1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/pnode.c 4 * 5 * (C) Copyright IBM Corporation 2005. 6 * Author : Ram Pai (linuxram@us.ibm.com) 7 */ 8 #include <linux/mnt_namespace.h> 9 #include <linux/mount.h> 10 #include <linux/fs.h> 11 #include <linux/nsproxy.h> 12 #include <uapi/linux/mount.h> 13 #include "internal.h" 14 #include "pnode.h" 15 16 /* return the next shared peer mount of @p */ 17 static inline struct mount *next_peer(struct mount *p) 18 { 19 return list_entry(p->mnt_share.next, struct mount, mnt_share); 20 } 21 22 static inline struct mount *first_slave(struct mount *p) 23 { 24 return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave); 25 } 26 27 static inline struct mount *last_slave(struct mount *p) 28 { 29 return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave); 30 } 31 32 static inline struct mount *next_slave(struct mount *p) 33 { 34 return list_entry(p->mnt_slave.next, struct mount, mnt_slave); 35 } 36 37 static struct mount *get_peer_under_root(struct mount *mnt, 38 struct mnt_namespace *ns, 39 const struct path *root) 40 { 41 struct mount *m = mnt; 42 43 do { 44 /* Check the namespace first for optimization */ 45 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) 46 return m; 47 48 m = next_peer(m); 49 } while (m != mnt); 50 51 return NULL; 52 } 53 54 /* 55 * Get ID of closest dominating peer group having a representative 56 * under the given root. 57 * 58 * Caller must hold namespace_sem 59 */ 60 int get_dominating_id(struct mount *mnt, const struct path *root) 61 { 62 struct mount *m; 63 64 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { 65 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); 66 if (d) 67 return d->mnt_group_id; 68 } 69 70 return 0; 71 } 72 73 static int do_make_slave(struct mount *mnt) 74 { 75 struct mount *master, *slave_mnt; 76 77 if (list_empty(&mnt->mnt_share)) { 78 if (IS_MNT_SHARED(mnt)) { 79 mnt_release_group_id(mnt); 80 CLEAR_MNT_SHARED(mnt); 81 } 82 master = mnt->mnt_master; 83 if (!master) { 84 struct list_head *p = &mnt->mnt_slave_list; 85 while (!list_empty(p)) { 86 slave_mnt = list_first_entry(p, 87 struct mount, mnt_slave); 88 list_del_init(&slave_mnt->mnt_slave); 89 slave_mnt->mnt_master = NULL; 90 } 91 return 0; 92 } 93 } else { 94 struct mount *m; 95 /* 96 * slave 'mnt' to a peer mount that has the 97 * same root dentry. If none is available then 98 * slave it to anything that is available. 99 */ 100 for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) { 101 if (m->mnt.mnt_root == mnt->mnt.mnt_root) { 102 master = m; 103 break; 104 } 105 } 106 list_del_init(&mnt->mnt_share); 107 mnt->mnt_group_id = 0; 108 CLEAR_MNT_SHARED(mnt); 109 } 110 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave) 111 slave_mnt->mnt_master = master; 112 list_move(&mnt->mnt_slave, &master->mnt_slave_list); 113 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev); 114 INIT_LIST_HEAD(&mnt->mnt_slave_list); 115 mnt->mnt_master = master; 116 return 0; 117 } 118 119 /* 120 * vfsmount lock must be held for write 121 */ 122 void change_mnt_propagation(struct mount *mnt, int type) 123 { 124 if (type == MS_SHARED) { 125 set_mnt_shared(mnt); 126 return; 127 } 128 do_make_slave(mnt); 129 if (type != MS_SLAVE) { 130 list_del_init(&mnt->mnt_slave); 131 mnt->mnt_master = NULL; 132 if (type == MS_UNBINDABLE) 133 mnt->mnt.mnt_flags |= MNT_UNBINDABLE; 134 else 135 mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE; 136 } 137 } 138 139 /* 140 * get the next mount in the propagation tree. 141 * @m: the mount seen last 142 * @origin: the original mount from where the tree walk initiated 143 * 144 * Note that peer groups form contiguous segments of slave lists. 