xref: /linux/fs/pipe.c (revision f9aec1648df09d55436a0e3a94acff1df507751f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 
29 #include <linux/uaccess.h>
30 #include <asm/ioctls.h>
31 
32 #include "internal.h"
33 
34 /*
35  * New pipe buffers will be restricted to this size while the user is exceeding
36  * their pipe buffer quota. The general pipe use case needs at least two
37  * buffers: one for data yet to be read, and one for new data. If this is less
38  * than two, then a write to a non-empty pipe may block even if the pipe is not
39  * full. This can occur with GNU make jobserver or similar uses of pipes as
40  * semaphores: multiple processes may be waiting to write tokens back to the
41  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
42  *
43  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
44  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
45  * emptied.
46  */
47 #define PIPE_MIN_DEF_BUFFERS 2
48 
49 /*
50  * The max size that a non-root user is allowed to grow the pipe. Can
51  * be set by root in /proc/sys/fs/pipe-max-size
52  */
53 unsigned int pipe_max_size = 1048576;
54 
55 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
56  * matches default values.
57  */
58 unsigned long pipe_user_pages_hard;
59 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
60 
61 /*
62  * We use head and tail indices that aren't masked off, except at the point of
63  * dereference, but rather they're allowed to wrap naturally.  This means there
64  * isn't a dead spot in the buffer, but the ring has to be a power of two and
65  * <= 2^31.
66  * -- David Howells 2019-09-23.
67  *
68  * Reads with count = 0 should always return 0.
69  * -- Julian Bradfield 1999-06-07.
70  *
71  * FIFOs and Pipes now generate SIGIO for both readers and writers.
72  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
73  *
74  * pipe_read & write cleanup
75  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
76  */
77 
78 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
79 {
80 	if (pipe->files)
81 		mutex_lock_nested(&pipe->mutex, subclass);
82 }
83 
84 void pipe_lock(struct pipe_inode_info *pipe)
85 {
86 	/*
87 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
88 	 */
89 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
90 }
91 EXPORT_SYMBOL(pipe_lock);
92 
93 void pipe_unlock(struct pipe_inode_info *pipe)
94 {
95 	if (pipe->files)
96 		mutex_unlock(&pipe->mutex);
97 }
98 EXPORT_SYMBOL(pipe_unlock);
99 
100 static inline void __pipe_lock(struct pipe_inode_info *pipe)
101 {
102 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
103 }
104 
105 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
106 {
107 	mutex_unlock(&pipe->mutex);
108 }
109 
110 void pipe_double_lock(struct pipe_inode_info *pipe1,
111 		      struct pipe_inode_info *pipe2)
112 {
113 	BUG_ON(pipe1 == pipe2);
114 
115 	if (pipe1 < pipe2) {
116 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
117 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
118 	} else {
119 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
120 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
121 	}
122 }
123 
124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
125 				  struct pipe_buffer *buf)
126 {
127 	struct page *page = buf->page;
128 
129 	/*
130 	 * If nobody else uses this page, and we don't already have a
131 	 * temporary page, let's keep track of it as a one-deep
132 	 * allocation cache. (Otherwise just release our reference to it)
133 	 */
134 	if (page_count(page) == 1 && !pipe->tmp_page)
135 		pipe->tmp_page = page;
136 	else
137 		put_page(page);
138 }
139 
140 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
141 		struct pipe_buffer *buf)
142 {
143 	struct page *page = buf->page;
144 
145 	if (page_count(page) != 1)
146 		return false;
147 	memcg_kmem_uncharge_page(page, 0);
148 	__SetPageLocked(page);
149 	return true;
150 }
151 
152 /**
153  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
154  * @pipe:	the pipe that the buffer belongs to
155  * @buf:	the buffer to attempt to steal
156  *
157  * Description:
158  *	This function attempts to steal the &struct page attached to
159  *	@buf. If successful, this function returns 0 and returns with
160  *	the page locked. The caller may then reuse the page for whatever
161  *	he wishes; the typical use is insertion into a different file
162  *	page cache.
163  */
164 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
165 		struct pipe_buffer *buf)
166 {
167 	struct page *page = buf->page;
168 
169 	/*
170 	 * A reference of one is golden, that means that the owner of this
171 	 * page is the only one holding a reference to it. lock the page
172 	 * and return OK.
173 	 */
174 	if (page_count(page) == 1) {
175 		lock_page(page);
176 		return true;
177 	}
178 	return false;
179 }
180 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
181 
182 /**
183  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
184  * @pipe:	the pipe that the buffer belongs to
185  * @buf:	the buffer to get a reference to
186  *
187  * Description:
188  *	This function grabs an extra reference to @buf. It's used in
189  *	the tee() system call, when we duplicate the buffers in one
190  *	pipe into another.
191  */
192 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
193 {
194 	return try_get_page(buf->page);
195 }
196 EXPORT_SYMBOL(generic_pipe_buf_get);
197 
198 /**
199  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
200  * @pipe:	the pipe that the buffer belongs to
201  * @buf:	the buffer to put a reference to
202  *
203  * Description:
204  *	This function releases a reference to @buf.
