1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/pnode.c 4 * 5 * (C) Copyright IBM Corporation 2005. 6 * Author : Ram Pai (linuxram@us.ibm.com) 7 */ 8 #include <linux/mnt_namespace.h> 9 #include <linux/mount.h> 10 #include <linux/fs.h> 11 #include <linux/nsproxy.h> 12 #include <uapi/linux/mount.h> 13 #include "internal.h" 14 #include "pnode.h" 15 16 /* return the next shared peer mount of @p */ 17 static inline struct mount *next_peer(struct mount *p) 18 { 19 return list_entry(p->mnt_share.next, struct mount, mnt_share); 20 } 21 22 static inline struct mount *first_slave(struct mount *p) 23 { 24 return hlist_entry(p->mnt_slave_list.first, struct mount, mnt_slave); 25 } 26 27 static inline struct mount *next_slave(struct mount *p) 28 { 29 return hlist_entry(p->mnt_slave.next, struct mount, mnt_slave); 30 } 31 32 static struct mount *get_peer_under_root(struct mount *mnt, 33 struct mnt_namespace *ns, 34 const struct path *root) 35 { 36 struct mount *m = mnt; 37 38 do { 39 /* Check the namespace first for optimization */ 40 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) 41 return m; 42 43 m = next_peer(m); 44 } while (m != mnt); 45 46 return NULL; 47 } 48 49 /* 50 * Get ID of closest dominating peer group having a representative 51 * under the given root. 52 * 53 * Caller must hold namespace_sem 54 */ 55 int get_dominating_id(struct mount *mnt, const struct path *root) 56 { 57 struct mount *m; 58 59 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { 60 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); 61 if (d) 62 return d->mnt_group_id; 63 } 64 65 return 0; 66 } 67 68 static inline bool will_be_unmounted(struct mount *m) 69 { 70 return m->mnt.mnt_flags & MNT_UMOUNT; 71 } 72 73 static struct mount *propagation_source(struct mount *mnt) 74 { 75 do { 76 struct mount *m; 77 for (m = next_peer(mnt); m != mnt; m = next_peer(m)) { 78 if (!will_be_unmounted(m)) 79 return m; 80 } 81 mnt = mnt->mnt_master; 82 } while (mnt && will_be_unmounted(mnt)); 83 return mnt; 84 } 85 86 static void transfer_propagation(struct mount *mnt, struct mount *to) 87 { 88 struct hlist_node *p = NULL, *n; 89 struct mount *m; 90 91 hlist_for_each_entry_safe(m, n, &mnt->mnt_slave_list, mnt_slave) { 92 m->mnt_master = to; 93 if (!to) 94 hlist_del_init(&m->mnt_slave); 95 else 96 p = &m->mnt_slave; 97 } 98 if (p) 99 hlist_splice_init(&mnt->mnt_slave_list, p, &to->mnt_slave_list); 100 } 101 102 /* 103 * EXCL[namespace_sem] 104 */ 105 void change_mnt_propagation(struct mount *mnt, int type) 106 { 107 struct mount *m = mnt->mnt_master; 108 109 if (type == MS_SHARED) { 110 set_mnt_shared(mnt); 111 return; 112 } 113 if (IS_MNT_SHARED(mnt)) { 114 if (type == MS_SLAVE || !hlist_empty(&mnt->mnt_slave_list)) 115 m = propagation_source(mnt); 116 if (list_empty(&mnt->mnt_share)) { 117 mnt_release_group_id(mnt); 118 } else { 119 list_del_init(&mnt->mnt_share); 120 mnt->mnt_group_id = 0; 121 } 122 CLEAR_MNT_SHARED(mnt); 123 transfer_propagation(mnt, m); 124 } 125 hlist_del_init(&mnt->mnt_slave); 126 if (type == MS_SLAVE) { 127 mnt->mnt_master = m; 128 if (m) 129 hlist_add_head(&mnt->mnt_slave, &m->mnt_slave_list); 130 } else { 131 mnt->mnt_master = NULL; 132 if (type == MS_UNBINDABLE) 133 mnt->mnt_t_flags |= T_UNBINDABLE; 134 else 135 mnt->mnt_t_flags &= ~T_UNBINDABLE; 136 } 137 } 138 139 static struct mount *__propagation_next(struct mount *m, 140 struct mount *origin) 141 { 142 while (1) { 143 struct mount *master = m->mnt_master; 144 145 if (master == origin->mnt_master) { 146 struct mount *next = next_peer(m); 147 return (next == origin) ? NULL : next; 148 } else if (m->mnt_slave.next) 149 return next_slave(m); 150 151 /* back at master */ 152 m = master; 153 } 154 } 155 156 /* 157 * get the next mount in the propagation tree. 158 * @m: the mount seen last 159 * @origin: the original mount from where the tree walk initiated 160 * 161 * Note that peer groups form contiguous segments of slave lists. 