xref: /linux/fs/proc/base.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include "internal.h"
87 
88 /* NOTE:
89  *	Implementing inode permission operations in /proc is almost
90  *	certainly an error.  Permission checks need to happen during
91  *	each system call not at open time.  The reason is that most of
92  *	what we wish to check for permissions in /proc varies at runtime.
93  *
94  *	The classic example of a problem is opening file descriptors
95  *	in /proc for a task before it execs a suid executable.
96  */
97 
98 struct pid_entry {
99 	char *name;
100 	int len;
101 	mode_t mode;
102 	const struct inode_operations *iop;
103 	const struct file_operations *fop;
104 	union proc_op op;
105 };
106 
107 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
108 	.name = (NAME),					\
109 	.len  = sizeof(NAME) - 1,			\
110 	.mode = MODE,					\
111 	.iop  = IOP,					\
112 	.fop  = FOP,					\
113 	.op   = OP,					\
114 }
115 
116 #define DIR(NAME, MODE, iops, fops)	\
117 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
118 #define LNK(NAME, get_link)					\
119 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
120 		&proc_pid_link_inode_operations, NULL,		\
121 		{ .proc_get_link = get_link } )
122 #define REG(NAME, MODE, fops)				\
123 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
124 #define INF(NAME, MODE, read)				\
125 	NOD(NAME, (S_IFREG|(MODE)), 			\
126 		NULL, &proc_info_file_operations,	\
127 		{ .proc_read = read } )
128 #define ONE(NAME, MODE, show)				\
129 	NOD(NAME, (S_IFREG|(MODE)), 			\
130 		NULL, &proc_single_file_operations,	\
131 		{ .proc_show = show } )
132 
133 /*
134  * Count the number of hardlinks for the pid_entry table, excluding the .
135  * and .. links.
136  */
137 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
138 	unsigned int n)
139 {
140 	unsigned int i;
141 	unsigned int count;
142 
143 	count = 0;
144 	for (i = 0; i < n; ++i) {
145 		if (S_ISDIR(entries[i].mode))
146 			++count;
147 	}
148 
149 	return count;
150 }
151 
152 static int get_task_root(struct task_struct *task, struct path *root)
153 {
154 	int result = -ENOENT;
155 
156 	task_lock(task);
157 	if (task->fs) {
158 		get_fs_root(task->fs, root);
159 		result = 0;
160 	}
161 	task_unlock(task);
162 	return result;
163 }
164 
165 static int proc_cwd_link(struct inode *inode, struct path *path)
166 {
167 	struct task_struct *task = get_proc_task(inode);
168 	int result = -ENOENT;
169 
170 	if (task) {
171 		task_lock(task);
172 		if (task->fs) {
173 			get_fs_pwd(task->fs, path);
174 			result = 0;
175 		}
176 		task_unlock(task);
177 		put_task_struct(task);
178 	}
179 	return result;
180 }
181 
182 static int proc_root_link(struct inode *inode, struct path *path)
183 {
184 	struct task_struct *task = get_proc_task(inode);
185 	int result = -ENOENT;
186 
187 	if (task) {
188 		result = get_task_root(task, path);
189 		put_task_struct(task);
190 	}
191 	return result;
192 }
193 
194 /*
195  * Return zero if current may access user memory in @task, -error if not.
196  */
197 static int check_mem_permission(struct task_struct *task)
198 {
199 	/*
200 	 * A task can always look at itself, in case it chooses
201 	 * to use system calls instead of load instructions.
202 	 */
203 	if (task == current)
204 		return 0;
205 
206 	/*
207 	 * If current is actively ptrace'ing, and would also be
208 	 * permitted to freshly attach with ptrace now, permit it.
209 	 */
210 	if (task_is_stopped_or_traced(task)) {
211 		int match;
212 		rcu_read_lock();
213 		match = (tracehook_tracer_task(task) == current);
214 		rcu_read_unlock();
215 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
216 			return 0;
217 	}
218 
219 	/*
220 	 * Noone else is allowed.
221 	 */
222 	return -EPERM;
223 }
224 
225 struct mm_struct *mm_for_maps(struct task_struct *task)
226 {
227 	struct mm_struct *mm;
228 
229 	if (mutex_lock_killable(&task->cred_guard_mutex))
230 		return NULL;
231 
232 	mm = get_task_mm(task);
233 	if (mm && mm != current->mm &&
234 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
235 		mmput(mm);
236 		mm = NULL;
237 	}
238 	mutex_unlock(&task->cred_guard_mutex);
239 
240 	return mm;
241 }
242 
243 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
244 {
245 	int res = 0;
246 	unsigned int len;
247 	struct mm_struct *mm = get_task_mm(task);
248 	if (!mm)
249 		goto out;
250 	if (!mm->arg_end)
251 		goto out_mm;	/* Shh! No looking before we're done */
252 
253  	len = mm->arg_end - mm->arg_start;
254 
255 	if (len > PAGE_SIZE)
256 		len = PAGE_SIZE;
257 
258 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
259 
260 	// If the nul at the end of args has been overwritten, then
261 	// assume application is using setproctitle(3).
262 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
263 		len = strnlen(buffer, res);
264 		if (len < res) {
265 		    res = len;
266 		} else {
267 			len = mm->env_end - mm->env_start;
268 			if (len > PAGE_SIZE - res)
269 				len = PAGE_SIZE - res;
270 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
271 			res = strnlen(buffer, res);
272 		}
273 	}
274 out_mm:
275 	mmput(mm);
276 out:
277 	return res;
278 }
279 
280 static int proc_pid_auxv(struct task_struct *task, char *buffer)
281 {
282 	int res = 0;
283 	struct mm_struct *mm = get_task_mm(task);
284 	if (mm) {
285 		unsigned int nwords = 0;
286 		do {
287 			nwords += 2;
288 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
289 		res = nwords * sizeof(mm->saved_auxv[0]);
290 		if (res > PAGE_SIZE)
291 			res = PAGE_SIZE;
292 		memcpy(buffer, mm->saved_auxv, res);
293 		mmput(mm);
294 	}
295 	return res;
296 }
297 
298 
299 #ifdef CONFIG_KALLSYMS
300 /*
301  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
302  * Returns the resolved symbol.  If that fails, simply return the address.
303  */
304 static int proc_pid_wchan(struct task_struct *task, char *buffer)
305 {
306 	unsigned long wchan;
307 	char symname[KSYM_NAME_LEN];
308 
309 	wchan = get_wchan(task);
310 
311 	if (lookup_symbol_name(wchan, symname) < 0)
312 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
313 			return 0;
314 		else
315 			return sprintf(buffer, "%lu", wchan);
316 	else
317 		return sprintf(buffer, "%s", symname);
318 }
319 #endif /* CONFIG_KALLSYMS */
320 
321 #ifdef CONFIG_STACKTRACE
322 
323 #define MAX_STACK_TRACE_DEPTH	64
324 
325 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
326 			  struct pid *pid, struct task_struct *task)
327 {
328 	struct stack_trace trace;
329 	unsigned long *entries;
330 	int i;
331 
332 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
333 	if (!entries)
334 		return -ENOMEM;
335 
336 	trace.nr_entries	= 0;
337 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
338 	trace.entries		= entries;
339 	trace.skip		= 0;
340 	save_stack_trace_tsk(task, &trace);
341 
342 	for (i = 0; i < trace.nr_entries; i++) {
343 		seq_printf(m, "[<%p>] %pS\n",
344 			   (void *)entries[i], (void *)entries[i]);
345 	}
346 	kfree(entries);
347 
348 	return 0;
349 }
350 #endif
351 
352 #ifdef CONFIG_SCHEDSTATS
353 /*
354  * Provides /proc/PID/schedstat
355  */
356 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
357 {
358 	return sprintf(buffer, "%llu %llu %lu\n",
359 			(unsigned long long)task->se.sum_exec_runtime,
360 			(unsigned long long)task->sched_info.run_delay,
361 			task->sched_info.pcount);
362 }
363 #endif
364 
365 #ifdef CONFIG_LATENCYTOP
366 static int lstats_show_proc(struct seq_file *m, void *v)
367 {
368 	int i;
369 	struct inode *inode = m->private;
370 	struct task_struct *task = get_proc_task(inode);
371 
372 	if (!task)
373 		return -ESRCH;
374 	seq_puts(m, "Latency Top version : v0.1\n");
375 	for (i = 0; i < 32; i++) {
376 		if (task->latency_record[i].backtrace[0]) {
377 			int q;
378 			seq_printf(m, "%i %li %li ",
379 				task->latency_record[i].count,
380 				task->latency_record[i].time,
381 				task->latency_record[i].max);
382 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
383 				char sym[KSYM_SYMBOL_LEN];
384 				char *c;
385 				if (!task->latency_record[i].backtrace[q])
386 					break;
387 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
388 					break;
389 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
390 				c = strchr(sym, '+');
391 				if (c)
392 					*c = 0;
393 				seq_printf(m, "%s ", sym);
394 			}
395 			seq_printf(m, "\n");
396 		}
397 
398 	}
399 	put_task_struct(task);
400 	return 0;
401 }
402 
403 static int lstats_open(struct inode *inode, struct file *file)
404 {
405 	return single_open(file, lstats_show_proc, inode);
406 }
407 
408 static ssize_t lstats_write(struct file *file, const char __user *buf,
409 			    size_t count, loff_t *offs)
410 {
411 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
412 
413 	if (!task)
414 		return -ESRCH;
415 	clear_all_latency_tracing(task);
416 	put_task_struct(task);
417 
418 	return count;
419 }
420 
421 static const struct file_operations proc_lstats_operations = {
422 	.open		= lstats_open,
423 	.read		= seq_read,
424 	.write		= lstats_write,
425 	.llseek		= seq_lseek,
426 	.release	= single_release,
427 };
428 
429 #endif
430 
431 static int proc_oom_score(struct task_struct *task, char *buffer)
432 {
433 	unsigned long points = 0;
434 
435 	read_lock(&tasklist_lock);
436 	if (pid_alive(task))
437 		points = oom_badness(task, NULL, NULL,
438 					totalram_pages + total_swap_pages);
439 	read_unlock(&tasklist_lock);
440 	return sprintf(buffer, "%lu\n", points);
441 }
442 
443 struct limit_names {
444 	char *name;
445 	char *unit;
446 };
447 
448 static const struct limit_names lnames[RLIM_NLIMITS] = {
449 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
450 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
451 	[RLIMIT_DATA] = {"Max data size", "bytes"},
452 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
453 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
454 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
455 	[RLIMIT_NPROC] = {"Max processes", "processes"},
456 	[RLIMIT_NOFILE] = {"Max open files", "files"},
457 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
458 	[RLIMIT_AS] = {"Max address space", "bytes"},
459 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
460 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
461 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
462 	[RLIMIT_NICE] = {"Max nice priority", NULL},
463 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
464 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
465 };
466 
467 /* Display limits for a process */
468 static int proc_pid_limits(struct task_struct *task, char *buffer)
469 {
470 	unsigned int i;
471 	int count = 0;
472 	unsigned long flags;
473 	char *bufptr = buffer;
474 
475 	struct rlimit rlim[RLIM_NLIMITS];
476 
477 	if (!lock_task_sighand(task, &flags))
478 		return 0;
479 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
480 	unlock_task_sighand(task, &flags);
481 
482 	/*
483 	 * print the file header
484 	 */
485 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
486 			"Limit", "Soft Limit", "Hard Limit", "Units");
487 
488 	for (i = 0; i < RLIM_NLIMITS; i++) {
489 		if (rlim[i].rlim_cur == RLIM_INFINITY)
490 			count += sprintf(&bufptr[count], "%-25s %-20s ",
491 					 lnames[i].name, "unlimited");
492 		else
493 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
494 					 lnames[i].name, rlim[i].rlim_cur);
495 
496 		if (rlim[i].rlim_max == RLIM_INFINITY)
497 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
498 		else
499 			count += sprintf(&bufptr[count], "%-20lu ",
500 					 rlim[i].rlim_max);
501 
502 		if (lnames[i].unit)
503 			count += sprintf(&bufptr[count], "%-10s\n",
504 					 lnames[i].unit);
505 		else
506 			count += sprintf(&bufptr[count], "\n");
507 	}
508 
509 	return count;
510 }
511 
512 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
513 static int proc_pid_syscall(struct task_struct *task, char *buffer)
514 {
515 	long nr;
516 	unsigned long args[6], sp, pc;
517 
518 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
519 		return sprintf(buffer, "running\n");
520 
521 	if (nr < 0)
522 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
523 
524 	return sprintf(buffer,
525 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
526 		       nr,
527 		       args[0], args[1], args[2], args[3], args[4], args[5],
528 		       sp, pc);
529 }
530 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
531 
532 /************************************************************************/
533 /*                       Here the fs part begins                        */
534 /************************************************************************/
535 
536 /* permission checks */
537 static int proc_fd_access_allowed(struct inode *inode)
538 {
539 	struct task_struct *task;
540 	int allowed = 0;
541 	/* Allow access to a task's file descriptors if it is us or we
542 	 * may use ptrace attach to the process and find out that
543 	 * information.
