1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/pnode.c 4 * 5 * (C) Copyright IBM Corporation 2005. 6 * Author : Ram Pai (linuxram@us.ibm.com) 7 */ 8 #include <linux/mnt_namespace.h> 9 #include <linux/mount.h> 10 #include <linux/fs.h> 11 #include <linux/nsproxy.h> 12 #include <uapi/linux/mount.h> 13 #include "internal.h" 14 #include "pnode.h" 15 16 /* return the next shared peer mount of @p */ 17 static inline struct mount *next_peer(struct mount *p) 18 { 19 return list_entry(p->mnt_share.next, struct mount, mnt_share); 20 } 21 22 static inline struct mount *first_slave(struct mount *p) 23 { 24 return hlist_entry(p->mnt_slave_list.first, struct mount, mnt_slave); 25 } 26 27 static inline struct mount *next_slave(struct mount *p) 28 { 29 return hlist_entry(p->mnt_slave.next, struct mount, mnt_slave); 30 } 31 32 static struct mount *get_peer_under_root(struct mount *mnt, 33 struct mnt_namespace *ns, 34 const struct path *root) 35 { 36 struct mount *m = mnt; 37 38 do { 39 /* Check the namespace first for optimization */ 40 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) 41 return m; 42 43 m = next_peer(m); 44 } while (m != mnt); 45 46 return NULL; 47 } 48 49 /* 50 * Get ID of closest dominating peer group having a representative 51 * under the given root. 52 * 53 * Caller must hold namespace_sem 54 */ 55 int get_dominating_id(struct mount *mnt, const struct path *root) 56 { 57 struct mount *m; 58 59 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { 60 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); 61 if (d) 62 return d->mnt_group_id; 63 } 64 65 return 0; 66 } 67 68 static inline bool will_be_unmounted(struct mount *m) 69 { 70 return m->mnt.mnt_flags & MNT_UMOUNT; 71 } 72 73 static struct mount *propagation_source(struct mount *mnt) 74 { 75 do { 76 struct mount *m; 77 for (m = next_peer(mnt); m != mnt; m = next_peer(m)) { 78 if (!will_be_unmounted(m)) 79 return m; 80 } 81 mnt = mnt->mnt_master; 82 } while (mnt && will_be_unmounted(mnt)); 83 return mnt; 84 } 85 86 static void transfer_propagation(struct mount *mnt, struct mount *to) 87 { 88 struct hlist_node *p = NULL, *n; 89 struct mount *m; 90 91 hlist_for_each_entry_safe(m, n, &mnt->mnt_slave_list, mnt_slave) { 92 m->mnt_master = to; 93 if (!to) 94 hlist_del_init(&m->mnt_slave); 95 else 96 p = &m->mnt_slave; 97 } 98 if (p) 99 hlist_splice_init(&mnt->mnt_slave_list, p, &to->mnt_slave_list); 100 } 101 102 /* 103 * EXCL[namespace_sem] 104 */ 105 void change_mnt_propagation(struct mount *mnt, int type) 106 { 107 struct mount *m = mnt->mnt_master; 108 109 if (type == MS_SHARED) { 110 set_mnt_shared(mnt); 111 return; 112 } 113 if (IS_MNT_SHARED(mnt)) { 114 m = propagation_source(mnt); 115 if (list_empty(&mnt->mnt_share)) { 116 mnt_release_group_id(mnt); 117 } else { 118 list_del_init(&mnt->mnt_share); 119 mnt->mnt_group_id = 0; 120 } 121 CLEAR_MNT_SHARED(mnt); 122 transfer_propagation(mnt, m); 123 } 124 hlist_del_init(&mnt->mnt_slave); 125 if (type == MS_SLAVE) { 126 mnt->mnt_master = m; 127 if (m) 128 hlist_add_head(&mnt->mnt_slave, &m->mnt_slave_list); 129 } else { 130 mnt->mnt_master = NULL; 131 if (type == MS_UNBINDABLE) 132 mnt->mnt_t_flags |= T_UNBINDABLE; 133 else 134 mnt->mnt_t_flags &= ~T_UNBINDABLE; 135 } 136 } 137 138 static struct mount *__propagation_next(struct mount *m, 139 struct mount *origin) 140 { 141 while (1) { 142 struct mount *master = m->mnt_master; 143 144 if (master == origin->mnt_master) { 145 struct mount *next = next_peer(m); 146 return (next == origin) ? NULL : next; 147 } else if (m->mnt_slave.next) 148 return next_slave(m); 149 150 /* back at master */ 151 m = master; 152 } 153 } 154 155 /* 156 * get the next mount in the propagation tree. 157 * @m: the mount seen last 158 * @origin: the original mount from where the tree walk initiated 159 * 160 * Note that peer groups form contiguous segments of slave lists. 