir); 1329 unsigned fd = name_to_int(dentry); 1330 struct dentry *result = ERR_PTR(-ENOENT); 1331 1332 if (!task) 1333 goto out_no_task; 1334 if (fd == ~0U) 1335 goto out; 1336 1337 result = proc_fd_instantiate(dir, dentry, task, &fd); 1338 out: 1339 put_task_struct(task); 1340 out_no_task: 1341 return result; 1342 } 1343 1344 static int proc_fd_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1345 struct task_struct *task, int fd) 1346 { 1347 char name[PROC_NUMBUF]; 1348 int len = snprintf(name, sizeof(name), "%d", fd); 1349 return proc_fill_cache(filp, dirent, filldir, name, len, 1350 proc_fd_instantiate, task, &fd); 1351 } 1352 1353 static int proc_readfd(struct file * filp, void * dirent, filldir_t filldir) 1354 { 1355 struct dentry *dentry = filp->f_path.dentry; 1356 struct inode *inode = dentry->d_inode; 1357 struct task_struct *p = get_proc_task(inode); 1358 unsigned int fd, tid, ino; 1359 int retval; 1360 struct files_struct * files; 1361 struct fdtable *fdt; 1362 1363 retval = -ENOENT; 1364 if (!p) 1365 goto out_no_task; 1366 retval = 0; 1367 tid = p->pid; 1368 1369 fd = filp->f_pos; 1370 switch (fd) { 1371 case 0: 1372 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0) 1373 goto out; 1374 filp->f_pos++; 1375 case 1: 1376 ino = parent_ino(dentry); 1377 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 1378 goto out; 1379 filp->f_pos++; 1380 default: 1381 files = get_files_struct(p); 1382 if (!files) 1383 goto out; 1384 rcu_read_lock(); 1385 fdt = files_fdtable(files); 1386 for (fd = filp->f_pos-2; 1387 fd < fdt->max_fds; 1388 fd++, filp->f_pos++) { 1389 1390 if (!fcheck_files(files, fd)) 1391 continue; 1392 rcu_read_unlock(); 1393 1394 if (proc_fd_fill_cache(filp, dirent, filldir, p, fd) < 0) { 1395 rcu_read_lock(); 1396 break; 1397 } 1398 rcu_read_lock(); 1399 } 1400 rcu_read_unlock(); 1401 put_files_struct(files); 1402 } 1403 out: 1404 put_task_struct(p); 1405 out_no_task: 1406 return retval; 1407 } 1408 1409 static struct file_operations proc_fd_operations = { 1410 .read = generic_read_dir, 1411 .readdir = proc_readfd, 1412 }; 1413 1414 /* 1415 * proc directories can do almost nothing.. 1416 */ 1417 static struct inode_operations proc_fd_inode_operations = { 1418 .lookup = proc_lookupfd, 1419 .setattr = proc_setattr, 1420 }; 1421 1422 static struct dentry *proc_pident_instantiate(struct inode *dir, 1423 struct dentry *dentry, struct task_struct *task, void *ptr) 1424 { 1425 struct pid_entry *p = ptr; 1426 struct inode *inode; 1427 struct proc_inode *ei; 1428 struct dentry *error = ERR_PTR(-EINVAL); 1429 1430 inode = proc_pid_make_inode(dir->i_sb, task); 1431 if (!inode) 1432 goto out; 1433 1434 ei = PROC_I(inode); 1435 inode->i_mode = p->mode; 1436 if (S_ISDIR(inode->i_mode)) 1437 inode->i_nlink = 2; /* Use getattr to fix if necessary */ 1438 if (p->iop) 1439 inode->i_op = p->iop; 1440 if (p->fop) 1441 inode->i_fop = p->fop; 1442 ei->op = p->op; 1443 dentry->d_op = &pid_dentry_operations; 1444 d_add(dentry, inode); 1445 /* Close the race of the process dying before we return the dentry */ 1446 if (pid_revalidate(dentry, NULL)) 1447 error = NULL; 1448 out: 1449 return error; 1450 } 1451 1452 static struct dentry *proc_pident_lookup(struct inode *dir, 1453 struct dentry *dentry, 1454 struct pid_entry *ents, 1455 unsigned int nents) 1456 { 1457 struct inode *inode; 1458 struct dentry *error; 1459 struct task_struct *task = get_proc_task(dir); 1460 struct pid_entry *p, *last; 1461 1462 error = ERR_PTR(-ENOENT); 1463 inode = NULL; 1464 1465 if (!task) 1466 goto out_no_task; 1467 1468 /* 1469 * Yes, it does not scale. And it should not. Don't add 1470 * new entries into /proc/<tgid>/ without very good reasons. 