xref: /linux/fs/pnode.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  *  linux/fs/pnode.c
3  *
4  * (C) Copyright IBM Corporation 2005.
5  *	Released under GPL v2.
6  *	Author : Ram Pai (linuxram@us.ibm.com)
7  *
8  */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include <linux/nsproxy.h>
13 #include "internal.h"
14 #include "pnode.h"
15 
16 /* return the next shared peer mount of @p */
17 static inline struct mount *next_peer(struct mount *p)
18 {
19 	return list_entry(p->mnt_share.next, struct mount, mnt_share);
20 }
21 
22 static inline struct mount *first_slave(struct mount *p)
23 {
24 	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
25 }
26 
27 static inline struct mount *last_slave(struct mount *p)
28 {
29 	return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
30 }
31 
32 static inline struct mount *next_slave(struct mount *p)
33 {
34 	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
35 }
36 
37 static struct mount *get_peer_under_root(struct mount *mnt,
38 					 struct mnt_namespace *ns,
39 					 const struct path *root)
40 {
41 	struct mount *m = mnt;
42 
43 	do {
44 		/* Check the namespace first for optimization */
45 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
46 			return m;
47 
48 		m = next_peer(m);
49 	} while (m != mnt);
50 
51 	return NULL;
52 }
53 
54 /*
55  * Get ID of closest dominating peer group having a representative
56  * under the given root.
57  *
58  * Caller must hold namespace_sem
59  */
60 int get_dominating_id(struct mount *mnt, const struct path *root)
61 {
62 	struct mount *m;
63 
64 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
65 		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
66 		if (d)
67 			return d->mnt_group_id;
68 	}
69 
70 	return 0;
71 }
72 
73 static int do_make_slave(struct mount *mnt)
74 {
75 	struct mount *master, *slave_mnt;
76 
77 	if (list_empty(&mnt->mnt_share)) {
78 		if (IS_MNT_SHARED(mnt)) {
79 			mnt_release_group_id(mnt);
80 			CLEAR_MNT_SHARED(mnt);
81 		}
82 		master = mnt->mnt_master;
83 		if (!master) {
84 			struct list_head *p = &mnt->mnt_slave_list;
85 			while (!list_empty(p)) {
86 				slave_mnt = list_first_entry(p,
87 						struct mount, mnt_slave);
88 				list_del_init(&slave_mnt->mnt_slave);
89 				slave_mnt->mnt_master = NULL;
90 			}
91 			return 0;
92 		}
93 	} else {
94 		struct mount *m;
95 		/*
96 		 * slave 'mnt' to a peer mount that has the
97 		 * same root dentry. If none is available then
98 		 * slave it to anything that is available.
99 		 */
100 		for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
101 			if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
102 				master = m;
103 				break;
104 			}
105 		}
106 		list_del_init(&mnt->mnt_share);
107 		mnt->mnt_group_id = 0;
108 		CLEAR_MNT_SHARED(mnt);
109 	}
110 	list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
111 		slave_mnt->mnt_master = master;
112 	list_move(&mnt->mnt_slave, &master->mnt_slave_list);
113 	list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
114 	INIT_LIST_HEAD(&mnt->mnt_slave_list);
115 	mnt->mnt_master = master;
116 	return 0;
117 }
118 
119 /*
120  * vfsmount lock must be held for write
121  */
122 void change_mnt_propagation(struct mount *mnt, int type)
123 {
124 	if (type == MS_SHARED) {
125 		set_mnt_shared(mnt);
126 		return;
127 	}
128 	do_make_slave(mnt);
129 	if (type != MS_SLAVE) {
130 		list_del_init(&mnt->mnt_slave);
131 		mnt->mnt_master = NULL;
132 		if (type == MS_UNBINDABLE)
133 			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
134 		else
135 			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
136 	}
137 }
138 
139 /*
140  * get the next mount in the propagation tree.
