xref: /linux/fs/pipe.c (revision efad798b9f01300565f65058b153250cc49d58f2)
1 /*
2  *  linux/fs/pipe.c
3  *
4  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/mount.h>
15 #include <linux/pipe_fs_i.h>
16 #include <linux/uio.h>
17 #include <linux/highmem.h>
18 #include <linux/pagemap.h>
19 #include <linux/audit.h>
20 
21 #include <asm/uaccess.h>
22 #include <asm/ioctls.h>
23 
24 /*
25  * We use a start+len construction, which provides full use of the
26  * allocated memory.
27  * -- Florian Coosmann (FGC)
28  *
29  * Reads with count = 0 should always return 0.
30  * -- Julian Bradfield 1999-06-07.
31  *
32  * FIFOs and Pipes now generate SIGIO for both readers and writers.
33  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
34  *
35  * pipe_read & write cleanup
36  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
37  */
38 
39 /* Drop the inode semaphore and wait for a pipe event, atomically */
40 void pipe_wait(struct pipe_inode_info *pipe)
41 {
42 	DEFINE_WAIT(wait);
43 
44 	/*
45 	 * Pipes are system-local resources, so sleeping on them
46 	 * is considered a noninteractive wait:
47 	 */
48 	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
49 	if (pipe->inode)
50 		mutex_unlock(&pipe->inode->i_mutex);
51 	schedule();
52 	finish_wait(&pipe->wait, &wait);
53 	if (pipe->inode)
54 		mutex_lock(&pipe->inode->i_mutex);
55 }
56 
57 static int
58 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
59 			int atomic)
60 {
61 	unsigned long copy;
62 
63 	while (len > 0) {
64 		while (!iov->iov_len)
65 			iov++;
66 		copy = min_t(unsigned long, len, iov->iov_len);
67 
68 		if (atomic) {
69 			if (__copy_from_user_inatomic(to, iov->iov_base, copy))
70 				return -EFAULT;
71 		} else {
72 			if (copy_from_user(to, iov->iov_base, copy))
73 				return -EFAULT;
74 		}
75 		to += copy;
76 		len -= copy;
77 		iov->iov_base += copy;
78 		iov->iov_len -= copy;
79 	}
80 	return 0;
81 }
82 
83 static int
84 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
85 		      int atomic)
86 {
87 	unsigned long copy;
88 
89 	while (len > 0) {
90 		while (!iov->iov_len)
91 			iov++;
92 		copy = min_t(unsigned long, len, iov->iov_len);
93 
94 		if (atomic) {
95 			if (__copy_to_user_inatomic(iov->iov_base, from, copy))
96 				return -EFAULT;
97 		} else {
98 			if (copy_to_user(iov->iov_base, from, copy))
99 				return -EFAULT;
100 		}
101 		from += copy;
102 		len -= copy;
103 		iov->iov_base += copy;
104 		iov->iov_len -= copy;
105 	}
106 	return 0;
107 }
108 
109 /*
110  * Attempt to pre-fault in the user memory, so we can use atomic copies.
111  * Returns the number of bytes not faulted in.
112  */
113 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
114 {
115 	while (!iov->iov_len)
116 		iov++;
117 
118 	while (len > 0) {
119 		unsigned long this_len;
120 
121 		this_len = min_t(unsigned long, len, iov->iov_len);
122 		if (fault_in_pages_writeable(iov->iov_base, this_len))
123 			break;
124 
125 		len -= this_len;
126 		iov++;
127 	}
128 
129 	return len;
130 }
131 
132 /*
133  * Pre-fault in the user memory, so we can use atomic copies.
134  */
135 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
136 {
137 	while (!iov->iov_len)
138 		iov++;
139 
140 	while (len > 0) {
141 		unsigned long this_len;
142 
143 		this_len = min_t(unsigned long, len, iov->iov_len);
144 		fault_in_pages_readable(iov->iov_base, this_len);
145 		len -= this_len;
146 		iov++;
147 	}
148 }
149 
150 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
151 				  struct pipe_buffer *buf)
152 {
153 	struct page *page = buf->page;
154 
155 	/*
156 	 * If nobody else uses this page, and we don't already have a
157 	 * temporary page, let's keep track of it as a one-deep
158 	 * allocation cache. (Otherwise just release our reference to it)
159 	 */
160 	if (page_count(page) == 1 && !pipe->tmp_page)
161 		pipe->tmp_page = page;
162 	else
163 		page_cache_release(page);
164 }
165 
166 /**
167  * generic_pipe_buf_map - virtually map a pipe buffer
168  * @pipe:	the pipe that the buffer belongs to
169  * @buf:	the buffer that should be mapped
170  * @atomic:	whether to use an atomic map
171  *
172  * Description:
173  *	This function returns a kernel virtual address mapping for the
174  *	passed in @pipe_buffer. If @atomic is set, an atomic map is provided
175  *	and the caller has to be careful not to fault before calling
176  *	the unmap function.