1471 */ 1472 last = &ents[nents - 1]; 1473 for (p = ents; p <= last; p++) { 1474 if (p->len != dentry->d_name.len) 1475 continue; 1476 if (!memcmp(dentry->d_name.name, p->name, p->len)) 1477 break; 1478 } 1479 if (p > last) 1480 goto out; 1481 1482 error = proc_pident_instantiate(dir, dentry, task, p); 1483 out: 1484 put_task_struct(task); 1485 out_no_task: 1486 return error; 1487 } 1488 1489 static int proc_pident_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1490 struct task_struct *task, struct pid_entry *p) 1491 { 1492 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 1493 proc_pident_instantiate, task, p); 1494 } 1495 1496 static int proc_pident_readdir(struct file *filp, 1497 void *dirent, filldir_t filldir, 1498 struct pid_entry *ents, unsigned int nents) 1499 { 1500 int i; 1501 int pid; 1502 struct dentry *dentry = filp->f_path.dentry; 1503 struct inode *inode = dentry->d_inode; 1504 struct task_struct *task = get_proc_task(inode); 1505 struct pid_entry *p, *last; 1506 ino_t ino; 1507 int ret; 1508 1509 ret = -ENOENT; 1510 if (!task) 1511 goto out_no_task; 1512 1513 ret = 0; 1514 pid = task->pid; 1515 i = filp->f_pos; 1516 switch (i) { 1517 case 0: 1518 ino = inode->i_ino; 1519 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 1520 goto out; 1521 i++; 1522 filp->f_pos++; 1523 /* fall through */ 1524 case 1: 1525 ino = parent_ino(dentry); 1526 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 1527 goto out; 1528 i++; 1529 filp->f_pos++; 1530 /* fall through */ 1531 default: 1532 i -= 2; 1533 if (i >= nents) { 1534 ret = 1; 1535 goto out; 1536 } 1537 p = ents + i; 1538 last = &ents[nents - 1]; 1539 while (p <= last) { 1540 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0) 1541 goto out; 1542 filp->f_pos++; 1543 p++; 1544 } 1545 } 1546 1547 ret = 1; 1548 out: 1549 put_task_struct(task); 1550 out_no_task: 1551 return ret; 1552 } 1553 1554 #ifdef CONFIG_SECURITY 1555 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 1556 size_t count, loff_t *ppos) 1557 { 1558 struct inode * inode = file->f_path.dentry->d_inode; 1559 unsigned long page; 1560 ssize_t length; 1561 struct task_struct *task = get_proc_task(inode); 1562 1563 length = -ESRCH; 1564 if (!task) 1565 goto out_no_task; 1566 1567 if (count > PAGE_SIZE) 1568 count = PAGE_SIZE; 1569 length = -ENOMEM; 1570 if (!(page = __get_free_page(GFP_KERNEL))) 1571 goto out; 1572 1573 length = security_getprocattr(task, 1574 (char*)file->f_path.dentry->d_name.name, 1575 (void*)page, count); 1576 if (length >= 0) 1577 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 1578 free_page(page); 1579 out: 1580 put_task_struct(task); 1581 out_no_task: 1582 return length; 1583 } 1584 1585 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 1586 size_t count, loff_t *ppos) 1587 { 1588 struct inode * inode = file->f_path.dentry->d_inode; 1589 char *page; 1590 ssize_t length; 1591 struct task_struct *task = get_proc_task(inode); 1592 1593 length = -ESRCH; 1594 if (!task) 1595 goto out_no_task; 1596 if (count > PAGE_SIZE) 1597 count = PAGE_SIZE; 1598 1599 /* No partial writes. */ 1600 length = -EINVAL; 1601 if (*ppos != 0) 1602 goto out; 1603 1604 length = -ENOMEM; 1605 page = (char*)__get_free_page(GFP_USER); 1606 if (!page) 1607 goto out; 1608 1609 length = -EFAULT; 1610 if (copy_from_user(page, buf, count)) 1611 goto out_free; 1612 1613 length = security_setprocattr(task, 1614 (char*)file->f_path.dentry->d_name.name, 1615 (void*)page, count); 1616 out_free: 1617 free_page((unsigned long) page); 