1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/pnode.c 4 * 5 * (C) Copyright IBM Corporation 2005. 6 * Author : Ram Pai (linuxram@us.ibm.com) 7 */ 8 #include <linux/mnt_namespace.h> 9 #include <linux/mount.h> 10 #include <linux/fs.h> 11 #include <linux/nsproxy.h> 12 #include <uapi/linux/mount.h> 13 #include "internal.h" 14 #include "pnode.h" 15 16 /* return the next shared peer mount of @p */ 17 static inline struct mount *next_peer(struct mount *p) 18 { 19 return list_entry(p->mnt_share.next, struct mount, mnt_share); 20 } 21 22 static inline struct mount *first_slave(struct mount *p) 23 { 24 return hlist_entry(p->mnt_slave_list.first, struct mount, mnt_slave); 25 } 26 27 static inline struct mount *next_slave(struct mount *p) 28 { 29 return hlist_entry(p->mnt_slave.next, struct mount, mnt_slave); 30 } 31 32 /* locks: namespace_shared && is_mounted(mnt) */ 33 static struct mount *get_peer_under_root(struct mount *mnt, 34 struct mnt_namespace *ns, 35 const struct path *root) 36 { 37 struct mount *m = mnt; 38 39 do { 40 /* Check the namespace first for optimization */ 41 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) 42 return m; 43 44 m = next_peer(m); 45 } while (m != mnt); 46 47 return NULL; 48 } 49 50 /* 51 * Get ID of closest dominating peer group having a representative 52 * under the given root. 53 * 54 * locks: namespace_shared 55 */ 56 int get_dominating_id(struct mount *mnt, const struct path *root) 57 { 58 struct mount *m; 59 60 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { 61 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); 62 if (d) 63 return d->mnt_group_id; 64 } 65 66 return 0; 67 } 68 69 static inline bool will_be_unmounted(struct mount *m) 70 { 71 return m->mnt.mnt_flags & MNT_UMOUNT; 72 } 73 74 static void transfer_propagation(struct mount *mnt, struct mount *to) 75 { 76 struct hlist_node *p = NULL, *n; 77 struct mount *m; 78 79 hlist_for_each_entry_safe(m, n, &mnt->mnt_slave_list, mnt_slave) { 80 m->mnt_master = to; 81 if (!to) 82 hlist_del_init(&m->mnt_slave); 83 else 84 p = &m->mnt_slave; 85 } 86 if (p) 87 hlist_splice_init(&mnt->mnt_slave_list, p, &to->mnt_slave_list); 88 } 89 90 /* 91 * EXCL[namespace_sem] 92 */ 93 void change_mnt_propagation(struct mount *mnt, int type) 94 { 95 struct mount *m = mnt->mnt_master; 96 97 if (type == MS_SHARED) { 98 set_mnt_shared(mnt); 99 return; 100 } 101 if (IS_MNT_SHARED(mnt)) { 102 if (list_empty(&mnt->mnt_share)) { 103 mnt_release_group_id(mnt); 104 } else { 105 m = next_peer(mnt); 106 list_del_init(&mnt->mnt_share); 107 mnt->mnt_group_id = 0; 108 } 109 CLEAR_MNT_SHARED(mnt); 110 transfer_propagation(mnt, m); 111 } 112 hlist_del_init(&mnt->mnt_slave); 113 if (type == MS_SLAVE) { 114 mnt->mnt_master = m; 115 if (m) 116 hlist_add_head(&mnt->mnt_slave, &m->mnt_slave_list); 117 } else { 118 mnt->mnt_master = NULL; 119 if (type == MS_UNBINDABLE) 120 mnt->mnt_t_flags |= T_UNBINDABLE; 121 else 122 mnt->mnt_t_flags &= ~T_UNBINDABLE; 123 } 124 } 125 126 static struct mount *trace_transfers(struct mount *m) 127 { 128 while (1) { 129 struct mount *next = next_peer(m); 130 131 if (next != m) { 132 list_del_init(&m->mnt_share); 133 m->mnt_group_id = 0; 134 m->mnt_master = next; 135 } else { 136 if (IS_MNT_SHARED(m)) 137 mnt_release_group_id(m); 138 next = m->mnt_master; 139 } 140 hlist_del_init(&m->mnt_slave); 141 CLEAR_MNT_SHARED(m); 142 SET_MNT_MARK(m); 143 144 if (!next || !will_be_unmounted(next)) 145 return next; 146 if (IS_MNT_MARKED(next)) 147 return next->mnt_master; 148 m = next; 149 } 150 } 151 152 static void set_destinations(struct mount *m, struct mount *master) 153 { 154 struct mount *next; 155 156 while ((next = m->mnt_master) != master) { 157 m->mnt_master = master; 158 m = next; 159 } 160 } 161 162 void