161 * We rely on that in get_source() to be able to find out if 162 * vfsmount found while iterating with propagation_next() is 163 * a peer of one we'd found earlier. 164 */ 165 static struct mount *propagation_next(struct mount *m, 166 struct mount *origin) 167 { 168 /* are there any slaves of this mount? */ 169 if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list)) 170 return first_slave(m); 171 172 return __propagation_next(m, origin); 173 } 174 175 static struct mount *skip_propagation_subtree(struct mount *m, 176 struct mount *origin) 177 { 178 /* 179 * Advance m past everything that gets propagation from it. 180 */ 181 struct mount *p = __propagation_next(m, origin); 182 183 while (p && peers(m, p)) 184 p = __propagation_next(p, origin); 185 186 return p; 187 } 188 189 static struct mount *next_group(struct mount *m, struct mount *origin) 190 { 191 while (1) { 192 while (1) { 193 struct mount *next; 194 if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list)) 195 return first_slave(m); 196 next = next_peer(m); 197 if (m->mnt_group_id == origin->mnt_group_id) { 198 if (next == origin) 199 return NULL; 200 } else if (m->mnt_slave.next != &next->mnt_slave) 201 break; 202 m = next; 203 } 204 /* m is the last peer */ 205 while (1) { 206 struct mount *master = m->mnt_master; 207 if (m->mnt_slave.next) 208 return next_slave(m); 209 m = next_peer(master); 210 if (master->mnt_group_id == origin->mnt_group_id) 211 break; 212 if (master->mnt_slave.next == &m->mnt_slave) 213 break; 214 m = master; 215 } 216 if (m == origin) 217 return NULL; 218 } 219 } 220 221 static bool need_secondary(struct mount *m, struct mountpoint *dest_mp) 222 { 223 /* skip ones added by this propagate_mnt() */ 224 if (IS_MNT_NEW(m)) 225 return false; 226 /* skip if mountpoint isn't visible in m */ 227 if (!is_subdir(dest_mp->m_dentry, m->mnt.mnt_root)) 228 return false; 229 /* skip if m is in the anon_ns */ 230 if (is_anon_ns(m->mnt_ns)) 231 return false; 232 return true; 233 } 234 235 static struct mount *find_master(struct mount *m, 236 struct mount *last_copy, 237 struct mount *original) 238 { 239 struct mount *p; 240 241 // ascend until there's a copy for something with the same master 242 for (;;) { 243 p = m->mnt_master; 244 if (!p || IS_MNT_MARKED(p)) 245 break; 246 m = p; 247 } 248 while (!peers(last_copy, original)) { 249 struct mount *parent = last_copy->mnt_parent; 250 if (parent->mnt_master == p) { 251 if (!peers(parent, m)) 252 last_copy = last_copy->mnt_master; 253 break; 254 } 255 last_copy = last_copy->mnt_master; 256 } 257 return last_copy; 258 } 259 260 /** 261 * propagate_mnt() - create secondary copies for tree attachment 262 * @dest_mnt: destination mount. 263 * @dest_mp: destination mountpoint. 264 * @source_mnt: source mount. 265 * @tree_list: list of secondaries to be attached. 