1618 out: 1619 put_task_struct(task); 1620 out_no_task: 1621 return length; 1622 } 1623 1624 static struct file_operations proc_pid_attr_operations = { 1625 .read = proc_pid_attr_read, 1626 .write = proc_pid_attr_write, 1627 }; 1628 1629 static struct pid_entry attr_dir_stuff[] = { 1630 REG("current", S_IRUGO|S_IWUGO, pid_attr), 1631 REG("prev", S_IRUGO, pid_attr), 1632 REG("exec", S_IRUGO|S_IWUGO, pid_attr), 1633 REG("fscreate", S_IRUGO|S_IWUGO, pid_attr), 1634 REG("keycreate", S_IRUGO|S_IWUGO, pid_attr), 1635 REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr), 1636 }; 1637 1638 static int proc_attr_dir_readdir(struct file * filp, 1639 void * dirent, filldir_t filldir) 1640 { 1641 return proc_pident_readdir(filp,dirent,filldir, 1642 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff)); 1643 } 1644 1645 static struct file_operations proc_attr_dir_operations = { 1646 .read = generic_read_dir, 1647 .readdir = proc_attr_dir_readdir, 1648 }; 1649 1650 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 1651 struct dentry *dentry, struct nameidata *nd) 1652 { 1653 return proc_pident_lookup(dir, dentry, 1654 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 1655 } 1656 1657 static struct inode_operations proc_attr_dir_inode_operations = { 1658 .lookup = proc_attr_dir_lookup, 1659 .getattr = pid_getattr, 1660 .setattr = proc_setattr, 1661 }; 1662 1663 #endif 1664 1665 /* 1666 * /proc/self: 1667 */ 1668 static int proc_self_readlink(struct dentry *dentry, char __user *buffer, 1669 int buflen) 1670 { 1671 char tmp[PROC_NUMBUF]; 1672 sprintf(tmp, "%d", current->tgid); 1673 return vfs_readlink(dentry,buffer,buflen,tmp); 1674 } 1675 1676 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd) 1677 { 1678 char tmp[PROC_NUMBUF]; 1679 sprintf(tmp, "%d", current->tgid); 1680 return ERR_PTR(vfs_follow_link(nd,tmp)); 1681 } 1682 1683 static struct inode_operations proc_self_inode_operations = { 1684 .readlink = proc_self_readlink, 1685 .follow_link = proc_self_follow_link, 1686 }; 1687 1688 /* 1689 * proc base 1690 * 1691 * These are the directory entries in the root directory of /proc 1692 * that properly belong to the /proc filesystem, as they describe 1693 * describe something that is process related. 1694 */ 1695 static struct pid_entry proc_base_stuff[] = { 1696 NOD("self", S_IFLNK|S_IRWXUGO, 1697 &proc_self_inode_operations, NULL, {}), 1698 }; 1699 1700 /* 1701 * Exceptional case: normally we are not allowed to unhash a busy 1702 * directory. In this case, however, we can do it - no aliasing problems 1703 * due to the way we treat inodes. 1704 */ 1705 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd) 1706 { 1707 struct inode *inode = dentry->d_inode; 1708 struct task_struct *task = get_proc_task(inode); 1709 if (task) { 1710 put_task_struct(task); 1711 return 1; 1712 } 1713 d_drop(dentry); 1714 return 0; 1715 } 1716 1717 static struct dentry_operations proc_base_dentry_operations = 1718 { 1719 .d_revalidate = proc_base_revalidate, 1720 .d_delete = pid_delete_dentry, 1721 }; 1722 1723 static struct dentry *proc_base_instantiate(struct inode *dir, 1724 struct dentry *dentry, struct task_struct *task, void *ptr) 1725 { 1726 struct pid_entry *p = ptr; 1727 struct inode *inode; 1728 struct proc_inode *ei; 1729 struct dentry *error = ERR_PTR(-EINVAL); 1730 1731 /* Allocate the inode */ 1732 error = ERR_PTR(-ENOMEM); 1733 inode = new_inode(dir->i_sb); 1734 if (!inode) 1735 goto out; 1736 1737 /* Initialize the inode */ 1738 ei = PROC_I(inode); 1739 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1740 1741 /* 1742 * grab the reference