xref: /linux/fs/pnode.c (revision c5aec4c76af1a2d89ee2f2d4d5463b2ad2d85de5)
1 /*
2  *  linux/fs/pnode.c
3  *
4  * (C) Copyright IBM Corporation 2005.
5  *	Released under GPL v2.
6  *	Author : Ram Pai (linuxram@us.ibm.com)
7  *
8  */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include <linux/nsproxy.h>
13 #include "internal.h"
14 #include "pnode.h"
15 
16 /* return the next shared peer mount of @p */
17 static inline struct mount *next_peer(struct mount *p)
18 {
19 	return list_entry(p->mnt_share.next, struct mount, mnt_share);
20 }
21 
22 static inline struct mount *first_slave(struct mount *p)
23 {
24 	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
25 }
26 
27 static inline struct mount *next_slave(struct mount *p)
28 {
29 	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
30 }
31 
32 static struct mount *get_peer_under_root(struct mount *mnt,
33 					 struct mnt_namespace *ns,
34 					 const struct path *root)
35 {
36 	struct mount *m = mnt;
37 
38 	do {
39 		/* Check the namespace first for optimization */
40 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
41 			return m;
42 
43 		m = next_peer(m);
44 	} while (m != mnt);
45 
46 	return NULL;
47 }
48 
49 /*
50  * Get ID of closest dominating peer group having a representative
51  * under the given root.
52  *
53  * Caller must hold namespace_sem
54  */
55 int get_dominating_id(struct mount *mnt, const struct path *root)
56 {
57 	struct mount *m;
58 
59 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
60 		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
61 		if (d)
62 			return d->mnt_group_id;
63 	}
64 
65 	return 0;
66 }
67 
68 static int do_make_slave(struct mount *mnt)
69 {
70 	struct mount *peer_mnt = mnt, *master = mnt->mnt_master;
71 	struct mount *slave_mnt;
72 
73 	/*
74 	 * slave 'mnt' to a peer mount that has the
75 	 * same root dentry. If none is available then
76 	 * slave it to anything that is available.
77 	 */
78 	while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
79 	       peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ;
80 
81 	if (peer_mnt == mnt) {
82 		peer_mnt = next_peer(mnt);
83 		if (peer_mnt == mnt)
84 			peer_mnt = NULL;
85 	}
86 	if (mnt->mnt_group_id && IS_MNT_SHARED(mnt) &&
87 	    list_empty(&mnt->mnt_share))
88 		mnt_release_group_id(mnt);
89 
90 	list_del_init(&mnt->mnt_share);
91 	mnt->mnt_group_id = 0;
92 
93 	if (peer_mnt)
94 		master = peer_mnt;
95 
96 	if (master) {
97 		list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
98 			slave_mnt->mnt_master = master;
99 		list_move(&mnt->mnt_slave, &master->mnt_slave_list);
100 		list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
101 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
102 	} else {
103 		struct list_head *p = &mnt->mnt_slave_list;
104 		while (!list_empty(p)) {
105                         slave_mnt = list_first_entry(p,
106 					struct mount, mnt_slave);
107 			list_del_init(&slave_mnt->mnt_slave);
108 			slave_mnt->mnt_master = NULL;
109 		}
110 	}
111 	mnt->mnt_master = master;
112 	CLEAR_MNT_SHARED(mnt);
113 	return 0;
114 }
115 
116 /*
117  * vfsmount lock must be held for write
118  */
119 void change_mnt_propagation(struct mount *mnt, int type)
120 {
121 	if (type == MS_SHARED) {
122 		set_mnt_shared(mnt);
123 		return;
124 	}
125 	do_make_slave(mnt);
126 	if (type != MS_SLAVE) {
127 		list_del_init(&mnt->mnt_slave);
128 		mnt->mnt_master = NULL;
129 		if (type == MS_UNBINDABLE)
130 			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
131 		else
132 			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
133 	}
134 }
135 
136 /*
137  * get the next mount in the propagation tree.
138  * @m: the mount seen last
139  * @origin: the original mount from where the tree walk initiated
140  *
141  * Note that peer groups form contiguous segments of slave lists.
142  * We rely on that in get_source() to be able to find out if
143  * vfsmount found while iterating with propagation_next() is
144  * a peer of one we'd found earlier.
