xref: /linux/fs/proc/base.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	const char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 	unsigned int n)
144 {
145 	unsigned int i;
146 	unsigned int count;
147 
148 	count = 0;
149 	for (i = 0; i < n; ++i) {
150 		if (S_ISDIR(entries[i].mode))
151 			++count;
152 	}
153 
154 	return count;
155 }
156 
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159 	int result = -ENOENT;
160 
161 	task_lock(task);
162 	if (task->fs) {
163 		get_fs_root(task->fs, root);
164 		result = 0;
165 	}
166 	task_unlock(task);
167 	return result;
168 }
169 
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172 	struct task_struct *task = get_proc_task(d_inode(dentry));
173 	int result = -ENOENT;
174 
175 	if (task) {
176 		task_lock(task);
177 		if (task->fs) {
178 			get_fs_pwd(task->fs, path);
179 			result = 0;
180 		}
181 		task_unlock(task);
182 		put_task_struct(task);
183 	}
184 	return result;
185 }
186 
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189 	struct task_struct *task = get_proc_task(d_inode(dentry));
190 	int result = -ENOENT;
191 
192 	if (task) {
193 		result = get_task_root(task, path);
194 		put_task_struct(task);
195 	}
196 	return result;
197 }
198 
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200 				     size_t _count, loff_t *pos)
201 {
202 	struct task_struct *tsk;
203 	struct mm_struct *mm;
204 	char *page;
205 	unsigned long count = _count;
206 	unsigned long arg_start, arg_end, env_start, env_end;
207 	unsigned long len1, len2, len;
208 	unsigned long p;
209 	char c;
210 	ssize_t rv;
211 
212 	BUG_ON(*pos < 0);
213 
214 	tsk = get_proc_task(file_inode(file));
215 	if (!tsk)
216 		return -ESRCH;
217 	mm = get_task_mm(tsk);
218 	put_task_struct(tsk);
219 	if (!mm)
220 		return 0;
221 	/* Check if process spawned far enough to have cmdline. */
222 	if (!mm->env_end) {
223 		rv = 0;
224 		goto out_mmput;
225 	}
226 
227 	page = (char *)__get_free_page(GFP_TEMPORARY);
228 	if (!page) {
229 		rv = -ENOMEM;
230 		goto out_mmput;
231 	}
232 
233 	down_read(&mm->mmap_sem);
234 	arg_start = mm->arg_start;
235 	arg_end = mm->arg_end;
236 	env_start = mm->env_start;
237 	env_end = mm->env_end;
238 	up_read(&mm->mmap_sem);
239 
240 	BUG_ON(arg_start > arg_end);
241 	BUG_ON(env_start > env_end);
242 
243 	len1 = arg_end - arg_start;
244 	len2 = env_end - env_start;
245 
246 	/* Empty ARGV. */
247 	if (len1 == 0) {
248 		rv = 0;
249 		goto out_free_page;
250 	}
251 	/*
252 	 * Inherently racy -- command line shares address space
253 	 * with code and data.
254 	 */
255 	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
256 	if (rv <= 0)
257 		goto out_free_page;
258 
259 	rv = 0;
260 
261 	if (c == '\0') {
262 		/* Command line (set of strings) occupies whole ARGV. */
263 		if (len1 <= *pos)
264 			goto out_free_page;
265 
266 		p = arg_start + *pos;
267 		len = len1 - *pos;
268 		while (count > 0 && len > 0) {
269 			unsigned int _count;
270 			int nr_read;
271 
272 			_count = min3(count, len, PAGE_SIZE);
273 			nr_read = access_remote_vm(mm, p, page, _count, 0);
274 			if (nr_read < 0)
275 				rv = nr_read;
276 			if (nr_read <= 0)
277 				goto out_free_page;
278 
279 			if (copy_to_user(buf, page, nr_read)) {
280 				rv = -EFAULT;
281 				goto out_free_page;
282 			}
283 
284 			p	+= nr_read;
285 			len	-= nr_read;
286 			buf	+= nr_read;
287 			count	-= nr_read;
288 			rv	+= nr_read;
289 		}
290 	} else {
291 		/*
292 		 * Command line (1 string) occupies ARGV and maybe
293 		 * extends into ENVP.
294 		 */
295 		if (len1 + len2 <= *pos)
296 			goto skip_argv_envp;
297 		if (len1 <= *pos)
298 			goto skip_argv;
299 
300 		p = arg_start + *pos;
301 		len = len1 - *pos;
302 		while (count > 0 && len > 0) {
303 			unsigned int _count, l;
304 			int nr_read;
305 			bool final;
306 
307 			_count = min3(count, len, PAGE_SIZE);
308 			nr_read = access_remote_vm(mm, p, page, _count, 0);
309 			if (nr_read < 0)
310 				rv = nr_read;
311 			if (nr_read <= 0)
312 				goto out_free_page;
313 
314 			/*
315 			 * Command line can be shorter than whole ARGV
316 			 * even if last "marker" byte says it is not.
317 			 */
318 			final = false;
319 			l = strnlen(page, nr_read);
320 			if (l < nr_read) {
321 				nr_read = l;
322 				final = true;
323 			}
324 
325 			if (copy_to_user(buf, page, nr_read)) {
326 				rv = -EFAULT;
327 				goto out_free_page;
328 			}
329 
330 			p	+= nr_read;
331 			len	-= nr_read;
332 			buf	+= nr_read;
333 			count	-= nr_read;
334 			rv	+= nr_read;
335 
336 			if (final)
337 				goto out_free_page;
338 		}
339 skip_argv:
340 		/*
341 		 * Command line (1 string) occupies ARGV and
342 		 * extends into ENVP.
343 		 */
344 		if (len1 <= *pos) {
345 			p = env_start + *pos - len1;
346 			len = len1 + len2 - *pos;
347 		} else {
348 			p = env_start;
349 			len = len2;
350 		}
351 		while (count > 0 && len > 0) {
352 			unsigned int _count, l;
353 			int nr_read;
354 			bool final;
355 
356 			_count = min3(count, len, PAGE_SIZE);
357 			nr_read = access_remote_vm(mm, p, page, _count, 0);
358 			if (nr_read < 0)
359 				rv = nr_read;
360 			if (nr_read <= 0)
361 				goto out_free_page;
362 
363 			/* Find EOS. */
364 			final = false;
365 			l = strnlen(page, nr_read);
366 			if (l < nr_read) {
367 				nr_read = l;
368 				final = true;
369 			}
370 
371 			if (copy_to_user(buf, page, nr_read)) {
372 				rv = -EFAULT;
373 				goto out_free_page;
374 			}
375 
376 			p	+= nr_read;
377 			len	-= nr_read;
378 			buf	+= nr_read;
379 			count	-= nr_read;
380 			rv	+= nr_read;
381 
382 			if (final)
383 				goto out_free_page;
384 		}
385 skip_argv_envp:
386 		;
387 	}
388 
389 out_free_page:
390 	free_page((unsigned long)page);
391 out_mmput:
392 	mmput(mm);
393 	if (rv > 0)
394 		*pos += rv;
395 	return rv;
396 }
397 
398 static const struct file_operations proc_pid_cmdline_ops = {
399 	.read	= proc_pid_cmdline_read,
400 	.llseek	= generic_file_llseek,
401 };
402 
403 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
404 			 struct pid *pid, struct task_struct *task)
405 {
406 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
407 	if (mm && !IS_ERR(mm)) {
408 		unsigned int nwords = 0;
409 		do {
410 			nwords += 2;
411 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
412 		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
413 		mmput(mm);
414 		return 0;
415 	} else
416 		return PTR_ERR(mm);
417 }
418 
419 
420 #ifdef CONFIG_KALLSYMS
421 /*
422  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
423  * Returns the resolved symbol.  If that fails, simply return the address.
424  */
425 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
426 			  struct pid *pid, struct task_struct *task)
427 {
428 	unsigned long wchan;
429 	char symname[KSYM_NAME_LEN];
430 
431 	wchan = get_wchan(task);
432 
433 	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
434 			&& !lookup_symbol_name(wchan, symname))
435 		seq_printf(m, "%s", symname);
436 	else
437 		seq_putc(m, '0');
438 
439 	return 0;
440 }
441 #endif /* CONFIG_KALLSYMS */
442 
443 static int lock_trace(struct task_struct *task)
444 {
445 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
446 	if (err)
447 		return err;
448 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
449 		mutex_unlock(&task->signal->cred_guard_mutex);
450 		return -EPERM;
451 	}
452 	return 0;
453 }
454 
455 static void unlock_trace(struct task_struct *task)
456 {
457 	mutex_unlock(&task->signal->cred_guard_mutex);
458 }
459 
460 #ifdef CONFIG_STACKTRACE
461 
462 #define MAX_STACK_TRACE_DEPTH	64
463 
464 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
465 			  struct pid *pid, struct task_struct *task)
466 {
467 	struct stack_trace trace;
468 	unsigned long *entries;
469 	int err;
470 	int i;
471 
472 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
473 	if (!entries)
474 		return -ENOMEM;
475 
476 	trace.nr_entries	= 0;
477 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
478 	trace.entries		= entries;
479 	trace.skip		= 0;
480 
481 	err = lock_trace(task);
482 	if (!err) {
483 		save_stack_trace_tsk(task, &trace);
484 
485 		for (i = 0; i < trace.nr_entries; i++) {
486 			seq_printf(m, "[<%pK>] %pS\n",
487 				   (void *)entries[i], (void *)entries[i]);
488 		}
489 		unlock_trace(task);
490 	}
491 	kfree(entries);
492 
493 	return err;
494 }
495 #endif
496 
497 #ifdef CONFIG_SCHED_INFO
498 /*
499  * Provides /proc/PID/schedstat
500  */
501 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
502 			      struct pid *pid, struct task_struct *task)
503 {
504 	if (unlikely(!sched_info_on()))
505 		seq_printf(m, "0 0 0\n");
506 	else
507 		seq_printf(m, "%llu %llu %lu\n",
508 		   (unsigned long long)task->se.sum_exec_runtime,
509 		   (unsigned long long)task->sched_info.run_delay,
510 		   task->sched_info.pcount);
511 
512 	return 0;
513 }
514 #endif
515 
516 #ifdef CONFIG_LATENCYTOP
517 static int lstats_show_proc(struct seq_file *m, void *v)
518 {
519 	int i;
520 	struct inode *inode = m->private;
521 	struct task_struct *task = get_proc_task(inode);
522 
523 	if (!task)
524 		return -ESRCH;
525 	seq_puts(m, "Latency Top version : v0.1\n");
526 	for (i = 0; i < 32; i++) {
527 		struct latency_record *lr = &task->latency_record[i];
528 		if (lr->backtrace[0]) {
529 			int q;
530 			seq_printf(m, "%i %li %li",
531 				   lr->count, lr->time, lr->max);
532 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
533 				unsigned long bt = lr->backtrace[q];
534 				if (!bt)
535 					break;
536 				if (bt == ULONG_MAX)
537 					break;
538 				seq_printf(m, " %ps", (void *)bt);
539 			}
540 			seq_putc(m, '\n');
541 		}
542 
543 	}
544 	put_task_struct(task);
545 	return 0;
546 }
547 
548 static int lstats_open(struct inode *inode, struct file *file)
549 {
550 	return single_open(file, lstats_show_proc, inode);
551 }
552 
553 static ssize_t lstats_write(struct file *file, const char __user *buf,
554 			    size_t count, loff_t *offs)
555 {
556 	struct task_struct *task = get_proc_task(file_inode(file));
557 
558 	if (!task)
559 		return -ESRCH;
560 	clear_all_latency_tracing(task);
561 	put_task_struct(task);
562 
563 	return count;
564 }
565 
566 static const struct file_operations proc_lstats_operations = {
567 	.open		= lstats_open,
568 	.read		= seq_read,
569 	.write		= lstats_write,
570 	.llseek		= seq_lseek,
571 	.release	= single_release,
572 };
573 
574 #endif
575 
576 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
577 			  struct pid *pid, struct task_struct *task)
578 {
579 	unsigned long totalpages = totalram_pages + total_swap_pages;
580 	unsigned long points = 0;
581 
582 	read_lock(&tasklist_lock);
583 	if (pid_alive(task))
584 		points = oom_badness(task, NULL, NULL, totalpages) *
585 						1000 / totalpages;
586 	read_unlock(&tasklist_lock);
587 	seq_printf(m, "%lu\n", points);
588 
589 	return 0;
590 }
591 
592 struct limit_names {
593 	const char *name;
594 	const char *unit;
595 };
596 
597 static const struct limit_names lnames[RLIM_NLIMITS] = {
598 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
599 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
600 	[RLIMIT_DATA] = {"Max data size", "bytes"},
601 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
602 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
603 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
604 	[RLIMIT_NPROC] = {"Max processes", "processes"},
605 	[RLIMIT_NOFILE] = {"Max open files", "files"},
606 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
607 	[RLIMIT_AS] = {"Max address space", "bytes"},
608 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
609 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
610 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
611 	[RLIMIT_NICE] = {"Max nice priority", NULL},
612 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
613 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
614 };
615 
616 /* Display limits for a process */
617 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
618 			   struct pid *pid, struct task_struct *task)
619 {
620 	unsigned int i;
621 	unsigned long flags;
622 
623 	struct rlimit rlim[RLIM_NLIMITS];
624 
625 	if (!lock_task_sighand(task, &flags))
626 		return 0;
627 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
628 	unlock_task_sighand(task, &flags);
629 
630 	/*
631 	 * print the file header
632 	 */
633        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
634 		  "Limit", "Soft Limit", "Hard Limit", "Units");
635 
636 	for (i = 0; i < RLIM_NLIMITS; i++) {
637 		if (rlim[i].rlim_cur == RLIM_INFINITY)
638 			seq_printf(m, "%-25s %-20s ",
639 				   lnames[i].name, "unlimited");
640 		else
641 			seq_printf(m, "%-25s %-20lu ",
642 				   lnames[i].name, rlim[i].rlim_cur);
643 
644 		if (rlim[i].rlim_max == RLIM_INFINITY)
645 			seq_printf(m, "%-20s ", "unlimited");
646 		else
647 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
648 
649 		if (lnames[i].unit)
650 			seq_printf(m, "%-10s\n", lnames[i].unit);
651 		else
652 			seq_putc(m, '\n');
653 	}
654 
655 	return 0;
656 }
657 
658 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
659 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
660 			    struct pid *pid, struct task_struct *task)
661 {
662 	long nr;
663 	unsigned long args[6], sp, pc;
664 	int res;
665 
666 	res = lock_trace(task);
667 	if (res)
668 		return res;
669 
670 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
671 		seq_puts(m, "running\n");
672 	else if (nr < 0)
673 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
674 	else
675 		seq_printf(m,
676 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
677 		       nr,
678 		       args[0], args[1], args[2], args[3], args[4], args[5],
679 		       sp, pc);
680 	unlock_trace(task);
681 
682 	return 0;
683 }
684 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
685 
686 /************************************************************************/
687 /*                       Here the fs part begins                        */
688 /************************************************************************/
689 
690 /* permission checks */
691 static int proc_fd_access_allowed(struct inode *inode)
692 {
693 	struct task_struct *task;
694 	int allowed = 0;
695 	/* Allow access to a task's file descriptors if it is us or we
696 	 * may use ptrace attach to the process and find out that
697 	 * information.