205  */
206 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
207 			      struct pipe_buffer *buf)
208 {
209 	put_page(buf->page);
210 }
211 EXPORT_SYMBOL(generic_pipe_buf_release);
212 
213 static const struct pipe_buf_operations anon_pipe_buf_ops = {
214 	.release	= anon_pipe_buf_release,
215 	.try_steal	= anon_pipe_buf_try_steal,
216 	.get		= generic_pipe_buf_get,
217 };
218 
219 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
220 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
221 {
222 	unsigned int head = READ_ONCE(pipe->head);
223 	unsigned int tail = READ_ONCE(pipe->tail);
224 	unsigned int writers = READ_ONCE(pipe->writers);
225 
226 	return !pipe_empty(head, tail) || !writers;
227 }
228 
229 static ssize_t
230 pipe_read(struct kiocb *iocb, struct iov_iter *to)
231 {
232 	size_t total_len = iov_iter_count(to);
233 	struct file *filp = iocb->ki_filp;
234 	struct pipe_inode_info *pipe = filp->private_data;
235 	bool was_full, wake_next_reader = false;
236 	ssize_t ret;
237 
238 	/* Null read succeeds. */
239 	if (unlikely(total_len == 0))
240 		return 0;
241 
242 	ret = 0;
243 	__pipe_lock(pipe);
244 
245 	/*
246 	 * We only wake up writers if the pipe was full when we started
247 	 * reading in order to avoid unnecessary wakeups.
248 	 *
249 	 * But when we do wake up writers, we do so using a sync wakeup
250 	 * (WF_SYNC), because we want them to get going and generate more
251 	 * data for us.
252 	 */
253 	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
254 	for (;;) {
255 		unsigned int head = pipe->head;
256 		unsigned int tail = pipe->tail;
257 		unsigned int mask = pipe->ring_size - 1;
258 
259 #ifdef CONFIG_WATCH_QUEUE
260 		if (pipe->note_loss) {
261 			struct watch_notification n;
262 
263 			if (total_len < 8) {
264 				if (ret == 0)
265 					ret = -ENOBUFS;
266 				break;
267 			}
268 
269 			n.type = WATCH_TYPE_META;
270 			n.subtype = WATCH_META_LOSS_NOTIFICATION;
271 			n.info = watch_sizeof(n);
272 			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
273 				if (ret == 0)
274 					ret = -EFAULT;
275 				break;
276 			}
277 			ret += sizeof(n);
278 			total_len -= sizeof(n);
279 			pipe->note_loss = false;
280 		}
281 #endif
282 
283 		if (!pipe_empty(head, tail)) {
284 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
285 			size_t chars = buf->len;
286 			size_t written;
287 			int error;
288 
289 			if (chars > total_len) {
290 				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
291 					if (ret == 0)
292 						ret = -ENOBUFS;
293 					break;
294 				}
295 				chars = total_len;
296 			}
297 
298 			error = pipe_buf_confirm(pipe, buf);
299 			if (error) {
300 				if (!ret)
301 					ret = error;
302 				break;
303 			}
304 
305 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
306 			if (unlikely(written < chars)) {
307 				if (!ret)
308 					ret = -EFAULT;
309 				break;
310 			}
311 			ret += chars;
312 			buf->offset += chars;
313 			buf->len -= chars;
314 
315 			/* Was it a packet buffer? Clean up and exit */
316 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
317 				total_len = chars;
318 				buf->len = 0;
319 			}
320 
321 			if (!buf->len) {
322 				pipe_buf_release(pipe, buf);
323 				spin_lock_irq(&pipe->rd_wait.lock);
324 #ifdef CONFIG_WATCH_QUEUE
325 				if (buf->flags & PIPE_BUF_FLAG_LOSS)
326 					pipe->note_loss = true;
327 #endif
328 				tail++;
329 				pipe->tail = tail;
330 				spin_unlock_irq(&pipe->rd_wait.lock);
331 			}
332 			total_len -= chars;
333 			if (!total_len)
334 				break;	/* common path: read succeeded */
335 			if (!pipe_empty(head, tail))	/* More to do? */
336 				continue;
337 		}
338 
339 		if (!pipe->writers)
340 			break;
341 		if (ret)
342 			break;
343 		if (filp->f_flags & O_NONBLOCK) {
344 			ret = -EAGAIN;
345 			break;
346 		}
347 		__pipe_unlock(pipe);
348 
349 		/*
350 		 * We only get here if we didn't actually read anything.
351 		 *
352 		 * However, we could have seen (and removed) a zero-sized
353 		 * pipe buffer, and might have made space in the buffers
354 		 * that way.
355 		 *
356 		 * You can't make zero-sized pipe buffers by doing an empty
357 		 * write (not even in packet mode), but they can happen if
358 		 * the writer gets an EFAULT when trying to fill a buffer
359 		 * that already got allocated and inserted in the buffer
360 		 * array.
361 		 *
362 		 * So we still need to wake up any pending writers in the
363 		 * _very_ unlikely case that the pipe was full, but we got
364 		 * no data.
365 		 */
366 		if (unlikely(was_full))
367 			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
368 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
369 
370 		/*
371 		 * But because we didn't read anything, at this point we can
372 		 * just return directly with -ERESTARTSYS if we're interrupted,
373 		 * since we've done any required wakeups and there's no need
374 		 * to mark anything accessed. And we've dropped the lock.