bulk_make_private(struct list_head *set) 163 { 164 struct mount *m; 165 166 list_for_each_entry(m, set, mnt_list) 167 if (!IS_MNT_MARKED(m)) 168 set_destinations(m, trace_transfers(m)); 169 170 list_for_each_entry(m, set, mnt_list) { 171 transfer_propagation(m, m->mnt_master); 172 m->mnt_master = NULL; 173 CLEAR_MNT_MARK(m); 174 } 175 } 176 177 static struct mount *__propagation_next(struct mount *m, 178 struct mount *origin) 179 { 180 while (1) { 181 struct mount *master = m->mnt_master; 182 183 if (master == origin->mnt_master) { 184 struct mount *next = next_peer(m); 185 return (next == origin) ? NULL : next; 186 } else if (m->mnt_slave.next) 187 return next_slave(m); 188 189 /* back at master */ 190 m = master; 191 } 192 } 193 194 /* 195 * get the next mount in the propagation tree. 196 * @m: the mount seen last 197 * @origin: the original mount from where the tree walk initiated 198 * 199 * Note that peer groups form contiguous segments of slave lists. 200 * We rely on that in get_source() to be able to find out if 201 * vfsmount found while iterating with propagation_next() is 202 * a peer of one we'd found earlier. 203 */ 204 static struct mount *propagation_next(struct mount *m, 205 struct mount *origin) 206 { 207 /* are there any slaves of this mount? */ 208 if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list)) 209 return first_slave(m); 210 211 return __propagation_next(m, origin); 212 } 213 214 static struct mount *skip_propagation_subtree(struct mount *m, 215 struct mount *origin) 216 { 217 /* 218 * Advance m past everything that gets propagation from it. 219 */ 220 struct mount *p = __propagation_next(m, origin); 221 222 while (p && peers(m, p)) 223 p = __propagation_next(p, origin); 224 225 return p; 226 } 227 228 static struct mount *next_group(struct mount *m, struct mount *origin) 229 { 230 while (1) { 231 while (1) { 232 struct mount *next; 233 if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list)) 234 return first_slave(m); 235 next = next_peer(m); 236 if (m->mnt_group_id == origin->mnt_group_id) { 237 if (next == origin) 238 return NULL; 239 } else if (m->mnt_slave.next != &next->mnt_slave) 240 break; 241 m = next; 242 } 243 /* m is the last peer */ 244 while (1) { 245 struct mount *master = m->mnt_master; 246 if (m->mnt_slave.next) 247 return next_slave(m); 248 m = next_peer(master); 249 if (master->mnt_group_id == origin->mnt_group_id) 250 break; 251 if (master->mnt_slave.next == &m->mnt_slave) 252 break; 253 m = master; 254 } 255 if (m == origin) 256 return NULL; 257 } 258 } 259 260 static bool need_secondary(struct mount *m, struct mountpoint *dest_mp) 261 { 262 /* skip ones added by this propagate_mnt() */ 263 if (IS_MNT_NEW(m)) 264 return false; 265 /* skip if mountpoint isn't visible in m */ 266 if (!is_subdir(dest_mp->m_dentry, m->mnt.mnt_root)) 267 return false; 268 /* skip if m is in the anon_ns */ 269 if (is_anon_ns(m->mnt_ns)) 270 return false; 271 return true; 272 } 273 274 static struct mount *find_master(struct mount *m, 275 struct mount *last_copy, 276 struct mount *original) 277 { 278 struct mount *p; 279 280 // ascend until there's a copy for something with the same master 281 for (;;) { 282 p = m->mnt_master; 283 if (!p || IS_MNT_MARKED(p)) 284 break; 285 m = p; 286 } 287 while (!peers(last_copy, original)) { 288 struct mount *parent = last_copy->mnt_parent; 289 if (parent->mnt_master == p) { 290 if (!peers(parent, m)) 291 last_copy = last_copy->mnt_master; 292 break; 293 } 294 last_copy = last_copy->mnt_master; 295 } 296 return last_copy; 297 } 298 299 /** 300 * propagate_mnt() - create secondary copies for tree attachment 301 * @dest_mnt: destination mount. 302 * @dest_mp: destination mountpoint. 303 * @source_mnt: source mount. 304 * @tree_list: list of secondaries to be attached. 