698 	 */
699 	task = get_proc_task(inode);
700 	if (task) {
701 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
702 		put_task_struct(task);
703 	}
704 	return allowed;
705 }
706 
707 int proc_setattr(struct dentry *dentry, struct iattr *attr)
708 {
709 	int error;
710 	struct inode *inode = d_inode(dentry);
711 
712 	if (attr->ia_valid & ATTR_MODE)
713 		return -EPERM;
714 
715 	error = inode_change_ok(inode, attr);
716 	if (error)
717 		return error;
718 
719 	setattr_copy(inode, attr);
720 	mark_inode_dirty(inode);
721 	return 0;
722 }
723 
724 /*
725  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
726  * or euid/egid (for hide_pid_min=2)?
727  */
728 static bool has_pid_permissions(struct pid_namespace *pid,
729 				 struct task_struct *task,
730 				 int hide_pid_min)
731 {
732 	if (pid->hide_pid < hide_pid_min)
733 		return true;
734 	if (in_group_p(pid->pid_gid))
735 		return true;
736 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
737 }
738 
739 
740 static int proc_pid_permission(struct inode *inode, int mask)
741 {
742 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
743 	struct task_struct *task;
744 	bool has_perms;
745 
746 	task = get_proc_task(inode);
747 	if (!task)
748 		return -ESRCH;
749 	has_perms = has_pid_permissions(pid, task, 1);
750 	put_task_struct(task);
751 
752 	if (!has_perms) {
753 		if (pid->hide_pid == 2) {
754 			/*
755 			 * Let's make getdents(), stat(), and open()
756 			 * consistent with each other.  If a process
757 			 * may not stat() a file, it shouldn't be seen
758 			 * in procfs at all.
759 			 */
760 			return -ENOENT;
761 		}
762 
763 		return -EPERM;
764 	}
765 	return generic_permission(inode, mask);
766 }
767 
768 
769 
770 static const struct inode_operations proc_def_inode_operations = {
771 	.setattr	= proc_setattr,
772 };
773 
774 static int proc_single_show(struct seq_file *m, void *v)
775 {
776 	struct inode *inode = m->private;
777 	struct pid_namespace *ns;
778 	struct pid *pid;
779 	struct task_struct *task;
780 	int ret;
781 
782 	ns = inode->i_sb->s_fs_info;
783 	pid = proc_pid(inode);
784 	task = get_pid_task(pid, PIDTYPE_PID);
785 	if (!task)
786 		return -ESRCH;
787 
788 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
789 
790 	put_task_struct(task);
791 	return ret;
792 }
793 
794 static int proc_single_open(struct inode *inode, struct file *filp)
795 {
796 	return single_open(filp, proc_single_show, inode);
797 }
798 
799 static const struct file_operations proc_single_file_operations = {
800 	.open		= proc_single_open,
801 	.read		= seq_read,
802 	.llseek		= seq_lseek,
803 	.release	= single_release,
804 };
805 
806 
807 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
808 {
809 	struct task_struct *task = get_proc_task(inode);
810 	struct mm_struct *mm = ERR_PTR(-ESRCH);
811 
812 	if (task) {
813 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
814 		put_task_struct(task);
815 
816 		if (!IS_ERR_OR_NULL(mm)) {
817 			/* ensure this mm_struct can't be freed */
818 			atomic_inc(&mm->mm_count);
819 			/* but do not pin its memory */
820 			mmput(mm);
821 		}
822 	}
823 
824 	return mm;
825 }
826 
827 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
828 {
829 	struct mm_struct *mm = proc_mem_open(inode, mode);
830 
831 	if (IS_ERR(mm))
832 		return PTR_ERR(mm);
833 
834 	file->private_data = mm;
835 	return 0;
836 }
837 
838 static int mem_open(struct inode *inode, struct file *file)
839 {
840 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
841 
842 	/* OK to pass negative loff_t, we can catch out-of-range */
843 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
844 
845 	return ret;
846 }
847 
848 static ssize_t mem_rw(struct file *file, char __user *buf,
849 			size_t count, loff_t *ppos, int write)
850 {
851 	struct mm_struct *mm = file->private_data;
852 	unsigned long addr = *ppos;
853 	ssize_t copied;
854 	char *page;
855 
856 	if (!mm)
857 		return 0;
858 
859 	page = (char *)__get_free_page(GFP_TEMPORARY);
860 	if (!page)
861 		return -ENOMEM;
862 
863 	copied = 0;
864 	if (!atomic_inc_not_zero(&mm->mm_users))
865 		goto free;
866 
867 	while (count > 0) {
868 		int this_len = min_t(int, count, PAGE_SIZE);
869 
870 		if (write && copy_from_user(page, buf, this_len)) {
871 			copied = -EFAULT;
872 			break;
873 		}
874 
875 		this_len = access_remote_vm(mm, addr, page, this_len, write);
876 		if (!this_len) {
877 			if (!copied)
878 				copied = -EIO;
879 			break;
880 		}
881 
882 		if (!write && copy_to_user(buf, page, this_len)) {
883 			copied = -EFAULT;
884 			break;
885 		}
886 
887 		buf += this_len;
888 		addr += this_len;
889 		copied += this_len;
890 		count -= this_len;
891 	}
892 	*ppos = addr;
893 
894 	mmput(mm);
895 free:
896 	free_page((unsigned long) page);
897 	return copied;
898 }
899 
900 static ssize_t mem_read(struct file *file, char __user *buf,
901 			size_t count, loff_t *ppos)
902 {
903 	return mem_rw(file, buf, count, ppos, 0);
904 }
905 
906 static ssize_t mem_write(struct file *file, const char __user *buf,
907 			 size_t count, loff_t *ppos)
908 {
909 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
910 }
911 
912 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
913 {
914 	switch (orig) {
915 	case 0:
916 		file->f_pos = offset;
917 		break;
918 	case 1:
919 		file->f_pos += offset;
920 		break;
921 	default:
922 		return -EINVAL;
923 	}
924 	force_successful_syscall_return();
925 	return file->f_pos;
926 }
927 
928 static int mem_release(struct inode *inode, struct file *file)
929 {
930 	struct mm_struct *mm = file->private_data;
931 	if (mm)
932 		mmdrop(mm);
933 	return 0;
934 }
935 
936 static const struct file_operations proc_mem_operations = {
937 	.llseek		= mem_lseek,
938 	.read		= mem_read,
939 	.write		= mem_write,
940 	.open		= mem_open,
941 	.release	= mem_release,
942 };
943 
944 static int environ_open(struct inode *inode, struct file *file)
945 {
946 	return __mem_open(inode, file, PTRACE_MODE_READ);
947 }
948 
949 static ssize_t environ_read(struct file *file, char __user *buf,
950 			size_t count, loff_t *ppos)
951 {
952 	char *page;
953 	unsigned long src = *ppos;
954 	int ret = 0;
955 	struct mm_struct *mm = file->private_data;
956 	unsigned long env_start, env_end;
957 
958 	/* Ensure the process spawned far enough to have an environment. */
959 	if (!mm || !mm->env_end)
960 		return 0;
961 
962 	page = (char *)__get_free_page(GFP_TEMPORARY);
963 	if (!page)
964 		return -ENOMEM;
965 
966 	ret = 0;
967 	if (!atomic_inc_not_zero(&mm->mm_users))
968 		goto free;
969 
970 	down_read(&mm->mmap_sem);
971 	env_start = mm->env_start;
972 	env_end = mm->env_end;
973 	up_read(&mm->mmap_sem);
974 
975 	while (count > 0) {
976 		size_t this_len, max_len;
977 		int retval;
978 
979 		if (src >= (env_end - env_start))
980 			break;
981 
982 		this_len = env_end - (env_start + src);
983 
984 		max_len = min_t(size_t, PAGE_SIZE, count);
985 		this_len = min(max_len, this_len);
986 
987 		retval = access_remote_vm(mm, (env_start + src),
988 			page, this_len, 0);
989 
990 		if (retval <= 0) {
991 			ret = retval;
992 			break;
993 		}
994 
995 		if (copy_to_user(buf, page, retval)) {
996 			ret = -EFAULT;
997 			break;
998 		}
999 
1000 		ret += retval;
1001 		src += retval;
1002 		buf += retval;
1003 		count -= retval;
1004 	}
1005 	*ppos = src;
1006 	mmput(mm);
1007 
1008 free:
1009 	free_page((unsigned long) page);
1010 	return ret;
1011 }
1012 
1013 static const struct file_operations proc_environ_operations = {
1014 	.open		= environ_open,
1015 	.read		= environ_read,
1016 	.llseek		= generic_file_llseek,
1017 	.release	= mem_release,
1018 };
1019 
1020 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1021 			    loff_t *ppos)
1022 {
1023 	struct task_struct *task = get_proc_task(file_inode(file));
1024 	char buffer[PROC_NUMBUF];
1025 	int oom_adj = OOM_ADJUST_MIN;
1026 	size_t len;
1027 	unsigned long flags;
1028 
1029 	if (!task)
1030 		return -ESRCH;
1031 	if (lock_task_sighand(task, &flags)) {
1032 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1033 			oom_adj = OOM_ADJUST_MAX;
1034 		else
1035 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1036 				  OOM_SCORE_ADJ_MAX;
1037 		unlock_task_sighand(task, &flags);
1038 	}
1039 	put_task_struct(task);
1040 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1041 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1042 }
1043 
1044 /*
1045  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1046  * kernels.  The effective policy is defined by oom_score_adj, which has a
1047  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1048  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1049  * Processes that become oom disabled via oom_adj will still be oom disabled
1050  * with this implementation.
