1 /* 2 * linux/fs/pnode.c 3 * 4 * (C) Copyright IBM Corporation 2005. 5 * Released under GPL v2. 6 * Author : Ram Pai (linuxram@us.ibm.com) 7 * 8 */ 9 #include <linux/mnt_namespace.h> 10 #include <linux/mount.h> 11 #include <linux/fs.h> 12 #include "internal.h" 13 #include "pnode.h" 14 15 /* return the next shared peer mount of @p */ 16 static inline struct vfsmount *next_peer(struct vfsmount *p) 17 { 18 return list_entry(p->mnt_share.next, struct vfsmount, mnt_share); 19 } 20 21 static inline struct vfsmount *first_slave(struct vfsmount *p) 22 { 23 return list_entry(p->mnt_slave_list.next, struct vfsmount, mnt_slave); 24 } 25 26 static inline struct vfsmount *next_slave(struct vfsmount *p) 27 { 28 return list_entry(p->mnt_slave.next, struct vfsmount, mnt_slave); 29 } 30 31 /* 32 * Return true if path is reachable from root 33 * 34 * namespace_sem is held, and mnt is attached 35 */ 36 static bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry, 37 const struct path *root) 38 { 39 while (mnt != root->mnt && mnt->mnt_parent != mnt) { 40 dentry = mnt->mnt_mountpoint; 41 mnt = mnt->mnt_parent; 42 } 43 return mnt == root->mnt && is_subdir(dentry, root->dentry); 44 } 45 46 static struct vfsmount *get_peer_under_root(struct vfsmount *mnt, 47 struct mnt_namespace *ns, 48 const struct path *root) 49 { 50 struct vfsmount *m = mnt; 51 52 do { 53 /* Check the namespace first for optimization */ 54 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt_root, root)) 55 return m; 56 57 m = next_peer(m); 58 } while (m != mnt); 59 60 return NULL; 61 } 62 63 /* 64 * Get ID of closest dominating peer group having a representative 65 * under the given root. 66 * 67 * Caller must hold namespace_sem 68 */ 69 int get_dominating_id(struct vfsmount *mnt, const struct path *root) 70 { 71 struct vfsmount *m; 72 73 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { 74 struct vfsmount *d = get_peer_under_root(m, mnt->mnt_ns, root); 75 if (d) 76 return d->mnt_group_id; 77 } 78 79 return 0; 80 } 81 82 static int do_make_slave(struct vfsmount *mnt) 83 { 84 struct vfsmount *peer_mnt = mnt, *master = mnt->mnt_master; 85 struct vfsmount *slave_mnt; 86 87 /* 88 * slave 'mnt' to a peer mount that has the 89 * same root dentry. If none is available than 90 * slave it to anything that is available. 91 */ 92 while ((peer_mnt = next_peer(peer_mnt)) != mnt && 93 peer_mnt->mnt_root != mnt->mnt_root) ; 94 95 if (peer_mnt == mnt) { 96 peer_mnt = next_peer(mnt); 97 if (peer_mnt == mnt) 98 peer_mnt = NULL; 99 } 100 if (IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share)) 101 mnt_release_group_id(mnt); 102 103 list_del_init(&mnt->mnt_share); 104 mnt->mnt_group_id = 0; 105 106 if (peer_mnt) 107 master = peer_mnt; 108 109 if (master) { 110 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave) 111 slave_mnt->mnt_master = master; 112 list_move(&mnt->mnt_slave, &master->mnt_slave_list); 113 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev); 114 INIT_LIST_HEAD(&mnt->mnt_slave_list); 115 } else { 116 struct list_head *p = &mnt->mnt_slave_list; 117 while (!list_empty(p)) { 118 slave_mnt = list_first_entry(p, 119 struct vfsmount, mnt_slave); 120 list_del_init(&slave_mnt->mnt_slave); 121 slave_mnt->mnt_master = NULL; 122 } 123 } 124 mnt->mnt_master = master; 125 CLEAR_MNT_SHARED(mnt); 126 return 0; 127 } 128 129 void change_mnt_propagation(struct vfsmount *mnt, int type) 130 { 131 if (type == MS_SHARED) { 132 set_mnt_shared(mnt); 133 return; 134 } 135 do_make_slave(mnt); 136 if (type != MS_SLAVE) { 137 list_del_init(&mnt->mnt_slave); 138 mnt->mnt_master = NULL; 139 if (type == MS_UNBINDABLE) 140 mnt->mnt_flags |= MNT_UNBINDABLE; 141 else 142 mnt->mnt_flags &= ~MNT_UNBINDABLE; 143 } 144 } 145 146 /* 147 * get the next mount in the propagation tree. 148 * @m: the mount seen last 149 * @origin: the original mount from where the tree walk initiated 150 */ 151 static struct vfsmount *propagation_next(struct vfsmount *m, 152 struct vfsmount *origin) 153 { 154 /* are there any slaves of this mount? */ 155 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 156 return first_slave(m); 157 158 while (1) { 159 struct vfsmount *next; 160 struct vfsmount *master = m->mnt_master; 161 162 if (master == origin->mnt_master) { 163 next = next_peer(m); 164 return ((next == origin) ? NULL : next); 165 } else if (m->mnt_slave.next != &master->mnt_slave_list) 166 return next_slave(m); 167 168 /* back at master */ 169 m = master; 170 } 171 } 172 173 /* 174 * return the source mount to be used for cloning 175 * 176 * @dest the current destination mount 177 * @last_dest the last seen destination mount 178 * @last_src the last seen source mount 179 * @type return CL_SLAVE if the new mount has to be 180 * cloned as a slave. 181 */ 182 static struct vfsmount *get_source(struct vfsmount *dest, 183 struct vfsmount *last_dest, 184 struct vfsmount *last_src, 185 int *type) 186 { 187 struct vfsmount *p_last_src = NULL; 188 struct vfsmount *p_last_dest = NULL; 189 *type = CL_PROPAGATION; 190 191 if (IS_MNT_SHARED(dest)) 192 *type |= CL_MAKE_SHARED; 193 194 while (last_dest != dest->mnt_master) { 195 p_last_dest = last_dest; 196 p_last_src = last_src; 197 last_dest = last_dest->mnt_master; 198 last_src = last_src->mnt_master; 199 } 200 201 if (p_last_dest) { 202 do { 203 p_last_dest = next_peer(p_last_dest); 204 } while (IS_MNT_NEW(p_last_dest)); 205 } 206 207 if (dest != p_last_dest) { 208 *type |= CL_SLAVE; 209 return last_src; 210 } else 211 return p_last_src; 212 } 213 214 /* 215 * mount 'source_mnt' under the destination 'dest_mnt' at 216 * dentry 'dest_dentry'. And propagate that mount to 217 * all the peer and slave mounts of 'dest_mnt'. 218 * Link all the new mounts into a propagation tree headed at 219 * source_mnt. Also link all the new mounts using ->mnt_list 220 * headed at source_mnt's ->mnt_list 221 * 222 * @dest_mnt: destination mount. 223 * @dest_dentry: destination dentry. 224 * @source_mnt: source mount. 225 * @tree_list : list of heads of trees to be attached. 226 */ 227 int propagate_mnt(struct vfsmount *dest_mnt, struct dentry *dest_dentry, 228 struct vfsmount *source_mnt, struct list_head *tree_list) 229 { 230 struct vfsmount *m, *child; 231 int ret = 0; 232 struct vfsmount *prev_dest_mnt = dest_mnt; 233 struct vfsmount *prev_src_mnt = source_mnt; 234 LIST_HEAD(tmp_list); 235 LIST_HEAD(umount_list); 236 237 for (m = propagation_next(dest_mnt, dest_mnt); m; 238 m = propagation_next(m, dest_mnt)) { 239 int type; 240 struct vfsmount *source; 241 242 if (IS_MNT_NEW(m)) 243 continue; 244 245 source = get_source(m, prev_dest_mnt, prev_src_mnt, &type); 246 247 if (!