544 	 */
545 	task = get_proc_task(inode);
546 	if (task) {
547 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
548 		put_task_struct(task);
549 	}
550 	return allowed;
551 }
552 
553 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
554 {
555 	int error;
556 	struct inode *inode = dentry->d_inode;
557 
558 	if (attr->ia_valid & ATTR_MODE)
559 		return -EPERM;
560 
561 	error = inode_change_ok(inode, attr);
562 	if (error)
563 		return error;
564 
565 	if ((attr->ia_valid & ATTR_SIZE) &&
566 	    attr->ia_size != i_size_read(inode)) {
567 		error = vmtruncate(inode, attr->ia_size);
568 		if (error)
569 			return error;
570 	}
571 
572 	setattr_copy(inode, attr);
573 	mark_inode_dirty(inode);
574 	return 0;
575 }
576 
577 static const struct inode_operations proc_def_inode_operations = {
578 	.setattr	= proc_setattr,
579 };
580 
581 static int mounts_open_common(struct inode *inode, struct file *file,
582 			      const struct seq_operations *op)
583 {
584 	struct task_struct *task = get_proc_task(inode);
585 	struct nsproxy *nsp;
586 	struct mnt_namespace *ns = NULL;
587 	struct path root;
588 	struct proc_mounts *p;
589 	int ret = -EINVAL;
590 
591 	if (task) {
592 		rcu_read_lock();
593 		nsp = task_nsproxy(task);
594 		if (nsp) {
595 			ns = nsp->mnt_ns;
596 			if (ns)
597 				get_mnt_ns(ns);
598 		}
599 		rcu_read_unlock();
600 		if (ns && get_task_root(task, &root) == 0)
601 			ret = 0;
602 		put_task_struct(task);
603 	}
604 
605 	if (!ns)
606 		goto err;
607 	if (ret)
608 		goto err_put_ns;
609 
610 	ret = -ENOMEM;
611 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
612 	if (!p)
613 		goto err_put_path;
614 
615 	file->private_data = &p->m;
616 	ret = seq_open(file, op);
617 	if (ret)
618 		goto err_free;
619 
620 	p->m.private = p;
621 	p->ns = ns;
622 	p->root = root;
623 	p->event = ns->event;
624 
625 	return 0;
626 
627  err_free:
628 	kfree(p);
629  err_put_path:
630 	path_put(&root);
631  err_put_ns:
632 	put_mnt_ns(ns);
633  err:
634 	return ret;
635 }
636 
637 static int mounts_release(struct inode *inode, struct file *file)
638 {
639 	struct proc_mounts *p = file->private_data;
640 	path_put(&p->root);
641 	put_mnt_ns(p->ns);
642 	return seq_release(inode, file);
643 }
644 
645 static unsigned mounts_poll(struct file *file, poll_table *wait)
646 {
647 	struct proc_mounts *p = file->private_data;
648 	unsigned res = POLLIN | POLLRDNORM;
649 
650 	poll_wait(file, &p->ns->poll, wait);
651 	if (mnt_had_events(p))
652 		res |= POLLERR | POLLPRI;
653 
654 	return res;
655 }
656 
657 static int mounts_open(struct inode *inode, struct file *file)
658 {
659 	return mounts_open_common(inode, file, &mounts_op);
660 }
661 
662 static const struct file_operations proc_mounts_operations = {
663 	.open		= mounts_open,
664 	.read		= seq_read,
665 	.llseek		= seq_lseek,
666 	.release	= mounts_release,
667 	.poll		= mounts_poll,
668 };
669 
670 static int mountinfo_open(struct inode *inode, struct file *file)
671 {
672 	return mounts_open_common(inode, file, &mountinfo_op);
673 }
674 
675 static const struct file_operations proc_mountinfo_operations = {
676 	.open		= mountinfo_open,
677 	.read		= seq_read,
678 	.llseek		= seq_lseek,
679 	.release	= mounts_release,
680 	.poll		= mounts_poll,
681 };
682 
683 static int mountstats_open(struct inode *inode, struct file *file)
684 {
685 	return mounts_open_common(inode, file, &mountstats_op);
686 }
687 
688 static const struct file_operations proc_mountstats_operations = {
689 	.open		= mountstats_open,
690 	.read		= seq_read,
691 	.llseek		= seq_lseek,
692 	.release	= mounts_release,
693 };
694 
695 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
696 
697 static ssize_t proc_info_read(struct file * file, char __user * buf,
698 			  size_t count, loff_t *ppos)
699 {
700 	struct inode * inode = file->f_path.dentry->d_inode;
701 	unsigned long page;
702 	ssize_t length;
703 	struct task_struct *task = get_proc_task(inode);
704 
705 	length = -ESRCH;
706 	if (!task)
707 		goto out_no_task;
708 
709 	if (count > PROC_BLOCK_SIZE)
710 		count = PROC_BLOCK_SIZE;
711 
712 	length = -ENOMEM;
713 	if (!(page = __get_free_page(GFP_TEMPORARY)))
714 		goto out;
715 
716 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
717 
718 	if (length >= 0)
719 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
720 	free_page(page);
721 out:
722 	put_task_struct(task);
723 out_no_task:
724 	return length;
725 }
726 
727 static const struct file_operations proc_info_file_operations = {
728 	.read		= proc_info_read,
729 	.llseek		= generic_file_llseek,
730 };
731 
732 static int proc_single_show(struct seq_file *m, void *v)
733 {
734 	struct inode *inode = m->private;
735 	struct pid_namespace *ns;
736 	struct pid *pid;
737 	struct task_struct *task;
738 	int ret;
739 
740 	ns = inode->i_sb->s_fs_info;
741 	pid = proc_pid(inode);
742 	task = get_pid_task(pid, PIDTYPE_PID);
743 	if (!task)
744 		return -ESRCH;
745 
746 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
747 
748 	put_task_struct(task);
749 	return ret;
750 }
751 
752 static int proc_single_open(struct inode *inode, struct file *filp)
753 {
754 	int ret;
755 	ret = single_open(filp, proc_single_show, NULL);
756 	if (!ret) {
757 		struct seq_file *m = filp->private_data;
758 
759 		m->private = inode;
760 	}
761 	return ret;
762 }
763 
764 static const struct file_operations proc_single_file_operations = {
765 	.open		= proc_single_open,
766 	.read		= seq_read,
767 	.llseek		= seq_lseek,
768 	.release	= single_release,
769 };
770 
771 static int mem_open(struct inode* inode, struct file* file)
772 {
773 	file->private_data = (void*)((long)current->self_exec_id);
774 	return 0;
775 }
776 
777 static ssize_t mem_read(struct file * file, char __user * buf,
778 			size_t count, loff_t *ppos)
779 {
780 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
781 	char *page;
782 	unsigned long src = *ppos;
783 	int ret = -ESRCH;
784 	struct mm_struct *mm;
785 
786 	if (!task)
787 		goto out_no_task;
788 
789 	if (check_mem_permission(task))
790 		goto out;
791 
792 	ret = -ENOMEM;
793 	page = (char *)__get_free_page(GFP_TEMPORARY);
794 	if (!page)
795 		goto out;
796 
797 	ret = 0;
798 
799 	mm = get_task_mm(task);
800 	if (!mm)
801 		goto out_free;
802 
803 	ret = -EIO;
804 
805 	if (file->private_data != (void*)((long)current->self_exec_id))
806 		goto out_put;
807 
808 	ret = 0;
809 
810 	while (count > 0) {
811 		int this_len, retval;
812 
813 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
814 		retval = access_process_vm(task, src, page, this_len, 0);
815 		if (!retval || check_mem_permission(task)) {
816 			if (!ret)
817 				ret = -EIO;
818 			break;
819 		}
820 
821 		if (copy_to_user(buf, page, retval)) {
822 			ret = -EFAULT;
823 			break;
824 		}
825 
826 		ret += retval;
827 		src += retval;
828 		buf += retval;
829 		count -= retval;
830 	}
831 	*ppos = src;
832 
833 out_put:
834 	mmput(mm);
835 out_free:
836 	free_page((unsigned long) page);
837 out:
838 	put_task_struct(task);
839 out_no_task:
840 	return ret;
841 }
842 
843 #define mem_write NULL
844 
845 #ifndef mem_write
846 /* This is a security hazard */
847 static ssize_t mem_write(struct file * file, const char __user *buf,
848 			 size_t count, loff_t *ppos)
849 {
850 	int copied;
851 	char *page;
852 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
853 	unsigned long dst = *ppos;
854 
855 	copied = -ESRCH;
856 	if (!task)
857 		goto out_no_task;
858 
859 	if (check_mem_permission(task))
860 		goto out;
861 
862 	copied = -ENOMEM;
863 	page = (char *)__get_free_page(GFP_TEMPORARY);
864 	if (!page)
865 		goto out;
866 
867 	copied = 0;
868 	while (count > 0) {
869 		int this_len, retval;
870 
871 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
872 		if (copy_from_user(page, buf, this_len)) {
873 			copied = -EFAULT;
874 			break;
875 		}
876 		retval = access_process_vm(task, dst, page, this_len, 1);
877 		if (!retval) {
878 			if (!copied)
879 				copied = -EIO;
880 			break;
881 		}
882 		copied += retval;
883 		buf += retval;
884 		dst += retval;
885 		count -= retval;
886 	}
887 	*ppos = dst;
888 	free_page((unsigned long) page);
889 out:
890 	put_task_struct(task);
891 out_no_task:
892 	return copied;
893 }
894 #endif
895 
896 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
897 {
898 	switch (orig) {
899 	case 0:
900 		file->f_pos = offset;
901 		break;
902 	case 1:
903 		file->f_pos += offset;
904 		break;
905 	default:
906 		return -EINVAL;
907 	}
908 	force_successful_syscall_return();
909 	return file->f_pos;
910 }
911 
912 static const struct file_operations proc_mem_operations = {
913 	.llseek		= mem_lseek,
914 	.read		= mem_read,
915 	.write		= mem_write,
916 	.open		= mem_open,
917 };
918 
919 static ssize_t environ_read(struct file *file, char __user *buf,
920 			size_t count, loff_t *ppos)
921 {
922 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
923 	char *page;
924 	unsigned long src = *ppos;
925 	int ret = -ESRCH;
926 	struct mm_struct *mm;
927 
928 	if (!task)
929 		goto out_no_task;
930 
931 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
932 		goto out;
933 
934 	ret = -ENOMEM;
935 	page = (char *)__get_free_page(GFP_TEMPORARY);
936 	if (!page)
937 		goto out;
938 
939 	ret = 0;
940 
941 	mm = get_task_mm(task);
942 	if (!mm)
943 		goto out_free;
944 
945 	while (count > 0) {
946 		int this_len, retval, max_len;
947 
948 		this_len = mm->env_end - (mm->env_start + src);
949 
950 		if (this_len <= 0)
951 			break;
952 
953 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
954 		this_len = (this_len > max_len) ? max_len : this_len;
955 
956 		retval = access_process_vm(task, (mm->env_start + src),
957 			page, this_len, 0);
958 
959 		if (retval <= 0) {
960 			ret = retval;
961 			break;
962 		}
963 
964 		if (copy_to_user(buf, page, retval)) {
965 			ret = -EFAULT;
966 			break;
967 		}
968 
969 		ret += retval;
970 		src += retval;
971 		buf += retval;
972 		count -= retval;
973 	}
974 	*ppos = src;
975 
976 	mmput(mm);
977 out_free:
978 	free_page((unsigned long) page);
979 out:
980 	put_task_struct(task);
981 out_no_task:
982 	return ret;
983 }
984 
985 static const struct file_operations proc_environ_operations = {
986 	.read		= environ_read,
987 	.llseek		= generic_file_llseek,
988 };
989 
990 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
991 				size_t count, loff_t *ppos)
992 {
993 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
994 	char buffer[PROC_NUMBUF];
995 	size_t len;
996 	int oom_adjust = OOM_DISABLE;
997 	unsigned long flags;
998 
999 	if (!task)
1000 		return -ESRCH;
1001 
1002 	if (lock_task_sighand(task, &flags)) {
1003 		oom_adjust = task->signal->oom_adj;
1004 		unlock_task_sighand(task, &flags);
1005 	}
1006 
1007 	put_task_struct(task);
1008 
1009 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1010 
1011 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1012 }
1013 
1014 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1015 				size_t count, loff_t *ppos)
1016 {
1017 	struct task_struct *task;
1018 	char buffer[PROC_NUMBUF];
1019 	long oom_adjust;
1020 	unsigned long flags;
1021 	int err;
1022 
1023 	memset(buffer, 0, sizeof(buffer));
1024 	if (count > sizeof(buffer) - 1)
1025 		count = sizeof(buffer) - 1;
1026 	if (copy_from_user(buffer, buf, count))
1027 		return -EFAULT;
1028 
1029 	err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1030 	if (err)
1031 		return -EINVAL;
1032 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1033 	     oom_adjust != OOM_DISABLE)
1034 		return -EINVAL;
1035 
1036 	task = get_proc_task(file->f_path.dentry->d_inode);
1037 	if (!task)
1038 		return -ESRCH;
1039 	if (!lock_task_sighand(task, &flags)) {
1040 		put_task_struct(task);
1041 		return -ESRCH;
1042 	}
1043 
1044 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1045 		unlock_task_sighand(task, &flags);
1046 		put_task_struct(task);
1047 		return -EACCES;
1048 	}
1049 
1050 	/*
1051 	 * Warn that /proc/pid/oom_adj is deprecated, see
1052 	 * Documentation/feature-removal-schedule.txt.