to the task. 1743 */ 1744 ei->pid = get_task_pid(task, PIDTYPE_PID); 1745 if (!ei->pid) 1746 goto out_iput; 1747 1748 inode->i_uid = 0; 1749 inode->i_gid = 0; 1750 inode->i_mode = p->mode; 1751 if (S_ISDIR(inode->i_mode)) 1752 inode->i_nlink = 2; 1753 if (S_ISLNK(inode->i_mode)) 1754 inode->i_size = 64; 1755 if (p->iop) 1756 inode->i_op = p->iop; 1757 if (p->fop) 1758 inode->i_fop = p->fop; 1759 ei->op = p->op; 1760 dentry->d_op = &proc_base_dentry_operations; 1761 d_add(dentry, inode); 1762 error = NULL; 1763 out: 1764 return error; 1765 out_iput: 1766 iput(inode); 1767 goto out; 1768 } 1769 1770 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry) 1771 { 1772 struct dentry *error; 1773 struct task_struct *task = get_proc_task(dir); 1774 struct pid_entry *p, *last; 1775 1776 error = ERR_PTR(-ENOENT); 1777 1778 if (!task) 1779 goto out_no_task; 1780 1781 /* Lookup the directory entry */ 1782 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1]; 1783 for (p = proc_base_stuff; p <= last; p++) { 1784 if (p->len != dentry->d_name.len) 1785 continue; 1786 if (!memcmp(dentry->d_name.name, p->name, p->len)) 1787 break; 1788 } 1789 if (p > last) 1790 goto out; 1791 1792 error = proc_base_instantiate(dir, dentry, task, p); 1793 1794 out: 1795 put_task_struct(task); 1796 out_no_task: 1797 return error; 1798 } 1799 1800 static int proc_base_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1801 struct task_struct *task, struct pid_entry *p) 1802 { 1803 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 1804 proc_base_instantiate, task, p); 1805 } 1806 1807 /* 1808 * Thread groups 1809 */ 1810 static struct file_operations proc_task_operations; 1811 static struct inode_operations proc_task_inode_operations; 1812 1813 static struct pid_entry tgid_base_stuff[] = { 1814 DIR("task", S_IRUGO|S_IXUGO, task), 1815 DIR("fd", S_IRUSR|S_IXUSR, fd), 1816 INF("environ", S_IRUSR, pid_environ), 1817 INF("auxv", S_IRUSR, pid_auxv), 1818 INF("status", S_IRUGO, pid_status), 1819 INF("cmdline", S_IRUGO, pid_cmdline), 1820 INF("stat", S_IRUGO, tgid_stat), 1821 INF("statm", S_IRUGO, pid_statm), 1822 REG("maps", S_IRUGO, maps), 1823 #ifdef CONFIG_NUMA 1824 REG("numa_maps", S_IRUGO, numa_maps), 1825 #endif 1826 REG("mem", S_IRUSR|S_IWUSR, mem), 1827 #ifdef CONFIG_SECCOMP 1828 REG("seccomp", S_IRUSR|S_IWUSR, seccomp), 1829 #endif 1830 LNK("cwd", cwd), 1831 LNK("root", root), 1832 LNK("exe", exe), 1833 REG("mounts", S_IRUGO, mounts), 1834 REG("mountstats", S_IRUSR, mountstats), 1835 #ifdef CONFIG_MMU 1836 REG("smaps", S_IRUGO, smaps), 1837 #endif 1838 #ifdef CONFIG_SECURITY 1839 DIR("attr", S_IRUGO|S_IXUGO, attr_dir), 1840 #endif 1841 #ifdef CONFIG_KALLSYMS 1842 INF("wchan", S_IRUGO, pid_wchan), 1843 #endif 1844 #ifdef CONFIG_SCHEDSTATS 1845 INF("schedstat", S_IRUGO, pid_schedstat), 1846 #endif 1847 #ifdef CONFIG_CPUSETS 1848 REG("cpuset", S_IRUGO, cpuset), 1849 #endif 1850 INF("oom_score", S_IRUGO, oom_score), 1851 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust), 1852 #ifdef CONFIG_AUDITSYSCALL 1853 REG("loginuid", S_IWUSR|S_IRUGO, loginuid), 1854 #endif 1855 #ifdef CONFIG_FAULT_INJECTION 1856 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject), 1857 #endif 1858 }; 1859 1860 static int proc_tgid_base_readdir(struct file * filp, 1861 void * dirent, filldir_t filldir) 1862 { 1863 return proc_pident_readdir(filp,dirent,filldir, 1864 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff)); 1865 } 1866 1867 static struct file_operations proc_tgid_base_operations = { 1868 .read = generic_read_dir, 1869 .readdir = proc_tgid_base_readdir, 1870 }; 1871 1872 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 1873 return proc_pident_lookup(dir, dentry, 1874 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 1875 } 1876 1877 static struct inode_operations proc_tgid_base_inode_operations = { 1878 .lookup = proc_tgid_base_lookup, 1879 .getattr = pid_getattr, 1880 .setattr = proc_setattr, 1881 }; 1882 1883 /** 1884 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 1885 * 1886 * @task: task that should be flushed. 