177  *
178  *	Note that this function occupies KM_USER0 if @atomic != 0.
179  */
180 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
181 			   struct pipe_buffer *buf, int atomic)
182 {
183 	if (atomic) {
184 		buf->flags |= PIPE_BUF_FLAG_ATOMIC;
185 		return kmap_atomic(buf->page, KM_USER0);
186 	}
187 
188 	return kmap(buf->page);
189 }
190 
191 /**
192  * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
193  * @pipe:	the pipe that the buffer belongs to
194  * @buf:	the buffer that should be unmapped
195  * @map_data:	the data that the mapping function returned
196  *
197  * Description:
198  *	This function undoes the mapping that ->map() provided.
199  */
200 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
201 			    struct pipe_buffer *buf, void *map_data)
202 {
203 	if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
204 		buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
205 		kunmap_atomic(map_data, KM_USER0);
206 	} else
207 		kunmap(buf->page);
208 }
209 
210 /**
211  * generic_pipe_buf_steal - attempt to take ownership of a @pipe_buffer
212  * @pipe:	the pipe that the buffer belongs to
213  * @buf:	the buffer to attempt to steal
214  *
215  * Description:
216  *	This function attempts to steal the @struct page attached to
217  *	@buf. If successful, this function returns 0 and returns with
218  *	the page locked. The caller may then reuse the page for whatever
219  *	he wishes, the typical use is insertion into a different file
220  *	page cache.
221  */
222 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
223 			   struct pipe_buffer *buf)
224 {
225 	struct page *page = buf->page;
226 
227 	/*
228 	 * A reference of one is golden, that means that the owner of this
229 	 * page is the only one holding a reference to it. lock the page
230 	 * and return OK.
231 	 */
232 	if (page_count(page) == 1) {
233 		lock_page(page);
234 		return 0;
235 	}
236 
237 	return 1;
238 }
239 
240 /**
241  * generic_pipe_buf_get - get a reference to a @struct pipe_buffer
242  * @pipe:	the pipe that the buffer belongs to
243  * @buf:	the buffer to get a reference to
244  *
245  * Description:
246  *	This function grabs an extra reference to @buf. It's used in
247  *	in the tee() system call, when we duplicate the buffers in one
248  *	pipe into another.
249  */
250 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
251 {
252 	page_cache_get(buf->page);
253 }
254 
255 /**
256  * generic_pipe_buf_confirm - verify contents of the pipe buffer
257  * @info:	the pipe that the buffer belongs to
258  * @buf:	the buffer to confirm
259  *
260  * Description:
261  *	This function does nothing, because the generic pipe code uses
262  *	pages that are always good when inserted into the pipe.
