xref: /linux/fs/pnode.c (revision 2455f0e124d317dd08d337a7550a78a224d4ba41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/pnode.c
4  *
5  * (C) Copyright IBM Corporation 2005.
6  *	Author : Ram Pai (linuxram@us.ibm.com)
7  */
8 #include <linux/mnt_namespace.h>
9 #include <linux/mount.h>
10 #include <linux/fs.h>
11 #include <linux/nsproxy.h>
12 #include <uapi/linux/mount.h>
13 #include "internal.h"
14 #include "pnode.h"
15 
16 /* return the next shared peer mount of @p */
17 static inline struct mount *next_peer(struct mount *p)
18 {
19 	return list_entry(p->mnt_share.next, struct mount, mnt_share);
20 }
21 
22 static inline struct mount *first_slave(struct mount *p)
23 {
24 	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
25 }
26 
27 static inline struct mount *last_slave(struct mount *p)
28 {
29 	return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
30 }
31 
32 static inline struct mount *next_slave(struct mount *p)
33 {
34 	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
35 }
36 
37 static struct mount *get_peer_under_root(struct mount *mnt,
38 					 struct mnt_namespace *ns,
39 					 const struct path *root)
40 {
41 	struct mount *m = mnt;
42 
43 	do {
44 		/* Check the namespace first for optimization */
45 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
46 			return m;
47 
48 		m = next_peer(m);
49 	} while (m != mnt);
50 
51 	return NULL;
52 }
53 
54 /*
55  * Get ID of closest dominating peer group having a representative
56  * under the given root.
57  *
58  * Caller must hold namespace_sem
59  */
60 int get_dominating_id(struct mount *mnt, const struct path *root)
61 {
62 	struct mount *m;
63 
64 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
65 		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
66 		if (d)
67 			return d->mnt_group_id;
68 	}
69 
70 	return 0;
71 }
72 
73 static int do_make_slave(struct mount *mnt)
74 {
75 	struct mount *master, *slave_mnt;
76 
77 	if (list_empty(&mnt->mnt_share)) {
78 		if (IS_MNT_SHARED(mnt)) {
79 			mnt_release_group_id(mnt);
80 			CLEAR_MNT_SHARED(mnt);
81 		}
82 		master = mnt->mnt_master;
83 		if (!master) {
84 			struct list_head *p = &mnt->mnt_slave_list;
85 			while (!list_empty(p)) {
86 				slave_mnt = list_first_entry(p,
87 						struct mount, mnt_slave);
88 				list_del_init(&slave_mnt->mnt_slave);
89 				slave_mnt->mnt_master = NULL;
90 			}
91 			return 0;
92 		}
93 	} else {
94 		struct mount *m;
95 		/*
96 		 * slave 'mnt' to a peer mount that has the
97 		 * same root dentry. If none is available then
98 		 * slave it to anything that is available.
99 		 */
100 		for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
101 			if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
102 				master = m;
103 				break;
104 			}
105 		}
106 		list_del_init(&mnt->mnt_share);
107 		mnt->mnt_group_id = 0;
108 		CLEAR_MNT_SHARED(mnt);
109 	}
110 	list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
111 		slave_mnt->mnt_master = master;
112 	list_move(&mnt->mnt_slave, &master->mnt_slave_list);
113 	list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
114 	INIT_LIST_HEAD(&mnt->mnt_slave_list);
115 	mnt->mnt_master = master;
116 	return 0;
117 }
118 
119 /*
120  * vfsmount lock must be held for write
121  */
122 void change_mnt_propagation(struct mount *mnt, int type)
123 {
124 	if (type == MS_SHARED) {
125 		set_mnt_shared(mnt);
126 		return;
127 	}
128 	do_make_slave(mnt);
129 	if (type != MS_SLAVE) {
130 		list_del_init(&mnt->mnt_slave);
131 		mnt->mnt_master = NULL;
132 		if (type == MS_UNBINDABLE)
133 			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
134 		else
135 			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
136 	}
137 }
138 
139 /*
140  * get the next mount in the propagation tree.
141  * @m: the mount seen last
142  * @origin: the original mount from where the tree walk initiated
143  *
144  * Note that peer groups form contiguous segments of slave lists.
145  * We rely on that in get_source() to be able to find out if
146  * vfsmount found while iterating with propagation_next() is
147  * a peer of one we'd found earlier.
148  */
149 static struct mount *propagation_next(struct mount *m,
150 					 struct mount *origin)
151 {
152 	/* are there any slaves of this mount? */
153 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
154 		return first_slave(m);
155 
156 	while (1) {
157 		struct mount *master = m->mnt_master;
158 
159 		if (master == origin->mnt_master) {
160 			struct mount *next = next_peer(m);
161 			return (next == origin) ? NULL : next;
162 		} else if (m->mnt_slave.next != &master->mnt_slave_list)
163 			return next_slave(m);
164 
165 		/* back at master */
166 		m = master;
167 	}
168 }
169 
170 static struct mount *skip_propagation_subtree(struct mount *m,
171 						struct mount *origin)
172 {
173 	/*
174 	 * Advance m such that propagation_next will not return
175 	 * the slaves of m.
