1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/pnode.c 4 * 5 * (C) Copyright IBM Corporation 2005. 6 * Author : Ram Pai (linuxram@us.ibm.com) 7 */ 8 #include <linux/mnt_namespace.h> 9 #include <linux/mount.h> 10 #include <linux/fs.h> 11 #include <linux/nsproxy.h> 12 #include <uapi/linux/mount.h> 13 #include "internal.h" 14 #include "pnode.h" 15 16 /* return the next shared peer mount of @p */ 17 static inline struct mount *next_peer(struct mount *p) 18 { 19 return list_entry(p->mnt_share.next, struct mount, mnt_share); 20 } 21 22 static inline struct mount *first_slave(struct mount *p) 23 { 24 return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave); 25 } 26 27 static inline struct mount *last_slave(struct mount *p) 28 { 29 return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave); 30 } 31 32 static inline struct mount *next_slave(struct mount *p) 33 { 34 return list_entry(p->mnt_slave.next, struct mount, mnt_slave); 35 } 36 37 static struct mount *get_peer_under_root(struct mount *mnt, 38 struct mnt_namespace *ns, 39 const struct path *root) 40 { 41 struct mount *m = mnt; 42 43 do { 44 /* Check the namespace first for optimization */ 45 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) 46 return m; 47 48 m = next_peer(m); 49 } while (m != mnt); 50 51 return NULL; 52 } 53 54 /* 55 * Get ID of closest dominating peer group having a representative 56 * under the given root. 57 * 58 * Caller must hold namespace_sem 59 */ 60 int get_dominating_id(struct mount *mnt, const struct path *root) 61 { 62 struct mount *m; 63 64 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { 65 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); 66 if (d) 67 return d->mnt_group_id; 68 } 69 70 return 0; 71 } 72 73 static int do_make_slave(struct mount *mnt) 74 { 75 struct mount *master, *slave_mnt; 76 77 if (list_empty(&mnt->mnt_share)) { 78 if (IS_MNT_SHARED(mnt)) { 79 mnt_release_group_id(mnt); 80 CLEAR_MNT_SHARED(mnt); 81 } 82 master = mnt->mnt_master; 83 if (!master) { 84 struct list_head *p = &mnt->mnt_slave_list; 85 while (!list_empty(p)) { 86 slave_mnt = list_first_entry(p, 87 struct mount, mnt_slave); 88 list_del_init(&slave_mnt->mnt_slave); 89 slave_mnt->mnt_master = NULL; 90 } 91 return 0; 92 } 93 } else { 94 struct mount *m; 95 /* 96 * slave 'mnt' to a peer mount that has the 97 * same root dentry. If none is available then 98 * slave it to anything that is available. 99 */ 100 for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) { 101 if (m->mnt.mnt_root == mnt->mnt.mnt_root) { 102 master = m; 103 break; 104 } 105 } 106 list_del_init(&mnt->mnt_share); 107 mnt->mnt_group_id = 0; 108 CLEAR_MNT_SHARED(mnt); 109 } 110 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave) 111 slave_mnt->mnt_master = master; 112 list_move(&mnt->mnt_slave, &master->mnt_slave_list); 113 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev); 114 INIT_LIST_HEAD(&mnt->mnt_slave_list); 115 mnt->mnt_master = master; 116 return 0; 117 } 118 119 /* 120 * vfsmount lock must be held for write 121 */ 122 void change_mnt_propagation(struct mount *mnt, int type) 123 { 124 if (type == MS_SHARED) { 125 set_mnt_shared(mnt); 126 return; 127 } 128 do_make_slave(mnt); 129 if (type != MS_SLAVE) { 130 list_del_init(&mnt->mnt_slave); 131 mnt->mnt_master = NULL; 132 if (type == MS_UNBINDABLE) 133 mnt->mnt.mnt_flags |= MNT_UNBINDABLE; 134 else 135 mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE; 136 } 137 } 138 139 /* 140 * get the next mount in the propagation tree. 141 * @m: the mount seen last 142 * @origin: the original mount from where the tree walk initiated 143 * 144 * Note that peer groups form contiguous segments of slave lists. 145 * We rely on that in get_source() to be able to find out if 146 * vfsmount found while iterating with propagation_next() is 147 * a peer of one we'd found earlier. 