1053 	 */
1054 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, "
1055 			"please use /proc/%d/oom_score_adj instead.\n",
1056 			current->comm, task_pid_nr(current),
1057 			task_pid_nr(task), task_pid_nr(task));
1058 	task->signal->oom_adj = oom_adjust;
1059 	/*
1060 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1061 	 * value is always attainable.
1062 	 */
1063 	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1064 		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1065 	else
1066 		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1067 								-OOM_DISABLE;
1068 	unlock_task_sighand(task, &flags);
1069 	put_task_struct(task);
1070 
1071 	return count;
1072 }
1073 
1074 static const struct file_operations proc_oom_adjust_operations = {
1075 	.read		= oom_adjust_read,
1076 	.write		= oom_adjust_write,
1077 	.llseek		= generic_file_llseek,
1078 };
1079 
1080 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1081 					size_t count, loff_t *ppos)
1082 {
1083 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1084 	char buffer[PROC_NUMBUF];
1085 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1086 	unsigned long flags;
1087 	size_t len;
1088 
1089 	if (!task)
1090 		return -ESRCH;
1091 	if (lock_task_sighand(task, &flags)) {
1092 		oom_score_adj = task->signal->oom_score_adj;
1093 		unlock_task_sighand(task, &flags);
1094 	}
1095 	put_task_struct(task);
1096 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1097 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1098 }
1099 
1100 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1101 					size_t count, loff_t *ppos)
1102 {
1103 	struct task_struct *task;
1104 	char buffer[PROC_NUMBUF];
1105 	unsigned long flags;
1106 	long oom_score_adj;
1107 	int err;
1108 
1109 	memset(buffer, 0, sizeof(buffer));
1110 	if (count > sizeof(buffer) - 1)
1111 		count = sizeof(buffer) - 1;
1112 	if (copy_from_user(buffer, buf, count))
1113 		return -EFAULT;
1114 
1115 	err = strict_strtol(strstrip(buffer), 0, &oom_score_adj);
1116 	if (err)
1117 		return -EINVAL;
1118 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1119 			oom_score_adj > OOM_SCORE_ADJ_MAX)
1120 		return -EINVAL;
1121 
1122 	task = get_proc_task(file->f_path.dentry->d_inode);
1123 	if (!task)
1124 		return -ESRCH;
1125 	if (!lock_task_sighand(task, &flags)) {
1126 		put_task_struct(task);
1127 		return -ESRCH;
1128 	}
1129 	if (oom_score_adj < task->signal->oom_score_adj &&
1130 			!capable(CAP_SYS_RESOURCE)) {
1131 		unlock_task_sighand(task, &flags);
1132 		put_task_struct(task);
1133 		return -EACCES;
1134 	}
1135 
1136 	task->signal->oom_score_adj = oom_score_adj;
1137 	/*
1138 	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1139 	 * always attainable.
1140 	 */
1141 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1142 		task->signal->oom_adj = OOM_DISABLE;
1143 	else
1144 		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1145 							OOM_SCORE_ADJ_MAX;
1146 	unlock_task_sighand(task, &flags);
1147 	put_task_struct(task);
1148 	return count;
1149 }
1150 
1151 static const struct file_operations proc_oom_score_adj_operations = {
1152 	.read		= oom_score_adj_read,
1153 	.write		= oom_score_adj_write,
1154 	.llseek		= default_llseek,
1155 };
1156 
1157 #ifdef CONFIG_AUDITSYSCALL
1158 #define TMPBUFLEN 21
1159 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1160 				  size_t count, loff_t *ppos)
1161 {
1162 	struct inode * inode = file->f_path.dentry->d_inode;
1163 	struct task_struct *task = get_proc_task(inode);
1164 	ssize_t length;
1165 	char tmpbuf[TMPBUFLEN];
1166 
1167 	if (!task)
1168 		return -ESRCH;
1169 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1170 				audit_get_loginuid(task));
1171 	put_task_struct(task);
1172 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1173 }
1174 
1175 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1176 				   size_t count, loff_t *ppos)
1177 {
1178 	struct inode * inode = file->f_path.dentry->d_inode;
1179 	char *page, *tmp;
1180 	ssize_t length;
1181 	uid_t loginuid;
1182 
1183 	if (!capable(CAP_AUDIT_CONTROL))
1184 		return -EPERM;
1185 
1186 	rcu_read_lock();
1187 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1188 		rcu_read_unlock();
1189 		return -EPERM;
1190 	}
1191 	rcu_read_unlock();
1192 
1193 	if (count >= PAGE_SIZE)
1194 		count = PAGE_SIZE - 1;
1195 
1196 	if (*ppos != 0) {
1197 		/* No partial writes. */
1198 		return -EINVAL;
1199 	}
1200 	page = (char*)__get_free_page(GFP_TEMPORARY);
1201 	if (!page)
1202 		return -ENOMEM;
1203 	length = -EFAULT;
1204 	if (copy_from_user(page, buf, count))
1205 		goto out_free_page;
1206 
1207 	page[count] = '\0';
1208 	loginuid = simple_strtoul(page, &tmp, 10);
1209 	if (tmp == page) {
1210 		length = -EINVAL;
1211 		goto out_free_page;
1212 
1213 	}
1214 	length = audit_set_loginuid(current, loginuid);
1215 	if (likely(length == 0))
1216 		length = count;
1217 
1218 out_free_page:
1219 	free_page((unsigned long) page);
1220 	return length;
1221 }
1222 
1223 static const struct file_operations proc_loginuid_operations = {
1224 	.read		= proc_loginuid_read,
1225 	.write		= proc_loginuid_write,
1226 	.llseek		= generic_file_llseek,
1227 };
1228 
1229 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1230 				  size_t count, loff_t *ppos)
1231 {
1232 	struct inode * inode = file->f_path.dentry->d_inode;
1233 	struct task_struct *task = get_proc_task(inode);
1234 	ssize_t length;
1235 	char tmpbuf[TMPBUFLEN];
1236 
1237 	if (!task)
1238 		return -ESRCH;
1239 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1240 				audit_get_sessionid(task));
1241 	put_task_struct(task);
1242 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1243 }
1244 
1245 static const struct file_operations proc_sessionid_operations = {
1246 	.read		= proc_sessionid_read,
1247 	.llseek		= generic_file_llseek,
1248 };
1249 #endif
1250 
1251 #ifdef CONFIG_FAULT_INJECTION
1252 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1253 				      size_t count, loff_t *ppos)
1254 {
1255 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1256 	char buffer[PROC_NUMBUF];
1257 	size_t len;
1258 	int make_it_fail;
1259 
1260 	if (!task)
1261 		return -ESRCH;
1262 	make_it_fail = task->make_it_fail;
1263 	put_task_struct(task);
1264 
1265 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1266 
1267 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1268 }
1269 
1270 static ssize_t proc_fault_inject_write(struct file * file,
1271 			const char __user * buf, size_t count, loff_t *ppos)
1272 {
1273 	struct task_struct *task;
1274 	char buffer[PROC_NUMBUF], *end;
1275 	int make_it_fail;
1276 
1277 	if (!capable(CAP_SYS_RESOURCE))
1278 		return -EPERM;
1279 	memset(buffer, 0, sizeof(buffer));
1280 	if (count > sizeof(buffer) - 1)
1281 		count = sizeof(buffer) - 1;
1282 	if (copy_from_user(buffer, buf, count))
1283 		return -EFAULT;
1284 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1285 	if (*end)
1286 		return -EINVAL;
1287 	task = get_proc_task(file->f_dentry->d_inode);
1288 	if (!task)
1289 		return -ESRCH;
1290 	task->make_it_fail = make_it_fail;
1291 	put_task_struct(task);
1292 
1293 	return count;
1294 }
1295 
1296 static const struct file_operations proc_fault_inject_operations = {
1297 	.read		= proc_fault_inject_read,
1298 	.write		= proc_fault_inject_write,
1299 	.llseek		= generic_file_llseek,
1300 };
1301 #endif
1302 
1303 
1304 #ifdef CONFIG_SCHED_DEBUG
1305 /*
1306  * Print out various scheduling related per-task fields:
1307  */
1308 static int sched_show(struct seq_file *m, void *v)
1309 {
1310 	struct inode *inode = m->private;
1311 	struct task_struct *p;
1312 
1313 	p = get_proc_task(inode);
1314 	if (!p)
1315 		return -ESRCH;
1316 	proc_sched_show_task(p, m);
1317 
1318 	put_task_struct(p);
1319 
1320 	return 0;
1321 }
1322 
1323 static ssize_t
1324 sched_write(struct file *file, const char __user *buf,
1325 	    size_t count, loff_t *offset)
1326 {
1327 	struct inode *inode = file->f_path.dentry->d_inode;
1328 	struct task_struct *p;
1329 
1330 	p = get_proc_task(inode);
1331 	if (!p)
1332 		return -ESRCH;
1333 	proc_sched_set_task(p);
1334 
1335 	put_task_struct(p);
1336 
1337 	return count;
1338 }
1339 
1340 static int sched_open(struct inode *inode, struct file *filp)
1341 {
1342 	int ret;
1343 
1344 	ret = single_open(filp, sched_show, NULL);
1345 	if (!ret) {
1346 		struct seq_file *m = filp->private_data;
1347 
1348 		m->private = inode;
1349 	}
1350 	return ret;
1351 }
1352 
1353 static const struct file_operations proc_pid_sched_operations = {
1354 	.open		= sched_open,
1355 	.read		= seq_read,
1356 	.write		= sched_write,
1357 	.llseek		= seq_lseek,
1358 	.release	= single_release,
1359 };
1360 
1361 #endif
1362 
1363 static ssize_t comm_write(struct file *file, const char __user *buf,
1364 				size_t count, loff_t *offset)
1365 {
1366 	struct inode *inode = file->f_path.dentry->d_inode;
1367 	struct task_struct *p;
1368 	char buffer[TASK_COMM_LEN];
1369 
1370 	memset(buffer, 0, sizeof(buffer));
1371 	if (count > sizeof(buffer) - 1)
1372 		count = sizeof(buffer) - 1;
1373 	if (copy_from_user(buffer, buf, count))
1374 		return -EFAULT;
1375 
1376 	p = get_proc_task(inode);
1377 	if (!p)
1378 		return -ESRCH;
1379 
1380 	if (same_thread_group(current, p))
1381 		set_task_comm(p, buffer);
1382 	else
1383 		count = -EINVAL;
1384 
1385 	put_task_struct(p);
1386 
1387 	return count;
1388 }
1389 
1390 static int comm_show(struct seq_file *m, void *v)
1391 {
1392 	struct inode *inode = m->private;
1393 	struct task_struct *p;
1394 
1395 	p = get_proc_task(inode);
1396 	if (!p)
1397 		return -ESRCH;
1398 
1399 	task_lock(p);
1400 	seq_printf(m, "%s\n", p->comm);
1401 	task_unlock(p);
1402 
1403 	put_task_struct(p);
1404 
1405 	return 0;
1406 }
1407 
1408 static int comm_open(struct inode *inode, struct file *filp)
1409 {
1410 	int ret;
1411 
1412 	ret = single_open(filp, comm_show, NULL);
1413 	if (!ret) {
1414 		struct seq_file *m = filp->private_data;
1415 
1416 		m->private = inode;
1417 	}
1418 	return ret;
1419 }
1420 
1421 static const struct file_operations proc_pid_set_comm_operations = {
1422 	.open		= comm_open,
1423 	.read		= seq_read,
1424 	.write		= comm_write,
1425 	.llseek		= seq_lseek,
1426 	.release	= single_release,
1427 };
1428 
1429 /*
1430  * We added or removed a vma mapping the executable. The vmas are only mapped
1431  * during exec and are not mapped with the mmap system call.