375 		 */
376 		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
377 			return -ERESTARTSYS;
378 
379 		__pipe_lock(pipe);
380 		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
381 		wake_next_reader = true;
382 	}
383 	if (pipe_empty(pipe->head, pipe->tail))
384 		wake_next_reader = false;
385 	__pipe_unlock(pipe);
386 
387 	if (was_full)
388 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
389 	if (wake_next_reader)
390 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
391 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
392 	if (ret > 0)
393 		file_accessed(filp);
394 	return ret;
395 }
396 
397 static inline int is_packetized(struct file *file)
398 {
399 	return (file->f_flags & O_DIRECT) != 0;
400 }
401 
402 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
403 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
404 {
405 	unsigned int head = READ_ONCE(pipe->head);
406 	unsigned int tail = READ_ONCE(pipe->tail);
407 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
408 
409 	return !pipe_full(head, tail, max_usage) ||
410 		!READ_ONCE(pipe->readers);
411 }
412 
413 static ssize_t
414 pipe_write(struct kiocb *iocb, struct iov_iter *from)
415 {
416 	struct file *filp = iocb->ki_filp;
417 	struct pipe_inode_info *pipe = filp->private_data;
418 	unsigned int head;
419 	ssize_t ret = 0;
420 	size_t total_len = iov_iter_count(from);
421 	ssize_t chars;
422 	bool was_empty = false;
423 	bool wake_next_writer = false;
424 
425 	/* Null write succeeds. */
426 	if (unlikely(total_len == 0))
427 		return 0;
428 
429 	__pipe_lock(pipe);
430 
431 	if (!pipe->readers) {
432 		send_sig(SIGPIPE, current, 0);
433 		ret = -EPIPE;
434 		goto out;
435 	}
436 
437 #ifdef CONFIG_WATCH_QUEUE
438 	if (pipe->watch_queue) {
439 		ret = -EXDEV;
440 		goto out;
441 	}
442 #endif
443 
444 	/*
445 	 * If it wasn't empty we try to merge new data into
446 	 * the last buffer.
447 	 *
448 	 * That naturally merges small writes, but it also
449 	 * page-aligns the rest of the writes for large writes
450 	 * spanning multiple pages.
451 	 */
452 	head = pipe->head;
453 	was_empty = pipe_empty(head, pipe->tail);
454 	chars = total_len & (PAGE_SIZE-1);
455 	if (chars && !was_empty) {
456 		unsigned int mask = pipe->ring_size - 1;
457 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
458 		int offset = buf->offset + buf->len;
459 
460 		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
461 		    offset + chars <= PAGE_SIZE) {
462 			ret = pipe_buf_confirm(pipe, buf);
463 			if (ret)
464 				goto out;
465 
466 			ret = copy_page_from_iter(buf->page, offset, chars, from);
467 			if (unlikely(ret < chars)) {
468 				ret = -EFAULT;
469 				goto out;
470 			}
471 
472 			buf->len += ret;
473 			if (!iov_iter_count(from))
474 				goto out;
475 		}
476 	}
477 
478 	for (;;) {
479 		if (!pipe->readers) {
480 			send_sig(SIGPIPE, current, 0);
481 			if (!ret)
482 				ret = -EPIPE;
483 			break;
484 		}
485 
486 		head = pipe->head;
487 		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
488 			unsigned int mask = pipe->ring_size - 1;
489 			struct pipe_buffer *buf = &pipe->bufs[head & mask];
490 			struct page *page = pipe->tmp_page;
491 			int copied;
492 
493 			if (!page) {
494 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
495 				if (unlikely(!page)) {
496 					ret = ret ? : -ENOMEM;
497 					break;
498 				}
499 				pipe->tmp_page = page;
500 			}
501 
502 			/* Allocate a slot in the ring in advance and attach an
503 			 * empty buffer.  If we fault or otherwise fail to use
504 			 * it, either the reader will consume it or it'll still
505 			 * be there for the next write.
506 			 */
507 			spin_lock_irq(&pipe->rd_wait.lock);
508 
509 			head = pipe->head;
510 			if (pipe_full(head, pipe->tail, pipe->max_usage)) {
511 				spin_unlock_irq(&pipe->rd_wait.lock);
512 				continue;
513 			}
514 
515 			pipe->head = head + 1;
516 			spin_unlock_irq(&pipe->rd_wait.lock);
517 
518 			/* Insert it into the buffer array */
519 			buf = &pipe->bufs[head & mask];
520 			buf->page = page;
521 			buf->ops = &anon_pipe_buf_ops;
522 			buf->offset = 0;
523 			buf->len = 0;
524 			if (is_packetized(filp))
525 				buf->flags = PIPE_BUF_FLAG_PACKET;
526 			else
527 				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
528 			pipe->tmp_page = NULL;
529 
530 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
531 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
532 				if (!ret)
533 					ret = -EFAULT;
534 				break;
535 			}
536 			ret += copied;
537 			buf->offset = 0;
538 			buf->len = copied;
539 
540 			if (!iov_iter_count(from))
541 				break;
542 		}
543 
544 		if (!pipe_full(head, pipe->tail, pipe->max_usage))
545 			continue;
546 
547 		/* Wait for buffer space to become available. */
548 		if (filp->f_flags & O_NONBLOCK) {
549 			if (!ret)
550 				ret = -EAGAIN;
551 			break;
552 		}
553 		if (signal_pending(current)) {
554 			if (!ret)
555 				ret = -ERESTARTSYS;
556 			break;
557 		}
558 
559 		/*
560 		 * We're going to release the pipe lock and wait for more
561 		 * space. We wake up any readers if necessary, and then
562 		 * after waiting we need to re-check whether the pipe
563 		 * become empty while we dropped the lock.