263  */
264 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
265 			     struct pipe_buffer *buf)
266 {
267 	return 0;
268 }
269 
270 static const struct pipe_buf_operations anon_pipe_buf_ops = {
271 	.can_merge = 1,
272 	.map = generic_pipe_buf_map,
273 	.unmap = generic_pipe_buf_unmap,
274 	.confirm = generic_pipe_buf_confirm,
275 	.release = anon_pipe_buf_release,
276 	.steal = generic_pipe_buf_steal,
277 	.get = generic_pipe_buf_get,
278 };
279 
280 static ssize_t
281 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
282 	   unsigned long nr_segs, loff_t pos)
283 {
284 	struct file *filp = iocb->ki_filp;
285 	struct inode *inode = filp->f_path.dentry->d_inode;
286 	struct pipe_inode_info *pipe;
287 	int do_wakeup;
288 	ssize_t ret;
289 	struct iovec *iov = (struct iovec *)_iov;
290 	size_t total_len;
291 
292 	total_len = iov_length(iov, nr_segs);
293 	/* Null read succeeds. */
294 	if (unlikely(total_len == 0))
295 		return 0;
296 
297 	do_wakeup = 0;
298 	ret = 0;
299 	mutex_lock(&inode->i_mutex);
300 	pipe = inode->i_pipe;
301 	for (;;) {
302 		int bufs = pipe->nrbufs;
303 		if (bufs) {
304 			int curbuf = pipe->curbuf;
305 			struct pipe_buffer *buf = pipe->bufs + curbuf;
306 			const struct pipe_buf_operations *ops = buf->ops;
307 			void *addr;
308 			size_t chars = buf->len;
309 			int error, atomic;
310 
311 			if (chars > total_len)
312 				chars = total_len;
313 
314 			error = ops->confirm(pipe, buf);
315 			if (error) {
316 				if (!ret)
317 					error = ret;
318 				break;
319 			}
320 
321 			atomic = !iov_fault_in_pages_write(iov, chars);
322 redo:
323 			addr = ops->map(pipe, buf, atomic);
324 			error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
325 			ops->unmap(pipe, buf, addr);
326 			if (unlikely(error)) {
327 				/*
328 				 * Just retry with the slow path if we failed.
329 				 */
330 				if (atomic) {
331 					atomic = 0;
332 					goto redo;
333 				}
334 				if (!ret)
335 					ret = error;
336 				break;
337 			}
338 			ret += chars;
339 			buf->offset += chars;
340 			buf->len -= chars;
341 			if (!buf->len) {
342 				buf->ops = NULL;
343 				ops->release(pipe, buf);
344 				curbuf = (curbuf + 1) & (PIPE_BUFFERS-1);
345 				pipe->curbuf = curbuf;
346 				pipe->nrbufs = --bufs;
347 				do_wakeup = 1;
348 			}
349 			total_len -= chars;
350 			if (!total_len)
351 				break;	/* common path: read succeeded */
352 		}
353 		if (bufs)	/* More to do? */
354 			continue;
355 		if (!pipe->writers)
356 			break;
357 		if (!pipe->waiting_writers) {
358 			/* syscall merging: Usually we must not sleep
359 			 * if O_NONBLOCK is set, or if we got some data.
360 			 * But if a writer sleeps in kernel space, then
361 			 * we can wait for that data without violating POSIX.
362 			 */
363 			if (ret)
364 				break;
365 			if (filp->f_flags & O_NONBLOCK) {
366 				ret = -EAGAIN;
367 				break;
368 			}
369 		}
370 		if (signal_pending(current)) {
371 			if (!ret)
372 				ret = -ERESTARTSYS;
373 			break;
374 		}
375 		if (do_wakeup) {
376 			wake_up_interruptible_sync(&pipe->wait);
377  			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
378 		}
379 		pipe_wait(pipe);
380 	}
381 	mutex_unlock(&inode->i_mutex);
382 
383 	/* Signal writers asynchronously that there is more room. */
384 	if (do_wakeup) {
385 		wake_up_interruptible_sync(&pipe->wait);
386 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
387 	}
388 	if (ret > 0)
389 		file_accessed(filp);
390 	return ret;
391 }
392 
393 static ssize_t
394 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
395 	    unsigned long nr_segs, loff_t ppos)
396 {
397 	struct file *filp = iocb->ki_filp;