1432  * Callers must hold down_write() on the mm's mmap_sem for these
1433  */
1434 void added_exe_file_vma(struct mm_struct *mm)
1435 {
1436 	mm->num_exe_file_vmas++;
1437 }
1438 
1439 void removed_exe_file_vma(struct mm_struct *mm)
1440 {
1441 	mm->num_exe_file_vmas--;
1442 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1443 		fput(mm->exe_file);
1444 		mm->exe_file = NULL;
1445 	}
1446 
1447 }
1448 
1449 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1450 {
1451 	if (new_exe_file)
1452 		get_file(new_exe_file);
1453 	if (mm->exe_file)
1454 		fput(mm->exe_file);
1455 	mm->exe_file = new_exe_file;
1456 	mm->num_exe_file_vmas = 0;
1457 }
1458 
1459 struct file *get_mm_exe_file(struct mm_struct *mm)
1460 {
1461 	struct file *exe_file;
1462 
1463 	/* We need mmap_sem to protect against races with removal of
1464 	 * VM_EXECUTABLE vmas */
1465 	down_read(&mm->mmap_sem);
1466 	exe_file = mm->exe_file;
1467 	if (exe_file)
1468 		get_file(exe_file);
1469 	up_read(&mm->mmap_sem);
1470 	return exe_file;
1471 }
1472 
1473 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1474 {
1475 	/* It's safe to write the exe_file pointer without exe_file_lock because
1476 	 * this is called during fork when the task is not yet in /proc */
1477 	newmm->exe_file = get_mm_exe_file(oldmm);
1478 }
1479 
1480 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1481 {
1482 	struct task_struct *task;
1483 	struct mm_struct *mm;
1484 	struct file *exe_file;
1485 
1486 	task = get_proc_task(inode);
1487 	if (!task)
1488 		return -ENOENT;
1489 	mm = get_task_mm(task);
1490 	put_task_struct(task);
1491 	if (!mm)
1492 		return -ENOENT;
1493 	exe_file = get_mm_exe_file(mm);
1494 	mmput(mm);
1495 	if (exe_file) {
1496 		*exe_path = exe_file->f_path;
1497 		path_get(&exe_file->f_path);
1498 		fput(exe_file);
1499 		return 0;
1500 	} else
1501 		return -ENOENT;
1502 }
1503 
1504 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1505 {
1506 	struct inode *inode = dentry->d_inode;
1507 	int error = -EACCES;
1508 
1509 	/* We don't need a base pointer in the /proc filesystem */
1510 	path_put(&nd->path);
1511 
1512 	/* Are we allowed to snoop on the tasks file descriptors? */
1513 	if (!proc_fd_access_allowed(inode))
1514 		goto out;
1515 
1516 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1517 out:
1518 	return ERR_PTR(error);
1519 }
1520 
1521 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1522 {
1523 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1524 	char *pathname;
1525 	int len;
1526 
1527 	if (!tmp)
1528 		return -ENOMEM;
1529 
1530 	pathname = d_path_with_unreachable(path, tmp, PAGE_SIZE);
1531 	len = PTR_ERR(pathname);
1532 	if (IS_ERR(pathname))
1533 		goto out;
1534 	len = tmp + PAGE_SIZE - 1 - pathname;
1535 
1536 	if (len > buflen)
1537 		len = buflen;
1538 	if (copy_to_user(buffer, pathname, len))
1539 		len = -EFAULT;
1540  out:
1541 	free_page((unsigned long)tmp);
1542 	return len;
1543 }
1544 
1545 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1546 {
1547 	int error = -EACCES;
1548 	struct inode *inode = dentry->d_inode;
1549 	struct path path;
1550 
1551 	/* Are we allowed to snoop on the tasks file descriptors? */
1552 	if (!proc_fd_access_allowed(inode))
1553 		goto out;
1554 
1555 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1556 	if (error)
1557 		goto out;
1558 
1559 	error = do_proc_readlink(&path, buffer, buflen);
1560 	path_put(&path);
1561 out:
1562 	return error;
1563 }
1564 
1565 static const struct inode_operations proc_pid_link_inode_operations = {
1566 	.readlink	= proc_pid_readlink,
1567 	.follow_link	= proc_pid_follow_link,
1568 	.setattr	= proc_setattr,
1569 };
1570 
1571 
1572 /* building an inode */
1573 
1574 static int task_dumpable(struct task_struct *task)
1575 {
1576 	int dumpable = 0;
1577 	struct mm_struct *mm;
1578 
1579 	task_lock(task);
1580 	mm = task->mm;
1581 	if (mm)
1582 		dumpable = get_dumpable(mm);
1583 	task_unlock(task);
1584 	if(dumpable == 1)
1585 		return 1;
1586 	return 0;
1587 }
1588 
1589 
1590 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1591 {
1592 	struct inode * inode;
1593 	struct proc_inode *ei;
1594 	const struct cred *cred;
1595 
1596 	/* We need a new inode */
1597 
1598 	inode = new_inode(sb);
1599 	if (!inode)
1600 		goto out;
1601 
1602 	/* Common stuff */
1603 	ei = PROC_I(inode);
1604 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1605 	inode->i_op = &proc_def_inode_operations;
1606 
1607 	/*
1608 	 * grab the reference to task.
1609 	 */
1610 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1611 	if (!ei->pid)
1612 		goto out_unlock;
1613 
1614 	if (task_dumpable(task)) {
1615 		rcu_read_lock();
1616 		cred = __task_cred(task);
1617 		inode->i_uid = cred->euid;
1618 		inode->i_gid = cred->egid;
1619 		rcu_read_unlock();
1620 	}
1621 	security_task_to_inode(task, inode);
1622 
1623 out:
1624 	return inode;
1625 
1626 out_unlock:
1627 	iput(inode);
1628 	return NULL;
1629 }
1630 
1631 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1632 {
1633 	struct inode *inode = dentry->d_inode;
1634 	struct task_struct *task;
1635 	const struct cred *cred;
1636 
1637 	generic_fillattr(inode, stat);
1638 
1639 	rcu_read_lock();
1640 	stat->uid = 0;
1641 	stat->gid = 0;
1642 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1643 	if (task) {
1644 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1645 		    task_dumpable(task)) {
1646 			cred = __task_cred(task);
1647 			stat->uid = cred->euid;
1648 			stat->gid = cred->egid;
1649 		}
1650 	}
1651 	rcu_read_unlock();
1652 	return 0;
1653 }
1654 
1655 /* dentry stuff */
1656 
1657 /*
1658  *	Exceptional case: normally we are not allowed to unhash a busy
1659  * directory. In this case, however, we can do it - no aliasing problems
1660  * due to the way we treat inodes.
1661  *
1662  * Rewrite the inode's ownerships here because the owning task may have
1663  * performed a setuid(), etc.
1664  *
1665  * Before the /proc/pid/status file was created the only way to read
1666  * the effective uid of a /process was to stat /proc/pid.  Reading
1667  * /proc/pid/status is slow enough that procps and other packages
1668  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1669  * made this apply to all per process world readable and executable
1670  * directories.
1671  */
1672 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1673 {
1674 	struct inode *inode = dentry->d_inode;
1675 	struct task_struct *task = get_proc_task(inode);
1676 	const struct cred *cred;
1677 
1678 	if (task) {
1679 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1680 		    task_dumpable(task)) {
1681 			rcu_read_lock();
1682 			cred = __task_cred(task);
1683 			inode->i_uid = cred->euid;
1684 			inode->i_gid = cred->egid;
1685 			rcu_read_unlock();
1686 		} else {
1687 			inode->i_uid = 0;
1688 			inode->i_gid = 0;
1689 		}
1690 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1691 		security_task_to_inode(task, inode);
1692 		put_task_struct(task);
1693 		return 1;
1694 	}
1695 	d_drop(dentry);
1696 	return 0;
1697 }
1698 
1699 static int pid_delete_dentry(struct dentry * dentry)
1700 {
1701 	/* Is the task we represent dead?
1702 	 * If so, then don't put the dentry on the lru list,
1703 	 * kill it immediately.
1704 	 */
1705 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1706 }
1707 
1708 static const struct dentry_operations pid_dentry_operations =
1709 {
1710 	.d_revalidate	= pid_revalidate,
1711 	.d_delete	= pid_delete_dentry,
1712 };
1713 
1714 /* Lookups */
1715 
1716 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1717 				struct task_struct *, const void *);
1718 
1719 /*
1720  * Fill a directory entry.
1721  *
1722  * If possible create the dcache entry and derive our inode number and
1723  * file type from dcache entry.
1724  *
1725  * Since all of the proc inode numbers are dynamically generated, the inode
1726  * numbers do not exist until the inode is cache.  This means creating the
1727  * the dcache entry in readdir is necessary to keep the inode numbers
1728  * reported by readdir in sync with the inode numbers reported
1729  * by stat.
1730  */
1731 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1732 	char *name, int len,
1733 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1734 {
1735 	struct dentry *child, *dir = filp->f_path.dentry;
1736 	struct inode *inode;
1737 	struct qstr qname;
1738 	ino_t ino = 0;
1739 	unsigned type = DT_UNKNOWN;
1740 
1741 	qname.name = name;
1742 	qname.len  = len;
1743 	qname.hash = full_name_hash(name, len);
1744 
1745 	child = d_lookup(dir, &qname);
1746 	if (!child) {
1747 		struct dentry *new;
1748 		new = d_alloc(dir, &qname);
1749 		if (new) {
1750 			child = instantiate(dir->d_inode, new, task, ptr);
1751 			if (child)
1752 				dput(new);
1753 			else
1754 				child = new;
1755 		}
1756 	}
1757 	if (!child || IS_ERR(child) || !child->d_inode)
1758 		goto end_instantiate;
1759 	inode = child->d_inode;
1760 	if (inode) {
1761 		ino = inode->i_ino;
1762 		type = inode->i_mode >> 12;
1763 	}
1764 	dput(child);
1765 end_instantiate:
1766 	if (!ino)
1767 		ino = find_inode_number(dir, &qname);
1768 	if (!ino)
1769 		ino = 1;
1770 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1771 }
1772 
1773 static unsigned name_to_int(struct dentry *dentry)
1774 {
1775 	const char *name = dentry->d_name.name;
1776 	int len = dentry->d_name.len;
1777 	unsigned n = 0;
1778 
1779 	if (len > 1 && *name == '0')
1780 		goto out;
1781 	while (len-- > 0) {
1782 		unsigned c = *name++ - '0';
1783 		if (c > 9)
1784 			goto out;
1785 		if (n >= (~0U-9)/10)
1786 			goto out;
1787 		n *= 10;
1788 		n += c;
1789 	}
1790 	return n;
1791 out:
1792 	return ~0U;
1793 }
1794 
1795 #define PROC_FDINFO_MAX 64
1796 
1797 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1798 {
1799 	struct task_struct *task = get_proc_task(inode);
1800 	struct files_struct *files = NULL;
1801 	struct file *file;
1802 	int fd = proc_fd(inode);
1803 
1804 	if (task) {
1805 		files = get_files_struct(task);
1806 		put_task_struct(task);
1807 	}
1808 	if (files) {
1809 		/*
1810 		 * We are not taking a ref to the file structure, so we must
1811 		 * hold ->file_lock.