141  * @m: the mount seen last
142  * @origin: the original mount from where the tree walk initiated
143  *
144  * Note that peer groups form contiguous segments of slave lists.
145  * We rely on that in get_source() to be able to find out if
146  * vfsmount found while iterating with propagation_next() is
147  * a peer of one we'd found earlier.
148  */
149 static struct mount *propagation_next(struct mount *m,
150 					 struct mount *origin)
151 {
152 	/* are there any slaves of this mount? */
153 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
154 		return first_slave(m);
155 
156 	while (1) {
157 		struct mount *master = m->mnt_master;
158 
159 		if (master == origin->mnt_master) {
160 			struct mount *next = next_peer(m);
161 			return (next == origin) ? NULL : next;
162 		} else if (m->mnt_slave.next != &master->mnt_slave_list)
163 			return next_slave(m);
164 
165 		/* back at master */
166 		m = master;
167 	}
168 }
169 
170 static struct mount *skip_propagation_subtree(struct mount *m,
171 						struct mount *origin)
172 {
173 	/*
174 	 * Advance m such that propagation_next will not return
175 	 * the slaves of m.
176 	 */
177 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
178 		m = last_slave(m);
179 
180 	return m;
181 }
182 
183 static struct mount *next_group(struct mount *m, struct mount *origin)
184 {
185 	while (1) {
186 		while (1) {
187 			struct mount *next;
188 			if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
189 				return first_slave(m);
190 			next = next_peer(m);
191 			if (m->mnt_group_id == origin->mnt_group_id) {
192 				if (next == origin)
193 					return NULL;
194 			} else if (m->mnt_slave.next != &next->mnt_slave)
195 				break;
196 			m = next;
197 		}
198 		/* m is the last peer */
199 		while (1) {
200 			struct mount *master = m->mnt_master;
201 			if (m->mnt_slave.next != &master->mnt_slave_list)
202 				return next_slave(m);
203 			m = next_peer(master);
204 			if (master->mnt_group_id == origin->mnt_group_id)
205 				break;
206 			if (master->mnt_slave.next == &m->mnt_slave)
207 				break;
208 			m = master;
209 		}
210 		if (m == origin)
211 			return NULL;
212 	}
213 }
214 
215 /* all accesses are serialized by namespace_sem */
216 static struct user_namespace *user_ns;
217 static struct mount *last_dest, *first_source, *last_source, *dest_master;
218 static struct mountpoint *mp;
219 static struct hlist_head *list;
220 
221 static inline bool peers(struct mount *m1, struct mount *m2)
222 {
223 	return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
224 }
225 
226 static int propagate_one(struct mount *m)
227 {
228 	struct mount *child;
229 	int type;
230 	/* skip ones added by this propagate_mnt() */
231 	if (IS_MNT_NEW(m))
232 		return 0;
233 	/* skip if mountpoint isn't covered by it */
234 	if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
235 		return 0;
236 	if (peers(m, last_dest)) {
237 		type = CL_MAKE_SHARED;
238 	} else {
239 		struct mount *n, *p;
240 		bool done;
241 		for (n = m; ; n = p) {
242 			p = n->mnt_master;
243 			if (p == dest_master || IS_MNT_MARKED(p))
244 				break;
245 		}
246 		do {
247 			struct mount *parent = last_source->mnt_parent;
248 			if (last_source == first_source)
249 				break;
250 			done = parent->mnt_master == p;
251 			if (done && peers(n, parent))
252 				break;
253 			last_source = last_source->mnt_master;
254 		} while (!done);
255 
256 		type = CL_SLAVE;
257 		/* beginning of peer group among the slaves? */
258 		if (IS_MNT_SHARED(m))
259 			type |= CL_MAKE_SHARED;
260 	}
261 
262 	/* Notice when we are propagating across user namespaces */
263 	if (m->mnt_ns->user_ns != user_ns)
264 		type |= CL_UNPRIVILEGED;
265 	child = copy_tree(last_source, last_source->mnt.mnt_root, type);
266 	if (IS_ERR(child))
267 		return PTR_ERR(child);
268 	child->mnt.mnt_flags &= ~MNT_LOCKED;
269 	mnt_set_mountpoint(m, mp, child);
270 	last_dest = m;
271 	last_source = child;
272 	if (m->mnt_master != dest_master) {
273 		read_seqlock_excl(&mount_lock);
274 		SET_MNT_MARK(m->mnt_master);
275 		read_sequnlock_excl(&mount_lock);
276 	}
277 	hlist_add_head(&child->mnt_hash, list);
278 	return count_mounts(m->mnt_ns, child);
279 }
280 
281 /*
282  * mount 'source_mnt' under the destination 'dest_mnt' at
283  * dentry 'dest_dentry'. And propagate that mount to
284  * all the peer and slave mounts of 'dest_mnt'.
