1 /* 2 * linux/fs/pnode.c 3 * 4 * (C) Copyright IBM Corporation 2005. 5 * Released under GPL v2. 6 * Author : Ram Pai (linuxram@us.ibm.com) 7 * 8 */ 9 #include <linux/mnt_namespace.h> 10 #include <linux/mount.h> 11 #include <linux/fs.h> 12 #include "internal.h" 13 #include "pnode.h" 14 15 /* return the next shared peer mount of @p */ 16 static inline struct vfsmount *next_peer(struct vfsmount *p) 17 { 18 return list_entry(p->mnt_share.next, struct vfsmount, mnt_share); 19 } 20 21 static inline struct vfsmount *first_slave(struct vfsmount *p) 22 { 23 return list_entry(p->mnt_slave_list.next, struct vfsmount, mnt_slave); 24 } 25 26 static inline struct vfsmount *next_slave(struct vfsmount *p) 27 { 28 return list_entry(p->mnt_slave.next, struct vfsmount, mnt_slave); 29 } 30 31 /* 32 * Return true if path is reachable from root 33 * 34 * namespace_sem is held, and mnt is attached 35 */ 36 static bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry, 37 const struct path *root) 38 { 39 while (mnt != root->mnt && mnt->mnt_parent != mnt) { 40 dentry = mnt->mnt_mountpoint; 41 mnt = mnt->mnt_parent; 42 } 43 return mnt == root->mnt && is_subdir(dentry, root->dentry); 44 } 45 46 static struct vfsmount *get_peer_under_root(struct vfsmount *mnt, 47 struct mnt_namespace *ns, 48 const struct path *root) 49 { 50 struct vfsmount *m = mnt; 51 52 do { 53 /* Check the namespace first for optimization */ 54 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt_root, root)) 55 return m; 56 57 m = next_peer(m); 58 } while (m != mnt); 59 60 return NULL; 61 } 62 63 /* 64 * Get ID of closest dominating peer group having a representative 65 * under the given root. 66 * 67 * Caller must hold namespace_sem 68 */ 69 int get_dominating_id(struct vfsmount *mnt, const struct path *root) 70 { 71 struct vfsmount *m; 72 73 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { 74 struct vfsmount *d = get_peer_under_root(m, mnt->mnt_ns, root); 75 if (d) 76 return d->mnt_group_id; 77 } 78 79 return 0; 80 } 81 82 static int do_make_slave(struct vfsmount *mnt) 83 { 84 struct vfsmount *peer_mnt = mnt, *master = mnt->mnt_master; 85 struct vfsmount *slave_mnt; 86 87 /* 88 * slave 'mnt' to a peer mount that has the 89 * same root dentry. If none is available then 90 * slave it to anything that is available. 91 */ 92 while ((peer_mnt = next_peer(peer_mnt)) != mnt && 93 peer_mnt->mnt_root != mnt->mnt_root) ; 94 95 if (peer_mnt == mnt) { 96 peer_mnt = next_peer(mnt); 97 if (peer_mnt == mnt) 98 peer_mnt = NULL; 99 } 100 if (IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share)) 101 mnt_release_group_id(mnt); 102 103 list_del_init(&mnt->mnt_share); 104 mnt->mnt_group_id = 0; 105 106 if (peer_mnt) 107 master = peer_mnt; 108 109 if (master) { 110 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave) 111 slave_mnt->mnt_master = master; 112 list_move(&mnt->mnt_slave, &master->mnt_slave_list); 113 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev); 114 INIT_LIST_HEAD(&mnt->mnt_slave_list); 115 } else { 116 struct list_head *p = &mnt->mnt_slave_list; 117 while (!list_empty(p)) { 118 slave_mnt = list_first_entry(p, 119 struct vfsmount, mnt_slave); 120 list_del_init(&slave_mnt->mnt_slave); 121 slave_mnt->mnt_master = NULL; 122 } 123 } 124 mnt->mnt_master = master; 125 CLEAR_MNT_SHARED(mnt); 126 return 0; 127 } 128 129 void change_mnt_propagation(struct vfsmount *mnt, int