1812 		 */
1813 		spin_lock(&files->file_lock);
1814 		file = fcheck_files(files, fd);
1815 		if (file) {
1816 			if (path) {
1817 				*path = file->f_path;
1818 				path_get(&file->f_path);
1819 			}
1820 			if (info)
1821 				snprintf(info, PROC_FDINFO_MAX,
1822 					 "pos:\t%lli\n"
1823 					 "flags:\t0%o\n",
1824 					 (long long) file->f_pos,
1825 					 file->f_flags);
1826 			spin_unlock(&files->file_lock);
1827 			put_files_struct(files);
1828 			return 0;
1829 		}
1830 		spin_unlock(&files->file_lock);
1831 		put_files_struct(files);
1832 	}
1833 	return -ENOENT;
1834 }
1835 
1836 static int proc_fd_link(struct inode *inode, struct path *path)
1837 {
1838 	return proc_fd_info(inode, path, NULL);
1839 }
1840 
1841 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1842 {
1843 	struct inode *inode = dentry->d_inode;
1844 	struct task_struct *task = get_proc_task(inode);
1845 	int fd = proc_fd(inode);
1846 	struct files_struct *files;
1847 	const struct cred *cred;
1848 
1849 	if (task) {
1850 		files = get_files_struct(task);
1851 		if (files) {
1852 			rcu_read_lock();
1853 			if (fcheck_files(files, fd)) {
1854 				rcu_read_unlock();
1855 				put_files_struct(files);
1856 				if (task_dumpable(task)) {
1857 					rcu_read_lock();
1858 					cred = __task_cred(task);
1859 					inode->i_uid = cred->euid;
1860 					inode->i_gid = cred->egid;
1861 					rcu_read_unlock();
1862 				} else {
1863 					inode->i_uid = 0;
1864 					inode->i_gid = 0;
1865 				}
1866 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1867 				security_task_to_inode(task, inode);
1868 				put_task_struct(task);
1869 				return 1;
1870 			}
1871 			rcu_read_unlock();
1872 			put_files_struct(files);
1873 		}
1874 		put_task_struct(task);
1875 	}
1876 	d_drop(dentry);
1877 	return 0;
1878 }
1879 
1880 static const struct dentry_operations tid_fd_dentry_operations =
1881 {
1882 	.d_revalidate	= tid_fd_revalidate,
1883 	.d_delete	= pid_delete_dentry,
1884 };
1885 
1886 static struct dentry *proc_fd_instantiate(struct inode *dir,
1887 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1888 {
1889 	unsigned fd = *(const unsigned *)ptr;
1890 	struct file *file;
1891 	struct files_struct *files;
1892  	struct inode *inode;
1893  	struct proc_inode *ei;
1894 	struct dentry *error = ERR_PTR(-ENOENT);
1895 
1896 	inode = proc_pid_make_inode(dir->i_sb, task);
1897 	if (!inode)
1898 		goto out;
1899 	ei = PROC_I(inode);
1900 	ei->fd = fd;
1901 	files = get_files_struct(task);
1902 	if (!files)
1903 		goto out_iput;
1904 	inode->i_mode = S_IFLNK;
1905 
1906 	/*
1907 	 * We are not taking a ref to the file structure, so we must
1908 	 * hold ->file_lock.
1909 	 */
1910 	spin_lock(&files->file_lock);
1911 	file = fcheck_files(files, fd);
1912 	if (!file)
1913 		goto out_unlock;
1914 	if (file->f_mode & FMODE_READ)
1915 		inode->i_mode |= S_IRUSR | S_IXUSR;
1916 	if (file->f_mode & FMODE_WRITE)
1917 		inode->i_mode |= S_IWUSR | S_IXUSR;
1918 	spin_unlock(&files->file_lock);
1919 	put_files_struct(files);
1920 
1921 	inode->i_op = &proc_pid_link_inode_operations;
1922 	inode->i_size = 64;
1923 	ei->op.proc_get_link = proc_fd_link;
1924 	dentry->d_op = &tid_fd_dentry_operations;
1925 	d_add(dentry, inode);
1926 	/* Close the race of the process dying before we return the dentry */
1927 	if (tid_fd_revalidate(dentry, NULL))
1928 		error = NULL;
1929 
1930  out:
1931 	return error;
1932 out_unlock:
1933 	spin_unlock(&files->file_lock);
1934 	put_files_struct(files);
1935 out_iput:
1936 	iput(inode);
1937 	goto out;
1938 }
1939 
1940 static struct dentry *proc_lookupfd_common(struct inode *dir,
1941 					   struct dentry *dentry,
1942 					   instantiate_t instantiate)
1943 {
1944 	struct task_struct *task = get_proc_task(dir);
1945 	unsigned fd = name_to_int(dentry);
1946 	struct dentry *result = ERR_PTR(-ENOENT);
1947 
1948 	if (!task)
1949 		goto out_no_task;
1950 	if (fd == ~0U)
1951 		goto out;
1952 
1953 	result = instantiate(dir, dentry, task, &fd);
1954 out:
1955 	put_task_struct(task);
1956 out_no_task:
1957 	return result;
1958 }
1959 
1960 static int proc_readfd_common(struct file * filp, void * dirent,
1961 			      filldir_t filldir, instantiate_t instantiate)
1962 {
1963 	struct dentry *dentry = filp->f_path.dentry;
1964 	struct inode *inode = dentry->d_inode;
1965 	struct task_struct *p = get_proc_task(inode);
1966 	unsigned int fd, ino;
1967 	int retval;
1968 	struct files_struct * files;
1969 
1970 	retval = -ENOENT;
1971 	if (!p)
1972 		goto out_no_task;
1973 	retval = 0;
1974 
1975 	fd = filp->f_pos;
1976 	switch (fd) {
1977 		case 0:
1978 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1979 				goto out;
1980 			filp->f_pos++;
1981 		case 1:
1982 			ino = parent_ino(dentry);
1983 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1984 				goto out;
1985 			filp->f_pos++;
1986 		default:
1987 			files = get_files_struct(p);
1988 			if (!files)
1989 				goto out;
1990 			rcu_read_lock();
1991 			for (fd = filp->f_pos-2;
1992 			     fd < files_fdtable(files)->max_fds;
1993 			     fd++, filp->f_pos++) {
1994 				char name[PROC_NUMBUF];
1995 				int len;
1996 
1997 				if (!fcheck_files(files, fd))
1998 					continue;
1999 				rcu_read_unlock();
2000 
2001 				len = snprintf(name, sizeof(name), "%d", fd);
2002 				if (proc_fill_cache(filp, dirent, filldir,
2003 						    name, len, instantiate,
2004 						    p, &fd) < 0) {
2005 					rcu_read_lock();
2006 					break;
2007 				}
2008 				rcu_read_lock();
2009 			}
2010 			rcu_read_unlock();
2011 			put_files_struct(files);
2012 	}
2013 out:
2014 	put_task_struct(p);
2015 out_no_task:
2016 	return retval;
2017 }
2018 
2019 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2020 				    struct nameidata *nd)
2021 {
2022 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2023 }
2024 
2025 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2026 {
2027 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2028 }
2029 
2030 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2031 				      size_t len, loff_t *ppos)
2032 {
2033 	char tmp[PROC_FDINFO_MAX];
2034 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2035 	if (!err)
2036 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2037 	return err;
2038 }
2039 
2040 static const struct file_operations proc_fdinfo_file_operations = {
2041 	.open           = nonseekable_open,
2042 	.read		= proc_fdinfo_read,
2043 	.llseek		= no_llseek,
2044 };
2045 
2046 static const struct file_operations proc_fd_operations = {
2047 	.read		= generic_read_dir,
2048 	.readdir	= proc_readfd,
2049 	.llseek		= default_llseek,
2050 };
2051 
2052 /*
2053  * /proc/pid/fd needs a special permission handler so that a process can still
2054  * access /proc/self/fd after it has executed a setuid().
2055  */
2056 static int proc_fd_permission(struct inode *inode, int mask)
2057 {
2058 	int rv;
2059 
2060 	rv = generic_permission(inode, mask, NULL);
2061 	if (rv == 0)
2062 		return 0;
2063 	if (task_pid(current) == proc_pid(inode))
2064 		rv = 0;
2065 	return rv;
2066 }
2067 
2068 /*
2069  * proc directories can do almost nothing..
2070  */
2071 static const struct inode_operations proc_fd_inode_operations = {
2072 	.lookup		= proc_lookupfd,
2073 	.permission	= proc_fd_permission,
2074 	.setattr	= proc_setattr,
2075 };
2076 
2077 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2078 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2079 {
2080 	unsigned fd = *(unsigned *)ptr;
2081  	struct inode *inode;
2082  	struct proc_inode *ei;
2083 	struct dentry *error = ERR_PTR(-ENOENT);
2084 
2085 	inode = proc_pid_make_inode(dir->i_sb, task);
2086 	if (!inode)
2087 		goto out;
2088 	ei = PROC_I(inode);
2089 	ei->fd = fd;
2090 	inode->i_mode = S_IFREG | S_IRUSR;
2091 	inode->i_fop = &proc_fdinfo_file_operations;
2092 	dentry->d_op = &tid_fd_dentry_operations;
2093 	d_add(dentry, inode);
2094 	/* Close the race of the process dying before we return the dentry */
2095 	if (tid_fd_revalidate(dentry, NULL))
2096 		error = NULL;
2097 
2098  out:
2099 	return error;
2100 }
2101 
2102 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2103 					struct dentry *dentry,
2104 					struct nameidata *nd)
2105 {
2106 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2107 }
2108 
2109 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2110 {
2111 	return proc_readfd_common(filp, dirent, filldir,
2112 				  proc_fdinfo_instantiate);
2113 }
2114 
2115 static const struct file_operations proc_fdinfo_operations = {
2116 	.read		= generic_read_dir,
2117 	.readdir	= proc_readfdinfo,
2118 	.llseek		= default_llseek,
2119 };
2120 
2121 /*
2122  * proc directories can do almost nothing..
2123  */
2124 static const struct inode_operations proc_fdinfo_inode_operations = {
2125 	.lookup		= proc_lookupfdinfo,
2126 	.setattr	= proc_setattr,
2127 };
2128 
2129 
2130 static struct dentry *proc_pident_instantiate(struct inode *dir,
2131 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2132 {
2133 	const struct pid_entry *p = ptr;
2134 	struct inode *inode;
2135 	struct proc_inode *ei;
2136 	struct dentry *error = ERR_PTR(-ENOENT);
2137 
2138 	inode = proc_pid_make_inode(dir->i_sb, task);
2139 	if (!inode)
2140 		goto out;
2141 
2142 	ei = PROC_I(inode);
2143 	inode->i_mode = p->mode;
2144 	if (S_ISDIR(inode->i_mode))
2145 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2146 	if (p->iop)
2147 		inode->i_op = p->iop;
2148 	if (p->fop)
2149 		inode->i_fop = p->fop;
2150 	ei->op = p->op;
2151 	dentry->d_op = &pid_dentry_operations;
2152 	d_add(dentry, inode);
2153 	/* Close the race of the process dying before we return the dentry */
2154 	if (pid_revalidate(dentry, NULL))
2155 		error = NULL;
2156 out:
2157 	return error;
2158 }
2159 
2160 static struct dentry *proc_pident_lookup(struct inode *dir,
2161 					 struct dentry *dentry,
2162 					 const struct pid_entry *ents,
2163 					 unsigned int nents)
2164 {
2165 	struct dentry *error;
2166 	struct task_struct *task = get_proc_task(dir);
2167 	const struct pid_entry *p, *last;
2168 
2169 	error = ERR_PTR(-ENOENT);
2170 
2171 	if (!task)
2172 		goto out_no_task;
2173 
2174 	/*
2175 	 * Yes, it does not scale. And it should not. Don't add
2176 	 * new entries into /proc/<tgid>/ without very good reasons.