1887 * 1888 * Looks in the dcache for 1889 * /proc/@pid 1890 * /proc/@tgid/task/@pid 1891 * if either directory is present flushes it and all of it'ts children 1892 * from the dcache. 1893 * 1894 * It is safe and reasonable to cache /proc entries for a task until 1895 * that task exits. After that they just clog up the dcache with 1896 * useless entries, possibly causing useful dcache entries to be 1897 * flushed instead. This routine is proved to flush those useless 1898 * dcache entries at process exit time. 1899 * 1900 * NOTE: This routine is just an optimization so it does not guarantee 1901 * that no dcache entries will exist at process exit time it 1902 * just makes it very unlikely that any will persist. 1903 */ 1904 void proc_flush_task(struct task_struct *task) 1905 { 1906 struct dentry *dentry, *leader, *dir; 1907 char buf[PROC_NUMBUF]; 1908 struct qstr name; 1909 1910 name.name = buf; 1911 name.len = snprintf(buf, sizeof(buf), "%d", task->pid); 1912 dentry = d_hash_and_lookup(proc_mnt->mnt_root, &name); 1913 if (dentry) { 1914 shrink_dcache_parent(dentry); 1915 d_drop(dentry); 1916 dput(dentry); 1917 } 1918 1919 if (thread_group_leader(task)) 1920 goto out; 1921 1922 name.name = buf; 1923 name.len = snprintf(buf, sizeof(buf), "%d", task->tgid); 1924 leader = d_hash_and_lookup(proc_mnt->mnt_root, &name); 1925 if (!leader) 1926 goto out; 1927 1928 name.name = "task"; 1929 name.len = strlen(name.name); 1930 dir = d_hash_and_lookup(leader, &name); 1931 if (!dir) 1932 goto out_put_leader; 1933 1934 name.name = buf; 1935 name.len = snprintf(buf, sizeof(buf), "%d", task->pid); 1936 dentry = d_hash_and_lookup(dir, &name); 1937 if (dentry) { 1938 shrink_dcache_parent(dentry); 1939 d_drop(dentry); 1940 dput(dentry); 1941 } 1942 1943 dput(dir); 1944 out_put_leader: 1945 dput(leader); 1946 out: 1947 return; 1948 } 1949 1950 static struct dentry *proc_pid_instantiate(struct inode *dir, 1951 struct dentry * dentry, 1952 struct task_struct *task, void *ptr) 1953 { 1954 struct dentry *error = ERR_PTR(-ENOENT); 1955 struct inode *inode; 1956 1957 inode = proc_pid_make_inode(dir->i_sb, task); 1958 if (!inode) 1959 goto out; 1960 1961 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 1962 inode->i_op = &proc_tgid_base_inode_operations; 1963 inode->i_fop = &proc_tgid_base_operations; 1964 inode->i_flags|=S_IMMUTABLE; 1965 inode->i_nlink = 4; 1966 #ifdef CONFIG_SECURITY 1967 inode->i_nlink += 1; 1968 #endif 1969 1970 dentry->d_op = &pid_dentry_operations; 1971 1972 d_add(dentry, inode); 1973 /* Close the race of the process dying before we return the dentry */ 1974 if (pid_revalidate(dentry, NULL)) 1975 error = NULL; 1976 out: 1977 return error; 1978 } 1979 1980 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 1981 { 1982 struct dentry *result = ERR_PTR(-ENOENT); 1983 struct task_struct *task; 1984 unsigned tgid; 1985 1986 result = proc_base_lookup(dir, dentry); 1987 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT) 1988 goto out; 1989 1990 tgid = name_to_int(dentry); 1991 if (tgid == ~0U) 1992 goto out; 1993 1994 rcu_read_lock(); 1995 task = find_task_by_pid(tgid); 1996 if (task) 1997 get_task_struct(task); 1998 rcu_read_unlock(); 1999 if (!task) 2000 goto out; 2001 2002 result = proc_pid_instantiate(dir, dentry, task, NULL); 2003 put_task_struct(task); 2004 out: 2005 return result; 2006 } 2007 2008 /* 2009 * Find the first task with tgid >= tgid 2010 * 2011 */ 2012 static struct task_struct *next_tgid(unsigned int tgid) 2013 { 2014 struct task_struct *task; 2015 struct pid *pid; 2016 2017 rcu_read_lock(); 2018 retry: 2019 task = NULL; 2020 pid = find_ge_pid(tgid); 2021 if (pid) { 2022 tgid = pid->nr + 1; 2023 task = pid_task(pid, PIDTYPE_PID); 2024 /* What we to know is if the pid we have find is the 2025 * pid of a thread_group_leader. Testing for task 2026 * being a thread_group_leader is the obvious thing 2027 * todo but there is a window when it fails, due to 2028 * the pid transfer logic in de_thread. 2029 * 2030 * So we perform the straight forward test of seeing 2031 * if the pid we have found is the pid of a thread 2032 * group leader, and don't worry if the task we have 2033 * found doesn't happen to be a thread group leader. 2034 * As we don't care in the case of readdir. 2035 */ 2036 if (!task || !has_group_leader_pid(task)) 2037 goto retry; 2038 get_task_struct(task); 2039 } 2040 rcu_read_unlock(); 2041 return task; 2042 } 2043 2044 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff)) 2045 2046 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 2047 struct task_struct *task, int tgid) 2048 { 2049 char name[PROC_NUMBUF]; 2050 int len = snprintf(name, sizeof(name), "%d", tgid); 2051 return proc_fill_cache(filp, dirent, filldir, name, len, 2052 proc_pid_instantiate, task, NULL); 2053 } 2054 2055 /* for the /proc/ directory itself, after non-process stuff has been done */ 2056 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) 2057 { 2058 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY; 2059 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode); 2060 struct task_struct *task; 2061 int tgid; 2062 2063 if (!reaper) 2064 goto out_no_task; 2065 2066 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) { 2067 struct pid_entry *p = &proc_base_stuff[nr]; 2068 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0) 2069 goto out; 2070 } 2071 2072 tgid = filp->f_pos - TGID_OFFSET; 2073 for (task = next_tgid(tgid); 2074 task; 2075 put_task_struct(task), task = next_tgid(tgid + 1)) { 2076 tgid = task->pid; 2077 filp->f_pos = tgid + TGID_OFFSET; 2078 if (proc_pid_fill_cache(filp, dirent, filldir, task, tgid) < 0) { 2079 put_task_struct(task); 2080 goto out; 2081 } 2082 } 2083 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET; 2084 out: 2085 put_task_struct(reaper); 2086 out_no_task: 2087 return 0; 2088 } 2089 2090 /* 2091 * Tasks 2092 */ 2093 static struct pid_entry tid_base_stuff[] = { 2094 DIR("fd", S_IRUSR|S_IXUSR, fd), 2095 INF("environ", S_IRUSR, pid_environ), 2096 INF("auxv", S_IRUSR, pid_auxv), 2097 INF("status", S_IRUGO, pid_status), 2098 INF("cmdline", S_IRUGO, pid_cmdline), 2099 INF("stat", S_IRUGO, tid_stat), 2100 INF("statm", S_IRUGO, pid_statm), 2101 REG("maps", S_IRUGO, maps), 2102 #ifdef CONFIG_NUMA 2103 REG("numa_maps", S_IRUGO, numa_maps), 2104 #endif 2105 REG("mem", S_IRUSR|S_IWUSR, mem), 2106 #ifdef CONFIG_SECCOMP 2107 REG("seccomp", S_IRUSR|S_IWUSR, seccomp), 2108 #endif 2109 LNK("cwd", cwd), 2110 LNK("root", root), 2111 LNK("exe", exe), 2112 REG("mounts", S_IRUGO, mounts), 2113 #ifdef CONFIG_MMU 2114 REG("smaps", S_IRUGO, smaps), 2115 #endif 2116 #ifdef CONFIG_SECURITY 2117 DIR("attr", S_IRUGO|S_IXUGO, attr_dir), 2118 #endif 2119 #ifdef CONFIG_KALLSYMS 2120 