398 	struct inode *inode = filp->f_path.dentry->d_inode;
399 	struct pipe_inode_info *pipe;
400 	ssize_t ret;
401 	int do_wakeup;
402 	struct iovec *iov = (struct iovec *)_iov;
403 	size_t total_len;
404 	ssize_t chars;
405 
406 	total_len = iov_length(iov, nr_segs);
407 	/* Null write succeeds. */
408 	if (unlikely(total_len == 0))
409 		return 0;
410 
411 	do_wakeup = 0;
412 	ret = 0;
413 	mutex_lock(&inode->i_mutex);
414 	pipe = inode->i_pipe;
415 
416 	if (!pipe->readers) {
417 		send_sig(SIGPIPE, current, 0);
418 		ret = -EPIPE;
419 		goto out;
420 	}
421 
422 	/* We try to merge small writes */
423 	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
424 	if (pipe->nrbufs && chars != 0) {
425 		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
426 							(PIPE_BUFFERS-1);
427 		struct pipe_buffer *buf = pipe->bufs + lastbuf;
428 		const struct pipe_buf_operations *ops = buf->ops;
429 		int offset = buf->offset + buf->len;
430 
431 		if (ops->can_merge && offset + chars <= PAGE_SIZE) {
432 			int error, atomic = 1;
433 			void *addr;
434 
435 			error = ops->confirm(pipe, buf);
436 			if (error)
437 				goto out;
438 
439 			iov_fault_in_pages_read(iov, chars);
440 redo1:
441 			addr = ops->map(pipe, buf, atomic);
442 			error = pipe_iov_copy_from_user(offset + addr, iov,
443 							chars, atomic);
444 			ops->unmap(pipe, buf, addr);
445 			ret = error;
446 			do_wakeup = 1;
447 			if (error) {
448 				if (atomic) {
449 					atomic = 0;
450 					goto redo1;
451 				}
452 				goto out;
453 			}
454 			buf->len += chars;
455 			total_len -= chars;
456 			ret = chars;
457 			if (!total_len)
458 				goto out;
459 		}
460 	}
461 
462 	for (;;) {
463 		int bufs;
464 
465 		if (!pipe->readers) {
466 			send_sig(SIGPIPE, current, 0);
467 			if (!ret)
468 				ret = -EPIPE;
469 			break;
470 		}
471 		bufs = pipe->nrbufs;
472 		if (bufs < PIPE_BUFFERS) {
473 			int newbuf = (pipe->curbuf + bufs) & (PIPE_BUFFERS-1);
474 			struct pipe_buffer *buf = pipe->bufs + newbuf;
475 			struct page *page = pipe->tmp_page;
476 			char *src;
477 			int error, atomic = 1;
478 
479 			if (!page) {
480 				page = alloc_page(GFP_HIGHUSER);
481 				if (unlikely(!page)) {
482 					ret = ret ? : -ENOMEM;
483 					break;
484 				}
485 				pipe->tmp_page = page;
486 			}
487 			/* Always wake up, even if the copy fails. Otherwise
488 			 * we lock up (O_NONBLOCK-)readers that sleep due to
489 			 * syscall merging.
490 			 * FIXME! Is this really true?
491 			 */
492 			do_wakeup = 1;
493 			chars = PAGE_SIZE;
494 			if (chars > total_len)
495 				chars = total_len;
496 
497 			iov_fault_in_pages_read(iov, chars);
498 redo2:
499 			if (atomic)
500 				src = kmap_atomic(page, KM_USER0);
501 			else
502 				src = kmap(page);
503 
504 			error = pipe_iov_copy_from_user(src, iov, chars,
505 							atomic);
506 			if (atomic)
507 				kunmap_atomic(src, KM_USER0);
508 			else
509 				kunmap(page);
510 
511 			if (unlikely(error)) {
512 				if (atomic) {
513 					atomic = 0;
514 					goto redo2;
515 				}
516 				if (!ret)
517 					ret = error;
518 				break;
519 			}
520 			ret += chars;
521 
522 			/* Insert it into the buffer array */
523 			buf->page = page;
524 			buf->ops = &anon_pipe_buf_ops;
525 			buf->offset = 0;
526 			buf->len = chars;
527 			pipe->nrbufs = ++bufs;
528 			pipe->tmp_page = NULL;
529 
530 			total_len -= chars;
531 			if (!total_len)
532 				break;
533 		}
534 		if (bufs < PIPE_BUFFERS)
535 			continue;
536 		if (filp->f_flags & O_NONBLOCK) {
537 			if (!ret)
538 				ret = -EAGAIN;
539 			break;
540 		}
541 		if (signal_pending(current)) {
542 			if (!ret)
543 				ret = -ERESTARTSYS;
544 			break;
545 		}
546 		if (do_wakeup) {