176 	 */
177 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
178 		m = last_slave(m);
179 
180 	return m;
181 }
182 
183 static struct mount *next_group(struct mount *m, struct mount *origin)
184 {
185 	while (1) {
186 		while (1) {
187 			struct mount *next;
188 			if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
189 				return first_slave(m);
190 			next = next_peer(m);
191 			if (m->mnt_group_id == origin->mnt_group_id) {
192 				if (next == origin)
193 					return NULL;
194 			} else if (m->mnt_slave.next != &next->mnt_slave)
195 				break;
196 			m = next;
197 		}
198 		/* m is the last peer */
199 		while (1) {
200 			struct mount *master = m->mnt_master;
201 			if (m->mnt_slave.next != &master->mnt_slave_list)
202 				return next_slave(m);
203 			m = next_peer(master);
204 			if (master->mnt_group_id == origin->mnt_group_id)
205 				break;
206 			if (master->mnt_slave.next == &m->mnt_slave)
207 				break;
208 			m = master;
209 		}
210 		if (m == origin)
211 			return NULL;
212 	}
213 }
214 
215 /* all accesses are serialized by namespace_sem */
216 static struct mount *last_dest, *first_source, *last_source, *dest_master;
217 static struct mountpoint *mp;
218 static struct hlist_head *list;
219 
220 static inline bool peers(struct mount *m1, struct mount *m2)
221 {
222 	return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
223 }
224 
225 static int propagate_one(struct mount *m)
226 {
227 	struct mount *child;
228 	int type;
229 	/* skip ones added by this propagate_mnt() */
230 	if (IS_MNT_NEW(m))
231 		return 0;
232 	/* skip if mountpoint isn't covered by it */
233 	if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
234 		return 0;
235 	if (peers(m, last_dest)) {
236 		type = CL_MAKE_SHARED;
237 	} else {
238 		struct mount *n, *p;
239 		bool done;
240 		for (n = m; ; n = p) {
241 			p = n->mnt_master;
242 			if (p == dest_master || IS_MNT_MARKED(p))
243 				break;
244 		}
245 		do {
246 			struct mount *parent = last_source->mnt_parent;
247 			if (peers(last_source, first_source))
248 				break;
249 			done = parent->mnt_master == p;
250 			if (done && peers(n, parent))
251 				break;
252 			last_source = last_source->mnt_master;
253 		} while (!done);
254 
255 		type = CL_SLAVE;
256 		/* beginning of peer group among the slaves? */
257 		if (IS_MNT_SHARED(m))
258 			type |= CL_MAKE_SHARED;
259 	}
260 
261 	child = copy_tree(last_source, last_source->mnt.mnt_root, type);
262 	if (IS_ERR(child))
263 		return PTR_ERR(child);
264 	read_seqlock_excl(&mount_lock);
265 	mnt_set_mountpoint(m, mp, child);
266 	if (m->mnt_master != dest_master)
267 		SET_MNT_MARK(m->mnt_master);
268 	read_sequnlock_excl(&mount_lock);
269 	last_dest = m;
270 	last_source = child;
271 	hlist_add_head(&child->mnt_hash, list);
272 	return count_mounts(m->mnt_ns, child);
273 }
274 
275 /*
276  * mount 'source_mnt' under the destination 'dest_mnt' at
277  * dentry 'dest_dentry'. And propagate that mount to
278  * all the peer and slave mounts of 'dest_mnt'.
279  * Link all the new mounts into a propagation tree headed at
280  * source_mnt. Also link all the new mounts using ->mnt_list
281  * headed at source_mnt's ->mnt_list
282  *
283  * @dest_mnt: destination mount.
284  * @dest_dentry: destination dentry.
285  * @source_mnt: source mount.
286  * @tree_list : list of heads of trees to be attached.
287  */
288 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
289 		    struct mount *source_mnt, struct hlist_head *tree_list)
290 {
291 	struct mount *m, *n;
292 	int ret = 0;
293 
294 	/*
295 	 * we don't want to bother passing tons of arguments to
296 	 * propagate_one(); everything is serialized by namespace_sem,
297 	 * so globals will do just fine.