INF("wchan", S_IRUGO, pid_wchan), 2121 #endif 2122 #ifdef CONFIG_SCHEDSTATS 2123 INF("schedstat", S_IRUGO, pid_schedstat), 2124 #endif 2125 #ifdef CONFIG_CPUSETS 2126 REG("cpuset", S_IRUGO, cpuset), 2127 #endif 2128 INF("oom_score", S_IRUGO, oom_score), 2129 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust), 2130 #ifdef CONFIG_AUDITSYSCALL 2131 REG("loginuid", S_IWUSR|S_IRUGO, loginuid), 2132 #endif 2133 #ifdef CONFIG_FAULT_INJECTION 2134 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject), 2135 #endif 2136 }; 2137 2138 static int proc_tid_base_readdir(struct file * filp, 2139 void * dirent, filldir_t filldir) 2140 { 2141 return proc_pident_readdir(filp,dirent,filldir, 2142 tid_base_stuff,ARRAY_SIZE(tid_base_stuff)); 2143 } 2144 2145 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 2146 return proc_pident_lookup(dir, dentry, 2147 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 2148 } 2149 2150 static struct file_operations proc_tid_base_operations = { 2151 .read = generic_read_dir, 2152 .readdir = proc_tid_base_readdir, 2153 }; 2154 2155 static struct inode_operations proc_tid_base_inode_operations = { 2156 .lookup = proc_tid_base_lookup, 2157 .getattr = pid_getattr, 2158 .setattr = proc_setattr, 2159 }; 2160 2161 static struct dentry *proc_task_instantiate(struct inode *dir, 2162 struct dentry *dentry, struct task_struct *task, void *ptr) 2163 { 2164 struct dentry *error = ERR_PTR(-ENOENT); 2165 struct inode *inode; 2166 inode = proc_pid_make_inode(dir->i_sb, task); 2167 2168 if (!inode) 2169 goto out; 2170 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 2171 inode->i_op = &proc_tid_base_inode_operations; 2172 inode->i_fop = &proc_tid_base_operations; 2173 inode->i_flags|=S_IMMUTABLE; 2174 inode->i_nlink = 3; 2175 #ifdef CONFIG_SECURITY 2176 inode->i_nlink += 1; 2177 #endif 2178 2179 dentry->d_op = &pid_dentry_operations; 2180 2181 d_add(dentry, inode); 2182 /* Close the race of the process dying before we return the dentry */ 2183 if (pid_revalidate(dentry, NULL)) 2184 error = NULL; 2185 out: 2186 return error; 2187 } 2188 2189 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 2190 { 2191 struct dentry *result = ERR_PTR(-ENOENT); 2192 struct task_struct *task; 2193 struct task_struct *leader = get_proc_task(dir); 2194 unsigned tid; 2195 2196 if (!leader) 2197 goto out_no_task; 2198 2199 tid = name_to_int(dentry); 2200 if (tid == ~0U) 2201 goto out; 2202 2203 rcu_read_lock(); 2204 task = find_task_by_pid(tid); 2205 if (task) 2206 get_task_struct(task); 2207 rcu_read_unlock(); 2208 if (!task) 2209 goto out; 2210 if (leader->tgid != task->tgid) 2211 goto out_drop_task; 2212 2213 result = proc_task_instantiate(dir, dentry, task, NULL); 2214 out_drop_task: 2215 put_task_struct(task); 2216 out: 2217 put_task_struct(leader); 2218 out_no_task: 2219 return result; 2220 } 2221 2222 /* 2223 * Find the first tid of a thread group to return to user space. 2224 * 2225 * Usually this is just the thread group leader, but if the users 2226 * buffer was too small or there was a seek into the middle of the 2227 * directory we have more work todo. 2228 * 2229 * In the case of a short read we start with find_task_by_pid. 2230 * 2231 * In the case of a seek we start with the leader and walk nr 2232 * threads past it. 2233 */ 2234 static struct task_struct *first_tid(struct task_struct *leader, 2235 int tid, int nr) 2236 { 2237 struct task_struct *pos; 2238 2239 rcu_read_lock(); 2240 /* Attempt to start with the pid of a thread */ 2241 if (tid && (nr > 0)) { 2242 pos = find_task_by_pid(tid); 2243 if (pos && (pos->group_leader == leader)) 2244 goto found; 2245 } 2246 2247 /* If nr exceeds the number of threads there is nothing todo */ 2248 pos = NULL; 2249 if (nr && nr >= get_nr_threads(leader)) 2250 goto out; 2251 2252 /* If we haven't found our starting place yet start 2253 * with the leader and walk nr threads forward. 