145 * We rely on that in get_source() to be able to find out if 146 * vfsmount found while iterating with propagation_next() is 147 * a peer of one we'd found earlier. 148 */ 149 static struct mount *propagation_next(struct mount *m, 150 struct mount *origin) 151 { 152 /* are there any slaves of this mount? */ 153 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 154 return first_slave(m); 155 156 while (1) { 157 struct mount *master = m->mnt_master; 158 159 if (master == origin->mnt_master) { 160 struct mount *next = next_peer(m); 161 return (next == origin) ? NULL : next; 162 } else if (m->mnt_slave.next != &master->mnt_slave_list) 163 return next_slave(m); 164 165 /* back at master */ 166 m = master; 167 } 168 } 169 170 static struct mount *skip_propagation_subtree(struct mount *m, 171 struct mount *origin) 172 { 173 /* 174 * Advance m such that propagation_next will not return 175 * the slaves of m. 176 */ 177 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 178 m = last_slave(m); 179 180 return m; 181 } 182 183 static struct mount *next_group(struct mount *m, struct mount *origin) 184 { 185 while (1) { 186 while (1) { 187 struct mount *next; 188 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 189 return first_slave(m); 190 next = next_peer(m); 191 if (m->mnt_group_id == origin->mnt_group_id) { 192 if (next == origin) 193 return NULL; 194 } else if (m->mnt_slave.next != &next->mnt_slave) 195 break; 196 m = next; 197 } 198 /* m is the last peer */ 199 while (1) { 200 struct mount *master = m->mnt_master; 201 if (m->mnt_slave.next != &master->mnt_slave_list) 202 return next_slave(m); 203 m = next_peer(master); 204 if (master->mnt_group_id == origin->mnt_group_id) 205 break; 206 if (master->mnt_slave.next == &m->mnt_slave) 207 break; 208 m = master; 209 } 210 if (m == origin) 211 return NULL; 212 } 213 } 214 215 /* all accesses are serialized by namespace_sem */ 216 static struct mount *last_dest, *first_source, *last_source, *dest_master; 217 static struct hlist_head *list; 218 219 static inline bool peers(const struct mount *m1, const struct mount *m2) 220 { 221 return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id; 222 } 223 224 static int propagate_one(struct mount *m, struct mountpoint *dest_mp) 225 { 226 struct mount *child; 227 int type; 228 /* skip ones added by this propagate_mnt() */ 229 if (IS_MNT_NEW(m)) 230 return 0; 231 /* skip if mountpoint isn't covered by it */ 232 if (!is_subdir(dest_mp->m_dentry, m->mnt.mnt_root)) 233 return 0; 234 if (peers(m, last_dest)) { 235 type = CL_MAKE_SHARED; 236 } else { 237 struct mount *n, *p; 238 bool done; 239 for (n = m; ; n = p) { 240 p = n->mnt_master; 241 if (p == dest_master || IS_MNT_MARKED(p)) 242 break; 243 } 244 do { 245 struct mount *parent = last_source->mnt_parent; 246 if (peers(last_source, first_source)) 247 break; 248 done = parent->mnt_master == p; 249 if (done && peers(n, parent)) 250 break; 251 last_source = last_source->mnt_master; 252 } while (!done); 253 254 type = CL_SLAVE; 255 /* beginning of peer group among the slaves? */ 256 if (IS_MNT_SHARED(m)) 257 type |= CL_MAKE_SHARED; 258 } 259 260 child = copy_tree(last_source, last_source->mnt.mnt_root, type); 261 if (IS_ERR(child)) 262 return PTR_ERR(child); 263 read_seqlock_excl(&mount_lock); 264 mnt_set_mountpoint(m, dest_mp, child); 265 if (m->mnt_master != dest_master) 266 SET_MNT_MARK(m->mnt_master); 267 read_sequnlock_excl(&mount_lock); 268 last_dest = m; 269 last_source = child; 270 hlist_add_head(&child->mnt_hash, list); 271 return count_mounts(m->mnt_ns, child); 272 } 273 274 /* 275 * mount 'source_mnt' under the destination 'dest_mnt' at 276 * dentry 'dest_dentry'. And propagate that mount to 277 * all the peer and slave mounts of 'dest_mnt'. 