type) 130 { 131 if (type == MS_SHARED) { 132 set_mnt_shared(mnt); 133 return; 134 } 135 do_make_slave(mnt); 136 if (type != MS_SLAVE) { 137 list_del_init(&mnt->mnt_slave); 138 mnt->mnt_master = NULL; 139 if (type == MS_UNBINDABLE) 140 mnt->mnt_flags |= MNT_UNBINDABLE; 141 else 142 mnt->mnt_flags &= ~MNT_UNBINDABLE; 143 } 144 } 145 146 /* 147 * get the next mount in the propagation tree. 148 * @m: the mount seen last 149 * @origin: the original mount from where the tree walk initiated 150 * 151 * Note that peer groups form contiguous segments of slave lists. 152 * We rely on that in get_source() to be able to find out if 153 * vfsmount found while iterating with propagation_next() is 154 * a peer of one we'd found earlier. 155 */ 156 static struct vfsmount *propagation_next(struct vfsmount *m, 157 struct vfsmount *origin) 158 { 159 /* are there any slaves of this mount? */ 160 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 161 return first_slave(m); 162 163 while (1) { 164 struct vfsmount *next; 165 struct vfsmount *master = m->mnt_master; 166 167 if (master == origin->mnt_master) { 168 next = next_peer(m); 169 return ((next == origin) ? NULL : next); 170 } else if (m->mnt_slave.next != &master->mnt_slave_list) 171 return next_slave(m); 172 173 /* back at master */ 174 m = master; 175 } 176 } 177 178 /* 179 * return the source mount to be used for cloning 180 * 181 * @dest the current destination mount 182 * @last_dest the last seen destination mount 183 * @last_src the last seen source mount 184 * @type return CL_SLAVE if the new mount has to be 185 * cloned as a slave. 186 */ 187 static struct vfsmount *get_source(struct vfsmount *dest, 188 struct vfsmount *last_dest, 189 struct vfsmount *last_src, 190 int *type) 191 { 192 struct vfsmount *p_last_src = NULL; 193 struct vfsmount *p_last_dest = NULL; 194 195 while (last_dest != dest->mnt_master) { 196 p_last_dest = last_dest; 197 p_last_src = last_src; 198 last_dest = last_dest->mnt_master; 199 last_src = last_src->mnt_master; 200 } 201 202 if (p_last_dest) { 203 do { 204 p_last_dest = next_peer(p_last_dest); 205 } while (IS_MNT_NEW(p_last_dest)); 206 /* is that a peer of the earlier? */ 207 if (dest == p_last_dest) { 208 *type = CL_MAKE_SHARED; 209 return p_last_src; 210 } 211 } 212 /* slave of the earlier, then */ 213 *type = CL_SLAVE; 214 /* beginning of peer group among the slaves? */ 215 if (IS_MNT_SHARED(dest)) 216 *type |= CL_MAKE_SHARED; 217 return last_src; 218 } 219 220 /* 221 * mount 'source_mnt' under the destination 'dest_mnt' at 222 * dentry 'dest_dentry'. And propagate that mount to 223 * all the peer and slave mounts of 'dest_mnt'. 224 * Link all the new mounts into a propagation tree headed at 225 * source_mnt. Also link all the new mounts using ->mnt_list 226 * headed at source_mnt's ->mnt_list 227 * 228 * @dest_mnt: destination mount. 229 * @dest_dentry: destination dentry. 230 * @source_mnt: source mount. 231 * @tree_list : list of heads of trees to be attached. 232 */ 233 int propagate_mnt(struct vfsmount *dest_mnt, struct dentry *dest_dentry, 234 struct vfsmount *source_mnt, struct list_head *tree_list) 235 { 236 struct vfsmount *m, *child; 237 int ret = 0; 238 struct vfsmount *prev_dest_mnt = dest_mnt; 239 struct vfsmount *prev_src_mnt = source_mnt; 240 LIST_HEAD(tmp_list); 241 LIST_HEAD(umount_list); 242 243 for (m = propagation_next(dest_mnt, dest_mnt); m; 244 m = propagation_next(m, dest_mnt)) { 245 int type; 246 struct vfsmount *source; 247 248 if (IS_MNT_NEW(m)) 249 continue; 250 251 source = get_source(m, prev_dest_mnt, prev_src_mnt, &type); 252 253 if (!