298 	 */
299 	last_dest = dest_mnt;
300 	first_source = source_mnt;
301 	last_source = source_mnt;
302 	mp = dest_mp;
303 	list = tree_list;
304 	dest_master = dest_mnt->mnt_master;
305 
306 	/* all peers of dest_mnt, except dest_mnt itself */
307 	for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
308 		ret = propagate_one(n);
309 		if (ret)
310 			goto out;
311 	}
312 
313 	/* all slave groups */
314 	for (m = next_group(dest_mnt, dest_mnt); m;
315 			m = next_group(m, dest_mnt)) {
316 		/* everything in that slave group */
317 		n = m;
318 		do {
319 			ret = propagate_one(n);
320 			if (ret)
321 				goto out;
322 			n = next_peer(n);
323 		} while (n != m);
324 	}
325 out:
326 	read_seqlock_excl(&mount_lock);
327 	hlist_for_each_entry(n, tree_list, mnt_hash) {
328 		m = n->mnt_parent;
329 		if (m->mnt_master != dest_mnt->mnt_master)
330 			CLEAR_MNT_MARK(m->mnt_master);
331 	}
332 	read_sequnlock_excl(&mount_lock);
333 	return ret;
334 }
335 
336 static struct mount *find_topper(struct mount *mnt)
337 {
338 	/* If there is exactly one mount covering mnt completely return it. */
339 	struct mount *child;
340 
341 	if (!list_is_singular(&mnt->mnt_mounts))
342 		return NULL;
343 
344 	child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
345 	if (child->mnt_mountpoint != mnt->mnt.mnt_root)
346 		return NULL;
347 
348 	return child;
349 }
350 
351 /*
352  * return true if the refcount is greater than count
353  */
354 static inline int do_refcount_check(struct mount *mnt, int count)
355 {
356 	return mnt_get_count(mnt) > count;
357 }
358 
359 /*
360  * check if the mount 'mnt' can be unmounted successfully.
361  * @mnt: the mount to be checked for unmount
362  * NOTE: unmounting 'mnt' would naturally propagate to all
363  * other mounts its parent propagates to.
364  * Check if any of these mounts that **do not have submounts**
365  * have more references than 'refcnt'. If so return busy.
366  *
367  * vfsmount lock must be held for write
368  */
369 int propagate_mount_busy(struct mount *mnt, int refcnt)
370 {
371 	struct mount *m, *child, *topper;
372 	struct mount *parent = mnt->mnt_parent;
373 
374 	if (mnt == parent)
375 		return do_refcount_check(mnt, refcnt);
376 
377 	/*
378 	 * quickly check if the current mount can be unmounted.
379 	 * If not, we don't have to go checking for all other
380 	 * mounts
381 	 */
382 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
383 		return 1;
384 
385 	for (m = propagation_next(parent, parent); m;
386 	     		m = propagation_next(m, parent)) {
387 		int count = 1;
388 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
389 		if (!child)
390 			continue;
391 
392 		/* Is there exactly one mount on the child that covers
393 		 * it completely whose reference should be ignored?
394 		 */
395 		topper = find_topper(child);
396 		if (topper)
397 			count += 1;
398 		else if (!list_empty(&child->mnt_mounts))
399 			continue;
400 
401 		if (do_refcount_check(child, count))
402 			return 1;
403 	}
404 	return 0;
405 }
406 
407 /*
408  * Clear MNT_LOCKED when it can be shown to be safe.
409  *
410  * mount_lock lock must be held for write
411  */
412 void propagate_mount_unlock(struct mount *mnt)
413 {
414 	struct mount *parent = mnt->mnt_parent;
415 	struct mount *m, *child;
416 
417 	BUG_ON(parent == mnt);
418 
419 	for (m = propagation_next(parent, parent); m;
420 			m = propagation_next(m, parent)) {
421 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
422 		if (child)
423 			child->mnt.mnt_flags &= ~MNT_LOCKED;
424 	}
425 }
426 
427 static void umount_one(struct mount *mnt, struct list_head *to_umount)
428 {
429 	CLEAR_MNT_MARK(mnt);
430 	mnt->mnt.mnt_flags |= MNT_UMOUNT;
431 	list_del_init(&mnt->mnt_child);
432 	list_del_init(&mnt->mnt_umounting);
433 	list_move_tail(&mnt->mnt_list, to_umount);
434 }
435 
436 /*
437  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
438  * parent propagates to.
439  */
440 static bool __propagate_umount(struct mount *mnt,
441 			       struct list_head *to_umount,
442 			       struct list_head *to_restore)
443 {
444 	bool progress = false;
445 	struct mount *child;
446 
447 	/*
448 	 * The state of the parent won't change if this mount is
449 	 * already unmounted or marked as without children.
450 	 */
451 	if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
452 		goto out;
453 
454 	/* Verify topper is the only grandchild that has not been
455 	 * speculatively unmounted.