145  */
146 static struct mount *propagation_next(struct mount *m,
147 					 struct mount *origin)
148 {
149 	/* are there any slaves of this mount? */
150 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
151 		return first_slave(m);
152 
153 	while (1) {
154 		struct mount *master = m->mnt_master;
155 
156 		if (master == origin->mnt_master) {
157 			struct mount *next = next_peer(m);
158 			return (next == origin) ? NULL : next;
159 		} else if (m->mnt_slave.next != &master->mnt_slave_list)
160 			return next_slave(m);
161 
162 		/* back at master */
163 		m = master;
164 	}
165 }
166 
167 static struct mount *next_group(struct mount *m, struct mount *origin)
168 {
169 	while (1) {
170 		while (1) {
171 			struct mount *next;
172 			if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
173 				return first_slave(m);
174 			next = next_peer(m);
175 			if (m->mnt_group_id == origin->mnt_group_id) {
176 				if (next == origin)
177 					return NULL;
178 			} else if (m->mnt_slave.next != &next->mnt_slave)
179 				break;
180 			m = next;
181 		}
182 		/* m is the last peer */
183 		while (1) {
184 			struct mount *master = m->mnt_master;
185 			if (m->mnt_slave.next != &master->mnt_slave_list)
186 				return next_slave(m);
187 			m = next_peer(master);
188 			if (master->mnt_group_id == origin->mnt_group_id)
189 				break;
190 			if (master->mnt_slave.next == &m->mnt_slave)
191 				break;
192 			m = master;
193 		}
194 		if (m == origin)
195 			return NULL;
196 	}
197 }
198 
199 /* all accesses are serialized by namespace_sem */
200 static struct user_namespace *user_ns;
201 static struct mount *last_dest, *last_source, *dest_master;
202 static struct mountpoint *mp;
203 static struct hlist_head *list;
204 
205 static int propagate_one(struct mount *m)
206 {
207 	struct mount *child;
208 	int type;
209 	/* skip ones added by this propagate_mnt() */
210 	if (IS_MNT_NEW(m))
211 		return 0;
212 	/* skip if mountpoint isn't covered by it */
213 	if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
214 		return 0;
215 	if (m->mnt_group_id == last_dest->mnt_group_id) {
216 		type = CL_MAKE_SHARED;
217 	} else {
218 		struct mount *n, *p;
219 		for (n = m; ; n = p) {
220 			p = n->mnt_master;
221 			if (p == dest_master || IS_MNT_MARKED(p)) {
222 				while (last_dest->mnt_master != p) {
223 					last_source = last_source->mnt_master;
224 					last_dest = last_source->mnt_parent;
225 				}
226 				if (n->mnt_group_id != last_dest->mnt_group_id) {
227 					last_source = last_source->mnt_master;
228 					last_dest = last_source->mnt_parent;
229 				}
230 				break;
231 			}
232 		}
233 		type = CL_SLAVE;
234 		/* beginning of peer group among the slaves? */
235 		if (IS_MNT_SHARED(m))
236 			type |= CL_MAKE_SHARED;
237 	}
238 
239 	/* Notice when we are propagating across user namespaces */
240 	if (m->mnt_ns->user_ns != user_ns)
241 		type |= CL_UNPRIVILEGED;
242 	child = copy_tree(last_source, last_source->mnt.mnt_root, type);
243 	if (IS_ERR(child))
244 		return PTR_ERR(child);
245 	mnt_set_mountpoint(m, mp, child);
246 	last_dest = m;
247 	last_source = child;
248 	if (m->mnt_master != dest_master) {
249 		read_seqlock_excl(&mount_lock);
250 		SET_MNT_MARK(m->mnt_master);
251 		read_sequnlock_excl(&mount_lock);
252 	}
253 	hlist_add_head(&child->mnt_hash, list);
254 	return 0;
255 }
256 
257 /*
258  * mount 'source_mnt' under the destination 'dest_mnt' at
259  * dentry 'dest_dentry'. And propagate that mount to
260  * all the peer and slave mounts of 'dest_mnt'.
261  * Link all the new mounts into a propagation tree headed at
262  * source_mnt. Also link all the new mounts using ->mnt_list
263  * headed at source_mnt's ->mnt_list
264  *
265  * @dest_mnt: destination mount.
266  * @dest_dentry: destination dentry.
267  * @source_mnt: source mount.
268  * @tree_list : list of heads of trees to be attached.