162 * We rely on that in get_source() to be able to find out if 163 * vfsmount found while iterating with propagation_next() is 164 * a peer of one we'd found earlier. 165 */ 166 static struct mount *propagation_next(struct mount *m, 167 struct mount *origin) 168 { 169 /* are there any slaves of this mount? */ 170 if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list)) 171 return first_slave(m); 172 173 return __propagation_next(m, origin); 174 } 175 176 static struct mount *skip_propagation_subtree(struct mount *m, 177 struct mount *origin) 178 { 179 /* 180 * Advance m past everything that gets propagation from it. 181 */ 182 struct mount *p = __propagation_next(m, origin); 183 184 while (p && peers(m, p)) 185 p = __propagation_next(p, origin); 186 187 return p; 188 } 189 190 static struct mount *next_group(struct mount *m, struct mount *origin) 191 { 192 while (1) { 193 while (1) { 194 struct mount *next; 195 if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list)) 196 return first_slave(m); 197 next = next_peer(m); 198 if (m->mnt_group_id == origin->mnt_group_id) { 199 if (next == origin) 200 return NULL; 201 } else if (m->mnt_slave.next != &next->mnt_slave) 202 break; 203 m = next; 204 } 205 /* m is the last peer */ 206 while (1) { 207 struct mount *master = m->mnt_master; 208 if (m->mnt_slave.next) 209 return next_slave(m); 210 m = next_peer(master); 211 if (master->mnt_group_id == origin->mnt_group_id) 212 break; 213 if (master->mnt_slave.next == &m->mnt_slave) 214 break; 215 m = master; 216 } 217 if (m == origin) 218 return NULL; 219 } 220 } 221 222 static bool need_secondary(struct mount *m, struct mountpoint *dest_mp) 223 { 224 /* skip ones added by this propagate_mnt() */ 225 if (IS_MNT_NEW(m)) 226 return false; 227 /* skip if mountpoint isn't visible in m */ 228 if (!is_subdir(dest_mp->m_dentry, m->mnt.mnt_root)) 229 return false; 230 /* skip if m is in the anon_ns */ 231 if (is_anon_ns(m->mnt_ns)) 232 return false; 233 return true; 234 } 235 236 static struct mount *find_master(struct mount *m, 237 struct mount *last_copy, 238 struct mount *original) 239 { 240 struct mount *p; 241 242 // ascend until there's a copy for something with the same master 243 for (;;) { 244 p = m->mnt_master; 245 if (!p || IS_MNT_MARKED(p)) 246 break; 247 m = p; 248 } 249 while (!peers(last_copy, original)) { 250 struct mount *parent = last_copy->mnt_parent; 251 if (parent->mnt_master == p) { 252 if (!peers(parent, m)) 253 last_copy = last_copy->mnt_master; 254 break; 255 } 256 last_copy = last_copy->mnt_master; 257 } 258 return last_copy; 259 } 260 261 /** 262 * propagate_mnt() - create secondary copies for tree attachment 263 * @dest_mnt: destination mount. 264 * @dest_mp: destination mountpoint. 265 * @source_mnt: source mount. 266 * @tree_list: list of secondaries to be attached. 