564 		 */
565 		__pipe_unlock(pipe);
566 		if (was_empty)
567 			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
568 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
569 		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
570 		__pipe_lock(pipe);
571 		was_empty = pipe_empty(pipe->head, pipe->tail);
572 		wake_next_writer = true;
573 	}
574 out:
575 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
576 		wake_next_writer = false;
577 	__pipe_unlock(pipe);
578 
579 	/*
580 	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
581 	 * want the reader to start processing things asap, rather than
582 	 * leave the data pending.
583 	 *
584 	 * This is particularly important for small writes, because of
585 	 * how (for example) the GNU make jobserver uses small writes to
586 	 * wake up pending jobs
587 	 *
588 	 * Epoll nonsensically wants a wakeup whether the pipe
589 	 * was already empty or not.
590 	 */
591 	if (was_empty || pipe->poll_usage)
592 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
593 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
594 	if (wake_next_writer)
595 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
596 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
597 		int err = file_update_time(filp);
598 		if (err)
599 			ret = err;
600 		sb_end_write(file_inode(filp)->i_sb);
601 	}
602 	return ret;
603 }
604 
605 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
606 {
607 	struct pipe_inode_info *pipe = filp->private_data;
608 	int count, head, tail, mask;
609 
610 	switch (cmd) {
611 	case FIONREAD:
612 		__pipe_lock(pipe);
613 		count = 0;
614 		head = pipe->head;
615 		tail = pipe->tail;
616 		mask = pipe->ring_size - 1;
617 
618 		while (tail != head) {
619 			count += pipe->bufs[tail & mask].len;
620 			tail++;
621 		}
622 		__pipe_unlock(pipe);
623 
624 		return put_user(count, (int __user *)arg);
625 
626 #ifdef CONFIG_WATCH_QUEUE
627 	case IOC_WATCH_QUEUE_SET_SIZE: {
628 		int ret;
629 		__pipe_lock(pipe);
630 		ret = watch_queue_set_size(pipe, arg);
631 		__pipe_unlock(pipe);
632 		return ret;
633 	}
634 
635 	case IOC_WATCH_QUEUE_SET_FILTER:
636 		return watch_queue_set_filter(
637 			pipe, (struct watch_notification_filter __user *)arg);
638 #endif
639 
640 	default:
641 		return -ENOIOCTLCMD;
642 	}
643 }
644 
645 /* No kernel lock held - fine */
646 static __poll_t
647 pipe_poll(struct file *filp, poll_table *wait)
648 {
649 	__poll_t mask;
650 	struct pipe_inode_info *pipe = filp->private_data;
651 	unsigned int head, tail;
652 
653 	/* Epoll has some historical nasty semantics, this enables them */
654 	pipe->poll_usage = 1;
655 
656 	/*
657 	 * Reading pipe state only -- no need for acquiring the semaphore.
658 	 *
659 	 * But because this is racy, the code has to add the
660 	 * entry to the poll table _first_ ..
661 	 */
662 	if (filp->f_mode & FMODE_READ)
663 		poll_wait(filp, &pipe->rd_wait, wait);
664 	if (filp->f_mode & FMODE_WRITE)
665 		poll_wait(filp, &pipe->wr_wait, wait);
666 
667 	/*
668 	 * .. and only then can you do the racy tests. That way,
669 	 * if something changes and you got it wrong, the poll
670 	 * table entry will wake you up and fix it.
671 	 */
672 	head = READ_ONCE(pipe->head);
673 	tail = READ_ONCE(pipe->tail);
674 
675 	mask = 0;
676 	if (filp->f_mode & FMODE_READ) {
677 		if (!pipe_empty(head, tail))
678 			mask |= EPOLLIN | EPOLLRDNORM;
679 		if (!pipe->writers && filp->f_version != pipe->w_counter)
680 			mask |= EPOLLHUP;
681 	}
682 
683 	if (filp->f_mode & FMODE_WRITE) {
684 		if (!pipe_full(head, tail, pipe->max_usage))
685 			mask |= EPOLLOUT | EPOLLWRNORM;
686 		/*
687 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
688 		 * behave exactly like pipes for poll().