(child = copy_tree(source, source->mnt_root, type))) { 254 ret = -ENOMEM; 255 list_splice(tree_list, tmp_list.prev); 256 goto out; 257 } 258 259 if (is_subdir(dest_dentry, m->mnt_root)) { 260 mnt_set_mountpoint(m, dest_dentry, child); 261 list_add_tail(&child->mnt_hash, tree_list); 262 } else { 263 /* 264 * This can happen if the parent mount was bind mounted 265 * on some subdirectory of a shared/slave mount. 266 */ 267 list_add_tail(&child->mnt_hash, &tmp_list); 268 } 269 prev_dest_mnt = m; 270 prev_src_mnt = child; 271 } 272 out: 273 spin_lock(&vfsmount_lock); 274 while (!list_empty(&tmp_list)) { 275 child = list_first_entry(&tmp_list, struct vfsmount, mnt_hash); 276 umount_tree(child, 0, &umount_list); 277 } 278 spin_unlock(&vfsmount_lock); 279 release_mounts(&umount_list); 280 return ret; 281 } 282 283 /* 284 * return true if the refcount is greater than count 285 */ 286 static inline int do_refcount_check(struct vfsmount *mnt, int count) 287 { 288 int mycount = atomic_read(&mnt->mnt_count) - mnt->mnt_ghosts; 289 return (mycount > count); 290 } 291 292 /* 293 * check if the mount 'mnt' can be unmounted successfully. 294 * @mnt: the mount to be checked for unmount 295 * NOTE: unmounting 'mnt' would naturally propagate to all 296 * other mounts its parent propagates to. 297 * Check if any of these mounts that **do not have submounts** 298 * have more references than 'refcnt'. If so return busy. 299 */ 300 int propagate_mount_busy(struct vfsmount *mnt, int refcnt) 301 { 302 struct vfsmount *m, *child; 303 struct vfsmount *parent = mnt->mnt_parent; 304 int ret = 0; 305 306 if (mnt == parent) 307 return do_refcount_check(mnt, refcnt); 308 309 /* 310 * quickly check if the current mount can be unmounted. 311 * If not, we don't have to go checking for all other 312 * mounts 313 */ 314 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) 315 return 1; 316 317 for (m = propagation_next(parent, parent); m; 318 m = propagation_next(m, parent)) { 319 child = __lookup_mnt(m, mnt->mnt_mountpoint, 0); 320 if (child && list_empty(&child->mnt_mounts) && 321 (ret = do_refcount_check(child, 1))) 322 break; 323 } 324 return ret; 325 } 326 327 /* 328 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its 329 * parent propagates to. 330 */ 331 static void __propagate_umount(struct vfsmount *mnt) 332 { 333 struct vfsmount *parent = mnt->mnt_parent; 334 struct vfsmount *m; 335 336 BUG_ON(parent == mnt); 337 338 for (m = propagation_next(parent, parent); m; 339 m = propagation_next(m, parent)) { 340 341 struct vfsmount *child = __lookup_mnt(m, 342 mnt->mnt_mountpoint, 0); 343 /* 344 * umount the child only if the child has no 345 * other children 346 */ 347 if (child && list_empty(&child->mnt_mounts)) 348 list_move_tail(&child->mnt_hash, &mnt->mnt_hash); 349 } 350 } 351 352 /* 353 * collect all mounts that receive propagation from the mount in @list, 354 * and return these additional mounts in the same list. 355 * @list: the list of mounts to be unmounted. 356 */ 357 int propagate_umount(struct list_head *list) 358 { 359 struct vfsmount *mnt; 360 361 list_for_each_entry(mnt, list, mnt_hash) 362 __propagate_umount(mnt); 363 return 0; 364 } 365