267 * 268 * Create secondary copies for attaching a tree with root @source_mnt 269 * at mount @dest_mnt with mountpoint @dest_mp. Link all new mounts 270 * into a propagation graph. Set mountpoints for all secondaries, 271 * link their roots into @tree_list via ->mnt_hash. 272 */ 273 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, 274 struct mount *source_mnt, struct hlist_head *tree_list) 275 { 276 struct mount *m, *n, *copy, *this; 277 int err = 0, type; 278 279 if (dest_mnt->mnt_master) 280 SET_MNT_MARK(dest_mnt->mnt_master); 281 282 /* iterate over peer groups, depth first */ 283 for (m = dest_mnt; m && !err; m = next_group(m, dest_mnt)) { 284 if (m == dest_mnt) { // have one for dest_mnt itself 285 copy = source_mnt; 286 type = CL_MAKE_SHARED; 287 n = next_peer(m); 288 if (n == m) 289 continue; 290 } else { 291 type = CL_SLAVE; 292 /* beginning of peer group among the slaves? */ 293 if (IS_MNT_SHARED(m)) 294 type |= CL_MAKE_SHARED; 295 n = m; 296 } 297 do { 298 if (!need_secondary(n, dest_mp)) 299 continue; 300 if (type & CL_SLAVE) // first in this peer group 301 copy = find_master(n, copy, source_mnt); 302 this = copy_tree(copy, copy->mnt.mnt_root, type); 303 if (IS_ERR(this)) { 304 err = PTR_ERR(this); 305 break; 306 } 307 read_seqlock_excl(&mount_lock); 308 mnt_set_mountpoint(n, dest_mp, this); 309 read_sequnlock_excl(&mount_lock); 310 if (n->mnt_master) 311 SET_MNT_MARK(n->mnt_master); 312 copy = this; 313 hlist_add_head(&this->mnt_hash, tree_list); 314 err = count_mounts(n->mnt_ns, this); 315 if (err) 316 break; 317 type = CL_MAKE_SHARED; 318 } while ((n = next_peer(n)) != m); 319 } 320 321 hlist_for_each_entry(n, tree_list, mnt_hash) { 322 m = n->mnt_parent; 323 if (m->mnt_master) 324 CLEAR_MNT_MARK(m->mnt_master); 325 } 326 if (dest_mnt->mnt_master) 327 CLEAR_MNT_MARK(dest_mnt->mnt_master); 328 return err; 329 } 330 331 /* 332 * return true if the refcount is greater than count 333 */ 334 static inline int do_refcount_check(struct mount *mnt, int count) 335 { 336 return mnt_get_count(mnt) > count; 337 } 338 339 /** 340 * propagation_would_overmount - check whether propagation from @from 341 * would overmount @to 342 * @from: shared mount 343 * @to: mount to check 344 * @mp: future mountpoint of @to on @from 345 * 346 * If @from propagates mounts to @to, @from and @to must either be peers 347 * or one of the masters in the hierarchy of masters of @to must be a 348 * peer of @from. 349 * 350 * If the root of the @to mount is equal to the future mountpoint @mp of 351 * the @to mount on @from then @to will be overmounted by whatever is 352 * propagated to it. 353 * 354 * Context: This function expects namespace_lock() to be held and that 355 * @mp is stable. 356 * Return: If @from overmounts @to, true is returned, false if not. 357 */ 358 bool propagation_would_overmount(const struct mount *from, 359 const struct mount *to, 360 const struct mountpoint *mp) 361 { 362 if (!IS_MNT_SHARED(from)) 363 return false; 364 365 if (to->mnt.mnt_root != mp->m_dentry) 366 return false; 367 368 for (const struct mount *m = to; m; m = m->mnt_master) { 369 if (peers(from, m)) 370 return true; 371 } 372 373 return false; 374 } 375 376 /* 377 * check if the mount 'mnt' can be unmounted successfully. 378 * @mnt: the mount to be checked for unmount 379 * NOTE: unmounting 'mnt' would naturally propagate to all 380 * other mounts its parent propagates to. 381 * Check if any of these mounts that **do not have submounts** 382 * have more references than 'refcnt'. If so return busy. 383 * 384 * vfsmount lock must be held for write 385 */ 386 int propagate_mount_busy(struct mount *mnt, int refcnt) 387 { 388 struct mount *parent = mnt->mnt_parent; 389 390 /* 391 * quickly check if the current mount can be unmounted. 392 * If not, we don't have to go checking for all other 393 * mounts 394 */ 395 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) 396 return 1; 397 398 if (mnt == parent) 399 return 0; 400 401 for (struct mount *m = propagation_next(parent, parent); m; 402 m = propagation_next(m, parent)) { 403 struct list_head *head; 404 struct mount *child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 405 406 if (!child) 407 continue; 408 409 head = &child->mnt_mounts; 410 if (!list_empty(head)) { 411 /* 412 * a mount that covers child completely wouldn't prevent 413 * it being pulled out; any other would. 