148 */ 149 static struct mount *propagation_next(struct mount *m, 150 struct mount *origin) 151 { 152 /* are there any slaves of this mount? */ 153 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 154 return first_slave(m); 155 156 while (1) { 157 struct mount *master = m->mnt_master; 158 159 if (master == origin->mnt_master) { 160 struct mount *next = next_peer(m); 161 return (next == origin) ? NULL : next; 162 } else if (m->mnt_slave.next != &master->mnt_slave_list) 163 return next_slave(m); 164 165 /* back at master */ 166 m = master; 167 } 168 } 169 170 static struct mount *skip_propagation_subtree(struct mount *m, 171 struct mount *origin) 172 { 173 /* 174 * Advance m such that propagation_next will not return 175 * the slaves of m. 176 */ 177 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 178 m = last_slave(m); 179 180 return m; 181 } 182 183 static struct mount *next_group(struct mount *m, struct mount *origin) 184 { 185 while (1) { 186 while (1) { 187 struct mount *next; 188 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 189 return first_slave(m); 190 next = next_peer(m); 191 if (m->mnt_group_id == origin->mnt_group_id) { 192 if (next == origin) 193 return NULL; 194 } else if (m->mnt_slave.next != &next->mnt_slave) 195 break; 196 m = next; 197 } 198 /* m is the last peer */ 199 while (1) { 200 struct mount *master = m->mnt_master; 201 if (m->mnt_slave.next != &master->mnt_slave_list) 202 return next_slave(m); 203 m = next_peer(master); 204 if (master->mnt_group_id == origin->mnt_group_id) 205 break; 206 if (master->mnt_slave.next == &m->mnt_slave) 207 break; 208 m = master; 209 } 210 if (m == origin) 211 return NULL; 212 } 213 } 214 215 /* all accesses are serialized by namespace_sem */ 216 static struct mount *last_dest, *first_source, *last_source, *dest_master; 217 static struct mountpoint *mp; 218 static struct hlist_head *list; 219 220 static inline bool peers(struct mount *m1, struct mount *m2) 221 { 222 return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id; 223 } 224 225 static int propagate_one(struct mount *m) 226 { 227 struct mount *child; 228 int type; 229 /* skip ones added by this propagate_mnt() */ 230 if (IS_MNT_NEW(m)) 231 return 0; 232 /* skip if mountpoint isn't covered by it */ 233 if (!is_subdir(mp->m_dentry, m->mnt.mnt_root)) 234 return 0; 235 if (peers(m, last_dest)) { 236 type = CL_MAKE_SHARED; 237 } else { 238 struct mount *n, *p; 239 bool done; 240 for (n = m; ; n = p) { 241 p = n->mnt_master; 242 if (p == dest_master || IS_MNT_MARKED(p)) 243 break; 244 } 245 do { 246 struct mount *parent = last_source->mnt_parent; 247 if (last_source == first_source) 248 break; 249 done = parent->mnt_master == p; 250 if (done && peers(n, parent)) 251 break; 252 last_source = last_source->mnt_master; 253 } while (!done); 254 255 type = CL_SLAVE; 256 /* beginning of peer group among the slaves? */ 257 if (IS_MNT_SHARED(m)) 258 type |= CL_MAKE_SHARED; 259 } 260 261 child = copy_tree(last_source, last_source->mnt.mnt_root, type); 262 if (IS_ERR(child)) 263 return PTR_ERR(child); 264 child->mnt.mnt_flags &= ~MNT_LOCKED; 265 mnt_set_mountpoint(m, mp, child); 266 last_dest = m; 267 last_source = child; 268 if (m->mnt_master != dest_master) { 269 read_seqlock_excl(&mount_lock); 270 SET_MNT_MARK(m->mnt_master); 271 read_sequnlock_excl(&mount_lock); 272 } 273 hlist_add_head(&child->mnt_hash, list); 274 return count_mounts(m->mnt_ns, child); 275 } 276 277 /* 278 * mount 'source_mnt' under the destination 'dest_mnt' at 279 * dentry 'dest_dentry'. And propagate that mount to 280 * all the peer and slave mounts of 'dest_mnt'. 281 * Link all the new mounts into a propagation tree headed at 282 * source_mnt. Also link all the new mounts using ->mnt_list 283 * headed at source_mnt's ->mnt_list 284 * 285 * @dest_mnt: destination mount. 286 * @dest_dentry: destination dentry. 287 * @source_mnt: source mount. 288 * @tree_list : list of heads of trees to be attached. 