266 * 267 * Create secondary copies for attaching a tree with root @source_mnt 268 * at mount @dest_mnt with mountpoint @dest_mp. Link all new mounts 269 * into a propagation graph. Set mountpoints for all secondaries, 270 * link their roots into @tree_list via ->mnt_hash. 271 */ 272 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, 273 struct mount *source_mnt, struct hlist_head *tree_list) 274 { 275 struct mount *m, *n, *copy, *this; 276 int err = 0, type; 277 278 if (dest_mnt->mnt_master) 279 SET_MNT_MARK(dest_mnt->mnt_master); 280 281 /* iterate over peer groups, depth first */ 282 for (m = dest_mnt; m && !err; m = next_group(m, dest_mnt)) { 283 if (m == dest_mnt) { // have one for dest_mnt itself 284 copy = source_mnt; 285 type = CL_MAKE_SHARED; 286 n = next_peer(m); 287 if (n == m) 288 continue; 289 } else { 290 type = CL_SLAVE; 291 /* beginning of peer group among the slaves? */ 292 if (IS_MNT_SHARED(m)) 293 type |= CL_MAKE_SHARED; 294 n = m; 295 } 296 do { 297 if (!need_secondary(n, dest_mp)) 298 continue; 299 if (type & CL_SLAVE) // first in this peer group 300 copy = find_master(n, copy, source_mnt); 301 this = copy_tree(copy, copy->mnt.mnt_root, type); 302 if (IS_ERR(this)) { 303 err = PTR_ERR(this); 304 break; 305 } 306 read_seqlock_excl(&mount_lock); 307 mnt_set_mountpoint(n, dest_mp, this); 308 read_sequnlock_excl(&mount_lock); 309 if (n->mnt_master) 310 SET_MNT_MARK(n->mnt_master); 311 copy = this; 312 hlist_add_head(&this->mnt_hash, tree_list); 313 err = count_mounts(n->mnt_ns, this); 314 if (err) 315 break; 316 type = CL_MAKE_SHARED; 317 } while ((n = next_peer(n)) != m); 318 } 319 320 hlist_for_each_entry(n, tree_list, mnt_hash) { 321 m = n->mnt_parent; 322 if (m->mnt_master) 323 CLEAR_MNT_MARK(m->mnt_master); 324 } 325 if (dest_mnt->mnt_master) 326 CLEAR_MNT_MARK(dest_mnt->mnt_master); 327 return err; 328 } 329 330 /* 331 * return true if the refcount is greater than count 332 */ 333 static inline int do_refcount_check(struct mount *mnt, int count) 334 { 335 return mnt_get_count(mnt) > count; 336 } 337 338 /** 339 * propagation_would_overmount - check whether propagation from @from 340 * would overmount @to 341 * @from: shared mount 342 * @to: mount to check 343 * @mp: future mountpoint of @to on @from 344 * 345 * If @from propagates mounts to @to, @from and @to must either be peers 346 * or one of the masters in the hierarchy of masters of @to must be a 347 * peer of @from. 348 * 349 * If the root of the @to mount is equal to the future mountpoint @mp of 350 * the @to mount on @from then @to will be overmounted by whatever is 351 * propagated to it. 352 * 353 * Context: This function expects namespace_lock() to be held and that 354 * @mp is stable. 355 * Return: If @from overmounts @to, true is returned, false if not. 356 */ 357 bool propagation_would_overmount(const struct mount *from, 358 const struct mount *to, 359 const struct mountpoint *mp) 360 { 361 if (!IS_MNT_SHARED(from)) 362 return false; 363 364 if (to->mnt.mnt_root != mp->m_dentry) 365 return false; 366 367 for (const struct mount *m = to; m; m = m->mnt_master) { 368 if (peers(from, m)) 369 return true; 370 } 371 372 return false; 373 } 374 375 /* 376 * check if the mount 'mnt' can be unmounted successfully. 377 * @mnt: the mount to be checked for unmount 378 * NOTE: unmounting 'mnt' would naturally propagate to all 379 * other mounts its parent propagates to. 380 * Check if any of these mounts that **do not have submounts** 381 * have more references than 'refcnt'. If so return busy. 382 * 383 * vfsmount lock must be held for write 384 */ 385 int propagate_mount_busy(struct mount *mnt, int refcnt) 386 { 387 struct mount *parent = mnt->mnt_parent; 388 389 /* 390 * quickly check if the current mount can be unmounted. 391 * If not, we don't have to go checking for all other 392 * mounts 393 */ 394 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) 395 return 1; 396 397 if (mnt == parent) 398 return 0; 399 400 for (struct mount *m = propagation_next(parent, parent); m; 401 m = propagation_next(m, parent)) { 402 struct list_head *head; 403 struct mount *child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 404 405 if (!child) 406 continue; 407 408 head = &child->mnt_mounts; 409 if (!list_empty(head)) { 410 /* 411 * a mount that covers child completely wouldn't prevent 412 * it being pulled out; any other would. 