456 	 */
457 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
458 		if (child->mnt_mountpoint == mnt->mnt.mnt_root)
459 			continue;
460 		if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
461 			continue;
462 		/* Found a mounted child */
463 		goto children;
464 	}
465 
466 	/* Mark mounts that can be unmounted if not locked */
467 	SET_MNT_MARK(mnt);
468 	progress = true;
469 
470 	/* If a mount is without children and not locked umount it. */
471 	if (!IS_MNT_LOCKED(mnt)) {
472 		umount_one(mnt, to_umount);
473 	} else {
474 children:
475 		list_move_tail(&mnt->mnt_umounting, to_restore);
476 	}
477 out:
478 	return progress;
479 }
480 
481 static void umount_list(struct list_head *to_umount,
482 			struct list_head *to_restore)
483 {
484 	struct mount *mnt, *child, *tmp;
485 	list_for_each_entry(mnt, to_umount, mnt_list) {
486 		list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
487 			/* topper? */
488 			if (child->mnt_mountpoint == mnt->mnt.mnt_root)
489 				list_move_tail(&child->mnt_umounting, to_restore);
490 			else
491 				umount_one(child, to_umount);
492 		}
493 	}
494 }
495 
496 static void restore_mounts(struct list_head *to_restore)
497 {
498 	/* Restore mounts to a clean working state */
499 	while (!list_empty(to_restore)) {
500 		struct mount *mnt, *parent;
501 		struct mountpoint *mp;
502 
503 		mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
504 		CLEAR_MNT_MARK(mnt);
505 		list_del_init(&mnt->mnt_umounting);
506 
507 		/* Should this mount be reparented? */
508 		mp = mnt->mnt_mp;
509 		parent = mnt->mnt_parent;
510 		while (parent->mnt.mnt_flags & MNT_UMOUNT) {
511 			mp = parent->mnt_mp;
512 			parent = parent->mnt_parent;
513 		}
514 		if (parent != mnt->mnt_parent)
515 			mnt_change_mountpoint(parent, mp, mnt);
516 	}
517 }
518 
519 static void cleanup_umount_visitations(struct list_head *visited)
520 {
521 	while (!list_empty(visited)) {
522 		struct mount *mnt =
523 			list_first_entry(visited, struct mount, mnt_umounting);
524 		list_del_init(&mnt->mnt_umounting);
525 	}
526 }
527 
528 /*
529  * collect all mounts that receive propagation from the mount in @list,
530  * and return these additional mounts in the same list.
531  * @list: the list of mounts to be unmounted.
532  *
533  * vfsmount lock must be held for write
534  */
535 int propagate_umount(struct list_head *list)
536 {
537 	struct mount *mnt;
538 	LIST_HEAD(to_restore);
539 	LIST_HEAD(to_umount);
540 	LIST_HEAD(visited);
541 
542 	/* Find candidates for unmounting */
543 	list_for_each_entry_reverse(mnt, list, mnt_list) {
544 		struct mount *parent = mnt->mnt_parent;
545 		struct mount *m;
546 
547 		/*
548 		 * If this mount has already been visited it is known that it's
549 		 * entire peer group and all of their slaves in the propagation
550 		 * tree for the mountpoint has already been visited and there is
551 		 * no need to visit them again.
552 		 */
553 		if (!list_empty(&mnt->mnt_umounting))
554 			continue;
555 
556 		list_add_tail(&mnt->mnt_umounting, &visited);
557 		for (m = propagation_next(parent, parent); m;
558 		     m = propagation_next(m, parent)) {
559 			struct mount *child = __lookup_mnt(&m->mnt,
560 							   mnt->mnt_mountpoint);
561 			if (!child)
562 				continue;
563 
564 			if (!list_empty(&child->mnt_umounting)) {
565 				/*
566 				 * If the child has already been visited it is
567 				 * know that it's entire peer group and all of
568 				 * their slaves in the propgation tree for the
569 				 * mountpoint has already been visited and there
570 				 * is no need to visit this subtree again.
571 				 */
572 				m = skip_propagation_subtree(m, parent);
573 				continue;
574 			} else if (child->mnt.mnt_flags & MNT_UMOUNT) {
575 				/*
576 				 * We have come accross an partially unmounted
577 				 * mount in list that has not been visited yet.
578 				 * Remember it has been visited and continue
579 				 * about our merry way.
580 				 */
581 				list_add_tail(&child->mnt_umounting, &visited);
582 				continue;
583 			}
584 
585 			/* Check the child and parents while progress is made */
586 			while (__propagate_umount(child,
587 						  &to_umount, &to_restore)) {
588 				/* Is the parent a umount candidate? */
589 				child = child->mnt_parent;
590 				if (list_empty(&child->mnt_umounting))
591 					break;
592 			}
593 		}
594 	}
595 
596 	umount_list(&to_umount, &to_restore);
597 	restore_mounts(&to_restore);
598 	cleanup_umount_visitations(&visited);
599 	list_splice_tail(&to_umount, list);
600 
601 	return 0;
602 }
603