289 */ 290 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, 291 struct mount *source_mnt, struct hlist_head *tree_list) 292 { 293 struct mount *m, *n; 294 int ret = 0; 295 296 /* 297 * we don't want to bother passing tons of arguments to 298 * propagate_one(); everything is serialized by namespace_sem, 299 * so globals will do just fine. 300 */ 301 last_dest = dest_mnt; 302 first_source = source_mnt; 303 last_source = source_mnt; 304 mp = dest_mp; 305 list = tree_list; 306 dest_master = dest_mnt->mnt_master; 307 308 /* all peers of dest_mnt, except dest_mnt itself */ 309 for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) { 310 ret = propagate_one(n); 311 if (ret) 312 goto out; 313 } 314 315 /* all slave groups */ 316 for (m = next_group(dest_mnt, dest_mnt); m; 317 m = next_group(m, dest_mnt)) { 318 /* everything in that slave group */ 319 n = m; 320 do { 321 ret = propagate_one(n); 322 if (ret) 323 goto out; 324 n = next_peer(n); 325 } while (n != m); 326 } 327 out: 328 read_seqlock_excl(&mount_lock); 329 hlist_for_each_entry(n, tree_list, mnt_hash) { 330 m = n->mnt_parent; 331 if (m->mnt_master != dest_mnt->mnt_master) 332 CLEAR_MNT_MARK(m->mnt_master); 333 } 334 read_sequnlock_excl(&mount_lock); 335 return ret; 336 } 337 338 static struct mount *find_topper(struct mount *mnt) 339 { 340 /* If there is exactly one mount covering mnt completely return it. */ 341 struct mount *child; 342 343 if (!list_is_singular(&mnt->mnt_mounts)) 344 return NULL; 345 346 child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child); 347 if (child->mnt_mountpoint != mnt->mnt.mnt_root) 348 return NULL; 349 350 return child; 351 } 352 353 /* 354 * return true if the refcount is greater than count 355 */ 356 static inline int do_refcount_check(struct mount *mnt, int count) 357 { 358 return mnt_get_count(mnt) > count; 359 } 360 361 /* 362 * check if the mount 'mnt' can be unmounted successfully. 363 * @mnt: the mount to be checked for unmount 364 * NOTE: unmounting 'mnt' would naturally propagate to all 365 * other mounts its parent propagates to. 366 * Check if any of these mounts that **do not have submounts** 367 * have more references than 'refcnt'. If so return busy. 368 * 369 * vfsmount lock must be held for write 370 */ 371 int propagate_mount_busy(struct mount *mnt, int refcnt) 372 { 373 struct mount *m, *child, *topper; 374 struct mount *parent = mnt->mnt_parent; 375 376 if (mnt == parent) 377 return do_refcount_check(mnt, refcnt); 378 379 /* 380 * quickly check if the current mount can be unmounted. 381 * If not, we don't have to go checking for all other 382 * mounts 383 */ 384 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) 385 return 1; 386 387 for (m = propagation_next(parent, parent); m; 388 m = propagation_next(m, parent)) { 389 int count = 1; 390 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 391 if (!child) 392 continue; 393 394 /* Is there exactly one mount on the child that covers 395 * it completely whose reference should be ignored? 396 */ 397 topper = find_topper(child); 398 if (topper) 399 count += 1; 400 else if (!list_empty(&child->mnt_mounts)) 401 continue; 402 403 if (do_refcount_check(child, count)) 404 return 1; 405 } 406 return 0; 407 } 408 409 /* 410 * Clear MNT_LOCKED when it can be shown to be safe. 411 * 412 * mount_lock lock must be held for write 413 */ 414 void propagate_mount_unlock(struct mount *mnt) 415 { 416 struct mount *parent = mnt->mnt_parent; 417 struct mount *m, *child; 418 419 BUG_ON(parent == mnt); 420 421 for (m = propagation_next(parent, parent); m; 422 m = propagation_next(m, parent)) { 423 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 424 if (child) 425 child->mnt.mnt_flags &= ~MNT_LOCKED; 426 } 427 } 428 429 static void umount_one(struct mount *mnt, struct list_head *to_umount) 430 { 431 CLEAR_MNT_MARK(mnt); 432 mnt->mnt.mnt_flags |= MNT_UMOUNT; 433 list_del_init(&mnt->mnt_child); 434 list_del_init(&mnt->mnt_umounting); 435 list_move_tail(&mnt->mnt_list, to_umount); 436 } 437 438 /* 439 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its 440 * parent propagates to. 441 */ 442 static bool __propagate_umount(struct mount *mnt, 443 struct list_head *to_umount, 444 struct list_head *to_restore) 445 { 446 bool progress = false; 447 struct mount *child; 448 449 /* 450 * The state of the parent won't change if this mount is 451 * already unmounted or marked as without children. 452 */ 453 if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED)) 454 goto out; 455 456 /* Verify topper is the only grandchild that has not been 457 * speculatively unmounted. 