413 */ 414 if (!list_is_singular(head) || !child->overmount) 415 continue; 416 } 417 if (do_refcount_check(child, 1)) 418 return 1; 419 } 420 return 0; 421 } 422 423 /* 424 * Clear MNT_LOCKED when it can be shown to be safe. 425 * 426 * mount_lock lock must be held for write 427 */ 428 void propagate_mount_unlock(struct mount *mnt) 429 { 430 struct mount *parent = mnt->mnt_parent; 431 struct mount *m, *child; 432 433 BUG_ON(parent == mnt); 434 435 for (m = propagation_next(parent, parent); m; 436 m = propagation_next(m, parent)) { 437 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 438 if (child) 439 child->mnt.mnt_flags &= ~MNT_LOCKED; 440 } 441 } 442 443 static inline bool is_candidate(struct mount *m) 444 { 445 return m->mnt_t_flags & T_UMOUNT_CANDIDATE; 446 } 447 448 static void umount_one(struct mount *m, struct list_head *to_umount) 449 { 450 m->mnt.mnt_flags |= MNT_UMOUNT; 451 list_del_init(&m->mnt_child); 452 move_from_ns(m); 453 list_add_tail(&m->mnt_list, to_umount); 454 } 455 456 static void remove_from_candidate_list(struct mount *m) 457 { 458 m->mnt_t_flags &= ~(T_MARKED | T_UMOUNT_CANDIDATE); 459 list_del_init(&m->mnt_list); 460 } 461 462 static void gather_candidates(struct list_head *set, 463 struct list_head *candidates) 464 { 465 struct mount *m, *p, *q; 466 467 list_for_each_entry(m, set, mnt_list) { 468 if (is_candidate(m)) 469 continue; 470 m->mnt_t_flags |= T_UMOUNT_CANDIDATE; 471 p = m->mnt_parent; 472 q = propagation_next(p, p); 473 while (q) { 474 struct mount *child = __lookup_mnt(&q->mnt, 475 m->mnt_mountpoint); 476 if (child) { 477 /* 478 * We might've already run into this one. That 479 * must've happened on earlier iteration of the 480 * outer loop; in that case we can skip those 481 * parents that get propagation from q - there 482 * will be nothing new on those as well. 483 */ 484 if (is_candidate(child)) { 485 q = skip_propagation_subtree(q, p); 486 continue; 487 } 488 child->mnt_t_flags |= T_UMOUNT_CANDIDATE; 489 if (!will_be_unmounted(child)) 490 list_add(&child->mnt_list, candidates); 491 } 492 q = propagation_next(q, p); 493 } 494 } 495 list_for_each_entry(m, set, mnt_list) 496 m->mnt_t_flags &= ~T_UMOUNT_CANDIDATE; 497 } 498 499 /* 500 * We know that some child of @m can't be unmounted. In all places where the 501 * chain of descent of @m has child not overmounting the root of parent, 502 * the parent can't be unmounted either. 503 */ 504 static void trim_ancestors(struct mount *m) 505 { 506 struct mount *p; 507 508 for (p = m->mnt_parent; is_candidate(p); m = p, p = p->mnt_parent) { 509 if (IS_MNT_MARKED(m)) // all candidates beneath are overmounts 510 return; 511 SET_MNT_MARK(m); 512 if (m != p->overmount) 513 p->mnt_t_flags &= ~T_UMOUNT_CANDIDATE; 514 } 515 } 516 517 /* 518 * Find and exclude all umount candidates forbidden by @m 519 * (see Documentation/filesystems/propagate_umount.txt) 520 * If we can immediately tell that @m is OK to unmount (unlocked 521 * and all children are already committed to unmounting) commit 522 * to unmounting it. 523 * Only @m itself might be taken from the candidates list; 524 * anything found by trim_ancestors() is marked non-candidate 525 * and left on the list. 526 */ 527 static void trim_one(struct mount *m, struct list_head *to_umount) 528 { 529 bool remove_this = false, found = false, umount_this = false; 530 struct mount *n; 531 532 if (!is_candidate(m)) { // trim_ancestors() left it on list 533 remove_from_candidate_list(m); 534 return; 535 } 536 537 list_for_each_entry(n, &m->mnt_mounts, mnt_child) { 538 if (!is_candidate(n)) { 539 found = true; 540 if (n != m->overmount) { 541 remove_this = true; 542 break; 543 } 544 } 545 } 546 if (found) { 547 trim_ancestors(m); 548 } else if (!IS_MNT_LOCKED(m) && list_empty(&m->mnt_mounts)) { 549 remove_this = true; 550 umount_this = true; 551 } 552 if (remove_this) { 553 remove_from_candidate_list(m); 554 if (umount_this) 555 umount_one(m, to_umount); 556 } 557 } 558 559 static void handle_locked(struct mount *m, struct list_head *to_umount) 560 { 561 struct mount *cutoff = m, *p; 562 563 if (!is_candidate(m)) { // trim_ancestors() left it on list 564 remove_from_candidate_list(m); 565 return; 566 } 567 for (p = m; is_candidate(p); p = p->mnt_parent) { 568 remove_from_candidate_list(p); 569 if (!IS_MNT_LOCKED(p)) 570 cutoff = p->mnt_parent; 571 } 572 if (will_be_unmounted(p)) 573 cutoff = p; 574 while (m != cutoff) { 575 umount_one(m, to_umount); 576 m = m->mnt_parent; 577 } 578 } 579 580 /* 581 * @m is not to going away, and it overmounts the top of a stack of mounts 582 * that are going away. We know that all of those are fully overmounted 583 * by the one above (@m being the topmost of the chain), so @m can be slid 584 * in place where the bottom of the stack is attached. 585 * 586 * NOTE: here we temporarily violate a constraint - two mounts end up with 587 * the same parent and mountpoint; that will be remedied as soon as we 588 * return from propagate_umount() - its caller (umount_tree()) will detach 589 * the stack from the parent it (and now @m) is attached to. umount_tree() 590 * might choose to keep unmounted pieces stuck to each other, but it always 591 * detaches them from the mounts that remain in the tree. 592 */ 593 static void reparent(struct mount *m) 594 { 595 struct mount *p = m; 596 struct mountpoint *mp; 597 598 do { 599 mp = p->mnt_mp; 600 p = p->mnt_parent; 601 } while (will_be_unmounted(p)); 602 603 mnt_change_mountpoint(p, mp, m); 604 mnt_notify_add(m); 605 } 606 607 /** 608 * propagate_umount - apply propagation rules to the set of mounts for umount() 609 * @set: the list of mounts to be unmounted. 610 * 611 * Collect all mounts that receive propagation from the mount in @set and have 612 * no obstacles to being unmounted. Add these additional mounts to the set. 613 * 614 * See Documentation/filesystems/propagate_umount.txt if you do anything in 615 * this area. 616 * 617 * Locks held: 618 * mount_lock (write_seqlock), namespace_sem (exclusive). 619 */ 620 void propagate_umount(struct list_head *set) 621 { 622 struct mount *m, *p; 623 LIST_HEAD(to_umount); // committed to unmounting 624 LIST_HEAD(candidates); // undecided umount candidates 625 626 // collect all candidates 627 gather_candidates(set, &candidates); 628 629 // reduce the set until it's non-shifting 630 list_for_each_entry_safe(m, p, &candidates, mnt_list) 631 trim_one(m, &to_umount); 632 633 // ... and non-revealing 634 while (!list_empty(&candidates)) { 635 m = list_first_entry(&candidates,struct mount, mnt_list); 636 handle_locked(m, &to_umount); 637 } 638 639 // now to_umount consists of all acceptable candidates 640 // deal with reparenting of remaining overmounts on those 641 list_for_each_entry(m, &to_umount, mnt_list) { 642 if (m->overmount) 643 reparent(m->overmount); 644 } 645 646 // and fold them into the set 647 list_splice_tail_init(&to_umount, set); 648 } 649