2254 */ 2255 for (pos = leader; nr > 0; --nr) { 2256 pos = next_thread(pos); 2257 if (pos == leader) { 2258 pos = NULL; 2259 goto out; 2260 } 2261 } 2262 found: 2263 get_task_struct(pos); 2264 out: 2265 rcu_read_unlock(); 2266 return pos; 2267 } 2268 2269 /* 2270 * Find the next thread in the thread list. 2271 * Return NULL if there is an error or no next thread. 2272 * 2273 * The reference to the input task_struct is released. 2274 */ 2275 static struct task_struct *next_tid(struct task_struct *start) 2276 { 2277 struct task_struct *pos = NULL; 2278 rcu_read_lock(); 2279 if (pid_alive(start)) { 2280 pos = next_thread(start); 2281 if (thread_group_leader(pos)) 2282 pos = NULL; 2283 else 2284 get_task_struct(pos); 2285 } 2286 rcu_read_unlock(); 2287 put_task_struct(start); 2288 return pos; 2289 } 2290 2291 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 2292 struct task_struct *task, int tid) 2293 { 2294 char name[PROC_NUMBUF]; 2295 int len = snprintf(name, sizeof(name), "%d", tid); 2296 return proc_fill_cache(filp, dirent, filldir, name, len, 2297 proc_task_instantiate, task, NULL); 2298 } 2299 2300 /* for the /proc/TGID/task/ directories */ 2301 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir) 2302 { 2303 struct dentry *dentry = filp->f_path.dentry; 2304 struct inode *inode = dentry->d_inode; 2305 struct task_struct *leader = get_proc_task(inode); 2306 struct task_struct *task; 2307 int retval = -ENOENT; 2308 ino_t ino; 2309 int tid; 2310 unsigned long pos = filp->f_pos; /* avoiding "long long" filp->f_pos */ 2311 2312 if (!leader) 2313 goto out_no_task; 2314 retval = 0; 2315 2316 switch (pos) { 2317 case 0: 2318 ino = inode->i_ino; 2319 if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0) 2320 goto out; 2321 pos++; 2322 /* fall through */ 2323 case 1: 2324 ino = parent_ino(dentry); 2325 if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0) 2326 goto out; 2327 pos++; 2328 /* fall through */ 2329 } 2330 2331 /* f_version caches the tgid value that the last readdir call couldn't 2332 * return. lseek aka telldir automagically resets f_version to 0. 2333 */ 2334 tid = filp->f_version; 2335 filp->f_version = 0; 2336 for (task = first_tid(leader, tid, pos - 2); 2337 task; 2338 task = next_tid(task), pos++) { 2339 tid = task->pid; 2340 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) { 2341 /* returning this tgid failed, save it as the first 2342 * pid for the next readir call */ 2343 filp->f_version = tid; 2344 put_task_struct(task); 2345 break; 2346 } 2347 } 2348 out: 2349 filp->f_pos = pos; 2350 put_task_struct(leader); 2351 out_no_task: 2352 return retval; 2353 } 2354 2355 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 2356 { 2357 struct inode *inode = dentry->d_inode; 2358 struct task_struct *p = get_proc_task(inode); 2359 generic_fillattr(inode, stat); 2360 2361 if (p) { 2362 rcu_read_lock(); 2363 stat->nlink += get_nr_threads(p); 2364 rcu_read_unlock(); 2365 put_task_struct(p); 2366 } 2367 2368 return 0; 2369 } 2370 2371 static struct inode_operations proc_task_inode_operations = { 2372 .lookup = proc_task_lookup, 2373 .getattr = proc_task_getattr, 2374 .setattr = proc_setattr, 2375 }; 2376 2377 static struct file_operations proc_task_operations = { 2378 .read = generic_read_dir, 2379 .readdir = proc_task_readdir, 2380 }; 2381