547 			wake_up_interruptible_sync(&pipe->wait);
548 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
549 			do_wakeup = 0;
550 		}
551 		pipe->waiting_writers++;
552 		pipe_wait(pipe);
553 		pipe->waiting_writers--;
554 	}
555 out:
556 	mutex_unlock(&inode->i_mutex);
557 	if (do_wakeup) {
558 		wake_up_interruptible_sync(&pipe->wait);
559 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
560 	}
561 	if (ret > 0)
562 		file_update_time(filp);
563 	return ret;
564 }
565 
566 static ssize_t
567 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
568 {
569 	return -EBADF;
570 }
571 
572 static ssize_t
573 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
574 	   loff_t *ppos)
575 {
576 	return -EBADF;
577 }
578 
579 static int
580 pipe_ioctl(struct inode *pino, struct file *filp,
581 	   unsigned int cmd, unsigned long arg)
582 {
583 	struct inode *inode = filp->f_path.dentry->d_inode;
584 	struct pipe_inode_info *pipe;
585 	int count, buf, nrbufs;
586 
587 	switch (cmd) {
588 		case FIONREAD:
589 			mutex_lock(&inode->i_mutex);
590 			pipe = inode->i_pipe;
591 			count = 0;
592 			buf = pipe->curbuf;
593 			nrbufs = pipe->nrbufs;
594 			while (--nrbufs >= 0) {
595 				count += pipe->bufs[buf].len;
596 				buf = (buf+1) & (PIPE_BUFFERS-1);
597 			}
598 			mutex_unlock(&inode->i_mutex);
599 
600 			return put_user(count, (int __user *)arg);
601 		default:
602 			return -EINVAL;
603 	}
604 }
605 
606 /* No kernel lock held - fine */
607 static unsigned int
608 pipe_poll(struct file *filp, poll_table *wait)
609 {
610 	unsigned int mask;
611 	struct inode *inode = filp->f_path.dentry->d_inode;
612 	struct pipe_inode_info *pipe = inode->i_pipe;
613 	int nrbufs;
614 
615 	poll_wait(filp, &pipe->wait, wait);
616 
617 	/* Reading only -- no need for acquiring the semaphore.  */
618 	nrbufs = pipe->nrbufs;
619 	mask = 0;
620 	if (filp->f_mode & FMODE_READ) {
621 		mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
622 		if (!pipe->writers && filp->f_version != pipe->w_counter)
623 			mask |= POLLHUP;
624 	}
625 
626 	if (filp->f_mode & FMODE_WRITE) {
627 		mask |= (nrbufs < PIPE_BUFFERS) ? POLLOUT | POLLWRNORM : 0;
628 		/*
629 		 * Most Unices do not set POLLERR for FIFOs but on Linux they
630 		 * behave exactly like pipes for poll().
631 		 */
632 		if (!pipe->readers)
633 			mask |= POLLERR;
634 	}
635 
636 	return mask;
637 }
638 
639 static int
640 pipe_release(struct inode *inode, int decr, int decw)
641 {
642 	struct pipe_inode_info *pipe;
643 
644 	mutex_lock(&inode->i_mutex);
645 	pipe = inode->i_pipe;
646 	pipe->readers -= decr;
647 	pipe->writers -= decw;
648 
649 	if (!pipe->readers && !pipe->writers) {
650 		free_pipe_info(inode);
651 	} else {
652 		wake_up_interruptible_sync(&pipe->wait);
653 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
654 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
655 	}
656 	mutex_unlock(&inode->i_mutex);
657 
658 	return 0;
659 }
660 
661 static int
662 pipe_read_fasync(int fd, struct file *filp, int on)
663 {
664 	struct inode *inode = filp->f_path.dentry->d_inode;
665 	int retval;
666 
667 	mutex_lock(&inode->i_mutex);
668 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
669 	mutex_unlock(&inode->i_mutex);
670 
671 	if (retval < 0)
672 		return retval;
673 
674 	return 0;
675 }
676 
677 
678 static int
679 pipe_write_fasync(int fd, struct file *filp, int on)
680 {
681 	struct inode *inode = filp->f_path.dentry->d_inode;
682 	int retval;
683 
684 	mutex_lock(&inode->i_mutex);
685 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
686 	mutex_unlock(&inode->i_mutex);
687 
688 	if (retval < 0)
689 		return retval;
690 
691 	return 0;
692 }
693 
694 
