xref: /linux/fs/pnode.c (revision 5a0e3ad6af8660be21ca98a971cd00f331318c05)
1 /*
2  *  linux/fs/pnode.c
3  *
4  * (C) Copyright IBM Corporation 2005.
5  *	Released under GPL v2.
6  *	Author : Ram Pai (linuxram@us.ibm.com)
7  *
8  */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include "internal.h"
13 #include "pnode.h"
14 
15 /* return the next shared peer mount of @p */
16 static inline struct vfsmount *next_peer(struct vfsmount *p)
17 {
18 	return list_entry(p->mnt_share.next, struct vfsmount, mnt_share);
19 }
20 
21 static inline struct vfsmount *first_slave(struct vfsmount *p)
22 {
23 	return list_entry(p->mnt_slave_list.next, struct vfsmount, mnt_slave);
24 }
25 
26 static inline struct vfsmount *next_slave(struct vfsmount *p)
27 {
28 	return list_entry(p->mnt_slave.next, struct vfsmount, mnt_slave);
29 }
30 
31 /*
32  * Return true if path is reachable from root
33  *
34  * namespace_sem is held, and mnt is attached
35  */
36 static bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry,
37 			 const struct path *root)
38 {
39 	while (mnt != root->mnt && mnt->mnt_parent != mnt) {
40 		dentry = mnt->mnt_mountpoint;
41 		mnt = mnt->mnt_parent;
42 	}
43 	return mnt == root->mnt && is_subdir(dentry, root->dentry);
44 }
45 
46 static struct vfsmount *get_peer_under_root(struct vfsmount *mnt,
47 					    struct mnt_namespace *ns,
48 					    const struct path *root)
49 {
50 	struct vfsmount *m = mnt;
51 
52 	do {
53 		/* Check the namespace first for optimization */
54 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt_root, root))
55 			return m;
56 
57 		m = next_peer(m);
58 	} while (m != mnt);
59 
60 	return NULL;
61 }
62 
63 /*
64  * Get ID of closest dominating peer group having a representative
65  * under the given root.
66  *
67  * Caller must hold namespace_sem
68  */
69 int get_dominating_id(struct vfsmount *mnt, const struct path *root)
70 {
71 	struct vfsmount *m;
72 
73 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
74 		struct vfsmount *d = get_peer_under_root(m, mnt->mnt_ns, root);
75 		if (d)
76 			return d->mnt_group_id;
77 	}
78 
79 	return 0;
80 }
81 
82 static int do_make_slave(struct vfsmount *mnt)
83 {
84 	struct vfsmount *peer_mnt = mnt, *master = mnt->mnt_master;
85 	struct vfsmount *slave_mnt;
86 
87 	/*
88 	 * slave 'mnt' to a peer mount that has the
89 	 * same root dentry. If none is available then
90 	 * slave it to anything that is available.
91 	 */
92 	while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
93 	       peer_mnt->mnt_root != mnt->mnt_root) ;
94 
95 	if (peer_mnt == mnt) {
96 		peer_mnt = next_peer(mnt);
97 		if (peer_mnt == mnt)
98 			peer_mnt = NULL;
99 	}
100 	if (IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share))
101 		mnt_release_group_id(mnt);
102 
103 	list_del_init(&mnt->mnt_share);
104 	mnt->mnt_group_id = 0;
105 
106 	if (peer_mnt)
107 		master = peer_mnt;
108 
109 	if (master) {
110 		list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
111 			slave_mnt->mnt_master = master;
112 		list_move(&mnt->mnt_slave, &master->mnt_slave_list);
113 		list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
114 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
115 	} else {
116 		struct list_head *p = &mnt->mnt_slave_list;
117 		while (!list_empty(p)) {
118                         slave_mnt = list_first_entry(p,
119 					struct vfsmount, mnt_slave);
120 			list_del_init(&slave_mnt->mnt_slave);
121 			slave_mnt->mnt_master = NULL;
122 		}
123 	}
124 	mnt->mnt_master = master;
125 	CLEAR_MNT_SHARED(mnt);
126 	return 0;
127 }
128 
129 void change_mnt_propagation(struct vfsmount *mnt, int type)
130 {
131 	if (type == MS_SHARED) {
132 		set_mnt_shared(mnt);
133 		return;
134 	}
135 	do_make_slave(mnt);
136 	if (type != MS_SLAVE) {
137 		list_del_init(&mnt->mnt_slave);
138 		mnt->mnt_master = NULL;
139 		if (type == MS_UNBINDABLE)
140 			mnt->mnt_flags |= MNT_UNBINDABLE;
141 		else
142 			mnt->mnt_flags &= ~MNT_UNBINDABLE;
143 	}
144 }
145 
146 /*
147  * get the next mount in the propagation tree.