305 * 306 * Create secondary copies for attaching a tree with root @source_mnt 307 * at mount @dest_mnt with mountpoint @dest_mp. Link all new mounts 308 * into a propagation graph. Set mountpoints for all secondaries, 309 * link their roots into @tree_list via ->mnt_hash. 310 */ 311 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, 312 struct mount *source_mnt, struct hlist_head *tree_list) 313 { 314 struct mount *m, *n, *copy, *this; 315 int err = 0, type; 316 317 if (dest_mnt->mnt_master) 318 SET_MNT_MARK(dest_mnt->mnt_master); 319 320 /* iterate over peer groups, depth first */ 321 for (m = dest_mnt; m && !err; m = next_group(m, dest_mnt)) { 322 if (m == dest_mnt) { // have one for dest_mnt itself 323 copy = source_mnt; 324 type = CL_MAKE_SHARED; 325 n = next_peer(m); 326 if (n == m) 327 continue; 328 } else { 329 type = CL_SLAVE; 330 /* beginning of peer group among the slaves? */ 331 if (IS_MNT_SHARED(m)) 332 type |= CL_MAKE_SHARED; 333 n = m; 334 } 335 do { 336 if (!need_secondary(n, dest_mp)) 337 continue; 338 if (type & CL_SLAVE) // first in this peer group 339 copy = find_master(n, copy, source_mnt); 340 this = copy_tree(copy, copy->mnt.mnt_root, type); 341 if (IS_ERR(this)) { 342 err = PTR_ERR(this); 343 break; 344 } 345 scoped_guard(mount_locked_reader) 346 mnt_set_mountpoint(n, dest_mp, this); 347 if (n->mnt_master) 348 SET_MNT_MARK(n->mnt_master); 349 copy = this; 350 hlist_add_head(&this->mnt_hash, tree_list); 351 err = count_mounts(n->mnt_ns, this); 352 if (err) 353 break; 354 type = CL_MAKE_SHARED; 355 } while ((n = next_peer(n)) != m); 356 } 357 358 hlist_for_each_entry(n, tree_list, mnt_hash) { 359 m = n->mnt_parent; 360 if (m->mnt_master) 361 CLEAR_MNT_MARK(m->mnt_master); 362 } 363 if (dest_mnt->mnt_master) 364 CLEAR_MNT_MARK(dest_mnt->mnt_master); 365 return err; 366 } 367 368 /* 369 * return true if the refcount is greater than count 370 */ 371 static inline int do_refcount_check(struct mount *mnt, int count) 372 { 373 return mnt_get_count(mnt) > count; 374 } 375 376 /** 377 * propagation_would_overmount - check whether propagation from @from 378 * would overmount @to 379 * @from: shared mount 380 * @to: mount to check 381 * @mp: future mountpoint of @to on @from 382 * 383 * If @from propagates mounts to @to, @from and @to must either be peers 384 * or one of the masters in the hierarchy of masters of @to must be a 385 * peer of @from. 386 * 387 * If the root of the @to mount is equal to the future mountpoint @mp of 388 * the @to mount on @from then @to will be overmounted by whatever is 389 * propagated to it. 390 * 391 * Context: This function expects namespace_lock() to be held and that 392 * @mp is stable. 393 * Return: If @from overmounts @to, true is returned, false if not. 394 */ 395 bool propagation_would_overmount(const struct mount *from, 396 const struct mount *to, 397 const struct mountpoint *mp) 398 { 399 if (!IS_MNT_SHARED(from)) 400 return false; 401 402 if (to->mnt.mnt_root != mp->m_dentry) 403 return false; 404 405 for (const struct mount *m = to; m; m = m->mnt_master) { 406 if (peers(from, m)) 407 return true; 408 } 409 410 return false; 411 } 412 413 /* 414 * check if the mount 'mnt' can be unmounted successfully. 415 * @mnt: the mount to be checked for unmount 416 * NOTE: unmounting 'mnt' would naturally propagate to all 417 * other mounts its parent propagates to. 418 * Check if any of these mounts that **do not have submounts** 419 * have more references than 'refcnt'. If so return busy. 420 * 421 * vfsmount lock must be held for write 422 */ 423 int propagate_mount_busy(struct mount *mnt, int refcnt) 424 { 425 struct mount *parent = mnt->mnt_parent; 426 427 /* 428 * quickly check if the current mount can be unmounted. 