695 static int
696 pipe_rdwr_fasync(int fd, struct file *filp, int on)
697 {
698 	struct inode *inode = filp->f_path.dentry->d_inode;
699 	struct pipe_inode_info *pipe = inode->i_pipe;
700 	int retval;
701 
702 	mutex_lock(&inode->i_mutex);
703 
704 	retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
705 
706 	if (retval >= 0)
707 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
708 
709 	mutex_unlock(&inode->i_mutex);
710 
711 	if (retval < 0)
712 		return retval;
713 
714 	return 0;
715 }
716 
717 
718 static int
719 pipe_read_release(struct inode *inode, struct file *filp)
720 {
721 	pipe_read_fasync(-1, filp, 0);
722 	return pipe_release(inode, 1, 0);
723 }
724 
725 static int
726 pipe_write_release(struct inode *inode, struct file *filp)
727 {
728 	pipe_write_fasync(-1, filp, 0);
729 	return pipe_release(inode, 0, 1);
730 }
731 
732 static int
733 pipe_rdwr_release(struct inode *inode, struct file *filp)
734 {
735 	int decr, decw;
736 
737 	pipe_rdwr_fasync(-1, filp, 0);
738 	decr = (filp->f_mode & FMODE_READ) != 0;
739 	decw = (filp->f_mode & FMODE_WRITE) != 0;
740 	return pipe_release(inode, decr, decw);
741 }
742 
743 static int
744 pipe_read_open(struct inode *inode, struct file *filp)
745 {
746 	/* We could have perhaps used atomic_t, but this and friends
747 	   below are the only places.  So it doesn't seem worthwhile.  */
748 	mutex_lock(&inode->i_mutex);
749 	inode->i_pipe->readers++;
750 	mutex_unlock(&inode->i_mutex);
751 
752 	return 0;
753 }
754 
755 static int
756 pipe_write_open(struct inode *inode, struct file *filp)
757 {
758 	mutex_lock(&inode->i_mutex);
759 	inode->i_pipe->writers++;
760 	mutex_unlock(&inode->i_mutex);
761 
762 	return 0;
763 }
764 
765 static int
766 pipe_rdwr_open(struct inode *inode, struct file *filp)
767 {
768 	mutex_lock(&inode->i_mutex);
769 	if (filp->f_mode & FMODE_READ)
770 		inode->i_pipe->readers++;
771 	if (filp->f_mode & FMODE_WRITE)
772 		inode->i_pipe->writers++;
773 	mutex_unlock(&inode->i_mutex);
774 
775 	return 0;
776 }
777 
778 /*
779  * The file_operations structs are not static because they
780  * are also used in linux/fs/fifo.c to do operations on FIFOs.
781  */
782 const struct file_operations read_fifo_fops = {
783 	.llseek		= no_llseek,
784 	.read		= do_sync_read,
785 	.aio_read	= pipe_read,
786 	.write		= bad_pipe_w,
787 	.poll		= pipe_poll,
788 	.ioctl		= pipe_ioctl,
789 	.open		= pipe_read_open,
790 	.release	= pipe_read_release,
791 	.fasync		= pipe_read_fasync,
792 };
793 
794 const struct file_operations write_fifo_fops = {
795 	.llseek		= no_llseek,
796 	.read		= bad_pipe_r,
797 	.write		= do_sync_write,
798 	.aio_write	= pipe_write,
799 	.poll		= pipe_poll,
800 	.ioctl		= pipe_ioctl,
801 	.open		= pipe_write_open,
802 	.release	= pipe_write_release,
803 	.fasync		= pipe_write_fasync,
804 };
805 
806 const struct file_operations rdwr_fifo_fops = {
807 	.llseek		= no_llseek,
808 	.read		= do_sync_read,
809 	.aio_read	= pipe_read,
810 	.write		= do_sync_write,
811 	.aio_write	= pipe_write,
812 	.poll		= pipe_poll,
813 	.ioctl		= pipe_ioctl,
814 	.open		= pipe_rdwr_open,
815 	.release	= pipe_rdwr_release,
816 	.fasync		= pipe_rdwr_fasync,
817 };
818 
819 static const struct file_operations read_pipe_fops = {
820 	.llseek		= no_llseek,
821 	.read		= do_sync_read,
822 	.aio_read	= pipe_read,
823 	.write		= bad_pipe_w,
824 	.poll		= pipe_poll,
825 	.ioctl		= pipe_ioctl,
826 	.open		= pipe_read_open,
827 	.release	= pipe_read_release,
828 	.fasync		= pipe_read_fasync,
829 };
830 
831 static const struct file_operations write_pipe_fops = {
832 	.llseek		= no_llseek,
833 	.read		= bad_pipe_r,
834 	.write		= do_sync_write,