689 		 */
690 		if (!pipe->readers)
691 			mask |= EPOLLERR;
692 	}
693 
694 	return mask;
695 }
696 
697 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
698 {
699 	int kill = 0;
700 
701 	spin_lock(&inode->i_lock);
702 	if (!--pipe->files) {
703 		inode->i_pipe = NULL;
704 		kill = 1;
705 	}
706 	spin_unlock(&inode->i_lock);
707 
708 	if (kill)
709 		free_pipe_info(pipe);
710 }
711 
712 static int
713 pipe_release(struct inode *inode, struct file *file)
714 {
715 	struct pipe_inode_info *pipe = file->private_data;
716 
717 	__pipe_lock(pipe);
718 	if (file->f_mode & FMODE_READ)
719 		pipe->readers--;
720 	if (file->f_mode & FMODE_WRITE)
721 		pipe->writers--;
722 
723 	/* Was that the last reader or writer, but not the other side? */
724 	if (!pipe->readers != !pipe->writers) {
725 		wake_up_interruptible_all(&pipe->rd_wait);
726 		wake_up_interruptible_all(&pipe->wr_wait);
727 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
728 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
729 	}
730 	__pipe_unlock(pipe);
731 
732 	put_pipe_info(inode, pipe);
733 	return 0;
734 }
735 
736 static int
737 pipe_fasync(int fd, struct file *filp, int on)
738 {
739 	struct pipe_inode_info *pipe = filp->private_data;
740 	int retval = 0;
741 
742 	__pipe_lock(pipe);
743 	if (filp->f_mode & FMODE_READ)
744 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
745 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
746 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
747 		if (retval < 0 && (filp->f_mode & FMODE_READ))
748 			/* this can happen only if on == T */
749 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
750 	}
751 	__pipe_unlock(pipe);
752 	return retval;
753 }
754 
755 unsigned long account_pipe_buffers(struct user_struct *user,
756 				   unsigned long old, unsigned long new)
757 {
758 	return atomic_long_add_return(new - old, &user->pipe_bufs);
759 }
760 
761 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
762 {
763 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
764 
765 	return soft_limit && user_bufs > soft_limit;
766 }
767 
768 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
769 {
770 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
771 
772 	return hard_limit && user_bufs > hard_limit;
773 }
774 
775 bool pipe_is_unprivileged_user(void)
776 {
777 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
778 }
779 
780 struct pipe_inode_info *alloc_pipe_info(void)
781 {
782 	struct pipe_inode_info *pipe;
783 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
784 	struct user_struct *user = get_current_user();
785 	unsigned long user_bufs;
786 	unsigned int max_size = READ_ONCE(pipe_max_size);
787 
788 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
789 	if (pipe == NULL)
790 		goto out_free_uid;
791 
792 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
793 		pipe_bufs = max_size >> PAGE_SHIFT;
794 
795 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
796 
797 	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
798 		user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
799 		pipe_bufs = PIPE_MIN_DEF_BUFFERS;
800 	}
801 
802 	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
803 		goto out_revert_acct;
804 
805 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
806 			     GFP_KERNEL_ACCOUNT);
807 
808 	if (pipe->bufs) {
809 		init_waitqueue_head(&pipe->rd_wait);
810 		init_waitqueue_head(&pipe->wr_wait);
811 		pipe->r_counter = pipe->w_counter = 1;
812 		pipe->max_usage = pipe_bufs;
813 		pipe->ring_size = pipe_bufs;
814 		pipe->nr_accounted = pipe_bufs;
815 		pipe->user = user;
816 		mutex_init(&pipe->mutex);
817 		return pipe;
818 	}
819 
820 out_revert_acct:
821 	(void) account_pipe_buffers(user, pipe_bufs, 0);
822 	kfree(pipe);
823 out_free_uid:
824 	free_uid(user);
825 	return NULL;
826 }
827 
828 void free_pipe_info(struct pipe_inode_info *pipe)
829 {
830 	int i;
831 
832 #ifdef CONFIG_WATCH_QUEUE
833 	if (pipe->watch_queue) {
834 		watch_queue_clear(pipe->watch_queue);
835 		put_watch_queue(pipe->watch_queue);
836 	}
837 #endif
838 
839 	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
840 	free_uid(pipe->user);
841 	for (i = 0; i < pipe->ring_size; i++) {
842 		struct pipe_buffer *buf = pipe->bufs + i;
843 		if (buf->ops)
844 			pipe_buf_release(pipe, buf);
845 	}
846 	if (pipe->tmp_page)
847 		__free_page(pipe->tmp_page);
848 	kfree(pipe->bufs);
849 	kfree(pipe);
850 }
851 
852 static struct vfsmount *pipe_mnt __read_mostly;
853 
854 /*
855  * pipefs_dname() is called from d_path().
856  */
857 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
858 {
859 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
860 				d_inode(dentry)->i_ino);
861 }
862 
863 static const struct dentry_operations pipefs_dentry_operations = {
864 	.d_dname	= pipefs_dname,
865 };
866 
867 static struct inode * get_pipe_inode(void)
868 {
869 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
870 	struct pipe_inode_info *pipe;
871 
872 	if (!inode)
873 		goto fail_inode;
874 
875 	inode->i_ino = get_next_ino();
876 
877 	pipe = alloc_pipe_info();
878 	if (!pipe)
879 		goto fail_iput;
880 
881 	inode->i_pipe = pipe;
882 	pipe->files = 2;
883 	pipe->readers = pipe->writers = 1;
884 	inode->i_fop = &pipefifo_fops;
885 
886 	/*
887 	 * Mark the inode dirty from the very beginning,
888 	 * that way it will never be moved to the dirty
889 	 * list because "mark_inode_dirty()" will think
890 	 * that it already _is_ on the dirty list.