458 */ 459 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 460 if (child->mnt_mountpoint == mnt->mnt.mnt_root) 461 continue; 462 if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child)) 463 continue; 464 /* Found a mounted child */ 465 goto children; 466 } 467 468 /* Mark mounts that can be unmounted if not locked */ 469 SET_MNT_MARK(mnt); 470 progress = true; 471 472 /* If a mount is without children and not locked umount it. */ 473 if (!IS_MNT_LOCKED(mnt)) { 474 umount_one(mnt, to_umount); 475 } else { 476 children: 477 list_move_tail(&mnt->mnt_umounting, to_restore); 478 } 479 out: 480 return progress; 481 } 482 483 static void umount_list(struct list_head *to_umount, 484 struct list_head *to_restore) 485 { 486 struct mount *mnt, *child, *tmp; 487 list_for_each_entry(mnt, to_umount, mnt_list) { 488 list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) { 489 /* topper? */ 490 if (child->mnt_mountpoint == mnt->mnt.mnt_root) 491 list_move_tail(&child->mnt_umounting, to_restore); 492 else 493 umount_one(child, to_umount); 494 } 495 } 496 } 497 498 static void restore_mounts(struct list_head *to_restore) 499 { 500 /* Restore mounts to a clean working state */ 501 while (!list_empty(to_restore)) { 502 struct mount *mnt, *parent; 503 struct mountpoint *mp; 504 505 mnt = list_first_entry(to_restore, struct mount, mnt_umounting); 506 CLEAR_MNT_MARK(mnt); 507 list_del_init(&mnt->mnt_umounting); 508 509 /* Should this mount be reparented? */ 510 mp = mnt->mnt_mp; 511 parent = mnt->mnt_parent; 512 while (parent->mnt.mnt_flags & MNT_UMOUNT) { 513 mp = parent->mnt_mp; 514 parent = parent->mnt_parent; 515 } 516 if (parent != mnt->mnt_parent) 517 mnt_change_mountpoint(parent, mp, mnt); 518 } 519 } 520 521 static void cleanup_umount_visitations(struct list_head *visited) 522 { 523 while (!list_empty(visited)) { 524 struct mount *mnt = 525 list_first_entry(visited, struct mount, mnt_umounting); 526 list_del_init(&mnt->mnt_umounting); 527 } 528 } 529 530 /* 531 * collect all mounts that receive propagation from the mount in @list, 532 * and return these additional mounts in the same list. 533 * @list: the list of mounts to be unmounted. 534 * 535 * vfsmount lock must be held for write 536 */ 537 int propagate_umount(struct list_head *list) 538 { 539 struct mount *mnt; 540 LIST_HEAD(to_restore); 541 LIST_HEAD(to_umount); 542 LIST_HEAD(visited); 543 544 /* Find candidates for unmounting */ 545 list_for_each_entry_reverse(mnt, list, mnt_list) { 546 struct mount *parent = mnt->mnt_parent; 547 struct mount *m; 548 549 /* 550 * If this mount has already been visited it is known that it's 551 * entire peer group and all of their slaves in the propagation 552 * tree for the mountpoint has already been visited and there is 553 * no need to visit them again. 554 */ 555 if (!list_empty(&mnt->mnt_umounting)) 556 continue; 557 558 list_add_tail(&mnt->mnt_umounting, &visited); 559 for (m = propagation_next(parent, parent); m; 560 m = propagation_next(m, parent)) { 561 struct mount *child = __lookup_mnt(&m->mnt, 562 mnt->mnt_mountpoint); 563 if (!child) 564 continue; 565 566 if (!list_empty(&child->mnt_umounting)) { 567 /* 568 * If the child has already been visited it is 569 * know that it's entire peer group and all of 570 * their slaves in the propgation tree for the 571 * mountpoint has already been visited and there 572 * is no need to visit this subtree again. 573 */ 574 m = skip_propagation_subtree(m, parent); 575 continue; 576 } else if (child->mnt.mnt_flags & MNT_UMOUNT) { 577 /* 578 * We have come accross an partially unmounted 579 * mount in list that has not been visited yet. 580 * Remember it has been visited and continue 581 * about our merry way. 582 */ 583 list_add_tail(&child->mnt_umounting, &visited); 584 continue; 585 } 586 587 /* Check the child and parents while progress is made */ 588 while (__propagate_umount(child, 589 &to_umount, &to_restore)) { 590 /* Is the parent a umount candidate? */ 591 child = child->mnt_parent; 592 if (list_empty(&child->mnt_umounting)) 593 break; 594 } 595 } 596 } 597 598 umount_list(&to_umount, &to_restore); 599 restore_mounts(&to_restore); 600 cleanup_umount_visitations(&visited); 601 list_splice_tail(&to_umount, list); 602 603 return 0; 604 } 605