285  * Link all the new mounts into a propagation tree headed at
286  * source_mnt. Also link all the new mounts using ->mnt_list
287  * headed at source_mnt's ->mnt_list
288  *
289  * @dest_mnt: destination mount.
290  * @dest_dentry: destination dentry.
291  * @source_mnt: source mount.
292  * @tree_list : list of heads of trees to be attached.
293  */
294 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
295 		    struct mount *source_mnt, struct hlist_head *tree_list)
296 {
297 	struct mount *m, *n;
298 	int ret = 0;
299 
300 	/*
301 	 * we don't want to bother passing tons of arguments to
302 	 * propagate_one(); everything is serialized by namespace_sem,
303 	 * so globals will do just fine.
304 	 */
305 	user_ns = current->nsproxy->mnt_ns->user_ns;
306 	last_dest = dest_mnt;
307 	first_source = source_mnt;
308 	last_source = source_mnt;
309 	mp = dest_mp;
310 	list = tree_list;
311 	dest_master = dest_mnt->mnt_master;
312 
313 	/* all peers of dest_mnt, except dest_mnt itself */
314 	for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
315 		ret = propagate_one(n);
316 		if (ret)
317 			goto out;
318 	}
319 
320 	/* all slave groups */
321 	for (m = next_group(dest_mnt, dest_mnt); m;
322 			m = next_group(m, dest_mnt)) {
323 		/* everything in that slave group */
324 		n = m;
325 		do {
326 			ret = propagate_one(n);
327 			if (ret)
328 				goto out;
329 			n = next_peer(n);
330 		} while (n != m);
331 	}
332 out:
333 	read_seqlock_excl(&mount_lock);
334 	hlist_for_each_entry(n, tree_list, mnt_hash) {
335 		m = n->mnt_parent;
336 		if (m->mnt_master != dest_mnt->mnt_master)
337 			CLEAR_MNT_MARK(m->mnt_master);
338 	}
339 	read_sequnlock_excl(&mount_lock);
340 	return ret;
341 }
342 
343 static struct mount *find_topper(struct mount *mnt)
344 {
345 	/* If there is exactly one mount covering mnt completely return it. */
346 	struct mount *child;
347 
348 	if (!list_is_singular(&mnt->mnt_mounts))
349 		return NULL;
350 
351 	child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
352 	if (child->mnt_mountpoint != mnt->mnt.mnt_root)
353 		return NULL;
354 
355 	return child;
356 }
357 
358 /*
359  * return true if the refcount is greater than count
360  */
361 static inline int do_refcount_check(struct mount *mnt, int count)
362 {
363 	return mnt_get_count(mnt) > count;
364 }
365 
366 /*
367  * check if the mount 'mnt' can be unmounted successfully.
368  * @mnt: the mount to be checked for unmount
369  * NOTE: unmounting 'mnt' would naturally propagate to all
370  * other mounts its parent propagates to.
371  * Check if any of these mounts that **do not have submounts**
372  * have more references than 'refcnt'. If so return busy.