891 	 */
892 	inode->i_state = I_DIRTY;
893 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
894 	inode->i_uid = current_fsuid();
895 	inode->i_gid = current_fsgid();
896 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
897 
898 	return inode;
899 
900 fail_iput:
901 	iput(inode);
902 
903 fail_inode:
904 	return NULL;
905 }
906 
907 int create_pipe_files(struct file **res, int flags)
908 {
909 	struct inode *inode = get_pipe_inode();
910 	struct file *f;
911 	int error;
912 
913 	if (!inode)
914 		return -ENFILE;
915 
916 	if (flags & O_NOTIFICATION_PIPE) {
917 		error = watch_queue_init(inode->i_pipe);
918 		if (error) {
919 			free_pipe_info(inode->i_pipe);
920 			iput(inode);
921 			return error;
922 		}
923 	}
924 
925 	f = alloc_file_pseudo(inode, pipe_mnt, "",
926 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
927 				&pipefifo_fops);
928 	if (IS_ERR(f)) {
929 		free_pipe_info(inode->i_pipe);
930 		iput(inode);
931 		return PTR_ERR(f);
932 	}
933 
934 	f->private_data = inode->i_pipe;
935 
936 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
937 				  &pipefifo_fops);
938 	if (IS_ERR(res[0])) {
939 		put_pipe_info(inode, inode->i_pipe);
940 		fput(f);
941 		return PTR_ERR(res[0]);
942 	}
943 	res[0]->private_data = inode->i_pipe;
944 	res[1] = f;
945 	stream_open(inode, res[0]);
946 	stream_open(inode, res[1]);
947 	return 0;
948 }
949 
950 static int __do_pipe_flags(int *fd, struct file **files, int flags)
951 {
952 	int error;
953 	int fdw, fdr;
954 
955 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
956 		return -EINVAL;
957 
958 	error = create_pipe_files(files, flags);
959 	if (error)
960 		return error;
961 
962 	error = get_unused_fd_flags(flags);
963 	if (error < 0)
964 		goto err_read_pipe;
965 	fdr = error;
966 
967 	error = get_unused_fd_flags(flags);
968 	if (error < 0)
969 		goto err_fdr;
970 	fdw = error;
971 
972 	audit_fd_pair(fdr, fdw);
973 	fd[0] = fdr;
974 	fd[1] = fdw;
975 	return 0;
976 
977  err_fdr:
978 	put_unused_fd(fdr);
979  err_read_pipe:
980 	fput(files[0]);
981 	fput(files[1]);
982 	return error;
983 }
984 
985 int do_pipe_flags(int *fd, int flags)
986 {
987 	struct file *files[2];
988 	int error = __do_pipe_flags(fd, files, flags);
989 	if (!error) {
990 		fd_install(fd[0], files[0]);
991 		fd_install(fd[1], files[1]);
992 	}
993 	return error;
994 }
995 
996 /*
997  * sys_pipe() is the normal C calling standard for creating
998  * a pipe. It's not the way Unix traditionally does this, though.
999  */
1000 static int do_pipe2(int __user *fildes, int flags)
1001 {
1002 	struct file *files[2];
1003 	int fd[2];
1004 	int error;
1005 
1006 	error = __do_pipe_flags(fd, files, flags);
1007 	if (!error) {
1008 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1009 			fput(files[0]);
1010 			fput(files[1]);
1011 			put_unused_fd(fd[0]);
1012 			put_unused_fd(fd[1]);
1013 			error = -EFAULT;
1014 		} else {
1015 			fd_install(fd[0], files[0]);
1016 			fd_install(fd[1], files[1]);
1017 		}
1018 	}
1019 	return error;
1020 }
1021 
1022 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1023 {
1024 	return do_pipe2(fildes, flags);
1025 }
1026 
1027 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1028 {
1029 	return do_pipe2(fildes, 0);
1030 }
1031 
1032 /*
1033  * This is the stupid "wait for pipe to be readable or writable"
1034  * model.
1035  *
1036  * See pipe_read/write() for the proper kind of exclusive wait,
1037  * but that requires that we wake up any other readers/writers
1038  * if we then do not end up reading everything (ie the whole
1039  * "wake_next_reader/writer" logic in pipe_read/write()).
1040  */
1041 void pipe_wait_readable(struct pipe_inode_info *pipe)
1042 {
1043 	pipe_unlock(pipe);
1044 	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1045 	pipe_lock(pipe);
1046 }
1047 
1048 void pipe_wait_writable(struct pipe_inode_info *pipe)
1049 {
1050 	pipe_unlock(pipe);
1051 	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1052 	pipe_lock(pipe);
1053 }
1054 
1055 /*
1056  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1057  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1058  * race with the count check and waitqueue prep.
1059  *
1060  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1061  * then check the condition you're waiting for, and only then sleep. But
1062  * because of the pipe lock, we can check the condition before being on
1063  * the wait queue.
1064  *
1065  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1066  */
1067 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1068 {
1069 	DEFINE_WAIT(rdwait);
1070 	int cur = *cnt;
1071 
1072 	while (cur == *cnt) {
1073 		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1074 		pipe_unlock(pipe);
1075 		schedule();
1076 		finish_wait(&pipe->rd_wait, &rdwait);
1077 		pipe_lock(pipe);
1078 		if (signal_pending(current))
1079 			break;
1080 	}
1081 	return cur == *cnt ? -ERESTARTSYS : 0;
1082 }
1083 
1084 static void wake_up_partner(struct pipe_inode_info *pipe)
1085 {
1086 	wake_up_interruptible_all(&pipe->rd_wait);
1087 }
1088 
1089 static int fifo_open(struct inode *inode, struct file *filp)
1090 {
1091 	struct pipe_inode_info *pipe;
1092 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1093 	int ret;
1094 
1095 	filp->f_version = 0;
1096 
1097 	spin_lock(&inode->i_lock);
1098 	if (inode->i_pipe) {
1099 		pipe = inode->i_pipe;
1100 		pipe->files++;
1101 		spin_unlock(&inode->i_lock);
1102 	} else {
1103 		spin_unlock(&inode->i_lock);
1104 		pipe = alloc_pipe_info();
1105 		if (!pipe)
1106 			return -ENOMEM;
1107 		pipe->files = 1;
1108 		spin_lock(&inode->i_lock);
1109 		if (unlikely(inode->i_pipe)) {
1110 			inode->i_pipe->files++;
1111 			spin_unlock(&inode->i_lock);
1112 			free_pipe_info(pipe);
1113 			pipe = inode->i_pipe;
1114 		} else {
1115 			inode->i_pipe = pipe;
1116 			spin_unlock(&inode->i_lock);
1117 		}
1118 	}
1119 	filp->private_data = pipe;
1120 	/* OK, we have a pipe and it's pinned down */
1121 
1122 	__pipe_lock(pipe);
1123 
1124 	/* We can only do regular read/write on fifos */
1125 	stream_open(inode, filp);
1126 
1127 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1128 	case FMODE_READ:
1129 	/*
1130 	 *  O_RDONLY
1131 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1132 	 *  opened, even when there is no process writing the FIFO.