2177 	 */
2178 	last = &ents[nents - 1];
2179 	for (p = ents; p <= last; p++) {
2180 		if (p->len != dentry->d_name.len)
2181 			continue;
2182 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2183 			break;
2184 	}
2185 	if (p > last)
2186 		goto out;
2187 
2188 	error = proc_pident_instantiate(dir, dentry, task, p);
2189 out:
2190 	put_task_struct(task);
2191 out_no_task:
2192 	return error;
2193 }
2194 
2195 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2196 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2197 {
2198 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2199 				proc_pident_instantiate, task, p);
2200 }
2201 
2202 static int proc_pident_readdir(struct file *filp,
2203 		void *dirent, filldir_t filldir,
2204 		const struct pid_entry *ents, unsigned int nents)
2205 {
2206 	int i;
2207 	struct dentry *dentry = filp->f_path.dentry;
2208 	struct inode *inode = dentry->d_inode;
2209 	struct task_struct *task = get_proc_task(inode);
2210 	const struct pid_entry *p, *last;
2211 	ino_t ino;
2212 	int ret;
2213 
2214 	ret = -ENOENT;
2215 	if (!task)
2216 		goto out_no_task;
2217 
2218 	ret = 0;
2219 	i = filp->f_pos;
2220 	switch (i) {
2221 	case 0:
2222 		ino = inode->i_ino;
2223 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2224 			goto out;
2225 		i++;
2226 		filp->f_pos++;
2227 		/* fall through */
2228 	case 1:
2229 		ino = parent_ino(dentry);
2230 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2231 			goto out;
2232 		i++;
2233 		filp->f_pos++;
2234 		/* fall through */
2235 	default:
2236 		i -= 2;
2237 		if (i >= nents) {
2238 			ret = 1;
2239 			goto out;
2240 		}
2241 		p = ents + i;
2242 		last = &ents[nents - 1];
2243 		while (p <= last) {
2244 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2245 				goto out;
2246 			filp->f_pos++;
2247 			p++;
2248 		}
2249 	}
2250 
2251 	ret = 1;
2252 out:
2253 	put_task_struct(task);
2254 out_no_task:
2255 	return ret;
2256 }
2257 
2258 #ifdef CONFIG_SECURITY
2259 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2260 				  size_t count, loff_t *ppos)
2261 {
2262 	struct inode * inode = file->f_path.dentry->d_inode;
2263 	char *p = NULL;
2264 	ssize_t length;
2265 	struct task_struct *task = get_proc_task(inode);
2266 
2267 	if (!task)
2268 		return -ESRCH;
2269 
2270 	length = security_getprocattr(task,
2271 				      (char*)file->f_path.dentry->d_name.name,
2272 				      &p);
2273 	put_task_struct(task);
2274 	if (length > 0)
2275 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2276 	kfree(p);
2277 	return length;
2278 }
2279 
2280 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2281 				   size_t count, loff_t *ppos)
2282 {
2283 	struct inode * inode = file->f_path.dentry->d_inode;
2284 	char *page;
2285 	ssize_t length;
2286 	struct task_struct *task = get_proc_task(inode);
2287 
2288 	length = -ESRCH;
2289 	if (!task)
2290 		goto out_no_task;
2291 	if (count > PAGE_SIZE)
2292 		count = PAGE_SIZE;
2293 
2294 	/* No partial writes. */
2295 	length = -EINVAL;
2296 	if (*ppos != 0)
2297 		goto out;
2298 
2299 	length = -ENOMEM;
2300 	page = (char*)__get_free_page(GFP_TEMPORARY);
2301 	if (!page)
2302 		goto out;
2303 
2304 	length = -EFAULT;
2305 	if (copy_from_user(page, buf, count))
2306 		goto out_free;
2307 
2308 	/* Guard against adverse ptrace interaction */
2309 	length = mutex_lock_interruptible(&task->cred_guard_mutex);
2310 	if (length < 0)
2311 		goto out_free;
2312 
2313 	length = security_setprocattr(task,
2314 				      (char*)file->f_path.dentry->d_name.name,
2315 				      (void*)page, count);
2316 	mutex_unlock(&task->cred_guard_mutex);
2317 out_free:
2318 	free_page((unsigned long) page);
2319 out:
2320 	put_task_struct(task);
2321 out_no_task:
2322 	return length;
2323 }
2324 
2325 static const struct file_operations proc_pid_attr_operations = {
2326 	.read		= proc_pid_attr_read,
2327 	.write		= proc_pid_attr_write,
2328 	.llseek		= generic_file_llseek,
2329 };
2330 
2331 static const struct pid_entry attr_dir_stuff[] = {
2332 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2333 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2334 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2335 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2336 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2337 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2338 };
2339 
2340 static int proc_attr_dir_readdir(struct file * filp,
2341 			     void * dirent, filldir_t filldir)
2342 {
2343 	return proc_pident_readdir(filp,dirent,filldir,
2344 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2345 }
2346 
2347 static const struct file_operations proc_attr_dir_operations = {
2348 	.read		= generic_read_dir,
2349 	.readdir	= proc_attr_dir_readdir,
2350 	.llseek		= default_llseek,
2351 };
2352 
2353 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2354 				struct dentry *dentry, struct nameidata *nd)
2355 {
2356 	return proc_pident_lookup(dir, dentry,
2357 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2358 }
2359 
2360 static const struct inode_operations proc_attr_dir_inode_operations = {
2361 	.lookup		= proc_attr_dir_lookup,
2362 	.getattr	= pid_getattr,
2363 	.setattr	= proc_setattr,
2364 };
2365 
2366 #endif
2367 
2368 #ifdef CONFIG_ELF_CORE
2369 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2370 					 size_t count, loff_t *ppos)
2371 {
2372 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2373 	struct mm_struct *mm;
2374 	char buffer[PROC_NUMBUF];
2375 	size_t len;
2376 	int ret;
2377 
2378 	if (!task)
2379 		return -ESRCH;
2380 
2381 	ret = 0;
2382 	mm = get_task_mm(task);
2383 	if (mm) {
2384 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2385 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2386 				MMF_DUMP_FILTER_SHIFT));
2387 		mmput(mm);
2388 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2389 	}
2390 
2391 	put_task_struct(task);
2392 
2393 	return ret;
2394 }
2395 
2396 static ssize_t proc_coredump_filter_write(struct file *file,
2397 					  const char __user *buf,
2398 					  size_t count,
2399 					  loff_t *ppos)
2400 {
2401 	struct task_struct *task;
2402 	struct mm_struct *mm;
2403 	char buffer[PROC_NUMBUF], *end;
2404 	unsigned int val;
2405 	int ret;
2406 	int i;
2407 	unsigned long mask;
2408 
2409 	ret = -EFAULT;
2410 	memset(buffer, 0, sizeof(buffer));
2411 	if (count > sizeof(buffer) - 1)
2412 		count = sizeof(buffer) - 1;
2413 	if (copy_from_user(buffer, buf, count))
2414 		goto out_no_task;
2415 
2416 	ret = -EINVAL;
2417 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2418 	if (*end == '\n')
2419 		end++;
2420 	if (end - buffer == 0)
2421 		goto out_no_task;
2422 
2423 	ret = -ESRCH;
2424 	task = get_proc_task(file->f_dentry->d_inode);
2425 	if (!task)
2426 		goto out_no_task;
2427 
2428 	ret = end - buffer;
2429 	mm = get_task_mm(task);
2430 	if (!mm)
2431 		goto out_no_mm;
2432 
2433 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2434 		if (val & mask)
2435 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2436 		else
2437 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2438 	}
2439 
2440 	mmput(mm);
2441  out_no_mm:
2442 	put_task_struct(task);
2443  out_no_task:
2444 	return ret;
2445 }
2446 
2447 static const struct file_operations proc_coredump_filter_operations = {
2448 	.read		= proc_coredump_filter_read,
2449 	.write		= proc_coredump_filter_write,
2450 	.llseek		= generic_file_llseek,
2451 };
2452 #endif
2453 
2454 /*
2455  * /proc/self:
2456  */
2457 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2458 			      int buflen)
2459 {
2460 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2461 	pid_t tgid = task_tgid_nr_ns(current, ns);
2462 	char tmp[PROC_NUMBUF];
2463 	if (!tgid)
2464 		return -ENOENT;
2465 	sprintf(tmp, "%d", tgid);
2466 	return vfs_readlink(dentry,buffer,buflen,tmp);
2467 }
2468 
2469 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2470 {
2471 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2472 	pid_t tgid = task_tgid_nr_ns(current, ns);
2473 	char *name = ERR_PTR(-ENOENT);
2474 	if (tgid) {
2475 		name = __getname();
2476 		if (!name)
2477 			name = ERR_PTR(-ENOMEM);
2478 		else
2479 			sprintf(name, "%d", tgid);
2480 	}
2481 	nd_set_link(nd, name);
2482 	return NULL;
2483 }
2484 
2485 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2486 				void *cookie)
2487 {
2488 	char *s = nd_get_link(nd);
2489 	if (!IS_ERR(s))
2490 		__putname(s);
2491 }
2492 
2493 static const struct inode_operations proc_self_inode_operations = {
2494 	.readlink	= proc_self_readlink,
2495 	.follow_link	= proc_self_follow_link,
2496 	.put_link	= proc_self_put_link,
2497 };
2498 
2499 /*
2500  * proc base
2501  *
2502  * These are the directory entries in the root directory of /proc
2503  * that properly belong to the /proc filesystem, as they describe
2504  * describe something that is process related.
2505  */
2506 static const struct pid_entry proc_base_stuff[] = {
2507 	NOD("self", S_IFLNK|S_IRWXUGO,
2508 		&proc_self_inode_operations, NULL, {}),
2509 };
2510 
2511 /*
2512  *	Exceptional case: normally we are not allowed to unhash a busy
2513  * directory. In this case, however, we can do it - no aliasing problems
2514  * due to the way we treat inodes.
2515  */
2516 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2517 {
2518 	struct inode *inode = dentry->d_inode;
2519 	struct task_struct *task = get_proc_task(inode);
2520 	if (task) {
2521 		put_task_struct(task);
2522 		return 1;
2523 	}
2524 	d_drop(dentry);
2525 	return 0;
2526 }
2527 
2528 static const struct dentry_operations proc_base_dentry_operations =
2529 {
2530 	.d_revalidate	= proc_base_revalidate,
2531 	.d_delete	= pid_delete_dentry,
2532 };
2533 
2534 static struct dentry *proc_base_instantiate(struct inode *dir,
2535 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2536 {
2537 	const struct pid_entry *p = ptr;
2538 	struct inode *inode;
2539 	struct proc_inode *ei;
2540 	struct dentry *error;
2541 
2542 	/* Allocate the inode */
2543 	error = ERR_PTR(-ENOMEM);
2544 	inode = new_inode(dir->i_sb);
2545 	if (!inode)
2546 		goto out;
2547 
2548 	/* Initialize the inode */
2549 	ei = PROC_I(inode);
2550 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2551 
2552 	/*
2553 	 * grab the reference to the task.