429 * If not, we don't have to go checking for all other 430 * mounts 431 */ 432 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) 433 return 1; 434 435 if (mnt == parent) 436 return 0; 437 438 for (struct mount *m = propagation_next(parent, parent); m; 439 m = propagation_next(m, parent)) { 440 struct list_head *head; 441 struct mount *child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 442 443 if (!child) 444 continue; 445 446 head = &child->mnt_mounts; 447 if (!list_empty(head)) { 448 /* 449 * a mount that covers child completely wouldn't prevent 450 * it being pulled out; any other would. 451 */ 452 if (!list_is_singular(head) || !child->overmount) 453 continue; 454 } 455 if (do_refcount_check(child, 1)) 456 return 1; 457 } 458 return 0; 459 } 460 461 /* 462 * Clear MNT_LOCKED when it can be shown to be safe. 463 * 464 * mount_lock lock must be held for write 465 */ 466 void propagate_mount_unlock(struct mount *mnt) 467 { 468 struct mount *parent = mnt->mnt_parent; 469 struct mount *m, *child; 470 471 BUG_ON(parent == mnt); 472 473 for (m = propagation_next(parent, parent); m; 474 m = propagation_next(m, parent)) { 475 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 476 if (child) 477 child->mnt.mnt_flags &= ~MNT_LOCKED; 478 } 479 } 480 481 static inline bool is_candidate(struct mount *m) 482 { 483 return m->mnt_t_flags & T_UMOUNT_CANDIDATE; 484 } 485 486 static void umount_one(struct mount *m, struct list_head *to_umount) 487 { 488 m->mnt.mnt_flags |= MNT_UMOUNT; 489 list_del_init(&m->mnt_child); 490 move_from_ns(m); 491 list_add_tail(&m->mnt_list, to_umount); 492 } 493 494 static void remove_from_candidate_list(struct mount *m) 495 { 496 m->mnt_t_flags &= ~(T_MARKED | T_UMOUNT_CANDIDATE); 497 list_del_init(&m->mnt_list); 498 } 499 500 static void gather_candidates(struct list_head *set, 501 struct list_head *candidates) 502 { 503 struct mount *m, *p, *q; 504 505 list_for_each_entry(m, set, mnt_list) { 506 if (is_candidate(m)) 507 continue; 508 m->mnt_t_flags |= T_UMOUNT_CANDIDATE; 509 p = m->mnt_parent; 510 q = propagation_next(p, p); 511 while (q) { 512 struct mount *child = __lookup_mnt(&q->mnt, 513 m->mnt_mountpoint); 514 if (child) { 515 /* 516 * We might've already run into this one. That 517 * must've happened on earlier iteration of the 518 * outer loop; in that case we can skip those 519 * parents that get propagation from q - there 520 * will be nothing new on those as well. 521 */ 522 if (is_candidate(child)) { 523 q = skip_propagation_subtree(q, p); 524 continue; 525 } 526 child->mnt_t_flags |= T_UMOUNT_CANDIDATE; 527 if (!will_be_unmounted(child)) 528 list_add(&child->mnt_list, candidates); 529 } 530 q = propagation_next(q, p); 531 } 532 } 533 list_for_each_entry(m, set, mnt_list) 534 m->mnt_t_flags &= ~T_UMOUNT_CANDIDATE; 535 } 536 537 /* 538 * We know that some child of @m can't be unmounted. In all places where the 539 * chain of descent of @m has child not overmounting the root of parent, 540 * the parent can't be unmounted either. 541 */ 542 static void trim_ancestors(struct mount *m) 543 { 544 struct mount *p; 545 546 for (p = m->mnt_parent; is_candidate(p); m = p, p = p->mnt_parent) { 547 if (IS_MNT_MARKED(m)) // all candidates beneath are overmounts 548 return; 549 SET_MNT_MARK(m); 550 if (m != p->overmount) 551 p->mnt_t_flags &= ~T_UMOUNT_CANDIDATE; 552 } 553 } 554 555 /* 556 * Find and exclude all umount candidates forbidden by @m 557 * (see Documentation/filesystems/propagate_umount.txt) 558 * If we can immediately tell that @m is OK to unmount (unlocked 559 * and all children are already committed to unmounting) commit 560 * to unmounting it. 561 * Only @m itself might be taken from the candidates list; 562 * anything found by trim_ancestors() is marked non-candidate 563 * and left on