373  *
374  * vfsmount lock must be held for write
375  */
376 int propagate_mount_busy(struct mount *mnt, int refcnt)
377 {
378 	struct mount *m, *child, *topper;
379 	struct mount *parent = mnt->mnt_parent;
380 
381 	if (mnt == parent)
382 		return do_refcount_check(mnt, refcnt);
383 
384 	/*
385 	 * quickly check if the current mount can be unmounted.
386 	 * If not, we don't have to go checking for all other
387 	 * mounts
388 	 */
389 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
390 		return 1;
391 
392 	for (m = propagation_next(parent, parent); m;
393 	     		m = propagation_next(m, parent)) {
394 		int count = 1;
395 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
396 		if (!child)
397 			continue;
398 
399 		/* Is there exactly one mount on the child that covers
400 		 * it completely whose reference should be ignored?
401 		 */
402 		topper = find_topper(child);
403 		if (topper)
404 			count += 1;
405 		else if (!list_empty(&child->mnt_mounts))
406 			continue;
407 
408 		if (do_refcount_check(child, count))
409 			return 1;
410 	}
411 	return 0;
412 }
413 
414 /*
415  * Clear MNT_LOCKED when it can be shown to be safe.
416  *
417  * mount_lock lock must be held for write
418  */
419 void propagate_mount_unlock(struct mount *mnt)
420 {
421 	struct mount *parent = mnt->mnt_parent;
422 	struct mount *m, *child;
423 
424 	BUG_ON(parent == mnt);
425 
426 	for (m = propagation_next(parent, parent); m;
427 			m = propagation_next(m, parent)) {
428 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
429 		if (child)
430 			child->mnt.mnt_flags &= ~MNT_LOCKED;
431 	}
432 }
433 
434 static void umount_one(struct mount *mnt, struct list_head *to_umount)
435 {
436 	CLEAR_MNT_MARK(mnt);
437 	mnt->mnt.mnt_flags |= MNT_UMOUNT;
438 	list_del_init(&mnt->mnt_child);
439 	list_del_init(&mnt->mnt_umounting);
440 	list_move_tail(&mnt->mnt_list, to_umount);
441 }
442 
443 /*
444  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
445  * parent propagates to.
446  */
447 static bool __propagate_umount(struct mount *mnt,
448 			       struct list_head *to_umount,
449 			       struct list_head *to_restore)
450 {
451 	bool progress = false;
452 	struct mount *child;
453 
454 	/*
455 	 * The state of the parent won't change if this mount is
456 	 * already unmounted or marked as without children.
457 	 */
458 	if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
459 		goto out;
460 
461 	/* Verify topper is the only grandchild that has not been
462 	 * speculatively unmounted.