1133 	 */
1134 		pipe->r_counter++;
1135 		if (pipe->readers++ == 0)
1136 			wake_up_partner(pipe);
1137 
1138 		if (!is_pipe && !pipe->writers) {
1139 			if ((filp->f_flags & O_NONBLOCK)) {
1140 				/* suppress EPOLLHUP until we have
1141 				 * seen a writer */
1142 				filp->f_version = pipe->w_counter;
1143 			} else {
1144 				if (wait_for_partner(pipe, &pipe->w_counter))
1145 					goto err_rd;
1146 			}
1147 		}
1148 		break;
1149 
1150 	case FMODE_WRITE:
1151 	/*
1152 	 *  O_WRONLY
1153 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1154 	 *  errno=ENXIO when there is no process reading the FIFO.
1155 	 */
1156 		ret = -ENXIO;
1157 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1158 			goto err;
1159 
1160 		pipe->w_counter++;
1161 		if (!pipe->writers++)
1162 			wake_up_partner(pipe);
1163 
1164 		if (!is_pipe && !pipe->readers) {
1165 			if (wait_for_partner(pipe, &pipe->r_counter))
1166 				goto err_wr;
1167 		}
1168 		break;
1169 
1170 	case FMODE_READ | FMODE_WRITE:
1171 	/*
1172 	 *  O_RDWR
1173 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1174 	 *  This implementation will NEVER block on a O_RDWR open, since
1175 	 *  the process can at least talk to itself.
1176 	 */
1177 
1178 		pipe->readers++;
1179 		pipe->writers++;
1180 		pipe->r_counter++;
1181 		pipe->w_counter++;
1182 		if (pipe->readers == 1 || pipe->writers == 1)
1183 			wake_up_partner(pipe);
1184 		break;
1185 
1186 	default:
1187 		ret = -EINVAL;
1188 		goto err;
1189 	}
1190 
1191 	/* Ok! */
1192 	__pipe_unlock(pipe);
1193 	return 0;
1194 
1195 err_rd:
1196 	if (!--pipe->readers)
1197 		wake_up_interruptible(&pipe->wr_wait);
1198 	ret = -ERESTARTSYS;
1199 	goto err;
1200 
1201 err_wr:
1202 	if (!--pipe->writers)
1203 		wake_up_interruptible_all(&pipe->rd_wait);
1204 	ret = -ERESTARTSYS;
1205 	goto err;
1206 
1207 err:
1208 	__pipe_unlock(pipe);
1209 
1210 	put_pipe_info(inode, pipe);
1211 	return ret;
1212 }
1213 
1214 const struct file_operations pipefifo_fops = {
1215 	.open		= fifo_open,
1216 	.llseek		= no_llseek,
1217 	.read_iter	= pipe_read,
1218 	.write_iter	= pipe_write,
1219 	.poll		= pipe_poll,
1220 	.unlocked_ioctl	= pipe_ioctl,
1221 	.release	= pipe_release,
1222 	.fasync		= pipe_fasync,
1223 	.splice_write	= iter_file_splice_write,
1224 };
1225 
1226 /*
1227  * Currently we rely on the pipe array holding a power-of-2 number
1228  * of pages. Returns 0 on error.
1229  */
1230 unsigned int round_pipe_size(unsigned long size)
1231 {
1232 	if (size > (1U << 31))
1233 		return 0;
1234 
1235 	/* Minimum pipe size, as required by POSIX */
1236 	if (size < PAGE_SIZE)
1237 		return PAGE_SIZE;
1238 
1239 	return roundup_pow_of_two(size);
1240 }
1241 
1242 /*
1243  * Resize the pipe ring to a number of slots.
1244  */
1245 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1246 {
1247 	struct pipe_buffer *bufs;
1248 	unsigned int head, tail, mask, n;
1249 
1250 	/*
1251 	 * We can shrink the pipe, if arg is greater than the ring occupancy.
1252 	 * Since we don't expect a lot of shrink+grow operations, just free and
1253 	 * allocate again like we would do for growing.  If the pipe currently
1254 	 * contains more buffers than arg, then return busy.
1255 	 */
1256 	mask = pipe->ring_size - 1;
1257 	head = pipe->head;
1258 	tail = pipe->tail;
1259 	n = pipe_occupancy(pipe->head, pipe->tail);
1260 	if (nr_slots < n)
1261 		return -EBUSY;
1262 
1263 	bufs = kcalloc(nr_slots, sizeof(*bufs),
1264 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1265 	if (unlikely(!bufs))
1266 		return -ENOMEM;
1267 
1268 	/*
1269 	 * The pipe array wraps around, so just start the new one at zero
1270 	 * and adjust the indices.