278 * Link all the new mounts into a propagation tree headed at 279 * source_mnt. Also link all the new mounts using ->mnt_list 280 * headed at source_mnt's ->mnt_list 281 * 282 * @dest_mnt: destination mount. 283 * @dest_dentry: destination dentry. 284 * @source_mnt: source mount. 285 * @tree_list : list of heads of trees to be attached. 286 */ 287 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, 288 struct mount *source_mnt, struct hlist_head *tree_list) 289 { 290 struct mount *m, *n; 291 int ret = 0; 292 293 /* 294 * we don't want to bother passing tons of arguments to 295 * propagate_one(); everything is serialized by namespace_sem, 296 * so globals will do just fine. 297 */ 298 last_dest = dest_mnt; 299 first_source = source_mnt; 300 last_source = source_mnt; 301 list = tree_list; 302 dest_master = dest_mnt->mnt_master; 303 304 /* all peers of dest_mnt, except dest_mnt itself */ 305 for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) { 306 ret = propagate_one(n, dest_mp); 307 if (ret) 308 goto out; 309 } 310 311 /* all slave groups */ 312 for (m = next_group(dest_mnt, dest_mnt); m; 313 m = next_group(m, dest_mnt)) { 314 /* everything in that slave group */ 315 n = m; 316 do { 317 ret = propagate_one(n, dest_mp); 318 if (ret) 319 goto out; 320 n = next_peer(n); 321 } while (n != m); 322 } 323 out: 324 read_seqlock_excl(&mount_lock); 325 hlist_for_each_entry(n, tree_list, mnt_hash) { 326 m = n->mnt_parent; 327 if (m->mnt_master != dest_mnt->mnt_master) 328 CLEAR_MNT_MARK(m->mnt_master); 329 } 330 read_sequnlock_excl(&mount_lock); 331 return ret; 332 } 333 334 static struct mount *find_topper(struct mount *mnt) 335 { 336 /* If there is exactly one mount covering mnt completely return it. */ 337 struct mount *child; 338 339 if (!list_is_singular(&mnt->mnt_mounts)) 340 return NULL; 341 342 child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child); 343 if (child->mnt_mountpoint != mnt->mnt.mnt_root) 344 return NULL; 345 346 return child; 347 } 348 349 /* 350 * return true if the refcount is greater than count 351 */ 352 static inline int do_refcount_check(struct mount *mnt, int count) 353 { 354 return mnt_get_count(mnt) > count; 355 } 356 357 /** 358 * propagation_would_overmount - check whether propagation from @from 359 * would overmount @to 360 * @from: shared mount 361 * @to: mount to check 362 * @mp: future mountpoint of @to on @from 363 * 364 * If @from propagates mounts to @to, @from and @to must either be peers 365 * or one of the masters in the hierarchy of masters of @to must be a 366 * peer of @from. 367 * 368 * If the root of the @to mount is equal to the future mountpoint @mp of 369 * the @to mount on @from then @to will be overmounted by whatever is 370 * propagated to it. 371 * 372 * Context: This function expects namespace_lock() to be held and that 373 * @mp is stable. 374 * Return: If @from overmounts @to, true is returned, false if not. 375 */ 376 bool propagation_would_overmount(const struct mount *from, 377 const struct mount *to, 378 const struct mountpoint *mp) 379 { 380 if (!IS_MNT_SHARED(from)) 381 return false; 382 383 if (IS_MNT_NEW(to)) 384 return false; 385 386 if (to->mnt.mnt_root != mp->m_dentry) 387 return false; 388 389 for (const struct mount *m = to; m; m = m->mnt_master) { 390 if (peers(from, m)) 391 return true; 392 } 393 394 return false; 395 } 396 397 /* 398 * check if the mount 'mnt' can be unmounted successfully. 