2554 	 */
2555 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2556 	if (!ei->pid)
2557 		goto out_iput;
2558 
2559 	inode->i_mode = p->mode;
2560 	if (S_ISDIR(inode->i_mode))
2561 		inode->i_nlink = 2;
2562 	if (S_ISLNK(inode->i_mode))
2563 		inode->i_size = 64;
2564 	if (p->iop)
2565 		inode->i_op = p->iop;
2566 	if (p->fop)
2567 		inode->i_fop = p->fop;
2568 	ei->op = p->op;
2569 	dentry->d_op = &proc_base_dentry_operations;
2570 	d_add(dentry, inode);
2571 	error = NULL;
2572 out:
2573 	return error;
2574 out_iput:
2575 	iput(inode);
2576 	goto out;
2577 }
2578 
2579 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2580 {
2581 	struct dentry *error;
2582 	struct task_struct *task = get_proc_task(dir);
2583 	const struct pid_entry *p, *last;
2584 
2585 	error = ERR_PTR(-ENOENT);
2586 
2587 	if (!task)
2588 		goto out_no_task;
2589 
2590 	/* Lookup the directory entry */
2591 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2592 	for (p = proc_base_stuff; p <= last; p++) {
2593 		if (p->len != dentry->d_name.len)
2594 			continue;
2595 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2596 			break;
2597 	}
2598 	if (p > last)
2599 		goto out;
2600 
2601 	error = proc_base_instantiate(dir, dentry, task, p);
2602 
2603 out:
2604 	put_task_struct(task);
2605 out_no_task:
2606 	return error;
2607 }
2608 
2609 static int proc_base_fill_cache(struct file *filp, void *dirent,
2610 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2611 {
2612 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2613 				proc_base_instantiate, task, p);
2614 }
2615 
2616 #ifdef CONFIG_TASK_IO_ACCOUNTING
2617 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2618 {
2619 	struct task_io_accounting acct = task->ioac;
2620 	unsigned long flags;
2621 
2622 	if (whole && lock_task_sighand(task, &flags)) {
2623 		struct task_struct *t = task;
2624 
2625 		task_io_accounting_add(&acct, &task->signal->ioac);
2626 		while_each_thread(task, t)
2627 			task_io_accounting_add(&acct, &t->ioac);
2628 
2629 		unlock_task_sighand(task, &flags);
2630 	}
2631 	return sprintf(buffer,
2632 			"rchar: %llu\n"
2633 			"wchar: %llu\n"
2634 			"syscr: %llu\n"
2635 			"syscw: %llu\n"
2636 			"read_bytes: %llu\n"
2637 			"write_bytes: %llu\n"
2638 			"cancelled_write_bytes: %llu\n",
2639 			(unsigned long long)acct.rchar,
2640 			(unsigned long long)acct.wchar,
2641 			(unsigned long long)acct.syscr,
2642 			(unsigned long long)acct.syscw,
2643 			(unsigned long long)acct.read_bytes,
2644 			(unsigned long long)acct.write_bytes,
2645 			(unsigned long long)acct.cancelled_write_bytes);
2646 }
2647 
2648 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2649 {
2650 	return do_io_accounting(task, buffer, 0);
2651 }
2652 
2653 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2654 {
2655 	return do_io_accounting(task, buffer, 1);
2656 }
2657 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2658 
2659 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2660 				struct pid *pid, struct task_struct *task)
2661 {
2662 	seq_printf(m, "%08x\n", task->personality);
2663 	return 0;
2664 }
2665 
2666 /*
2667  * Thread groups
2668  */
2669 static const struct file_operations proc_task_operations;
2670 static const struct inode_operations proc_task_inode_operations;
2671 
2672 static const struct pid_entry tgid_base_stuff[] = {
2673 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2674 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2675 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2676 #ifdef CONFIG_NET
2677 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2678 #endif
2679 	REG("environ",    S_IRUSR, proc_environ_operations),
2680 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2681 	ONE("status",     S_IRUGO, proc_pid_status),
2682 	ONE("personality", S_IRUSR, proc_pid_personality),
2683 	INF("limits",	  S_IRUGO, proc_pid_limits),
2684 #ifdef CONFIG_SCHED_DEBUG
2685 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2686 #endif
2687 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2688 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2689 	INF("syscall",    S_IRUSR, proc_pid_syscall),
2690 #endif
2691 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2692 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2693 	ONE("statm",      S_IRUGO, proc_pid_statm),
2694 	REG("maps",       S_IRUGO, proc_maps_operations),
2695 #ifdef CONFIG_NUMA
2696 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2697 #endif
2698 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2699 	LNK("cwd",        proc_cwd_link),
2700 	LNK("root",       proc_root_link),
2701 	LNK("exe",        proc_exe_link),
2702 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2703 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2704 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2705 #ifdef CONFIG_PROC_PAGE_MONITOR
2706 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2707 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2708 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2709 #endif
2710 #ifdef CONFIG_SECURITY
2711 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2712 #endif
2713 #ifdef CONFIG_KALLSYMS
2714 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2715 #endif
2716 #ifdef CONFIG_STACKTRACE
2717 	ONE("stack",      S_IRUSR, proc_pid_stack),
2718 #endif
2719 #ifdef CONFIG_SCHEDSTATS
2720 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2721 #endif
2722 #ifdef CONFIG_LATENCYTOP
2723 	REG("latency",  S_IRUGO, proc_lstats_operations),
2724 #endif
2725 #ifdef CONFIG_PROC_PID_CPUSET
2726 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2727 #endif
2728 #ifdef CONFIG_CGROUPS
2729 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2730 #endif
2731 	INF("oom_score",  S_IRUGO, proc_oom_score),
2732 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2733 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2734 #ifdef CONFIG_AUDITSYSCALL
2735 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2736 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2737 #endif
2738 #ifdef CONFIG_FAULT_INJECTION
2739 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2740 #endif
2741 #ifdef CONFIG_ELF_CORE
2742 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2743 #endif
2744 #ifdef CONFIG_TASK_IO_ACCOUNTING
2745 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2746 #endif
2747 };
2748 
2749 static int proc_tgid_base_readdir(struct file * filp,
2750 			     void * dirent, filldir_t filldir)
2751 {
2752 	return proc_pident_readdir(filp,dirent,filldir,
2753 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2754 }
2755 
2756 static const struct file_operations proc_tgid_base_operations = {
2757 	.read		= generic_read_dir,
2758 	.readdir	= proc_tgid_base_readdir,
2759 	.llseek		= default_llseek,
2760 };
2761 
2762 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2763 	return proc_pident_lookup(dir, dentry,
2764 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2765 }
2766 
2767 static const struct inode_operations proc_tgid_base_inode_operations = {
2768 	.lookup		= proc_tgid_base_lookup,
2769 	.getattr	= pid_getattr,
2770 	.setattr	= proc_setattr,
2771 };
2772 
2773 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2774 {
2775 	struct dentry *dentry, *leader, *dir;
2776 	char buf[PROC_NUMBUF];
2777 	struct qstr name;
2778 
2779 	name.name = buf;
2780 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2781 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2782 	if (dentry) {
2783 		shrink_dcache_parent(dentry);
2784 		d_drop(dentry);
2785 		dput(dentry);
2786 	}
2787 
2788 	name.name = buf;
2789 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2790 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2791 	if (!leader)
2792 		goto out;
2793 
2794 	name.name = "task";
2795 	name.len = strlen(name.name);
2796 	dir = d_hash_and_lookup(leader, &name);
2797 	if (!dir)
2798 		goto out_put_leader;
2799 
2800 	name.name = buf;
2801 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2802 	dentry = d_hash_and_lookup(dir, &name);
2803 	if (dentry) {
2804 		shrink_dcache_parent(dentry);
2805 		d_drop(dentry);
2806 		dput(dentry);
2807 	}
2808 
2809 	dput(dir);
2810 out_put_leader:
2811 	dput(leader);
2812 out:
2813 	return;
2814 }
2815 
2816 /**
2817  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2818  * @task: task that should be flushed.
2819  *
2820  * When flushing dentries from proc, one needs to flush them from global
2821  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2822  * in. This call is supposed to do all of this job.
2823  *
2824  * Looks in the dcache for
2825  * /proc/@pid
2826  * /proc/@tgid/task/@pid
2827  * if either directory is present flushes it and all of it'ts children
2828  * from the dcache.
2829  *
2830  * It is safe and reasonable to cache /proc entries for a task until
2831  * that task exits.  After that they just clog up the dcache with
2832  * useless entries, possibly causing useful dcache entries to be
2833  * flushed instead.  This routine is proved to flush those useless
2834  * dcache entries at process exit time.
2835  *
2836  * NOTE: This routine is just an optimization so it does not guarantee
2837  *       that no dcache entries will exist at process exit time it
2838  *       just makes it very unlikely that any will persist.
2839  */
2840 
2841 void proc_flush_task(struct task_struct *task)
2842 {
2843 	int i;
2844 	struct pid *pid, *tgid;
2845 	struct upid *upid;
2846 
2847 	pid = task_pid(task);
2848 	tgid = task_tgid(task);
2849 
2850 	for (i = 0; i <= pid->level; i++) {
2851 		upid = &pid->numbers[i];
2852 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2853 					tgid->numbers[i].nr);
2854 	}
2855 
2856 	upid = &pid->numbers[pid->level];
2857 	if (upid->nr == 1)
2858 		pid_ns_release_proc(upid->ns);
2859 }
2860 
2861 static struct dentry *proc_pid_instantiate(struct inode *dir,
2862 					   struct dentry * dentry,
2863 					   struct task_struct *task, const void *ptr)
2864 {
2865 	struct dentry *error = ERR_PTR(-ENOENT);
2866 	struct inode *inode;
2867 
2868 	inode = proc_pid_make_inode(dir->i_sb, task);
2869 	if (!inode)
2870 		goto out;
2871 
2872 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2873 	inode->i_op = &proc_tgid_base_inode_operations;
2874 	inode->i_fop = &proc_tgid_base_operations;
2875 	inode->i_flags|=S_IMMUTABLE;
2876 
2877 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2878 		ARRAY_SIZE(tgid_base_stuff));
2879 
2880 	dentry->d_op = &pid_dentry_operations;
2881 
2882 	d_add(dentry, inode);
2883 	/* Close the race of the process dying before we return the dentry */
2884 	if (pid_revalidate(dentry, NULL))
2885 		error = NULL;
2886 out:
2887 	return error;
2888 }
2889 
2890 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2891 {
2892 	struct dentry *result;
2893 	struct task_struct *task;
2894 	unsigned tgid;
2895 	struct pid_namespace *ns;
2896 
2897 	result = proc_base_lookup(dir, dentry);
2898 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2899 		goto out;
2900 
2901 	tgid = name_to_int(dentry);
2902 	if (tgid == ~0U)
2903 		goto out;
2904 
2905 	ns = dentry->d_sb->s_fs_info;
2906 	rcu_read_lock();
2907 	task = find_task_by_pid_ns(tgid, ns);
2908 	if (task)
2909 		get_task_struct(task);
2910 	rcu_read_unlock();
2911 	if (!task)
2912 		goto out;
2913 
2914 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2915 	put_task_struct(task);
2916 out:
2917 	return result;
2918 }
2919 
2920 /*
2921  * Find the first task with tgid >= tgid
2922  *
2923  */
2924 struct tgid_iter {
2925 	unsigned int tgid;
2926 	struct task_struct *task;
2927 };
2928 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2929 {
2930 	struct pid *pid;
2931 
2932 	if (iter.task)
2933 		put_task_struct(iter.task);
2934 	rcu_read_lock();
2935 retry:
2936 	iter.task = NULL;
2937 	pid = find_ge_pid(iter.tgid, ns);
2938 	if (pid) {
2939 		iter.tgid = pid_nr_ns(pid, ns);
2940 		iter.task = pid_task(pid, PIDTYPE_PID);
2941 		/* What we to know is if the pid we have find is the
2942 		 * pid of a thread_group_leader.  Testing for task
2943 		 * being a thread_group_leader is the obvious thing
2944 		 * todo but there is a window when it fails, due to
2945 		 * the pid transfer logic in de_thread.
2946 		 *
2947 		 * So we perform the straight forward test of seeing
2948 		 * if the pid we have found is the pid of a thread
2949 		 * group leader, and don't worry if the task we have
2950 		 * found doesn't happen to be a thread group leader.
2951 		 * As we don't care in the case of readdir.