the list. 564 */ 565 static void trim_one(struct mount *m, struct list_head *to_umount) 566 { 567 bool remove_this = false, found = false, umount_this = false; 568 struct mount *n; 569 570 if (!is_candidate(m)) { // trim_ancestors() left it on list 571 remove_from_candidate_list(m); 572 return; 573 } 574 575 list_for_each_entry(n, &m->mnt_mounts, mnt_child) { 576 if (!is_candidate(n)) { 577 found = true; 578 if (n != m->overmount) { 579 remove_this = true; 580 break; 581 } 582 } 583 } 584 if (found) { 585 trim_ancestors(m); 586 } else if (!IS_MNT_LOCKED(m) && list_empty(&m->mnt_mounts)) { 587 remove_this = true; 588 umount_this = true; 589 } 590 if (remove_this) { 591 remove_from_candidate_list(m); 592 if (umount_this) 593 umount_one(m, to_umount); 594 } 595 } 596 597 static void handle_locked(struct mount *m, struct list_head *to_umount) 598 { 599 struct mount *cutoff = m, *p; 600 601 if (!is_candidate(m)) { // trim_ancestors() left it on list 602 remove_from_candidate_list(m); 603 return; 604 } 605 for (p = m; is_candidate(p); p = p->mnt_parent) { 606 remove_from_candidate_list(p); 607 if (!IS_MNT_LOCKED(p)) 608 cutoff = p->mnt_parent; 609 } 610 if (will_be_unmounted(p)) 611 cutoff = p; 612 while (m != cutoff) { 613 umount_one(m, to_umount); 614 m = m->mnt_parent; 615 } 616 } 617 618 /* 619 * @m is not to going away, and it overmounts the top of a stack of mounts 620 * that are going away. We know that all of those are fully overmounted 621 * by the one above (@m being the topmost of the chain), so @m can be slid 622 * in place where the bottom of the stack is attached. 623 * 624 * NOTE: here we temporarily violate a constraint - two mounts end up with 625 * the same parent and mountpoint; that will be remedied as soon as we 626 * return from propagate_umount() - its caller (umount_tree()) will detach 627 * the stack from the parent it (and now @m) is attached to. umount_tree() 628 * might choose to keep unmounted pieces stuck to each other, but it always 629 * detaches them from the mounts that remain in the tree. 630 */ 631 static void reparent(struct mount *m) 632 { 633 struct mount *p = m; 634 struct mountpoint *mp; 635 636 do { 637 mp = p->mnt_mp; 638 p = p->mnt_parent; 639 } while (will_be_unmounted(p)); 640 641 mnt_change_mountpoint(p, mp, m); 642 mnt_notify_add(m); 643 } 644 645 /** 646 * propagate_umount - apply propagation rules to the set of mounts for umount() 647 * @set: the list of mounts to be unmounted. 648 * 649 * Collect all mounts that receive propagation from the mount in @set and have 650 * no obstacles to being unmounted. Add these additional mounts to the set. 651 * 652 * See Documentation/filesystems/propagate_umount.txt if you do anything in 653 * this area. 654 * 655 * Locks held: 656 * mount_lock (write_seqlock), namespace_sem (exclusive). 657 */ 658 void propagate_umount(struct list_head *set) 659 { 660 struct mount *m, *p; 661 LIST_HEAD(to_umount); // committed to unmounting 662 LIST_HEAD(candidates); // undecided umount candidates 663 664 // collect all candidates 665 gather_candidates(set, &candidates); 666 667 // reduce the set until it's non-shifting 668 list_for_each_entry_safe(m, p, &candidates, mnt_list) 669 trim_one(m, &to_umount); 670 671 // ... and non-revealing 672 while (!list_empty(&candidates)) { 673 m = list_first_entry(&candidates,struct mount, mnt_list); 674 handle_locked(m, &to_umount); 675 } 676 677 // now to_umount consists of all acceptable candidates 678 // deal with reparenting of surviving overmounts on those 679 list_for_each_entry(m, &to_umount, mnt_list) { 680 struct mount *over = m->overmount; 681 if (over && !will_be_unmounted(over)) 682 reparent(over); 683 } 684 685 // and fold them into the set 686 list_splice_tail_init(&to_umount, set); 687 } 688