399 * @mnt: the mount to be checked for unmount 400 * NOTE: unmounting 'mnt' would naturally propagate to all 401 * other mounts its parent propagates to. 402 * Check if any of these mounts that **do not have submounts** 403 * have more references than 'refcnt'. If so return busy. 404 * 405 * vfsmount lock must be held for write 406 */ 407 int propagate_mount_busy(struct mount *mnt, int refcnt) 408 { 409 struct mount *m, *child, *topper; 410 struct mount *parent = mnt->mnt_parent; 411 412 if (mnt == parent) 413 return do_refcount_check(mnt, refcnt); 414 415 /* 416 * quickly check if the current mount can be unmounted. 417 * If not, we don't have to go checking for all other 418 * mounts 419 */ 420 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) 421 return 1; 422 423 for (m = propagation_next(parent, parent); m; 424 m = propagation_next(m, parent)) { 425 int count = 1; 426 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 427 if (!child) 428 continue; 429 430 /* Is there exactly one mount on the child that covers 431 * it completely whose reference should be ignored? 432 */ 433 topper = find_topper(child); 434 if (topper) 435 count += 1; 436 else if (!list_empty(&child->mnt_mounts)) 437 continue; 438 439 if (do_refcount_check(child, count)) 440 return 1; 441 } 442 return 0; 443 } 444 445 /* 446 * Clear MNT_LOCKED when it can be shown to be safe. 447 * 448 * mount_lock lock must be held for write 449 */ 450 void propagate_mount_unlock(struct mount *mnt) 451 { 452 struct mount *parent = mnt->mnt_parent; 453 struct mount *m, *child; 454 455 BUG_ON(parent == mnt); 456 457 for (m = propagation_next(parent, parent); m; 458 m = propagation_next(m, parent)) { 459 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 460 if (child) 461 child->mnt.mnt_flags &= ~MNT_LOCKED; 462 } 463 } 464 465 static void umount_one(struct mount *mnt, struct list_head *to_umount) 466 { 467 CLEAR_MNT_MARK(mnt); 468 mnt->mnt.mnt_flags |= MNT_UMOUNT; 469 list_del_init(&mnt->mnt_child); 470 list_del_init(&mnt->mnt_umounting); 471 move_from_ns(mnt, to_umount); 472 } 473 474 /* 475 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its 476 * parent propagates to. 477 */ 478 static bool __propagate_umount(struct mount *mnt, 479 struct list_head *to_umount, 480 struct list_head *to_restore) 481 { 482 bool progress = false; 483 struct mount *child; 484 485 /* 486 * The state of the parent won't change if this mount is 487 * already unmounted or marked as without children. 488 */ 489 if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED)) 490 goto out; 491 492 /* Verify topper is the only grandchild that has not been 493 * speculatively unmounted. 494 */ 495 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 496 if (child->mnt_mountpoint == mnt->mnt.mnt_root) 497 continue; 498 if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child)) 499 continue; 500 /* Found a mounted child */ 501 goto children; 502 } 503 504 /* Mark mounts that can be unmounted if not locked */ 505 SET_MNT_MARK(mnt); 506 progress = true; 507 508 /* If a mount is without children and not locked umount it. */ 509 if (!IS_MNT_LOCKED(mnt)) { 510 umount_one(mnt, to_umount); 511 } else { 512 children: 513 list_move_tail(&mnt->mnt_umounting, to_restore); 514 } 515 out: 516 return progress; 517 } 518 519 static void umount_list(struct list_head *to_umount, 520 