(child = copy_tree(source, source->mnt_root, type))) { 248 ret = -ENOMEM; 249 list_splice(tree_list, tmp_list.prev); 250 goto out; 251 } 252 253 if (is_subdir(dest_dentry, m->mnt_root)) { 254 mnt_set_mountpoint(m, dest_dentry, child); 255 list_add_tail(&child->mnt_hash, tree_list); 256 } else { 257 /* 258 * This can happen if the parent mount was bind mounted 259 * on some subdirectory of a shared/slave mount. 260 */ 261 list_add_tail(&child->mnt_hash, &tmp_list); 262 } 263 prev_dest_mnt = m; 264 prev_src_mnt = child; 265 } 266 out: 267 spin_lock(&vfsmount_lock); 268 while (!list_empty(&tmp_list)) { 269 child = list_first_entry(&tmp_list, struct vfsmount, mnt_hash); 270 umount_tree(child, 0, &umount_list); 271 } 272 spin_unlock(&vfsmount_lock); 273 release_mounts(&umount_list); 274 return ret; 275 } 276 277 /* 278 * return true if the refcount is greater than count 279 */ 280 static inline int do_refcount_check(struct vfsmount *mnt, int count) 281 { 282 int mycount = atomic_read(&mnt->mnt_count) - mnt->mnt_ghosts; 283 return (mycount > count); 284 } 285 286 /* 287 * check if the mount 'mnt' can be unmounted successfully. 288 * @mnt: the mount to be checked for unmount 289 * NOTE: unmounting 'mnt' would naturally propagate to all 290 * other mounts its parent propagates to. 291 * Check if any of these mounts that **do not have submounts** 292 * have more references than 'refcnt'. If so return busy. 293 */ 294 int propagate_mount_busy(struct vfsmount *mnt, int refcnt) 295 { 296 struct vfsmount *m, *child; 297 struct vfsmount *parent = mnt->mnt_parent; 298 int ret = 0; 299 300 if (mnt == parent) 301 return do_refcount_check(mnt, refcnt); 302 303 /* 304 * quickly check if the current mount can be unmounted. 305 * If not, we don't have to go checking for all other 306 * mounts 307 */ 308 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) 309 return 1; 310 311 for (m = propagation_next(parent, parent); m; 312 m = propagation_next(m, parent)) { 313 child = __lookup_mnt(m, mnt->mnt_mountpoint, 0); 314 if (child && list_empty(&child->mnt_mounts) && 315 (ret = do_refcount_check(child, 1))) 316 break; 317 } 318 return ret; 319 } 320 321 /* 322 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its 323 * parent propagates to. 324 */ 325 static void __propagate_umount(struct vfsmount *mnt) 326 { 327 struct vfsmount *parent = mnt->mnt_parent; 328 struct vfsmount *m; 329 330 BUG_ON(parent == mnt); 331 332 for (m = propagation_next(parent, parent); m; 333 m = propagation_next(m, parent)) { 334 335 struct vfsmount *child = __lookup_mnt(m, 336 mnt->mnt_mountpoint, 0); 337 /* 338 * umount the child only if the child has no 339 * other children 340 */ 341 if (child && list_empty(&child->mnt_mounts)) 342 list_move_tail(&child->mnt_hash, &mnt->mnt_hash); 343 } 344 } 345 346 /* 347 * collect all mounts that receive propagation from the mount in @list, 348 * and return these additional mounts in the same list. 349 * @list: the list of mounts to be unmounted. 350 */ 351 int propagate_umount(struct list_head *list) 352 { 353 struct vfsmount *mnt; 354 355 list_for_each_entry(mnt, list, mnt_hash) 356 __propagate_umount(mnt); 357 return 0; 358 } 359