1051  *
1052  * oom_adj cannot be removed since existing userspace binaries use it.
1053  */
1054 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1055 			     size_t count, loff_t *ppos)
1056 {
1057 	struct task_struct *task;
1058 	char buffer[PROC_NUMBUF];
1059 	int oom_adj;
1060 	unsigned long flags;
1061 	int err;
1062 
1063 	memset(buffer, 0, sizeof(buffer));
1064 	if (count > sizeof(buffer) - 1)
1065 		count = sizeof(buffer) - 1;
1066 	if (copy_from_user(buffer, buf, count)) {
1067 		err = -EFAULT;
1068 		goto out;
1069 	}
1070 
1071 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1072 	if (err)
1073 		goto out;
1074 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1075 	     oom_adj != OOM_DISABLE) {
1076 		err = -EINVAL;
1077 		goto out;
1078 	}
1079 
1080 	task = get_proc_task(file_inode(file));
1081 	if (!task) {
1082 		err = -ESRCH;
1083 		goto out;
1084 	}
1085 
1086 	task_lock(task);
1087 	if (!task->mm) {
1088 		err = -EINVAL;
1089 		goto err_task_lock;
1090 	}
1091 
1092 	if (!lock_task_sighand(task, &flags)) {
1093 		err = -ESRCH;
1094 		goto err_task_lock;
1095 	}
1096 
1097 	/*
1098 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1099 	 * value is always attainable.
1100 	 */
1101 	if (oom_adj == OOM_ADJUST_MAX)
1102 		oom_adj = OOM_SCORE_ADJ_MAX;
1103 	else
1104 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1105 
1106 	if (oom_adj < task->signal->oom_score_adj &&
1107 	    !capable(CAP_SYS_RESOURCE)) {
1108 		err = -EACCES;
1109 		goto err_sighand;
1110 	}
1111 
1112 	/*
1113 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1114 	 * /proc/pid/oom_score_adj instead.
1115 	 */
1116 	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1117 		  current->comm, task_pid_nr(current), task_pid_nr(task),
1118 		  task_pid_nr(task));
1119 
1120 	task->signal->oom_score_adj = oom_adj;
1121 	trace_oom_score_adj_update(task);
1122 err_sighand:
1123 	unlock_task_sighand(task, &flags);
1124 err_task_lock:
1125 	task_unlock(task);
1126 	put_task_struct(task);
1127 out:
1128 	return err < 0 ? err : count;
1129 }
1130 
1131 static const struct file_operations proc_oom_adj_operations = {
1132 	.read		= oom_adj_read,
1133 	.write		= oom_adj_write,
1134 	.llseek		= generic_file_llseek,
1135 };
1136 
1137 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1138 					size_t count, loff_t *ppos)
1139 {
1140 	struct task_struct *task = get_proc_task(file_inode(file));
1141 	char buffer[PROC_NUMBUF];
1142 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1143 	unsigned long flags;
1144 	size_t len;
1145 
1146 	if (!task)
1147 		return -ESRCH;
1148 	if (lock_task_sighand(task, &flags)) {
1149 		oom_score_adj = task->signal->oom_score_adj;
1150 		unlock_task_sighand(task, &flags);
1151 	}
1152 	put_task_struct(task);
1153 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1154 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1155 }
1156 
1157 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1158 					size_t count, loff_t *ppos)
1159 {
1160 	struct task_struct *task;
1161 	char buffer[PROC_NUMBUF];
1162 	unsigned long flags;
1163 	int oom_score_adj;
1164 	int err;
1165 
1166 	memset(buffer, 0, sizeof(buffer));
1167 	if (count > sizeof(buffer) - 1)
1168 		count = sizeof(buffer) - 1;
1169 	if (copy_from_user(buffer, buf, count)) {
1170 		err = -EFAULT;
1171 		goto out;
1172 	}
1173 
1174 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1175 	if (err)
1176 		goto out;
1177 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1178 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1179 		err = -EINVAL;
1180 		goto out;
1181 	}
1182 
1183 	task = get_proc_task(file_inode(file));
1184 	if (!task) {
1185 		err = -ESRCH;
1186 		goto out;
1187 	}
1188 
1189 	task_lock(task);
1190 	if (!task->mm) {
1191 		err = -EINVAL;
1192 		goto err_task_lock;
1193 	}
1194 
1195 	if (!lock_task_sighand(task, &flags)) {
1196 		err = -ESRCH;
1197 		goto err_task_lock;
1198 	}
1199 
1200 	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1201 			!capable(CAP_SYS_RESOURCE)) {
1202 		err = -EACCES;
1203 		goto err_sighand;
1204 	}
1205 
1206 	task->signal->oom_score_adj = (short)oom_score_adj;
1207 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1208 		task->signal->oom_score_adj_min = (short)oom_score_adj;
1209 	trace_oom_score_adj_update(task);
1210 
1211 err_sighand:
1212 	unlock_task_sighand(task, &flags);
1213 err_task_lock:
1214 	task_unlock(task);
1215 	put_task_struct(task);
1216 out:
1217 	return err < 0 ? err : count;
1218 }
1219 
1220 static const struct file_operations proc_oom_score_adj_operations = {
1221 	.read		= oom_score_adj_read,
1222 	.write		= oom_score_adj_write,
1223 	.llseek		= default_llseek,
1224 };
1225 
1226 #ifdef CONFIG_AUDITSYSCALL
1227 #define TMPBUFLEN 21
1228 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1229 				  size_t count, loff_t *ppos)
1230 {
1231 	struct inode * inode = file_inode(file);
1232 	struct task_struct *task = get_proc_task(inode);
1233 	ssize_t length;
1234 	char tmpbuf[TMPBUFLEN];
1235 
1236 	if (!task)
1237 		return -ESRCH;
1238 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1239 			   from_kuid(file->f_cred->user_ns,
1240 				     audit_get_loginuid(task)));
1241 	put_task_struct(task);
1242 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1243 }
1244 
1245 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1246 				   size_t count, loff_t *ppos)
1247 {
1248 	struct inode * inode = file_inode(file);
1249 	uid_t loginuid;
1250 	kuid_t kloginuid;
1251 	int rv;
1252 
1253 	rcu_read_lock();
1254 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1255 		rcu_read_unlock();
1256 		return -EPERM;
1257 	}
1258 	rcu_read_unlock();
1259 
1260 	if (*ppos != 0) {
1261 		/* No partial writes. */
1262 		return -EINVAL;
1263 	}
1264 
1265 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1266 	if (rv < 0)
1267 		return rv;
1268 
1269 	/* is userspace tring to explicitly UNSET the loginuid? */
1270 	if (loginuid == AUDIT_UID_UNSET) {
1271 		kloginuid = INVALID_UID;
1272 	} else {
1273 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1274 		if (!uid_valid(kloginuid))
1275 			return -EINVAL;
1276 	}
1277 
1278 	rv = audit_set_loginuid(kloginuid);
1279 	if (rv < 0)
1280 		return rv;
1281 	return count;
1282 }
1283 
1284 static const struct file_operations proc_loginuid_operations = {
1285 	.read		= proc_loginuid_read,
1286 	.write		= proc_loginuid_write,
1287 	.llseek		= generic_file_llseek,
1288 };
1289 
1290 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1291 				  size_t count, loff_t *ppos)
1292 {
1293 	struct inode * inode = file_inode(file);
1294 	struct task_struct *task = get_proc_task(inode);
1295 	ssize_t length;
1296 	char tmpbuf[TMPBUFLEN];
1297 
1298 	if (!task)
1299 		return -ESRCH;
1300 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1301 				audit_get_sessionid(task));
1302 	put_task_struct(task);
1303 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1304 }
1305 
1306 static const struct file_operations proc_sessionid_operations = {
1307 	.read		= proc_sessionid_read,
1308 	.llseek		= generic_file_llseek,
1309 };
1310 #endif
1311 
1312 #ifdef CONFIG_FAULT_INJECTION
1313 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1314 				      size_t count, loff_t *ppos)
1315 {
1316 	struct task_struct *task = get_proc_task(file_inode(file));
1317 	char buffer[PROC_NUMBUF];
1318 	size_t len;
1319 	int make_it_fail;
1320 
1321 	if (!task)
1322 		return -ESRCH;
1323 	make_it_fail = task->make_it_fail;
1324 	put_task_struct(task);
1325 
1326 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1327 
1328 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1329 }
1330 
1331 static ssize_t proc_fault_inject_write(struct file * file,
1332 			const char __user * buf, size_t count, loff_t *ppos)
1333 {
1334 	struct task_struct *task;
1335 	char buffer[PROC_NUMBUF];
1336 	int make_it_fail;
1337 	int rv;
1338 
1339 	if (!capable(CAP_SYS_RESOURCE))
1340 		return -EPERM;
1341 	memset(buffer, 0, sizeof(buffer));
1342 	if (count > sizeof(buffer) - 1)
1343 		count = sizeof(buffer) - 1;
1344 	if (copy_from_user(buffer, buf, count))
1345 		return -EFAULT;
1346 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1347 	if (rv < 0)
1348 		return rv;
1349 	if (make_it_fail < 0 || make_it_fail > 1)
1350 		return -EINVAL;
1351 
1352 	task = get_proc_task(file_inode(file));
1353 	if (!task)
1354 		return -ESRCH;
1355 	task->make_it_fail = make_it_fail;
1356 	put_task_struct(task);
1357 
1358 	return count;
1359 }
1360 
1361 static const struct file_operations proc_fault_inject_operations = {
1362 	.read		= proc_fault_inject_read,
1363 	.write		= proc_fault_inject_write,
1364 	.llseek		= generic_file_llseek,
1365 };
1366 #endif
1367 
1368 
1369 #ifdef CONFIG_SCHED_DEBUG
1370 /*
1371  * Print out various scheduling related per-task fields:
1372  */
1373 static int sched_show(struct seq_file *m, void *v)
1374 {
1375 	struct inode *inode = m->private;
1376 	struct task_struct *p;
1377 
1378 	p = get_proc_task(inode);
1379 	if (!p)
1380 		return -ESRCH;
1381 	proc_sched_show_task(p, m);
1382 
1383 	put_task_struct(p);
1384 
1385 	return 0;
1386 }
1387 
1388 static ssize_t
1389 sched_write(struct file *file, const char __user *buf,
1390 	    size_t count, loff_t *offset)
1391 {
1392 	struct inode *inode = file_inode(file);
1393 	struct task_struct *p;
1394 
1395 	p = get_proc_task(inode);
1396 	if (!p)
1397 		return -ESRCH;
1398 	proc_sched_set_task(p);
1399 
1400 	put_task_struct(p);
1401 
1402 	return count;
1403 }
1404 
1405 static int sched_open(struct inode *inode, struct file *filp)
1406 {
1407 	return single_open(filp, sched_show, inode);
1408 }
1409 
1410 static const struct file_operations proc_pid_sched_operations = {
1411 	.open		= sched_open,
1412 	.read		= seq_read,
1413 	.write		= sched_write,
1414 	.llseek		= seq_lseek,
1415 	.release	= single_release,
1416 };
1417 
1418 #endif
1419 
1420 #ifdef CONFIG_SCHED_AUTOGROUP
1421 /*
1422  * Print out autogroup related information:
1423  */
1424 static int sched_autogroup_show(struct seq_file *m, void *v)
1425 {
1426 	struct inode *inode = m->private;
1427 	struct task_struct *p;
1428 
1429 	p = get_proc_task(inode);
1430 	if (!p)
1431 		return -ESRCH;
1432 	proc_sched_autogroup_show_task(p, m);
1433 
1434 	put_task_struct(p);
1435 
1436 	return 0;
1437 }
1438 
1439 static ssize_t
1440 sched_autogroup_write(struct file *file, const char __user *buf,
1441 	    size_t count, loff_t *offset)
1442 {
1443 	struct inode *inode = file_inode(file);
1444 	struct task_struct *p;
1445 	char buffer[PROC_NUMBUF];
1446 	int nice;
1447 	int err;
1448 
1449 	memset(buffer, 0, sizeof(buffer));