struct list_head *to_restore) 521 { 522 struct mount *mnt, *child, *tmp; 523 list_for_each_entry(mnt, to_umount, mnt_list) { 524 list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) { 525 /* topper? */ 526 if (child->mnt_mountpoint == mnt->mnt.mnt_root) 527 list_move_tail(&child->mnt_umounting, to_restore); 528 else 529 umount_one(child, to_umount); 530 } 531 } 532 } 533 534 static void restore_mounts(struct list_head *to_restore) 535 { 536 /* Restore mounts to a clean working state */ 537 while (!list_empty(to_restore)) { 538 struct mount *mnt, *parent; 539 struct mountpoint *mp; 540 541 mnt = list_first_entry(to_restore, struct mount, mnt_umounting); 542 CLEAR_MNT_MARK(mnt); 543 list_del_init(&mnt->mnt_umounting); 544 545 /* Should this mount be reparented? */ 546 mp = mnt->mnt_mp; 547 parent = mnt->mnt_parent; 548 while (parent->mnt.mnt_flags & MNT_UMOUNT) { 549 mp = parent->mnt_mp; 550 parent = parent->mnt_parent; 551 } 552 if (parent != mnt->mnt_parent) 553 mnt_change_mountpoint(parent, mp, mnt); 554 } 555 } 556 557 static void cleanup_umount_visitations(struct list_head *visited) 558 { 559 while (!list_empty(visited)) { 560 struct mount *mnt = 561 list_first_entry(visited, struct mount, mnt_umounting); 562 list_del_init(&mnt->mnt_umounting); 563 } 564 } 565 566 /* 567 * collect all mounts that receive propagation from the mount in @list, 568 * and return these additional mounts in the same list. 569 * @list: the list of mounts to be unmounted. 570 * 571 * vfsmount lock must be held for write 572 */ 573 int propagate_umount(struct list_head *list) 574 { 575 struct mount *mnt; 576 LIST_HEAD(to_restore); 577 LIST_HEAD(to_umount); 578 LIST_HEAD(visited); 579 580 /* Find candidates for unmounting */ 581 list_for_each_entry_reverse(mnt, list, mnt_list) { 582 struct mount *parent = mnt->mnt_parent; 583 struct mount *m; 584 585 /* 586 * If this mount has already been visited it is known that it's 587 * entire peer group and all of their slaves in the propagation 588 * tree for the mountpoint has already been visited and there is 589 * no need to visit them again. 590 */ 591 if (!list_empty(&mnt->mnt_umounting)) 592 continue; 593 594 list_add_tail(&mnt->mnt_umounting, &visited); 595 for (m = propagation_next(parent, parent); m; 596 m = propagation_next(m, parent)) { 597 struct mount *child = __lookup_mnt(&m->mnt, 598 mnt->mnt_mountpoint); 599 if (!child) 600 continue; 601 602 if (!list_empty(&child->mnt_umounting)) { 603 /* 604 * If the child has already been visited it is 605 * know that it's entire peer group and all of 606 * their slaves in the propgation tree for the 607 * mountpoint has already been visited and there 608 * is no need to visit this subtree again. 609 */ 610 m = skip_propagation_subtree(m, parent); 611 continue; 612 } else if (child->mnt.mnt_flags & MNT_UMOUNT) { 613 /* 614 * We have come accross an partially unmounted 615 * mount in list that has not been visited yet. 616 * Remember it has been visited and continue 617 * about our merry way. 618 */ 619 list_add_tail(&child->mnt_umounting, &visited); 620 continue; 621 } 622 623 /* Check the child and parents while progress is made */ 624 while (__propagate_umount(child, 625 &to_umount, &to_restore)) { 626 /* Is the parent a umount candidate? */ 627 child = child->mnt_parent; 628 if (list_empty(&child->mnt_umounting)) 629 break; 630 } 631 } 632 } 633 634 umount_list(&to_umount, &to_restore); 635 restore_mounts(&to_restore); 636 cleanup_umount_visitations(&visited); 637 list_splice_tail(&to_umount, list); 638 639 return 0; 640 } 641