835 	.aio_write	= pipe_write,
836 	.poll		= pipe_poll,
837 	.ioctl		= pipe_ioctl,
838 	.open		= pipe_write_open,
839 	.release	= pipe_write_release,
840 	.fasync		= pipe_write_fasync,
841 };
842 
843 static const struct file_operations rdwr_pipe_fops = {
844 	.llseek		= no_llseek,
845 	.read		= do_sync_read,
846 	.aio_read	= pipe_read,
847 	.write		= do_sync_write,
848 	.aio_write	= pipe_write,
849 	.poll		= pipe_poll,
850 	.ioctl		= pipe_ioctl,
851 	.open		= pipe_rdwr_open,
852 	.release	= pipe_rdwr_release,
853 	.fasync		= pipe_rdwr_fasync,
854 };
855 
856 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
857 {
858 	struct pipe_inode_info *pipe;
859 
860 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
861 	if (pipe) {
862 		init_waitqueue_head(&pipe->wait);
863 		pipe->r_counter = pipe->w_counter = 1;
864 		pipe->inode = inode;
865 	}
866 
867 	return pipe;
868 }
869 
870 void __free_pipe_info(struct pipe_inode_info *pipe)
871 {
872 	int i;
873 
874 	for (i = 0; i < PIPE_BUFFERS; i++) {
875 		struct pipe_buffer *buf = pipe->bufs + i;
876 		if (buf->ops)
877 			buf->ops->release(pipe, buf);
878 	}
879 	if (pipe->tmp_page)
880 		__free_page(pipe->tmp_page);
881 	kfree(pipe);
882 }
883 
884 void free_pipe_info(struct inode *inode)
885 {
886 	__free_pipe_info(inode->i_pipe);
887 	inode->i_pipe = NULL;
888 }
889 
890 static struct vfsmount *pipe_mnt __read_mostly;
891 static int pipefs_delete_dentry(struct dentry *dentry)
892 {
893 	/*
894 	 * At creation time, we pretended this dentry was hashed
895 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
896 	 * At delete time, we restore the truth : not hashed.
897 	 * (so that dput() can proceed correctly)
898 	 */
899 	dentry->d_flags |= DCACHE_UNHASHED;
900 	return 0;
901 }
902 
903 /*
904  * pipefs_dname() is called from d_path().
905  */
906 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
907 {
908 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
909 				dentry->d_inode->i_ino);
910 }
911 
912 static struct dentry_operations pipefs_dentry_operations = {
913 	.d_delete	= pipefs_delete_dentry,
914 	.d_dname	= pipefs_dname,
915 };
916 
917 static struct inode * get_pipe_inode(void)
918 {
919 	struct inode *inode = new_inode(pipe_mnt->mnt_sb);
920 	struct pipe_inode_info *pipe;
921 
922 	if (!inode)
923 		goto fail_inode;
924 
925 	pipe = alloc_pipe_info(inode);
926 	if (!pipe)
927 		goto fail_iput;
928 	inode->i_pipe = pipe;
929 
930 	pipe->readers = pipe->writers = 1;
931 	inode->i_fop = &rdwr_pipe_fops;
932 
933 	/*
934 	 * Mark the inode dirty from the very beginning,
935 	 * that way it will never be moved to the dirty
936 	 * list because "mark_inode_dirty()" will think
937 	 * that it already _is_ on the dirty list.
938 	 */
939 	inode->i_state = I_DIRTY;
940 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
941 	inode->i_uid = current->fsuid;
942 	inode->i_gid = current->fsgid;
943 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
944 
945 	return inode;
946 
947 fail_iput:
948 	iput(inode);
949 
950 fail_inode:
951 	return NULL;
952 }
953 
954 struct file *create_write_pipe(void)
955 {
956 	int err;
957 	struct inode *inode;
958 	struct file *f;
959 	struct dentry *dentry;
960 	struct qstr name = { .name = "" };
961 
962 	f = get_empty_filp();
963 	if (!f)
964 		return ERR_PTR(-ENFILE);
965 	err = -ENFILE;
966 	inode = get_pipe_inode();
967 	if (!inode)
968 		goto err_file;
969 
970 	err = -ENOMEM;
971 	dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &name);
972 	if (!dentry)
973 		goto err_inode;
974 
975 	dentry->d_op = &pipefs_dentry_operations;
976 	/*
977 	 * We dont want to publish this dentry into global dentry hash table.