414 */ 415 if (!list_is_singular(head) || !child->overmount) 416 continue; 417 } 418 if (do_refcount_check(child, 1)) 419 return 1; 420 } 421 return 0; 422 } 423 424 /* 425 * Clear MNT_LOCKED when it can be shown to be safe. 426 * 427 * mount_lock lock must be held for write 428 */ 429 void propagate_mount_unlock(struct mount *mnt) 430 { 431 struct mount *parent = mnt->mnt_parent; 432 struct mount *m, *child; 433 434 BUG_ON(parent == mnt); 435 436 for (m = propagation_next(parent, parent); m; 437 m = propagation_next(m, parent)) { 438 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 439 if (child) 440 child->mnt.mnt_flags &= ~MNT_LOCKED; 441 } 442 } 443 444 static inline bool is_candidate(struct mount *m) 445 { 446 return m->mnt_t_flags & T_UMOUNT_CANDIDATE; 447 } 448 449 static void umount_one(struct mount *m, struct list_head *to_umount) 450 { 451 m->mnt.mnt_flags |= MNT_UMOUNT; 452 list_del_init(&m->mnt_child); 453 move_from_ns(m); 454 list_add_tail(&m->mnt_list, to_umount); 455 } 456 457 static void remove_from_candidate_list(struct mount *m) 458 { 459 m->mnt_t_flags &= ~(T_MARKED | T_UMOUNT_CANDIDATE); 460 list_del_init(&m->mnt_list); 461 } 462 463 static void gather_candidates(struct list_head *set, 464 struct list_head *candidates) 465 { 466 struct mount *m, *p, *q; 467 468 list_for_each_entry(m, set, mnt_list) { 469 if (is_candidate(m)) 470 continue; 471 m->mnt_t_flags |= T_UMOUNT_CANDIDATE; 472 p = m->mnt_parent; 473 q = propagation_next(p, p); 474 while (q) { 475 struct mount *child = __lookup_mnt(&q->mnt, 476 m->mnt_mountpoint); 477 if (child) { 478 /* 479 * We might've already run into this one. That 480 * must've happened on earlier iteration of the 481 * outer loop; in that case we can skip those 482 * parents that get propagation from q - there 483 * will be nothing new on those as well. 484 */ 485 if (is_candidate(child)) { 486 q = skip_propagation_subtree(q, p); 487 continue; 488 } 489 child->mnt_t_flags |= T_UMOUNT_CANDIDATE; 490 if (!will_be_unmounted(child)) 491 list_add(&child->mnt_list, candidates); 492 } 493 q = propagation_next(q, p); 494 } 495 } 496 list_for_each_entry(m, set, mnt_list) 497 m->mnt_t_flags &= ~T_UMOUNT_CANDIDATE; 498 } 499 500 /* 501 * We know that some child of @m can't be unmounted. In all places where the 502 * chain of descent of @m has child not overmounting the root of parent, 503 * the parent can't be unmounted either. 504 */ 505 static void trim_ancestors(struct mount *m) 506 { 507 struct mount *p; 508 509 for (p = m->mnt_parent; is_candidate(p); m = p, p = p->mnt_parent) { 510 if (IS_MNT_MARKED(m)) // all candidates beneath are overmounts 511 return; 512 SET_MNT_MARK(m); 513 if (m != p->overmount) 514 p->mnt_t_flags &= ~T_UMOUNT_CANDIDATE; 515 } 516 } 517 518 /* 519 * Find and exclude all umount candidates forbidden by @m 520 * (see Documentation/filesystems/propagate_umount.txt) 521 * If we can immediately tell that @m is OK to unmount (unlocked 522 * and all children are already committed to unmounting) commit 523 * to unmounting it. 524 * Only @m itself might be taken from the candidates list; 525 * anything found by trim_ancestors() is marked non-candidate 526 * and left on the list. 527 */ 528 static void trim_one(struct mount *m, struct list_head *to_umount) 529 { 530 bool remove_this = false, found = false, umount_this = false; 531 struct mount *n; 532 533 if (!is_candidate(m)) { // trim_ancestors() left it on list 534 remove_from_candidate_list(m); 535 return; 536 } 537 538 list_for_each_entry(n, &m->mnt_mounts, mnt_child) { 539 if (!is_candidate(n)) { 540 found = true; 541 if (n != m->overmount) { 542 remove_this = true; 543 break; 544 } 545 } 546 } 547 if (found) { 548 trim_ancestors(m); 549 } else if (!IS_MNT_LOCKED(m) && list_empty(&m->mnt_mounts)) { 550 remove_this = true; 551 umount_this = true; 552 } 553 if (remove_this) { 554 remove_from_candidate_list(m); 555 if (umount_this) 556 umount_one(m, to_umount); 557 } 558 } 559 560 static void handle_locked(struct mount *m, struct list_head *to_umount) 561 { 562 struct mount *cutoff = m, *p; 563 564 if (!is_candidate(m)) { // trim_ancestors() left it on list 565 remove_from_candidate_list(m); 566 return; 567 } 568 for (p = m; is_candidate(p); p = p->mnt_parent) { 569 remove_from_candidate_list(p); 570 if (!IS_MNT_LOCKED(p)) 571 cutoff = p->mnt_parent; 572 } 573 if (will_be_unmounted(p)) 574 cutoff = p; 575 while (m != cutoff) { 576 umount_one(m, to_umount); 577 m = m->mnt_parent; 578 } 579 } 580 581 /* 582 * @m is not to going away, and it overmounts the top of a stack of mounts 583 * that are going away. We know that all of those are fully overmounted 584 * by the one above (@m being the topmost of the chain), so @m can be slid 585 * in place where the bottom of the stack is attached. 586 * 587 * NOTE: here we temporarily violate a constraint - two mounts end up with 588 * the same parent and mountpoint; that will be remedied as soon as we 589 * return from propagate_umount() - its caller (umount_tree()) will detach 590 * the stack from the parent it (and now @m) is attached to. umount_tree() 591 * might choose to keep unmounted pieces stuck to each other, but it always 592 * detaches them from the mounts that remain in the tree. 593 */ 594 static void reparent(struct mount *m) 595 { 596 struct mount *p = m; 597 struct mountpoint *mp; 598 599 do { 600 mp = p->mnt_mp; 601 p = p->mnt_parent; 602 } while (will_be_unmounted(p)); 603 604 mnt_change_mountpoint(p, mp, m); 605 mnt_notify_add(m); 606 } 607 608 /** 609 * propagate_umount - apply propagation rules to the set of mounts for umount() 610 * @set: the list of mounts to be unmounted. 611 * 612 * Collect all mounts that receive propagation from the mount in @set and have 613 * no obstacles to being unmounted. Add these additional mounts to the set. 614 * 615 * See Documentation/filesystems/propagate_umount.txt if you do anything in 616 * this area. 617 * 618 * Locks held: 619 * mount_lock (write_seqlock), namespace_sem (exclusive). 620 */ 621 void propagate_umount(struct list_head *set) 622 { 623 struct mount *m, *p; 624 LIST_HEAD(to_umount); // committed to unmounting 625 LIST_HEAD(candidates); // undecided umount candidates 626 627 // collect all candidates 628 gather_candidates(set, &candidates); 629 630 // reduce the set until it's non-shifting 631 list_for_each_entry_safe(m, p, &candidates, mnt_list) 632 trim_one(m, &to_umount); 633 634 // ... and non-revealing 635 while (!list_empty(&candidates)) { 636 m = list_first_entry(&candidates,struct mount, mnt_list); 637 handle_locked(m, &to_umount); 638 } 639 640 // now to_umount consists of all acceptable candidates 641 // deal with reparenting of surviving overmounts on those 642 list_for_each_entry(m, &to_umount, mnt_list) { 643 struct mount *over = m->overmount; 644 if (over && !will_be_unmounted(over)) 645 reparent(over); 646 } 647 648 // and fold them into the set 649 list_splice_tail_init(&to_umount, set); 650 } 651