463 	 */
464 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
465 		if (child->mnt_mountpoint == mnt->mnt.mnt_root)
466 			continue;
467 		if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
468 			continue;
469 		/* Found a mounted child */
470 		goto children;
471 	}
472 
473 	/* Mark mounts that can be unmounted if not locked */
474 	SET_MNT_MARK(mnt);
475 	progress = true;
476 
477 	/* If a mount is without children and not locked umount it. */
478 	if (!IS_MNT_LOCKED(mnt)) {
479 		umount_one(mnt, to_umount);
480 	} else {
481 children:
482 		list_move_tail(&mnt->mnt_umounting, to_restore);
483 	}
484 out:
485 	return progress;
486 }
487 
488 static void umount_list(struct list_head *to_umount,
489 			struct list_head *to_restore)
490 {
491 	struct mount *mnt, *child, *tmp;
492 	list_for_each_entry(mnt, to_umount, mnt_list) {
493 		list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
494 			/* topper? */
495 			if (child->mnt_mountpoint == mnt->mnt.mnt_root)
496 				list_move_tail(&child->mnt_umounting, to_restore);
497 			else
498 				umount_one(child, to_umount);
499 		}
500 	}
501 }
502 
503 static void restore_mounts(struct list_head *to_restore)
504 {
505 	/* Restore mounts to a clean working state */
506 	while (!list_empty(to_restore)) {
507 		struct mount *mnt, *parent;
508 		struct mountpoint *mp;
509 
510 		mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
511 		CLEAR_MNT_MARK(mnt);
512 		list_del_init(&mnt->mnt_umounting);
513 
514 		/* Should this mount be reparented? */
515 		mp = mnt->mnt_mp;
516 		parent = mnt->mnt_parent;
517 		while (parent->mnt.mnt_flags & MNT_UMOUNT) {
518 			mp = parent->mnt_mp;
519 			parent = parent->mnt_parent;
520 		}
521 		if (parent != mnt->mnt_parent)
522 			mnt_change_mountpoint(parent, mp, mnt);
523 	}
524 }
525 
526 static void cleanup_umount_visitations(struct list_head *visited)
527 {
528 	while (!list_empty(visited)) {
529 		struct mount *mnt =
530 			list_first_entry(visited, struct mount, mnt_umounting);
531 		list_del_init(&mnt->mnt_umounting);
532 	}
533 }
534 
535 /*
536  * collect all mounts that receive propagation from the mount in @list,
537  * and return these additional mounts in the same list.
538  * @list: the list of mounts to be unmounted.
539  *
540  * vfsmount lock must be held for write
541  */
542 int propagate_umount(struct list_head *list)
543 {
544 	struct mount *mnt;
545 	LIST_HEAD(to_restore);
546 	LIST_HEAD(to_umount);
547 	LIST_HEAD(visited);
548 
549 	/* Find candidates for unmounting */
550 	list_for_each_entry_reverse(mnt, list, mnt_list) {
551 		struct mount *parent = mnt->mnt_parent;
552 		struct mount *m;
553 
554 		/*
555 		 * If this mount has already been visited it is known that it's
556 		 * entire peer group and all of their slaves in the propagation
557 		 * tree for the mountpoint has already been visited and there is
558 		 * no need to visit them again.
559 		 */
560 		if (!list_empty(&mnt->mnt_umounting))
561 			continue;
562 
563 		list_add_tail(&mnt->mnt_umounting, &visited);
564 		for (m = propagation_next(parent, parent); m;
565 		     m = propagation_next(m, parent)) {
566 			struct mount *child = __lookup_mnt(&m->mnt,
567 							   mnt->mnt_mountpoint);
568 			if (!child)
569 				continue;
570 
571 			if (!list_empty(&child->mnt_umounting)) {
572 				/*
573 				 * If the child has already been visited it is
574 				 * know that it's entire peer group and all of
575 				 * their slaves in the propgation tree for the
576 				 * mountpoint has already been visited and there
577 				 * is no need to visit this subtree again.
578 				 */
579 				m = skip_propagation_subtree(m, parent);
580 				continue;
581 			} else if (child->mnt.mnt_flags & MNT_UMOUNT) {
582 				/*
583 				 * We have come accross an partially unmounted
584 				 * mount in list that has not been visited yet.
585 				 * Remember it has been visited and continue
586 				 * about our merry way.
587 				 */
588 				list_add_tail(&child->mnt_umounting, &visited);
589 				continue;
590 			}
591 
592 			/* Check the child and parents while progress is made */
593 			while (__propagate_umount(child,
594 						  &to_umount, &to_restore)) {
595 				/* Is the parent a umount candidate? */
596 				child = child->mnt_parent;
597 				if (list_empty(&child->mnt_umounting))
598 					break;
599 			}
600 		}
601 	}
602 
603 	umount_list(&to_umount, &to_restore);
604 	restore_mounts(&to_restore);
605 	cleanup_umount_visitations(&visited);
606 	list_splice_tail(&to_umount, list);
607 
608 	return 0;
609 }
610