1450 	if (count > sizeof(buffer) - 1)
1451 		count = sizeof(buffer) - 1;
1452 	if (copy_from_user(buffer, buf, count))
1453 		return -EFAULT;
1454 
1455 	err = kstrtoint(strstrip(buffer), 0, &nice);
1456 	if (err < 0)
1457 		return err;
1458 
1459 	p = get_proc_task(inode);
1460 	if (!p)
1461 		return -ESRCH;
1462 
1463 	err = proc_sched_autogroup_set_nice(p, nice);
1464 	if (err)
1465 		count = err;
1466 
1467 	put_task_struct(p);
1468 
1469 	return count;
1470 }
1471 
1472 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1473 {
1474 	int ret;
1475 
1476 	ret = single_open(filp, sched_autogroup_show, NULL);
1477 	if (!ret) {
1478 		struct seq_file *m = filp->private_data;
1479 
1480 		m->private = inode;
1481 	}
1482 	return ret;
1483 }
1484 
1485 static const struct file_operations proc_pid_sched_autogroup_operations = {
1486 	.open		= sched_autogroup_open,
1487 	.read		= seq_read,
1488 	.write		= sched_autogroup_write,
1489 	.llseek		= seq_lseek,
1490 	.release	= single_release,
1491 };
1492 
1493 #endif /* CONFIG_SCHED_AUTOGROUP */
1494 
1495 static ssize_t comm_write(struct file *file, const char __user *buf,
1496 				size_t count, loff_t *offset)
1497 {
1498 	struct inode *inode = file_inode(file);
1499 	struct task_struct *p;
1500 	char buffer[TASK_COMM_LEN];
1501 	const size_t maxlen = sizeof(buffer) - 1;
1502 
1503 	memset(buffer, 0, sizeof(buffer));
1504 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1505 		return -EFAULT;
1506 
1507 	p = get_proc_task(inode);
1508 	if (!p)
1509 		return -ESRCH;
1510 
1511 	if (same_thread_group(current, p))
1512 		set_task_comm(p, buffer);
1513 	else
1514 		count = -EINVAL;
1515 
1516 	put_task_struct(p);
1517 
1518 	return count;
1519 }
1520 
1521 static int comm_show(struct seq_file *m, void *v)
1522 {
1523 	struct inode *inode = m->private;
1524 	struct task_struct *p;
1525 
1526 	p = get_proc_task(inode);
1527 	if (!p)
1528 		return -ESRCH;
1529 
1530 	task_lock(p);
1531 	seq_printf(m, "%s\n", p->comm);
1532 	task_unlock(p);
1533 
1534 	put_task_struct(p);
1535 
1536 	return 0;
1537 }
1538 
1539 static int comm_open(struct inode *inode, struct file *filp)
1540 {
1541 	return single_open(filp, comm_show, inode);
1542 }
1543 
1544 static const struct file_operations proc_pid_set_comm_operations = {
1545 	.open		= comm_open,
1546 	.read		= seq_read,
1547 	.write		= comm_write,
1548 	.llseek		= seq_lseek,
1549 	.release	= single_release,
1550 };
1551 
1552 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1553 {
1554 	struct task_struct *task;
1555 	struct mm_struct *mm;
1556 	struct file *exe_file;
1557 
1558 	task = get_proc_task(d_inode(dentry));
1559 	if (!task)
1560 		return -ENOENT;
1561 	mm = get_task_mm(task);
1562 	put_task_struct(task);
1563 	if (!mm)
1564 		return -ENOENT;
1565 	exe_file = get_mm_exe_file(mm);
1566 	mmput(mm);
1567 	if (exe_file) {
1568 		*exe_path = exe_file->f_path;
1569 		path_get(&exe_file->f_path);
1570 		fput(exe_file);
1571 		return 0;
1572 	} else
1573 		return -ENOENT;
1574 }
1575 
1576 static const char *proc_pid_get_link(struct dentry *dentry,
1577 				     struct inode *inode,
1578 				     struct delayed_call *done)
1579 {
1580 	struct path path;
1581 	int error = -EACCES;
1582 
1583 	if (!dentry)
1584 		return ERR_PTR(-ECHILD);
1585 
1586 	/* Are we allowed to snoop on the tasks file descriptors? */
1587 	if (!proc_fd_access_allowed(inode))
1588 		goto out;
1589 
1590 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1591 	if (error)
1592 		goto out;
1593 
1594 	nd_jump_link(&path);
1595 	return NULL;
1596 out:
1597 	return ERR_PTR(error);
1598 }
1599 
1600 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1601 {
1602 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1603 	char *pathname;
1604 	int len;
1605 
1606 	if (!tmp)
1607 		return -ENOMEM;
1608 
1609 	pathname = d_path(path, tmp, PAGE_SIZE);
1610 	len = PTR_ERR(pathname);
1611 	if (IS_ERR(pathname))
1612 		goto out;
1613 	len = tmp + PAGE_SIZE - 1 - pathname;
1614 
1615 	if (len > buflen)
1616 		len = buflen;
1617 	if (copy_to_user(buffer, pathname, len))
1618 		len = -EFAULT;
1619  out:
1620 	free_page((unsigned long)tmp);
1621 	return len;
1622 }
1623 
1624 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1625 {
1626 	int error = -EACCES;
1627 	struct inode *inode = d_inode(dentry);
1628 	struct path path;
1629 
1630 	/* Are we allowed to snoop on the tasks file descriptors? */
1631 	if (!proc_fd_access_allowed(inode))
1632 		goto out;
1633 
1634 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1635 	if (error)
1636 		goto out;
1637 
1638 	error = do_proc_readlink(&path, buffer, buflen);
1639 	path_put(&path);
1640 out:
1641 	return error;
1642 }
1643 
1644 const struct inode_operations proc_pid_link_inode_operations = {
1645 	.readlink	= proc_pid_readlink,
1646 	.get_link	= proc_pid_get_link,
1647 	.setattr	= proc_setattr,
1648 };
1649 
1650 
1651 /* building an inode */
1652 
1653 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1654 {
1655 	struct inode * inode;
1656 	struct proc_inode *ei;
1657 	const struct cred *cred;
1658 
1659 	/* We need a new inode */
1660 
1661 	inode = new_inode(sb);
1662 	if (!inode)
1663 		goto out;
1664 
1665 	/* Common stuff */
1666 	ei = PROC_I(inode);
1667 	inode->i_ino = get_next_ino();
1668 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1669 	inode->i_op = &proc_def_inode_operations;
1670 
1671 	/*
1672 	 * grab the reference to task.
1673 	 */
1674 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1675 	if (!ei->pid)
1676 		goto out_unlock;
1677 
1678 	if (task_dumpable(task)) {
1679 		rcu_read_lock();
1680 		cred = __task_cred(task);
1681 		inode->i_uid = cred->euid;
1682 		inode->i_gid = cred->egid;
1683 		rcu_read_unlock();
1684 	}
1685 	security_task_to_inode(task, inode);
1686 
1687 out:
1688 	return inode;
1689 
1690 out_unlock:
1691 	iput(inode);
1692 	return NULL;
1693 }
1694 
1695 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1696 {
1697 	struct inode *inode = d_inode(dentry);
1698 	struct task_struct *task;
1699 	const struct cred *cred;
1700 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1701 
1702 	generic_fillattr(inode, stat);
1703 
1704 	rcu_read_lock();
1705 	stat->uid = GLOBAL_ROOT_UID;
1706 	stat->gid = GLOBAL_ROOT_GID;
1707 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1708 	if (task) {
1709 		if (!has_pid_permissions(pid, task, 2)) {
1710 			rcu_read_unlock();
1711 			/*
1712 			 * This doesn't prevent learning whether PID exists,
1713 			 * it only makes getattr() consistent with readdir().
1714 			 */
1715 			return -ENOENT;
1716 		}
1717 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1718 		    task_dumpable(task)) {
1719 			cred = __task_cred(task);
1720 			stat->uid = cred->euid;
1721 			stat->gid = cred->egid;
1722 		}
1723 	}
1724 	rcu_read_unlock();
1725 	return 0;
1726 }
1727 
1728 /* dentry stuff */
1729 
1730 /*
1731  *	Exceptional case: normally we are not allowed to unhash a busy
1732  * directory. In this case, however, we can do it - no aliasing problems
1733  * due to the way we treat inodes.
1734  *
1735  * Rewrite the inode's ownerships here because the owning task may have
1736  * performed a setuid(), etc.
1737  *
1738  * Before the /proc/pid/status file was created the only way to read
1739  * the effective uid of a /process was to stat /proc/pid.  Reading
1740  * /proc/pid/status is slow enough that procps and other packages
1741  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1742  * made this apply to all per process world readable and executable
1743  * directories.
1744  */
1745 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1746 {
1747 	struct inode *inode;
1748 	struct task_struct *task;
1749 	const struct cred *cred;
1750 
1751 	if (flags & LOOKUP_RCU)
1752 		return -ECHILD;
1753 
1754 	inode = d_inode(dentry);
1755 	task = get_proc_task(inode);
1756 
1757 	if (task) {
1758 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1759 		    task_dumpable(task)) {
1760 			rcu_read_lock();
1761 			cred = __task_cred(task);
1762 			inode->i_uid = cred->euid;
1763 			inode->i_gid = cred->egid;
1764 			rcu_read_unlock();
1765 		} else {
1766 			inode->i_uid = GLOBAL_ROOT_UID;
1767 			inode->i_gid = GLOBAL_ROOT_GID;
1768 		}
1769 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1770 		security_task_to_inode(task, inode);
1771 		put_task_struct(task);
1772 		return 1;
1773 	}
1774 	return 0;
1775 }
1776 
1777 static inline bool proc_inode_is_dead(struct inode *inode)
1778 {
1779 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1780 }
1781 
1782 int pid_delete_dentry(const struct dentry *dentry)
1783 {
1784 	/* Is the task we represent dead?
1785 	 * If so, then don't put the dentry on the lru list,
1786 	 * kill it immediately.
1787 	 */
1788 	return proc_inode_is_dead(d_inode(dentry));
1789 }
1790 
1791 const struct dentry_operations pid_dentry_operations =
1792 {
1793 	.d_revalidate	= pid_revalidate,
1794 	.d_delete	= pid_delete_dentry,
1795 };
1796 
1797 /* Lookups */
1798 
1799 /*
1800  * Fill a directory entry.
1801  *
1802  * If possible create the dcache entry and derive our inode number and
1803  * file type from dcache entry.
1804  *
1805  * Since all of the proc inode numbers are dynamically generated, the inode
1806  * numbers do not exist until the inode is cache.  This means creating the
1807  * the dcache entry in readdir is necessary to keep the inode numbers
1808  * reported by readdir in sync with the inode numbers reported
1809  * by stat.
1810  */
1811 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1812 	const char *name, int len,
1813 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1814 {
1815 	struct dentry *child, *dir = file->f_path.dentry;
1816 	struct qstr qname = QSTR_INIT(name, len);
1817 	struct inode *inode;
1818 	unsigned type;
1819 	ino_t ino;
1820 
1821 	child = d_hash_and_lookup(dir, &qname);
1822 	if (!child) {
1823 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1824 		child = d_alloc_parallel(dir, &qname, &wq);
1825 		if (IS_ERR(child))
1826 			goto end_instantiate;
1827 		if (d_in_lookup(child)) {
1828 			int err = instantiate(d_inode(dir), child, task, ptr);
1829 			d_lookup_done(child);
1830 			if (err < 0) {
1831 				dput(child);
1832 				goto end_instantiate;
1833 			}
1834 		}
1835 	}
1836 	inode = d_inode(child);
1837 	ino = inode->i_ino;
1838 	type = inode->i_mode >> 12;
1839 	dput(child);
1840 	return dir_emit(ctx, name, len, ino, type);
1841 
1842 end_instantiate:
1843 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1844 }
1845 
1846 /*
1847  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1848  * which represent vma start and end addresses.