148  * @m: the mount seen last
149  * @origin: the original mount from where the tree walk initiated
150  *
151  * Note that peer groups form contiguous segments of slave lists.
152  * We rely on that in get_source() to be able to find out if
153  * vfsmount found while iterating with propagation_next() is
154  * a peer of one we'd found earlier.
155  */
156 static struct vfsmount *propagation_next(struct vfsmount *m,
157 					 struct vfsmount *origin)
158 {
159 	/* are there any slaves of this mount? */
160 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
161 		return first_slave(m);
162 
163 	while (1) {
164 		struct vfsmount *next;
165 		struct vfsmount *master = m->mnt_master;
166 
167 		if (master == origin->mnt_master) {
168 			next = next_peer(m);
169 			return ((next == origin) ? NULL : next);
170 		} else if (m->mnt_slave.next != &master->mnt_slave_list)
171 			return next_slave(m);
172 
173 		/* back at master */
174 		m = master;
175 	}
176 }
177 
178 /*
179  * return the source mount to be used for cloning
180  *
181  * @dest 	the current destination mount
182  * @last_dest  	the last seen destination mount
183  * @last_src  	the last seen source mount
184  * @type	return CL_SLAVE if the new mount has to be
185  * 		cloned as a slave.
186  */
187 static struct vfsmount *get_source(struct vfsmount *dest,
188 					struct vfsmount *last_dest,
189 					struct vfsmount *last_src,
190 					int *type)
191 {
192 	struct vfsmount *p_last_src = NULL;
193 	struct vfsmount *p_last_dest = NULL;
194 
195 	while (last_dest != dest->mnt_master) {
196 		p_last_dest = last_dest;
197 		p_last_src = last_src;
198 		last_dest = last_dest->mnt_master;
199 		last_src = last_src->mnt_master;
200 	}
201 
202 	if (p_last_dest) {
203 		do {
204 			p_last_dest = next_peer(p_last_dest);
205 		} while (IS_MNT_NEW(p_last_dest));
206 		/* is that a peer of the earlier? */
207 		if (dest == p_last_dest) {
208 			*type = CL_MAKE_SHARED;
209 			return p_last_src;
210 		}
211 	}
212 	/* slave of the earlier, then */
213 	*type = CL_SLAVE;
214 	/* beginning of peer group among the slaves? */
215 	if (IS_MNT_SHARED(dest))
216 		*type |= CL_MAKE_SHARED;
217 	return last_src;
218 }
219 
220 /*
221  * mount 'source_mnt' under the destination 'dest_mnt' at
222  * dentry 'dest_dentry'. And propagate that mount to
223  * all the peer and slave mounts of 'dest_mnt'.
224  * Link all the new mounts into a propagation tree headed at
225  * source_mnt. Also link all the new mounts using ->mnt_list
226  * headed at source_mnt's ->mnt_list
227  *
228  * @dest_mnt: destination mount.
229  * @dest_dentry: destination dentry.
230  * @source_mnt: source mount.
231  * @tree_list : list of heads of trees to be attached.