1271 	 */
1272 	if (n > 0) {
1273 		unsigned int h = head & mask;
1274 		unsigned int t = tail & mask;
1275 		if (h > t) {
1276 			memcpy(bufs, pipe->bufs + t,
1277 			       n * sizeof(struct pipe_buffer));
1278 		} else {
1279 			unsigned int tsize = pipe->ring_size - t;
1280 			if (h > 0)
1281 				memcpy(bufs + tsize, pipe->bufs,
1282 				       h * sizeof(struct pipe_buffer));
1283 			memcpy(bufs, pipe->bufs + t,
1284 			       tsize * sizeof(struct pipe_buffer));
1285 		}
1286 	}
1287 
1288 	head = n;
1289 	tail = 0;
1290 
1291 	kfree(pipe->bufs);
1292 	pipe->bufs = bufs;
1293 	pipe->ring_size = nr_slots;
1294 	if (pipe->max_usage > nr_slots)
1295 		pipe->max_usage = nr_slots;
1296 	pipe->tail = tail;
1297 	pipe->head = head;
1298 
1299 	/* This might have made more room for writers */
1300 	wake_up_interruptible(&pipe->wr_wait);
1301 	return 0;
1302 }
1303 
1304 /*
1305  * Allocate a new array of pipe buffers and copy the info over. Returns the
1306  * pipe size if successful, or return -ERROR on error.
1307  */
1308 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1309 {
1310 	unsigned long user_bufs;
1311 	unsigned int nr_slots, size;
1312 	long ret = 0;
1313 
1314 #ifdef CONFIG_WATCH_QUEUE
1315 	if (pipe->watch_queue)
1316 		return -EBUSY;
1317 #endif
1318 
1319 	size = round_pipe_size(arg);
1320 	nr_slots = size >> PAGE_SHIFT;
1321 
1322 	if (!nr_slots)
1323 		return -EINVAL;
1324 
1325 	/*
1326 	 * If trying to increase the pipe capacity, check that an
1327 	 * unprivileged user is not trying to exceed various limits
1328 	 * (soft limit check here, hard limit check just below).
1329 	 * Decreasing the pipe capacity is always permitted, even
1330 	 * if the user is currently over a limit.
1331 	 */
1332 	if (nr_slots > pipe->max_usage &&
1333 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1334 		return -EPERM;
1335 
1336 	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1337 
1338 	if (nr_slots > pipe->max_usage &&
1339 			(too_many_pipe_buffers_hard(user_bufs) ||
1340 			 too_many_pipe_buffers_soft(user_bufs)) &&
1341 			pipe_is_unprivileged_user()) {
1342 		ret = -EPERM;
1343 		goto out_revert_acct;
1344 	}
1345 
1346 	ret = pipe_resize_ring(pipe, nr_slots);
1347 	if (ret < 0)
1348 		goto out_revert_acct;
1349 
1350 	pipe->max_usage = nr_slots;
1351 	pipe->nr_accounted = nr_slots;
1352 	return pipe->max_usage * PAGE_SIZE;
1353 
1354 out_revert_acct:
1355 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1356 	return ret;
1357 }
1358 
1359 /*
1360  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1361  * not enough to verify that this is a pipe.
1362  */
1363 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1364 {
1365 	struct pipe_inode_info *pipe = file->private_data;
1366 
1367 	if (file->f_op != &pipefifo_fops || !pipe)
1368 		return NULL;
1369 #ifdef CONFIG_WATCH_QUEUE
1370 	if (for_splice && pipe->watch_queue)
1371 		return NULL;
1372 #endif
1373 	return pipe;
1374 }
1375 
1376 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1377 {
1378 	struct pipe_inode_info *pipe;
1379 	long ret;
1380 
1381 	pipe = get_pipe_info(file, false);
1382 	if (!pipe)
1383 		return -EBADF;
1384 
1385 	__pipe_lock(pipe);
1386 
1387 	switch (cmd) {
1388 	case F_SETPIPE_SZ:
1389 		ret = pipe_set_size(pipe, arg);
1390 		break;
1391 	case F_GETPIPE_SZ:
1392 		ret = pipe->max_usage * PAGE_SIZE;
1393 		break;
1394 	default:
1395 		ret = -EINVAL;
1396 		break;
1397 	}
1398 
1399 	__pipe_unlock(pipe);
1400 	return ret;
1401 }
1402 
1403 static const struct super_operations pipefs_ops = {
1404 	.destroy_inode = free_inode_nonrcu,
1405 	.statfs = simple_statfs,
1406 };
1407 
1408 /*
1409  * pipefs should _never_ be mounted by userland - too much of security hassle,
1410  * no real gain from having the whole whorehouse mounted. So we don't need
1411  * any operations on the root directory. However, we need a non-trivial
1412  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1413  */
1414 
1415 static int pipefs_init_fs_context(struct fs_context *fc)
1416 {
1417 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1418 	if (!ctx)
1419 		return -ENOMEM;
1420 	ctx->ops = &pipefs_ops;
1421 	ctx->dops = &pipefs_dentry_operations;
1422 	return 0;
1423 }
1424 
1425 static struct file_system_type pipe_fs_type = {
1426 	.name		= "pipefs",
1427 	.init_fs_context = pipefs_init_fs_context,
1428 	.kill_sb	= kill_anon_super,
1429 };
1430 
1431 static int __init init_pipe_fs(void)
1432 {
1433 	int err = register_filesystem(&pipe_fs_type);
1434 
1435 	if (!err) {
1436 		pipe_mnt = kern_mount(&pipe_fs_type);
1437 		if (IS_ERR(pipe_mnt)) {
1438 			err = PTR_ERR(pipe_mnt);
1439 			unregister_filesystem(&pipe_fs_type);
1440 		}
1441 	}
1442 	return err;
1443 }
1444 
1445 fs_initcall(init_pipe_fs);
1446