1849  */
1850 static int dname_to_vma_addr(struct dentry *dentry,
1851 			     unsigned long *start, unsigned long *end)
1852 {
1853 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1854 		return -EINVAL;
1855 
1856 	return 0;
1857 }
1858 
1859 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1860 {
1861 	unsigned long vm_start, vm_end;
1862 	bool exact_vma_exists = false;
1863 	struct mm_struct *mm = NULL;
1864 	struct task_struct *task;
1865 	const struct cred *cred;
1866 	struct inode *inode;
1867 	int status = 0;
1868 
1869 	if (flags & LOOKUP_RCU)
1870 		return -ECHILD;
1871 
1872 	inode = d_inode(dentry);
1873 	task = get_proc_task(inode);
1874 	if (!task)
1875 		goto out_notask;
1876 
1877 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1878 	if (IS_ERR_OR_NULL(mm))
1879 		goto out;
1880 
1881 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1882 		down_read(&mm->mmap_sem);
1883 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1884 		up_read(&mm->mmap_sem);
1885 	}
1886 
1887 	mmput(mm);
1888 
1889 	if (exact_vma_exists) {
1890 		if (task_dumpable(task)) {
1891 			rcu_read_lock();
1892 			cred = __task_cred(task);
1893 			inode->i_uid = cred->euid;
1894 			inode->i_gid = cred->egid;
1895 			rcu_read_unlock();
1896 		} else {
1897 			inode->i_uid = GLOBAL_ROOT_UID;
1898 			inode->i_gid = GLOBAL_ROOT_GID;
1899 		}
1900 		security_task_to_inode(task, inode);
1901 		status = 1;
1902 	}
1903 
1904 out:
1905 	put_task_struct(task);
1906 
1907 out_notask:
1908 	return status;
1909 }
1910 
1911 static const struct dentry_operations tid_map_files_dentry_operations = {
1912 	.d_revalidate	= map_files_d_revalidate,
1913 	.d_delete	= pid_delete_dentry,
1914 };
1915 
1916 static int map_files_get_link(struct dentry *dentry, struct path *path)
1917 {
1918 	unsigned long vm_start, vm_end;
1919 	struct vm_area_struct *vma;
1920 	struct task_struct *task;
1921 	struct mm_struct *mm;
1922 	int rc;
1923 
1924 	rc = -ENOENT;
1925 	task = get_proc_task(d_inode(dentry));
1926 	if (!task)
1927 		goto out;
1928 
1929 	mm = get_task_mm(task);
1930 	put_task_struct(task);
1931 	if (!mm)
1932 		goto out;
1933 
1934 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1935 	if (rc)
1936 		goto out_mmput;
1937 
1938 	rc = -ENOENT;
1939 	down_read(&mm->mmap_sem);
1940 	vma = find_exact_vma(mm, vm_start, vm_end);
1941 	if (vma && vma->vm_file) {
1942 		*path = vma->vm_file->f_path;
1943 		path_get(path);
1944 		rc = 0;
1945 	}
1946 	up_read(&mm->mmap_sem);
1947 
1948 out_mmput:
1949 	mmput(mm);
1950 out:
1951 	return rc;
1952 }
1953 
1954 struct map_files_info {
1955 	fmode_t		mode;
1956 	unsigned long	len;
1957 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1958 };
1959 
1960 /*
1961  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1962  * symlinks may be used to bypass permissions on ancestor directories in the
1963  * path to the file in question.
1964  */
1965 static const char *
1966 proc_map_files_get_link(struct dentry *dentry,
1967 			struct inode *inode,
1968 		        struct delayed_call *done)
1969 {
1970 	if (!capable(CAP_SYS_ADMIN))
1971 		return ERR_PTR(-EPERM);
1972 
1973 	return proc_pid_get_link(dentry, inode, done);
1974 }
1975 
1976 /*
1977  * Identical to proc_pid_link_inode_operations except for get_link()
1978  */
1979 static const struct inode_operations proc_map_files_link_inode_operations = {
1980 	.readlink	= proc_pid_readlink,
1981 	.get_link	= proc_map_files_get_link,
1982 	.setattr	= proc_setattr,
1983 };
1984 
1985 static int
1986 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1987 			   struct task_struct *task, const void *ptr)
1988 {
1989 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1990 	struct proc_inode *ei;
1991 	struct inode *inode;
1992 
1993 	inode = proc_pid_make_inode(dir->i_sb, task);
1994 	if (!inode)
1995 		return -ENOENT;
1996 
1997 	ei = PROC_I(inode);
1998 	ei->op.proc_get_link = map_files_get_link;
1999 
2000 	inode->i_op = &proc_map_files_link_inode_operations;
2001 	inode->i_size = 64;
2002 	inode->i_mode = S_IFLNK;
2003 
2004 	if (mode & FMODE_READ)
2005 		inode->i_mode |= S_IRUSR;
2006 	if (mode & FMODE_WRITE)
2007 		inode->i_mode |= S_IWUSR;
2008 
2009 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2010 	d_add(dentry, inode);
2011 
2012 	return 0;
2013 }
2014 
2015 static struct dentry *proc_map_files_lookup(struct inode *dir,
2016 		struct dentry *dentry, unsigned int flags)
2017 {
2018 	unsigned long vm_start, vm_end;
2019 	struct vm_area_struct *vma;
2020 	struct task_struct *task;
2021 	int result;
2022 	struct mm_struct *mm;
2023 
2024 	result = -ENOENT;
2025 	task = get_proc_task(dir);
2026 	if (!task)
2027 		goto out;
2028 
2029 	result = -EACCES;
2030 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2031 		goto out_put_task;
2032 
2033 	result = -ENOENT;
2034 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2035 		goto out_put_task;
2036 
2037 	mm = get_task_mm(task);
2038 	if (!mm)
2039 		goto out_put_task;
2040 
2041 	down_read(&mm->mmap_sem);
2042 	vma = find_exact_vma(mm, vm_start, vm_end);
2043 	if (!vma)
2044 		goto out_no_vma;
2045 
2046 	if (vma->vm_file)
2047 		result = proc_map_files_instantiate(dir, dentry, task,
2048 				(void *)(unsigned long)vma->vm_file->f_mode);
2049 
2050 out_no_vma:
2051 	up_read(&mm->mmap_sem);
2052 	mmput(mm);
2053 out_put_task:
2054 	put_task_struct(task);
2055 out:
2056 	return ERR_PTR(result);
2057 }
2058 
2059 static const struct inode_operations proc_map_files_inode_operations = {
2060 	.lookup		= proc_map_files_lookup,
2061 	.permission	= proc_fd_permission,
2062 	.setattr	= proc_setattr,
2063 };
2064 
2065 static int
2066 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2067 {
2068 	struct vm_area_struct *vma;
2069 	struct task_struct *task;
2070 	struct mm_struct *mm;
2071 	unsigned long nr_files, pos, i;
2072 	struct flex_array *fa = NULL;
2073 	struct map_files_info info;
2074 	struct map_files_info *p;
2075 	int ret;
2076 
2077 	ret = -ENOENT;
2078 	task = get_proc_task(file_inode(file));
2079 	if (!task)
2080 		goto out;
2081 
2082 	ret = -EACCES;
2083 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2084 		goto out_put_task;
2085 
2086 	ret = 0;
2087 	if (!dir_emit_dots(file, ctx))
2088 		goto out_put_task;
2089 
2090 	mm = get_task_mm(task);
2091 	if (!mm)
2092 		goto out_put_task;
2093 	down_read(&mm->mmap_sem);
2094 
2095 	nr_files = 0;
2096 
2097 	/*
2098 	 * We need two passes here:
2099 	 *
2100 	 *  1) Collect vmas of mapped files with mmap_sem taken
2101 	 *  2) Release mmap_sem and instantiate entries
2102 	 *
2103 	 * otherwise we get lockdep complained, since filldir()
2104 	 * routine might require mmap_sem taken in might_fault().
2105 	 */
2106 
2107 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2108 		if (vma->vm_file && ++pos > ctx->pos)
2109 			nr_files++;
2110 	}
2111 
2112 	if (nr_files) {
2113 		fa = flex_array_alloc(sizeof(info), nr_files,
2114 					GFP_KERNEL);
2115 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2116 						GFP_KERNEL)) {
2117 			ret = -ENOMEM;
2118 			if (fa)
2119 				flex_array_free(fa);
2120 			up_read(&mm->mmap_sem);
2121 			mmput(mm);
2122 			goto out_put_task;
2123 		}
2124 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2125 				vma = vma->vm_next) {
2126 			if (!vma->vm_file)
2127 				continue;
2128 			if (++pos <= ctx->pos)
2129 				continue;
2130 
2131 			info.mode = vma->vm_file->f_mode;
2132 			info.len = snprintf(info.name,
2133 					sizeof(info.name), "%lx-%lx",
2134 					vma->vm_start, vma->vm_end);
2135 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2136 				BUG();
2137 		}
2138 	}
2139 	up_read(&mm->mmap_sem);
2140 
2141 	for (i = 0; i < nr_files; i++) {
2142 		p = flex_array_get(fa, i);
2143 		if (!proc_fill_cache(file, ctx,
2144 				      p->name, p->len,
2145 				      proc_map_files_instantiate,
2146 				      task,
2147 				      (void *)(unsigned long)p->mode))
2148 			break;
2149 		ctx->pos++;
2150 	}
2151 	if (fa)
2152 		flex_array_free(fa);
2153 	mmput(mm);
2154 
2155 out_put_task:
2156 	put_task_struct(task);
2157 out:
2158 	return ret;
2159 }
2160 
2161 static const struct file_operations proc_map_files_operations = {
2162 	.read		= generic_read_dir,
2163 	.iterate_shared	= proc_map_files_readdir,
2164 	.llseek		= generic_file_llseek,
2165 };
2166 
2167 #ifdef CONFIG_CHECKPOINT_RESTORE
2168 struct timers_private {
2169 	struct pid *pid;
2170 	struct task_struct *task;
2171 	struct sighand_struct *sighand;
2172 	struct pid_namespace *ns;
2173 	unsigned long flags;
2174 };
2175 
2176 static void *timers_start(struct seq_file *m, loff_t *pos)
2177 {
2178 	struct timers_private *tp = m->private;
2179 
2180 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2181 	if (!tp->task)
2182 		return ERR_PTR(-ESRCH);
2183 
2184 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2185 	if (!tp->sighand)
2186 		return ERR_PTR(-ESRCH);
2187 
2188 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2189 }
2190 
2191 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2192 {
2193 	struct timers_private *tp = m->private;
2194 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2195 }
2196 
2197 static void timers_stop(struct seq_file *m, void *v)
2198 {
2199 	struct timers_private *tp = m->private;
2200 
2201 	if (tp->sighand) {
2202 		unlock_task_sighand(tp->task, &tp->flags);
2203 		tp->sighand = NULL;
2204 	}
2205 
2206 	if (tp->task) {
2207 		put_task_struct(tp->task);
2208 		tp->task = NULL;
2209 	}
2210 }
2211 
2212 static int show_timer(struct seq_file *m, void *v)
2213 {
2214 	struct k_itimer *timer;
2215 	struct timers_private *tp = m->private;
2216 	int notify;
2217 	static const char * const nstr[] = {
2218 		[SIGEV_SIGNAL] = "signal",
2219 		[SIGEV_NONE] = "none",
2220 		[SIGEV_THREAD] = "thread",
2221 	};
2222 
2223 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2224 	notify = timer->it_sigev_notify;
2225 
2226 	seq_printf(m, "ID: %d\n", timer->it_id);
2227 	seq_printf(m, "signal: %d/%p\n",
2228 		   timer->sigq->info.si_signo,
2229 		   timer->sigq->info.si_value.sival_ptr);
2230 	seq_printf(m, "notify: %s/%s.%d\n",
2231 		   nstr[notify & ~SIGEV_THREAD_ID],
2232 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2233 		   pid_nr_ns(timer->it_pid, tp->ns));
2234 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2235 
2236 	return 0;
2237 }
2238 
2239 static const struct seq_operations proc_timers_seq_ops = {
2240 	.start	= timers_start,
2241 	.next	= timers_next,
2242 	.stop	= timers_stop,
2243 	.show	= show_timer,
2244 };
2245 
2246 static int proc_timers_open(struct inode *inode, struct file *file)
2247 {
2248 	struct timers_private *tp;
2249 
2250 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2251 			sizeof(struct timers_private));
2252 	if (!tp)
2253 		return -ENOMEM;
2254 
2255 	tp->pid = proc_pid(inode);
2256 	tp->ns = inode->i_sb->s_fs_info;
2257 	return 0;
2258 }
2259 
2260 static const struct file_operations proc_timers_operations = {
2261 	.open		= proc_timers_open,
2262 	.read		= seq_read,
2263 	.llseek		= seq_lseek,
2264 	.release	= seq_release_private,
2265 };
2266 #endif
2267 
2268 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2269 					size_t count, loff_t *offset)
2270 {
2271 	struct inode *inode = file_inode(file);
2272 	struct task_struct *p;
2273 	u64 slack_ns;
2274 	int err;
2275 
2276 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2277 	if (err < 0)
2278 		return err;
2279 
2280 	p = get_proc_task(inode);
2281 	if (!p)
2282 		return -ESRCH;
2283 
2284 	if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2285 		task_lock(p);
2286 		if (slack_ns == 0)
2287 			p->timer_slack_ns = p->default_timer_slack_ns;
2288 		else
2289 			p->timer_slack_ns = slack_ns;
2290 		task_unlock(p);
2291 	} else
2292 		count = -EPERM;
2293 
2294 	put_task_struct(p);
2295 
2296 	return count;
2297 }
2298 
2299 static int timerslack_ns_show(struct seq_file *m, void *v)
2300 {
2301 	struct inode *inode = m->private;
2302 	struct task_struct *p;
2303 	int err =  0;
2304 
2305 	p = get_proc_task(inode);
2306 	if (!p)
2307 		return -ESRCH;
2308 
2309 	if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2310 		task_lock(p);
2311 		seq_printf(m, "%llu\n", p->timer_slack_ns);
2312 		task_unlock(p);
2313 	} else
2314 		err = -EPERM;
2315 
2316 	put_task_struct(p);
2317 
2318 	return err;
2319 }
2320 
2321 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2322 {
2323 	return single_open(filp, timerslack_ns_show, inode);
2324 }
2325 
2326 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2327 	.open		= timerslack_ns_open,
2328 	.read		= seq_read,
2329 	.write		= timerslack_ns_write,
2330 	.llseek		= seq_lseek,
2331 	.release	= single_release,
2332 };
2333 
2334 static int proc_pident_instantiate(struct inode *dir,
2335 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2336 {
2337 	const struct pid_entry *p = ptr;
2338 	struct inode *inode;
2339 	struct proc_inode *ei;
2340 
2341 	inode = proc_pid_make_inode(dir->i_sb, task);
2342 	if (!inode)
2343 		goto out;
2344 
2345 	ei = PROC_I(inode);
2346 	inode->i_mode = p->mode;
2347 	if (S_ISDIR(inode->i_mode))
2348 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2349 	if (p->iop)
2350 		inode->i_op = p->iop;
2351 	if (p->fop)
2352 		inode->i_fop = p->fop;
2353 	ei->op = p->op;
2354 	d_set_d_op(dentry, &pid_dentry_operations);
2355 	d_add(dentry, inode);
2356 	/* Close the race of the process dying before we return the dentry */
2357 	if (pid_revalidate(dentry, 0))
2358 		return 0;
2359 out:
2360 	return -ENOENT;
2361 }
2362 
2363 static struct dentry *proc_pident_lookup(struct inode *dir,
2364 					 struct dentry *dentry,
2365 					 const struct pid_entry *ents,
2366 					 unsigned int nents)
2367 {
2368 	int error;
2369 	struct task_struct *task = get_proc_task(dir);
2370 	const struct pid_entry *p, *last;
2371 
2372 	error = -ENOENT;
2373 
2374 	if (!task)
2375 		goto out_no_task;
2376 
2377 	/*
2378 	 * Yes, it does not scale. And it should not. Don't add
2379 	 * new entries into /proc/<tgid>/ without very good reasons.