232  */
233 int propagate_mnt(struct vfsmount *dest_mnt, struct dentry *dest_dentry,
234 		    struct vfsmount *source_mnt, struct list_head *tree_list)
235 {
236 	struct vfsmount *m, *child;
237 	int ret = 0;
238 	struct vfsmount *prev_dest_mnt = dest_mnt;
239 	struct vfsmount *prev_src_mnt  = source_mnt;
240 	LIST_HEAD(tmp_list);
241 	LIST_HEAD(umount_list);
242 
243 	for (m = propagation_next(dest_mnt, dest_mnt); m;
244 			m = propagation_next(m, dest_mnt)) {
245 		int type;
246 		struct vfsmount *source;
247 
248 		if (IS_MNT_NEW(m))
249 			continue;
250 
251 		source =  get_source(m, prev_dest_mnt, prev_src_mnt, &type);
252 
253 		if (!(child = copy_tree(source, source->mnt_root, type))) {
254 			ret = -ENOMEM;
255 			list_splice(tree_list, tmp_list.prev);
256 			goto out;
257 		}
258 
259 		if (is_subdir(dest_dentry, m->mnt_root)) {
260 			mnt_set_mountpoint(m, dest_dentry, child);
261 			list_add_tail(&child->mnt_hash, tree_list);
262 		} else {
263 			/*
264 			 * This can happen if the parent mount was bind mounted
265 			 * on some subdirectory of a shared/slave mount.
266 			 */
267 			list_add_tail(&child->mnt_hash, &tmp_list);
268 		}
269 		prev_dest_mnt = m;
270 		prev_src_mnt  = child;
271 	}
272 out:
273 	spin_lock(&vfsmount_lock);
274 	while (!list_empty(&tmp_list)) {
275 		child = list_first_entry(&tmp_list, struct vfsmount, mnt_hash);
276 		umount_tree(child, 0, &umount_list);
277 	}
278 	spin_unlock(&vfsmount_lock);
279 	release_mounts(&umount_list);
280 	return ret;
281 }
282 
283 /*
284  * return true if the refcount is greater than count
285  */
286 static inline int do_refcount_check(struct vfsmount *mnt, int count)
287 {
288 	int mycount = atomic_read(&mnt->mnt_count) - mnt->mnt_ghosts;
289 	return (mycount > count);
290 }
291 
292 /*
293  * check if the mount 'mnt' can be unmounted successfully.
294  * @mnt: the mount to be checked for unmount
295  * NOTE: unmounting 'mnt' would naturally propagate to all
296  * other mounts its parent propagates to.
297  * Check if any of these mounts that **do not have submounts**
298  * have more references than 'refcnt'. If so return busy.
299  */
300 int propagate_mount_busy(struct vfsmount *mnt, int refcnt)
301 {
302 	struct vfsmount *m, *child;
303 	struct vfsmount *parent = mnt->mnt_parent;
304 	int ret = 0;
305 
306 	if (mnt == parent)
307 		return do_refcount_check(mnt, refcnt);
308 
309 	/*
310 	 * quickly check if the current mount can be unmounted.
311 	 * If not, we don't have to go checking for all other
312 	 * mounts
313 	 */
314 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
315 		return 1;
316 
317 	for (m = propagation_next(parent, parent); m;
318 	     		m = propagation_next(m, parent)) {
319 		child = __lookup_mnt(m, mnt->mnt_mountpoint, 0);
320 		if (child && list_empty(&child->mnt_mounts) &&
321 		    (ret = do_refcount_check(child, 1)))
322 			break;
323 	}
324 	return ret;
325 }
326 
327 /*
328  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
329  * parent propagates to.
330  */
331 static void __propagate_umount(struct vfsmount *mnt)
332 {
333 	struct vfsmount *parent = mnt->mnt_parent;
334 	struct vfsmount *m;
335 
336 	BUG_ON(parent == mnt);
337 
338 	for (m = propagation_next(parent, parent); m;
339 			m = propagation_next(m, parent)) {
340 
341 		struct vfsmount *child = __lookup_mnt(m,
342 					mnt->mnt_mountpoint, 0);
343 		/*
344 		 * umount the child only if the child has no
345 		 * other children
346 		 */
347 		if (child && list_empty(&child->mnt_mounts))
348 			list_move_tail(&child->mnt_hash, &mnt->mnt_hash);
349 	}
350 }
351 
352 /*
353  * collect all mounts that receive propagation from the mount in @list,
354  * and return these additional mounts in the same list.
355  * @list: the list of mounts to be unmounted.
356  */
357 int propagate_umount(struct list_head *list)
358 {
359 	struct vfsmount *mnt;
360 
361 	list_for_each_entry(mnt, list, mnt_hash)
362 		__propagate_umount(mnt);
363 	return 0;
364 }
365