269  */
270 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
271 		    struct mount *source_mnt, struct hlist_head *tree_list)
272 {
273 	struct mount *m, *n;
274 	int ret = 0;
275 
276 	/*
277 	 * we don't want to bother passing tons of arguments to
278 	 * propagate_one(); everything is serialized by namespace_sem,
279 	 * so globals will do just fine.
280 	 */
281 	user_ns = current->nsproxy->mnt_ns->user_ns;
282 	last_dest = dest_mnt;
283 	last_source = source_mnt;
284 	mp = dest_mp;
285 	list = tree_list;
286 	dest_master = dest_mnt->mnt_master;
287 
288 	/* all peers of dest_mnt, except dest_mnt itself */
289 	for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
290 		ret = propagate_one(n);
291 		if (ret)
292 			goto out;
293 	}
294 
295 	/* all slave groups */
296 	for (m = next_group(dest_mnt, dest_mnt); m;
297 			m = next_group(m, dest_mnt)) {
298 		/* everything in that slave group */
299 		n = m;
300 		do {
301 			ret = propagate_one(n);
302 			if (ret)
303 				goto out;
304 			n = next_peer(n);
305 		} while (n != m);
306 	}
307 out:
308 	read_seqlock_excl(&mount_lock);
309 	hlist_for_each_entry(n, tree_list, mnt_hash) {
310 		m = n->mnt_parent;
311 		if (m->mnt_master != dest_mnt->mnt_master)
312 			CLEAR_MNT_MARK(m->mnt_master);
313 	}
314 	read_sequnlock_excl(&mount_lock);
315 	return ret;
316 }
317 
318 /*
319  * return true if the refcount is greater than count
320  */
321 static inline int do_refcount_check(struct mount *mnt, int count)
322 {
323 	return mnt_get_count(mnt) > count;
324 }
325 
326 /*
327  * check if the mount 'mnt' can be unmounted successfully.
328  * @mnt: the mount to be checked for unmount
329  * NOTE: unmounting 'mnt' would naturally propagate to all
330  * other mounts its parent propagates to.
331  * Check if any of these mounts that **do not have submounts**
332  * have more references than 'refcnt'. If so return busy.
333  *
334  * vfsmount lock must be held for write
335  */
336 int propagate_mount_busy(struct mount *mnt, int refcnt)
337 {
338 	struct mount *m, *child;
339 	struct mount *parent = mnt->mnt_parent;
340 	int ret = 0;
341 
342 	if (mnt == parent)
343 		return do_refcount_check(mnt, refcnt);
344 
345 	/*
346 	 * quickly check if the current mount can be unmounted.
347 	 * If not, we don't have to go checking for all other
348 	 * mounts
349 	 */
350 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
351 		return 1;
352 
353 	for (m = propagation_next(parent, parent); m;
354 	     		m = propagation_next(m, parent)) {
355 		child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint);
356 		if (child && list_empty(&child->mnt_mounts) &&
357 		    (ret = do_refcount_check(child, 1)))
358 			break;
359 	}
360 	return ret;
361 }
362 
363 /*
364  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
365  * parent propagates to.
366  */
367 static void __propagate_umount(struct mount *mnt)
368 {
369 	struct mount *parent = mnt->mnt_parent;
370 	struct mount *m;
371 
372 	BUG_ON(parent == mnt);
373 
374 	for (m = propagation_next(parent, parent); m;
375 			m = propagation_next(m, parent)) {
376 
377 		struct mount *child = __lookup_mnt_last(&m->mnt,
378 						mnt->mnt_mountpoint);
379 		/*
380 		 * umount the child only if the child has no
381 		 * other children
382 		 */
383 		if (child && list_empty(&child->mnt_mounts)) {
384 			hlist_del_init_rcu(&child->mnt_hash);
385 			hlist_add_before_rcu(&child->mnt_hash, &mnt->mnt_hash);
386 		}
387 	}
388 }
389 
390 /*
391  * collect all mounts that receive propagation from the mount in @list,
392  * and return these additional mounts in the same list.
393  * @list: the list of mounts to be unmounted.
394  *
395  * vfsmount lock must be held for write
396  */
397 int propagate_umount(struct hlist_head *list)
398 {
399 	struct mount *mnt;
400 
401 	hlist_for_each_entry(mnt, list, mnt_hash)
402 		__propagate_umount(mnt);
403 	return 0;
404 }
405