2380 	 */
2381 	last = &ents[nents - 1];
2382 	for (p = ents; p <= last; p++) {
2383 		if (p->len != dentry->d_name.len)
2384 			continue;
2385 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2386 			break;
2387 	}
2388 	if (p > last)
2389 		goto out;
2390 
2391 	error = proc_pident_instantiate(dir, dentry, task, p);
2392 out:
2393 	put_task_struct(task);
2394 out_no_task:
2395 	return ERR_PTR(error);
2396 }
2397 
2398 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2399 		const struct pid_entry *ents, unsigned int nents)
2400 {
2401 	struct task_struct *task = get_proc_task(file_inode(file));
2402 	const struct pid_entry *p;
2403 
2404 	if (!task)
2405 		return -ENOENT;
2406 
2407 	if (!dir_emit_dots(file, ctx))
2408 		goto out;
2409 
2410 	if (ctx->pos >= nents + 2)
2411 		goto out;
2412 
2413 	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2414 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2415 				proc_pident_instantiate, task, p))
2416 			break;
2417 		ctx->pos++;
2418 	}
2419 out:
2420 	put_task_struct(task);
2421 	return 0;
2422 }
2423 
2424 #ifdef CONFIG_SECURITY
2425 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2426 				  size_t count, loff_t *ppos)
2427 {
2428 	struct inode * inode = file_inode(file);
2429 	char *p = NULL;
2430 	ssize_t length;
2431 	struct task_struct *task = get_proc_task(inode);
2432 
2433 	if (!task)
2434 		return -ESRCH;
2435 
2436 	length = security_getprocattr(task,
2437 				      (char*)file->f_path.dentry->d_name.name,
2438 				      &p);
2439 	put_task_struct(task);
2440 	if (length > 0)
2441 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2442 	kfree(p);
2443 	return length;
2444 }
2445 
2446 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2447 				   size_t count, loff_t *ppos)
2448 {
2449 	struct inode * inode = file_inode(file);
2450 	void *page;
2451 	ssize_t length;
2452 	struct task_struct *task = get_proc_task(inode);
2453 
2454 	length = -ESRCH;
2455 	if (!task)
2456 		goto out_no_task;
2457 	if (count > PAGE_SIZE)
2458 		count = PAGE_SIZE;
2459 
2460 	/* No partial writes. */
2461 	length = -EINVAL;
2462 	if (*ppos != 0)
2463 		goto out;
2464 
2465 	page = memdup_user(buf, count);
2466 	if (IS_ERR(page)) {
2467 		length = PTR_ERR(page);
2468 		goto out;
2469 	}
2470 
2471 	/* Guard against adverse ptrace interaction */
2472 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2473 	if (length < 0)
2474 		goto out_free;
2475 
2476 	length = security_setprocattr(task,
2477 				      (char*)file->f_path.dentry->d_name.name,
2478 				      page, count);
2479 	mutex_unlock(&task->signal->cred_guard_mutex);
2480 out_free:
2481 	kfree(page);
2482 out:
2483 	put_task_struct(task);
2484 out_no_task:
2485 	return length;
2486 }
2487 
2488 static const struct file_operations proc_pid_attr_operations = {
2489 	.read		= proc_pid_attr_read,
2490 	.write		= proc_pid_attr_write,
2491 	.llseek		= generic_file_llseek,
2492 };
2493 
2494 static const struct pid_entry attr_dir_stuff[] = {
2495 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2496 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2497 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2498 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2499 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2500 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2501 };
2502 
2503 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2504 {
2505 	return proc_pident_readdir(file, ctx,
2506 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2507 }
2508 
2509 static const struct file_operations proc_attr_dir_operations = {
2510 	.read		= generic_read_dir,
2511 	.iterate_shared	= proc_attr_dir_readdir,
2512 	.llseek		= generic_file_llseek,
2513 };
2514 
2515 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2516 				struct dentry *dentry, unsigned int flags)
2517 {
2518 	return proc_pident_lookup(dir, dentry,
2519 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2520 }
2521 
2522 static const struct inode_operations proc_attr_dir_inode_operations = {
2523 	.lookup		= proc_attr_dir_lookup,
2524 	.getattr	= pid_getattr,
2525 	.setattr	= proc_setattr,
2526 };
2527 
2528 #endif
2529 
2530 #ifdef CONFIG_ELF_CORE
2531 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2532 					 size_t count, loff_t *ppos)
2533 {
2534 	struct task_struct *task = get_proc_task(file_inode(file));
2535 	struct mm_struct *mm;
2536 	char buffer[PROC_NUMBUF];
2537 	size_t len;
2538 	int ret;
2539 
2540 	if (!task)
2541 		return -ESRCH;
2542 
2543 	ret = 0;
2544 	mm = get_task_mm(task);
2545 	if (mm) {
2546 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2547 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2548 				MMF_DUMP_FILTER_SHIFT));
2549 		mmput(mm);
2550 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2551 	}
2552 
2553 	put_task_struct(task);
2554 
2555 	return ret;
2556 }
2557 
2558 static ssize_t proc_coredump_filter_write(struct file *file,
2559 					  const char __user *buf,
2560 					  size_t count,
2561 					  loff_t *ppos)
2562 {
2563 	struct task_struct *task;
2564 	struct mm_struct *mm;
2565 	unsigned int val;
2566 	int ret;
2567 	int i;
2568 	unsigned long mask;
2569 
2570 	ret = kstrtouint_from_user(buf, count, 0, &val);
2571 	if (ret < 0)
2572 		return ret;
2573 
2574 	ret = -ESRCH;
2575 	task = get_proc_task(file_inode(file));
2576 	if (!task)
2577 		goto out_no_task;
2578 
2579 	mm = get_task_mm(task);
2580 	if (!mm)
2581 		goto out_no_mm;
2582 	ret = 0;
2583 
2584 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2585 		if (val & mask)
2586 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2587 		else
2588 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2589 	}
2590 
2591 	mmput(mm);
2592  out_no_mm:
2593 	put_task_struct(task);
2594  out_no_task:
2595 	if (ret < 0)
2596 		return ret;
2597 	return count;
2598 }
2599 
2600 static const struct file_operations proc_coredump_filter_operations = {
2601 	.read		= proc_coredump_filter_read,
2602 	.write		= proc_coredump_filter_write,
2603 	.llseek		= generic_file_llseek,
2604 };
2605 #endif
2606 
2607 #ifdef CONFIG_TASK_IO_ACCOUNTING
2608 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2609 {
2610 	struct task_io_accounting acct = task->ioac;
2611 	unsigned long flags;
2612 	int result;
2613 
2614 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2615 	if (result)
2616 		return result;
2617 
2618 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2619 		result = -EACCES;
2620 		goto out_unlock;
2621 	}
2622 
2623 	if (whole && lock_task_sighand(task, &flags)) {
2624 		struct task_struct *t = task;
2625 
2626 		task_io_accounting_add(&acct, &task->signal->ioac);
2627 		while_each_thread(task, t)
2628 			task_io_accounting_add(&acct, &t->ioac);
2629 
2630 		unlock_task_sighand(task, &flags);
2631 	}
2632 	seq_printf(m,
2633 		   "rchar: %llu\n"
2634 		   "wchar: %llu\n"
2635 		   "syscr: %llu\n"
2636 		   "syscw: %llu\n"
2637 		   "read_bytes: %llu\n"
2638 		   "write_bytes: %llu\n"
2639 		   "cancelled_write_bytes: %llu\n",
2640 		   (unsigned long long)acct.rchar,
2641 		   (unsigned long long)acct.wchar,
2642 		   (unsigned long long)acct.syscr,
2643 		   (unsigned long long)acct.syscw,
2644 		   (unsigned long long)acct.read_bytes,
2645 		   (unsigned long long)acct.write_bytes,
2646 		   (unsigned long long)acct.cancelled_write_bytes);
2647 	result = 0;
2648 
2649 out_unlock:
2650 	mutex_unlock(&task->signal->cred_guard_mutex);
2651 	return result;
2652 }
2653 
2654 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2655 				  struct pid *pid, struct task_struct *task)
2656 {
2657 	return do_io_accounting(task, m, 0);
2658 }
2659 
2660 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2661 				   struct pid *pid, struct task_struct *task)
2662 {
2663 	return do_io_accounting(task, m, 1);
2664 }
2665 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2666 
2667 #ifdef CONFIG_USER_NS
2668 static int proc_id_map_open(struct inode *inode, struct file *file,
2669 	const struct seq_operations *seq_ops)
2670 {
2671 	struct user_namespace *ns = NULL;
2672 	struct task_struct *task;
2673 	struct seq_file *seq;
2674 	int ret = -EINVAL;
2675 
2676 	task = get_proc_task(inode);
2677 	if (task) {
2678 		rcu_read_lock();
2679 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2680 		rcu_read_unlock();
2681 		put_task_struct(task);
2682 	}
2683 	if (!ns)
2684 		goto err;
2685 
2686 	ret = seq_open(file, seq_ops);
2687 	if (ret)
2688 		goto err_put_ns;
2689 
2690 	seq = file->private_data;
2691 	seq->private = ns;
2692 
2693 	return 0;
2694 err_put_ns:
2695 	put_user_ns(ns);
2696 err:
2697 	return ret;
2698 }
2699 
2700 static int proc_id_map_release(struct inode *inode, struct file *file)
2701 {
2702 	struct seq_file *seq = file->private_data;
2703 	struct user_namespace *ns = seq->private;
2704 	put_user_ns(ns);
2705 	return seq_release(inode, file);
2706 }
2707 
2708 static int proc_uid_map_open(struct inode *inode, struct file *file)
2709 {
2710 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2711 }
2712 
2713 static int proc_gid_map_open(struct inode *inode, struct file *file)
2714 {
2715 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2716 }
2717 
2718 static int proc_projid_map_open(struct inode *inode, struct file *file)
2719 {
2720 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2721 }
2722 
2723 static const struct file_operations proc_uid_map_operations = {
2724 	.open		= proc_uid_map_open,
2725 	.write		= proc_uid_map_write,
2726 	.read		= seq_read,
2727 	.llseek		= seq_lseek,
2728 	.release	= proc_id_map_release,
2729 };
2730 
2731 static const struct file_operations proc_gid_map_operations = {
2732 	.open		= proc_gid_map_open,
2733 	.write		= proc_gid_map_write,
2734 	.read		= seq_read,
2735 	.llseek		= seq_lseek,
2736 	.release	= proc_id_map_release,
2737 };
2738 
2739 static const struct file_operations proc_projid_map_operations = {
2740 	.open		= proc_projid_map_open,
2741 	.write		= proc_projid_map_write,
2742 	.read		= seq_read,
2743 	.llseek		= seq_lseek,
2744 	.release	= proc_id_map_release,
2745 };
2746 
2747 static int proc_setgroups_open(struct inode *inode, struct file *file)
2748 {
2749 	struct user_namespace *ns = NULL;
2750 	struct task_struct *task;
2751 	int ret;
2752 
2753 	ret = -ESRCH;
2754 	task = get_proc_task(inode);
2755 	if (task) {
2756 		rcu_read_lock();
2757 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2758 		rcu_read_unlock();
2759 		put_task_struct(task);
2760 	}
2761 	if (!ns)
2762 		goto err;
2763 
2764 	if (file->f_mode & FMODE_WRITE) {
2765 		ret = -EACCES;
2766 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2767 			goto err_put_ns;
2768 	}
2769 
2770 	ret = single_open(file, &proc_setgroups_show, ns);
2771 	if (ret)
2772 		goto err_put_ns;
2773 
2774 	return 0;
2775 err_put_ns:
2776 	put_user_ns(ns);
2777 err:
2778 	return ret;
2779 }
2780 
2781 static int proc_setgroups_release(struct inode *inode, struct file *file)
2782 {
2783 	struct seq_file *seq = file->private_data;
2784 	struct user_namespace *ns = seq->private;
2785 	int ret = single_release(inode, file);
2786 	put_user_ns(ns);
2787 	return ret;
2788 }
2789 
2790 static const struct file_operations proc_setgroups_operations = {
2791 	.open		= proc_setgroups_open,
2792 	.write		= proc_setgroups_write,
2793 	.read		= seq_read,
2794 	.llseek		= seq_lseek,
2795 	.release	= proc_setgroups_release,
2796 };
2797 #endif /* CONFIG_USER_NS */
2798 
2799 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2800 				struct pid *pid, struct task_struct *task)
2801 {
2802 	int err = lock_trace(task);
2803 	if (!err) {
2804 		seq_printf(m, "%08x\n", task->personality);
2805 		unlock_trace(task);
2806 	}
2807 	return err;
2808 }
2809 
2810 /*
2811  * Thread groups
2812  */
2813 static const struct file_operations proc_task_operations;
2814 static const struct inode_operations proc_task_inode_operations;
2815 
2816 static const struct pid_entry tgid_base_stuff[] = {
2817 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2818 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2819 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2820 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2821 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2822 #ifdef CONFIG_NET
2823 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2824 #endif
2825 	REG("environ",    S_IRUSR, proc_environ_operations),
2826 	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2827 	ONE("status",     S_IRUGO, proc_pid_status),
2828 	ONE("personality", S_IRUSR, proc_pid_personality),
2829 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2830 #ifdef CONFIG_SCHED_DEBUG
2831 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2832 #endif
2833 #ifdef CONFIG_SCHED_AUTOGROUP
2834 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2835 #endif
2836 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2837 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2838 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2839 #endif
2840 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2841 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2842 	ONE("statm",      S_IRUGO, proc_pid_statm),
2843 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2844 #ifdef CONFIG_NUMA
2845 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2846 #endif
2847 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2848 	LNK("cwd",        proc_cwd_link),
2849 	LNK("root",       proc_root_link),
2850 	LNK("exe",        proc_exe_link),
2851 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2852 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2853 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2854 #ifdef CONFIG_PROC_PAGE_MONITOR
2855 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2856 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2857 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2858 #endif
2859 #ifdef CONFIG_SECURITY
2860 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2861 #endif
2862 #ifdef CONFIG_KALLSYMS
2863 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2864 #endif
2865 #ifdef CONFIG_STACKTRACE
2866 	ONE("stack",      S_IRUSR, proc_pid_stack),
2867 #endif
2868 #ifdef CONFIG_SCHED_INFO
2869 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2870 #endif
2871 #ifdef CONFIG_LATENCYTOP
2872 	REG("latency",  S_IRUGO, proc_lstats_operations),
2873 #endif
2874 #ifdef CONFIG_PROC_PID_CPUSET
2875 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2876 #endif
2877 #ifdef CONFIG_CGROUPS
2878 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2879 #endif
2880 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2881 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2882 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2883 #ifdef CONFIG_AUDITSYSCALL
2884 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2885 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2886 #endif
2887 #ifdef CONFIG_FAULT_INJECTION
2888 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2889 #endif
2890 #ifdef CONFIG_ELF_CORE
2891 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2892 #endif
2893 #ifdef CONFIG_TASK_IO_ACCOUNTING
2894 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2895 #endif
2896 #ifdef CONFIG_HARDWALL
2897 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2898 #endif
2899 #ifdef CONFIG_USER_NS
2900 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2901 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2902 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2903 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2904 #endif
2905 #ifdef CONFIG_CHECKPOINT_RESTORE
2906 	REG("timers",	  S_IRUGO, proc_timers_operations),
2907 #endif
2908 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2909 };
2910 
2911 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2912 {
2913 	return proc_pident_readdir(file, ctx,
2914 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2915 }
2916 
2917 static const struct file_operations proc_tgid_base_operations = {
2918 	.read		= generic_read_dir,
2919 	.iterate_shared	= proc_tgid_base_readdir,
2920 	.llseek		= generic_file_llseek,
2921 };
2922 
2923 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2924 {
2925 	return proc_pident_lookup(dir, dentry,
2926 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2927 }
2928 
2929 static const struct inode_operations proc_tgid_base_inode_operations = {
2930 	.lookup		= proc_tgid_base_lookup,
2931 	.getattr	= pid_getattr,
2932 	.setattr	= proc_setattr,
2933 	.permission	= proc_pid_permission,
2934 };
2935 
2936 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2937 {
2938 	struct dentry *dentry, *leader, *dir;
2939 	char buf[PROC_NUMBUF];
2940 	struct qstr name;
2941 
2942 	name.name = buf;
2943 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2944 	/* no ->d_hash() rejects on procfs */
2945 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2946 	if (dentry) {
2947 		d_invalidate(dentry);
2948 		dput(dentry);
2949 	}
2950 
2951 	if (pid == tgid)
2952 		return;
2953 
2954 	name.name = buf;
2955 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2956 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2957 	if (!leader)
2958 		goto out;
2959 
2960 	name.name = "task";
2961 	name.len = strlen(name.name);
2962 	dir = d_hash_and_lookup(leader, &name);
2963 	if (!dir)
2964 		goto out_put_leader;
2965 
2966 	name.name = buf;
2967 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2968 	dentry = d_hash_and_lookup(dir, &name);
2969 	if (dentry) {
2970 		d_invalidate(dentry);
2971 		dput(dentry);
2972 	}
2973 
2974 	dput(dir);
2975 out_put_leader:
2976 	dput(leader);
2977 out:
2978 	return;
2979 }
2980 
2981 /**
2982  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2983  * @task: task that should be flushed.
2984  *
2985  * When flushing dentries from proc, one needs to flush them from global
2986  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2987  * in. This call is supposed to do all of this job.
2988  *
2989  * Looks in the dcache for
2990  * /proc/@pid
2991  * /proc/@tgid/task/@pid
2992  * if either directory is present flushes it and all of it'ts children
2993  * from the dcache.
2994  *
2995  * It is safe and reasonable to cache /proc entries for a task until
2996  * that task exits.  After that they just clog up the dcache with
2997  * useless entries, possibly causing useful dcache entries to be
2998  * flushed instead.  This routine is proved to flush those useless
2999  * dcache entries at process exit time.
3000  *
3001  * NOTE: This routine is just an optimization so it does not guarantee
3002  *       that no dcache entries will exist at process exit time it
3003  *       just makes it very unlikely that any will persist.
3004  */
3005 
3006 void proc_flush_task(struct task_struct *task)
3007 {
3008 	int i;
3009 	struct pid *pid, *tgid;
3010 	struct upid *upid;
3011 
3012 	pid = task_pid(task);
3013 	tgid = task_tgid(task);
3014 
3015 	for (i = 0; i <= pid->level; i++) {
3016 		upid = &pid->numbers[i];
3017 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3018 					tgid->numbers[i].nr);
3019 	}
3020 }
3021 
3022 static int proc_pid_instantiate(struct inode *dir,
3023 				   struct dentry * dentry,
3024 				   struct task_struct *task, const void *ptr)
3025 {
3026 	struct inode *inode;
3027 
3028 	inode = proc_pid_make_inode(dir->i_sb, task);
3029 	if (!inode)
3030 		goto out;
3031 
3032 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3033 	inode->i_op = &proc_tgid_base_inode_operations;
3034 	inode->i_fop = &proc_tgid_base_operations;
3035 	inode->i_flags|=S_IMMUTABLE;
3036 
3037 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3038 						  ARRAY_SIZE(tgid_base_stuff)));
3039 
3040 	d_set_d_op(dentry, &pid_dentry_operations);
3041 
3042 	d_add(dentry, inode);
3043 	/* Close the race of the process dying before we return the dentry */
3044 	if (pid_revalidate(dentry, 0))
3045 		return 0;
3046 out:
3047 	return -ENOENT;
3048 }
3049 
3050 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3051 {
3052 	int result = -ENOENT;
3053 	struct task_struct *task;
3054 	unsigned tgid;
3055 	struct pid_namespace *ns;
3056 
3057 	tgid = name_to_int(&dentry->d_name);
3058 	if (tgid == ~0U)
3059 		goto out;
3060 
3061 	ns = dentry->d_sb->s_fs_info;
3062 	rcu_read_lock();
3063 	task = find_task_by_pid_ns(tgid, ns);
3064 	if (task)
3065 		get_task_struct(task);
3066 	rcu_read_unlock();
3067 	if (!task)
3068 		goto out;
3069 
3070 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3071 	put_task_struct(task);
3072 out:
3073 	return ERR_PTR(result);
3074 }
3075 
3076 /*
3077  * Find the first task with tgid >= tgid
3078  *
3079  */
3080 struct tgid_iter {
3081 	unsigned int tgid;
3082 	struct task_struct *task;
3083 };
3084 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3085 {
3086 	struct pid *pid;
3087 
3088 	if (iter.task)
3089 		put_task_struct(iter.task);
3090 	rcu_read_lock();
3091 retry:
3092 	iter.task = NULL;
3093 	pid = find_ge_pid(iter.tgid, ns);
3094 	if (pid) {
3095 		iter.tgid = pid_nr_ns(pid, ns);
3096 		iter.task = pid_task(pid, PIDTYPE_PID);
3097 		/* What we to know is if the pid we have find is the
3098 		 * pid of a thread_group_leader.  Testing for task
3099 		 * being a thread_group_leader is the obvious thing
3100 		 * todo but there is a window when it fails, due to
3101 		 * the pid transfer logic in de_thread.
3102 		 *
3103 		 * So we perform the straight forward test of seeing
3104 		 * if the pid we have found is the pid of a thread
3105 		 * group leader, and don't worry if the task we have
3106 		 * found doesn't happen to be a thread group leader.
3107 		 * As we don't care in the case of readdir.