2952 		 */
2953 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2954 			iter.tgid += 1;
2955 			goto retry;
2956 		}
2957 		get_task_struct(iter.task);
2958 	}
2959 	rcu_read_unlock();
2960 	return iter;
2961 }
2962 
2963 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2964 
2965 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2966 	struct tgid_iter iter)
2967 {
2968 	char name[PROC_NUMBUF];
2969 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2970 	return proc_fill_cache(filp, dirent, filldir, name, len,
2971 				proc_pid_instantiate, iter.task, NULL);
2972 }
2973 
2974 /* for the /proc/ directory itself, after non-process stuff has been done */
2975 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2976 {
2977 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2978 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2979 	struct tgid_iter iter;
2980 	struct pid_namespace *ns;
2981 
2982 	if (!reaper)
2983 		goto out_no_task;
2984 
2985 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2986 		const struct pid_entry *p = &proc_base_stuff[nr];
2987 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2988 			goto out;
2989 	}
2990 
2991 	ns = filp->f_dentry->d_sb->s_fs_info;
2992 	iter.task = NULL;
2993 	iter.tgid = filp->f_pos - TGID_OFFSET;
2994 	for (iter = next_tgid(ns, iter);
2995 	     iter.task;
2996 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2997 		filp->f_pos = iter.tgid + TGID_OFFSET;
2998 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2999 			put_task_struct(iter.task);
3000 			goto out;
3001 		}
3002 	}
3003 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3004 out:
3005 	put_task_struct(reaper);
3006 out_no_task:
3007 	return 0;
3008 }
3009 
3010 /*
3011  * Tasks
3012  */
3013 static const struct pid_entry tid_base_stuff[] = {
3014 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3015 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3016 	REG("environ",   S_IRUSR, proc_environ_operations),
3017 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3018 	ONE("status",    S_IRUGO, proc_pid_status),
3019 	ONE("personality", S_IRUSR, proc_pid_personality),
3020 	INF("limits",	 S_IRUGO, proc_pid_limits),
3021 #ifdef CONFIG_SCHED_DEBUG
3022 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3023 #endif
3024 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3025 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3026 	INF("syscall",   S_IRUSR, proc_pid_syscall),
3027 #endif
3028 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3029 	ONE("stat",      S_IRUGO, proc_tid_stat),
3030 	ONE("statm",     S_IRUGO, proc_pid_statm),
3031 	REG("maps",      S_IRUGO, proc_maps_operations),
3032 #ifdef CONFIG_NUMA
3033 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3034 #endif
3035 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3036 	LNK("cwd",       proc_cwd_link),
3037 	LNK("root",      proc_root_link),
3038 	LNK("exe",       proc_exe_link),
3039 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3040 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3041 #ifdef CONFIG_PROC_PAGE_MONITOR
3042 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3043 	REG("smaps",     S_IRUGO, proc_smaps_operations),
3044 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3045 #endif
3046 #ifdef CONFIG_SECURITY
3047 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3048 #endif
3049 #ifdef CONFIG_KALLSYMS
3050 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3051 #endif
3052 #ifdef CONFIG_STACKTRACE
3053 	ONE("stack",      S_IRUSR, proc_pid_stack),
3054 #endif
3055 #ifdef CONFIG_SCHEDSTATS
3056 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3057 #endif
3058 #ifdef CONFIG_LATENCYTOP
3059 	REG("latency",  S_IRUGO, proc_lstats_operations),
3060 #endif
3061 #ifdef CONFIG_PROC_PID_CPUSET
3062 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3063 #endif
3064 #ifdef CONFIG_CGROUPS
3065 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3066 #endif
3067 	INF("oom_score", S_IRUGO, proc_oom_score),
3068 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3069 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3070 #ifdef CONFIG_AUDITSYSCALL
3071 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3072 	REG("sessionid",  S_IRUSR, proc_sessionid_operations),
3073 #endif
3074 #ifdef CONFIG_FAULT_INJECTION
3075 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3076 #endif
3077 #ifdef CONFIG_TASK_IO_ACCOUNTING
3078 	INF("io",	S_IRUGO, proc_tid_io_accounting),
3079 #endif
3080 };
3081 
3082 static int proc_tid_base_readdir(struct file * filp,
3083 			     void * dirent, filldir_t filldir)
3084 {
3085 	return proc_pident_readdir(filp,dirent,filldir,
3086 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3087 }
3088 
3089 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3090 	return proc_pident_lookup(dir, dentry,
3091 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3092 }
3093 
3094 static const struct file_operations proc_tid_base_operations = {
3095 	.read		= generic_read_dir,
3096 	.readdir	= proc_tid_base_readdir,
3097 	.llseek		= default_llseek,
3098 };
3099 
3100 static const struct inode_operations proc_tid_base_inode_operations = {
3101 	.lookup		= proc_tid_base_lookup,
3102 	.getattr	= pid_getattr,
3103 	.setattr	= proc_setattr,
3104 };
3105 
3106 static struct dentry *proc_task_instantiate(struct inode *dir,
3107 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3108 {
3109 	struct dentry *error = ERR_PTR(-ENOENT);
3110 	struct inode *inode;
3111 	inode = proc_pid_make_inode(dir->i_sb, task);
3112 
3113 	if (!inode)
3114 		goto out;
3115 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3116 	inode->i_op = &proc_tid_base_inode_operations;
3117 	inode->i_fop = &proc_tid_base_operations;
3118 	inode->i_flags|=S_IMMUTABLE;
3119 
3120 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3121 		ARRAY_SIZE(tid_base_stuff));
3122 
3123 	dentry->d_op = &pid_dentry_operations;
3124 
3125 	d_add(dentry, inode);
3126 	/* Close the race of the process dying before we return the dentry */
3127 	if (pid_revalidate(dentry, NULL))
3128 		error = NULL;
3129 out:
3130 	return error;
3131 }
3132 
3133 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3134 {
3135 	struct dentry *result = ERR_PTR(-ENOENT);
3136 	struct task_struct *task;
3137 	struct task_struct *leader = get_proc_task(dir);
3138 	unsigned tid;
3139 	struct pid_namespace *ns;
3140 
3141 	if (!leader)
3142 		goto out_no_task;
3143 
3144 	tid = name_to_int(dentry);
3145 	if (tid == ~0U)
3146 		goto out;
3147 
3148 	ns = dentry->d_sb->s_fs_info;
3149 	rcu_read_lock();
3150 	task = find_task_by_pid_ns(tid, ns);
3151 	if (task)
3152 		get_task_struct(task);
3153 	rcu_read_unlock();
3154 	if (!task)
3155 		goto out;
3156 	if (!same_thread_group(leader, task))
3157 		goto out_drop_task;
3158 
3159 	result = proc_task_instantiate(dir, dentry, task, NULL);
3160 out_drop_task:
3161 	put_task_struct(task);
3162 out:
3163 	put_task_struct(leader);
3164 out_no_task:
3165 	return result;
3166 }
3167 
3168 /*
3169  * Find the first tid of a thread group to return to user space.
3170  *
3171  * Usually this is just the thread group leader, but if the users
3172  * buffer was too small or there was a seek into the middle of the
3173  * directory we have more work todo.
3174  *
3175  * In the case of a short read we start with find_task_by_pid.
3176  *
3177  * In the case of a seek we start with the leader and walk nr
3178  * threads past it.
3179  */
3180 static struct task_struct *first_tid(struct task_struct *leader,
3181 		int tid, int nr, struct pid_namespace *ns)
3182 {
3183 	struct task_struct *pos;
3184 
3185 	rcu_read_lock();
3186 	/* Attempt to start with the pid of a thread */
3187 	if (tid && (nr > 0)) {
3188 		pos = find_task_by_pid_ns(tid, ns);
3189 		if (pos && (pos->group_leader == leader))
3190 			goto found;
3191 	}
3192 
3193 	/* If nr exceeds the number of threads there is nothing todo */
3194 	pos = NULL;
3195 	if (nr && nr >= get_nr_threads(leader))
3196 		goto out;
3197 
3198 	/* If we haven't found our starting place yet start
3199 	 * with the leader and walk nr threads forward.
3200 	 */
3201 	for (pos = leader; nr > 0; --nr) {
3202 		pos = next_thread(pos);
3203 		if (pos == leader) {
3204 			pos = NULL;
3205 			goto out;
3206 		}
3207 	}
3208 found:
3209 	get_task_struct(pos);
3210 out:
3211 	rcu_read_unlock();
3212 	return pos;
3213 }
3214 
3215 /*
3216  * Find the next thread in the thread list.
3217  * Return NULL if there is an error or no next thread.
3218  *
3219  * The reference to the input task_struct is released.
3220  */
3221 static struct task_struct *next_tid(struct task_struct *start)
3222 {
3223 	struct task_struct *pos = NULL;
3224 	rcu_read_lock();
3225 	if (pid_alive(start)) {
3226 		pos = next_thread(start);
3227 		if (thread_group_leader(pos))
3228 			pos = NULL;
3229 		else
3230 			get_task_struct(pos);
3231 	}
3232 	rcu_read_unlock();
3233 	put_task_struct(start);
3234 	return pos;
3235 }
3236 
3237 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3238 	struct task_struct *task, int tid)
3239 {
3240 	char name[PROC_NUMBUF];
3241 	int len = snprintf(name, sizeof(name), "%d", tid);
3242 	return proc_fill_cache(filp, dirent, filldir, name, len,
3243 				proc_task_instantiate, task, NULL);
3244 }
3245 
3246 /* for the /proc/TGID/task/ directories */
3247 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3248 {
3249 	struct dentry *dentry = filp->f_path.dentry;
3250 	struct inode *inode = dentry->d_inode;
3251 	struct task_struct *leader = NULL;
3252 	struct task_struct *task;
3253 	int retval = -ENOENT;
3254 	ino_t ino;
3255 	int tid;
3256 	struct pid_namespace *ns;
3257 
3258 	task = get_proc_task(inode);
3259 	if (!task)
3260 		goto out_no_task;
3261 	rcu_read_lock();
3262 	if (pid_alive(task)) {
3263 		leader = task->group_leader;
3264 		get_task_struct(leader);
3265 	}
3266 	rcu_read_unlock();
3267 	put_task_struct(task);
3268 	if (!leader)
3269 		goto out_no_task;
3270 	retval = 0;
3271 
3272 	switch ((unsigned long)filp->f_pos) {
3273 	case 0:
3274 		ino = inode->i_ino;
3275 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3276 			goto out;
3277 		filp->f_pos++;
3278 		/* fall through */
3279 	case 1:
3280 		ino = parent_ino(dentry);
3281 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3282 			goto out;
3283 		filp->f_pos++;
3284 		/* fall through */
3285 	}
3286 
3287 	/* f_version caches the tgid value that the last readdir call couldn't
3288 	 * return. lseek aka telldir automagically resets f_version to 0.
3289 	 */
3290 	ns = filp->f_dentry->d_sb->s_fs_info;
3291 	tid = (int)filp->f_version;
3292 	filp->f_version = 0;
3293 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3294 	     task;
3295 	     task = next_tid(task), filp->f_pos++) {
3296 		tid = task_pid_nr_ns(task, ns);
3297 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3298 			/* returning this tgid failed, save it as the first
3299 			 * pid for the next readir call */
3300 			filp->f_version = (u64)tid;
3301 			put_task_struct(task);
3302 			break;
3303 		}
3304 	}
3305 out:
3306 	put_task_struct(leader);
3307 out_no_task:
3308 	return retval;
3309 }
3310 
3311 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3312 {
3313 	struct inode *inode = dentry->d_inode;
3314 	struct task_struct *p = get_proc_task(inode);
3315 	generic_fillattr(inode, stat);
3316 
3317 	if (p) {
3318 		stat->nlink += get_nr_threads(p);
3319 		put_task_struct(p);
3320 	}
3321 
3322 	return 0;
3323 }
3324 
3325 static const struct inode_operations proc_task_inode_operations = {
3326 	.lookup		= proc_task_lookup,
3327 	.getattr	= proc_task_getattr,
3328 	.setattr	= proc_setattr,
3329 };
3330 
3331 static const struct file_operations proc_task_operations = {
3332 	.read		= generic_read_dir,
3333 	.readdir	= proc_task_readdir,
3334 	.llseek		= default_llseek,
3335 };
3336