3108 		 */
3109 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3110 			iter.tgid += 1;
3111 			goto retry;
3112 		}
3113 		get_task_struct(iter.task);
3114 	}
3115 	rcu_read_unlock();
3116 	return iter;
3117 }
3118 
3119 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3120 
3121 /* for the /proc/ directory itself, after non-process stuff has been done */
3122 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3123 {
3124 	struct tgid_iter iter;
3125 	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3126 	loff_t pos = ctx->pos;
3127 
3128 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3129 		return 0;
3130 
3131 	if (pos == TGID_OFFSET - 2) {
3132 		struct inode *inode = d_inode(ns->proc_self);
3133 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3134 			return 0;
3135 		ctx->pos = pos = pos + 1;
3136 	}
3137 	if (pos == TGID_OFFSET - 1) {
3138 		struct inode *inode = d_inode(ns->proc_thread_self);
3139 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3140 			return 0;
3141 		ctx->pos = pos = pos + 1;
3142 	}
3143 	iter.tgid = pos - TGID_OFFSET;
3144 	iter.task = NULL;
3145 	for (iter = next_tgid(ns, iter);
3146 	     iter.task;
3147 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3148 		char name[PROC_NUMBUF];
3149 		int len;
3150 		if (!has_pid_permissions(ns, iter.task, 2))
3151 			continue;
3152 
3153 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3154 		ctx->pos = iter.tgid + TGID_OFFSET;
3155 		if (!proc_fill_cache(file, ctx, name, len,
3156 				     proc_pid_instantiate, iter.task, NULL)) {
3157 			put_task_struct(iter.task);
3158 			return 0;
3159 		}
3160 	}
3161 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3162 	return 0;
3163 }
3164 
3165 /*
3166  * proc_tid_comm_permission is a special permission function exclusively
3167  * used for the node /proc/<pid>/task/<tid>/comm.
3168  * It bypasses generic permission checks in the case where a task of the same
3169  * task group attempts to access the node.
3170  * The rationale behind this is that glibc and bionic access this node for
3171  * cross thread naming (pthread_set/getname_np(!self)). However, if
3172  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3173  * which locks out the cross thread naming implementation.
3174  * This function makes sure that the node is always accessible for members of
3175  * same thread group.
3176  */
3177 static int proc_tid_comm_permission(struct inode *inode, int mask)
3178 {
3179 	bool is_same_tgroup;
3180 	struct task_struct *task;
3181 
3182 	task = get_proc_task(inode);
3183 	if (!task)
3184 		return -ESRCH;
3185 	is_same_tgroup = same_thread_group(current, task);
3186 	put_task_struct(task);
3187 
3188 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3189 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3190 		 * read or written by the members of the corresponding
3191 		 * thread group.
3192 		 */
3193 		return 0;
3194 	}
3195 
3196 	return generic_permission(inode, mask);
3197 }
3198 
3199 static const struct inode_operations proc_tid_comm_inode_operations = {
3200 		.permission = proc_tid_comm_permission,
3201 };
3202 
3203 /*
3204  * Tasks
3205  */
3206 static const struct pid_entry tid_base_stuff[] = {
3207 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3208 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3209 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3210 #ifdef CONFIG_NET
3211 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3212 #endif
3213 	REG("environ",   S_IRUSR, proc_environ_operations),
3214 	ONE("auxv",      S_IRUSR, proc_pid_auxv),
3215 	ONE("status",    S_IRUGO, proc_pid_status),
3216 	ONE("personality", S_IRUSR, proc_pid_personality),
3217 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3218 #ifdef CONFIG_SCHED_DEBUG
3219 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3220 #endif
3221 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3222 			 &proc_tid_comm_inode_operations,
3223 			 &proc_pid_set_comm_operations, {}),
3224 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3225 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3226 #endif
3227 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3228 	ONE("stat",      S_IRUGO, proc_tid_stat),
3229 	ONE("statm",     S_IRUGO, proc_pid_statm),
3230 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3231 #ifdef CONFIG_PROC_CHILDREN
3232 	REG("children",  S_IRUGO, proc_tid_children_operations),
3233 #endif
3234 #ifdef CONFIG_NUMA
3235 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3236 #endif
3237 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3238 	LNK("cwd",       proc_cwd_link),
3239 	LNK("root",      proc_root_link),
3240 	LNK("exe",       proc_exe_link),
3241 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3242 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3243 #ifdef CONFIG_PROC_PAGE_MONITOR
3244 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3245 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3246 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3247 #endif
3248 #ifdef CONFIG_SECURITY
3249 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3250 #endif
3251 #ifdef CONFIG_KALLSYMS
3252 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3253 #endif
3254 #ifdef CONFIG_STACKTRACE
3255 	ONE("stack",      S_IRUSR, proc_pid_stack),
3256 #endif
3257 #ifdef CONFIG_SCHED_INFO
3258 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3259 #endif
3260 #ifdef CONFIG_LATENCYTOP
3261 	REG("latency",  S_IRUGO, proc_lstats_operations),
3262 #endif
3263 #ifdef CONFIG_PROC_PID_CPUSET
3264 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3265 #endif
3266 #ifdef CONFIG_CGROUPS
3267 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3268 #endif
3269 	ONE("oom_score", S_IRUGO, proc_oom_score),
3270 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3271 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3272 #ifdef CONFIG_AUDITSYSCALL
3273 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3274 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3275 #endif
3276 #ifdef CONFIG_FAULT_INJECTION
3277 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3278 #endif
3279 #ifdef CONFIG_TASK_IO_ACCOUNTING
3280 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3281 #endif
3282 #ifdef CONFIG_HARDWALL
3283 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3284 #endif
3285 #ifdef CONFIG_USER_NS
3286 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3287 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3288 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3289 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3290 #endif
3291 };
3292 
3293 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3294 {
3295 	return proc_pident_readdir(file, ctx,
3296 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3297 }
3298 
3299 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3300 {
3301 	return proc_pident_lookup(dir, dentry,
3302 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3303 }
3304 
3305 static const struct file_operations proc_tid_base_operations = {
3306 	.read		= generic_read_dir,
3307 	.iterate_shared	= proc_tid_base_readdir,
3308 	.llseek		= generic_file_llseek,
3309 };
3310 
3311 static const struct inode_operations proc_tid_base_inode_operations = {
3312 	.lookup		= proc_tid_base_lookup,
3313 	.getattr	= pid_getattr,
3314 	.setattr	= proc_setattr,
3315 };
3316 
3317 static int proc_task_instantiate(struct inode *dir,
3318 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3319 {
3320 	struct inode *inode;
3321 	inode = proc_pid_make_inode(dir->i_sb, task);
3322 
3323 	if (!inode)
3324 		goto out;
3325 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3326 	inode->i_op = &proc_tid_base_inode_operations;
3327 	inode->i_fop = &proc_tid_base_operations;
3328 	inode->i_flags|=S_IMMUTABLE;
3329 
3330 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3331 						  ARRAY_SIZE(tid_base_stuff)));
3332 
3333 	d_set_d_op(dentry, &pid_dentry_operations);
3334 
3335 	d_add(dentry, inode);
3336 	/* Close the race of the process dying before we return the dentry */
3337 	if (pid_revalidate(dentry, 0))
3338 		return 0;
3339 out:
3340 	return -ENOENT;
3341 }
3342 
3343 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3344 {
3345 	int result = -ENOENT;
3346 	struct task_struct *task;
3347 	struct task_struct *leader = get_proc_task(dir);
3348 	unsigned tid;
3349 	struct pid_namespace *ns;
3350 
3351 	if (!leader)
3352 		goto out_no_task;
3353 
3354 	tid = name_to_int(&dentry->d_name);
3355 	if (tid == ~0U)
3356 		goto out;
3357 
3358 	ns = dentry->d_sb->s_fs_info;
3359 	rcu_read_lock();
3360 	task = find_task_by_pid_ns(tid, ns);
3361 	if (task)
3362 		get_task_struct(task);
3363 	rcu_read_unlock();
3364 	if (!task)
3365 		goto out;
3366 	if (!same_thread_group(leader, task))
3367 		goto out_drop_task;
3368 
3369 	result = proc_task_instantiate(dir, dentry, task, NULL);
3370 out_drop_task:
3371 	put_task_struct(task);
3372 out:
3373 	put_task_struct(leader);
3374 out_no_task:
3375 	return ERR_PTR(result);
3376 }
3377 
3378 /*
3379  * Find the first tid of a thread group to return to user space.
3380  *
3381  * Usually this is just the thread group leader, but if the users
3382  * buffer was too small or there was a seek into the middle of the
3383  * directory we have more work todo.
3384  *
3385  * In the case of a short read we start with find_task_by_pid.
3386  *
3387  * In the case of a seek we start with the leader and walk nr
3388  * threads past it.
3389  */
3390 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3391 					struct pid_namespace *ns)
3392 {
3393 	struct task_struct *pos, *task;
3394 	unsigned long nr = f_pos;
3395 
3396 	if (nr != f_pos)	/* 32bit overflow? */
3397 		return NULL;
3398 
3399 	rcu_read_lock();
3400 	task = pid_task(pid, PIDTYPE_PID);
3401 	if (!task)
3402 		goto fail;
3403 
3404 	/* Attempt to start with the tid of a thread */
3405 	if (tid && nr) {
3406 		pos = find_task_by_pid_ns(tid, ns);
3407 		if (pos && same_thread_group(pos, task))
3408 			goto found;
3409 	}
3410 
3411 	/* If nr exceeds the number of threads there is nothing todo */
3412 	if (nr >= get_nr_threads(task))
3413 		goto fail;
3414 
3415 	/* If we haven't found our starting place yet start
3416 	 * with the leader and walk nr threads forward.
3417 	 */
3418 	pos = task = task->group_leader;
3419 	do {
3420 		if (!nr--)
3421 			goto found;
3422 	} while_each_thread(task, pos);
3423 fail:
3424 	pos = NULL;
3425 	goto out;
3426 found:
3427 	get_task_struct(pos);
3428 out:
3429 	rcu_read_unlock();
3430 	return pos;
3431 }
3432 
3433 /*
3434  * Find the next thread in the thread list.
3435  * Return NULL if there is an error or no next thread.
3436  *
3437  * The reference to the input task_struct is released.
3438  */
3439 static struct task_struct *next_tid(struct task_struct *start)
3440 {
3441 	struct task_struct *pos = NULL;
3442 	rcu_read_lock();
3443 	if (pid_alive(start)) {
3444 		pos = next_thread(start);
3445 		if (thread_group_leader(pos))
3446 			pos = NULL;
3447 		else
3448 			get_task_struct(pos);
3449 	}
3450 	rcu_read_unlock();
3451 	put_task_struct(start);
3452 	return pos;
3453 }
3454 
3455 /* for the /proc/TGID/task/ directories */
3456 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3457 {
3458 	struct inode *inode = file_inode(file);
3459 	struct task_struct *task;
3460 	struct pid_namespace *ns;
3461 	int tid;
3462 
3463 	if (proc_inode_is_dead(inode))
3464 		return -ENOENT;
3465 
3466 	if (!dir_emit_dots(file, ctx))
3467 		return 0;
3468 
3469 	/* f_version caches the tgid value that the last readdir call couldn't
3470 	 * return. lseek aka telldir automagically resets f_version to 0.
3471 	 */
3472 	ns = inode->i_sb->s_fs_info;
3473 	tid = (int)file->f_version;
3474 	file->f_version = 0;
3475 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3476 	     task;
3477 	     task = next_tid(task), ctx->pos++) {
3478 		char name[PROC_NUMBUF];
3479 		int len;
3480 		tid = task_pid_nr_ns(task, ns);
3481 		len = snprintf(name, sizeof(name), "%d", tid);
3482 		if (!proc_fill_cache(file, ctx, name, len,
3483 				proc_task_instantiate, task, NULL)) {
3484 			/* returning this tgid failed, save it as the first
3485 			 * pid for the next readir call */
3486 			file->f_version = (u64)tid;
3487 			put_task_struct(task);
3488 			break;
3489 		}
3490 	}
3491 
3492 	return 0;
3493 }
3494 
3495 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3496 {
3497 	struct inode *inode = d_inode(dentry);
3498 	struct task_struct *p = get_proc_task(inode);
3499 	generic_fillattr(inode, stat);
3500 
3501 	if (p) {
3502 		stat->nlink += get_nr_threads(p);
3503 		put_task_struct(p);
3504 	}
3505 
3506 	return 0;
3507 }
3508 
3509 static const struct inode_operations proc_task_inode_operations = {
3510 	.lookup		= proc_task_lookup,
3511 	.getattr	= proc_task_getattr,
3512 	.setattr	= proc_setattr,
3513 	.permission	= proc_pid_permission,
3514 };
3515 
3516 static const struct file_operations proc_task_operations = {
3517 	.read		= generic_read_dir,
3518 	.iterate_shared	= proc_task_readdir,
3519 	.llseek		= generic_file_llseek,
3520 };
3521