978 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
979 	 * This permits a working /proc/$pid/fd/XXX on pipes
980 	 */
981 	dentry->d_flags &= ~DCACHE_UNHASHED;
982 	d_instantiate(dentry, inode);
983 	f->f_path.mnt = mntget(pipe_mnt);
984 	f->f_path.dentry = dentry;
985 	f->f_mapping = inode->i_mapping;
986 
987 	f->f_flags = O_WRONLY;
988 	f->f_op = &write_pipe_fops;
989 	f->f_mode = FMODE_WRITE;
990 	f->f_version = 0;
991 
992 	return f;
993 
994  err_inode:
995 	free_pipe_info(inode);
996 	iput(inode);
997  err_file:
998 	put_filp(f);
999 	return ERR_PTR(err);
1000 }
1001 
1002 void free_write_pipe(struct file *f)
1003 {
1004 	free_pipe_info(f->f_dentry->d_inode);
1005 	dput(f->f_path.dentry);
1006 	mntput(f->f_path.mnt);
1007 	put_filp(f);
1008 }
1009 
1010 struct file *create_read_pipe(struct file *wrf)
1011 {
1012 	struct file *f = get_empty_filp();
1013 	if (!f)
1014 		return ERR_PTR(-ENFILE);
1015 
1016 	/* Grab pipe from the writer */
1017 	f->f_path.mnt = mntget(wrf->f_path.mnt);
1018 	f->f_path.dentry = dget(wrf->f_path.dentry);
1019 	f->f_mapping = wrf->f_path.dentry->d_inode->i_mapping;
1020 
1021 	f->f_pos = 0;
1022 	f->f_flags = O_RDONLY;
1023 	f->f_op = &read_pipe_fops;
1024 	f->f_mode = FMODE_READ;
1025 	f->f_version = 0;
1026 
1027 	return f;
1028 }
1029 
1030 int do_pipe(int *fd)
1031 {
1032 	struct file *fw, *fr;
1033 	int error;
1034 	int fdw, fdr;
1035 
1036 	fw = create_write_pipe();
1037 	if (IS_ERR(fw))
1038 		return PTR_ERR(fw);
1039 	fr = create_read_pipe(fw);
1040 	error = PTR_ERR(fr);
1041 	if (IS_ERR(fr))
1042 		goto err_write_pipe;
1043 
1044 	error = get_unused_fd();
1045 	if (error < 0)
1046 		goto err_read_pipe;
1047 	fdr = error;
1048 
1049 	error = get_unused_fd();
1050 	if (error < 0)
1051 		goto err_fdr;
1052 	fdw = error;
1053 
1054 	error = audit_fd_pair(fdr, fdw);
1055 	if (error < 0)
1056 		goto err_fdw;
1057 
1058 	fd_install(fdr, fr);
1059 	fd_install(fdw, fw);
1060 	fd[0] = fdr;
1061 	fd[1] = fdw;
1062 
1063 	return 0;
1064 
1065  err_fdw:
1066 	put_unused_fd(fdw);
1067  err_fdr:
1068 	put_unused_fd(fdr);
1069  err_read_pipe:
1070 	dput(fr->f_dentry);
1071 	mntput(fr->f_vfsmnt);
1072 	put_filp(fr);
1073  err_write_pipe:
1074 	free_write_pipe(fw);
1075 	return error;
1076 }
1077 
1078 /*
1079  * pipefs should _never_ be mounted by userland - too much of security hassle,
1080  * no real gain from having the whole whorehouse mounted. So we don't need
1081  * any operations on the root directory. However, we need a non-trivial
1082  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1083  */
1084 static int pipefs_get_sb(struct file_system_type *fs_type,
1085 			 int flags, const char *dev_name, void *data,
1086 			 struct vfsmount *mnt)
1087 {
1088 	return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt);
1089 }
1090 
1091 static struct file_system_type pipe_fs_type = {
1092 	.name		= "pipefs",
1093 	.get_sb		= pipefs_get_sb,
1094 	.kill_sb	= kill_anon_super,
1095 };
1096 
1097 static int __init init_pipe_fs(void)
1098 {
1099 	int err = register_filesystem(&pipe_fs_type);
1100 
1101 	if (!err) {
1102 		pipe_mnt = kern_mount(&pipe_fs_type);
1103 		if (IS_ERR(pipe_mnt)) {
1104 			err = PTR_ERR(pipe_mnt);
1105 			unregister_filesystem(&pipe_fs_type);
1106 		}
1107 	}
1108 	return err;
1109 }
1110 
1111 static void __exit exit_pipe_fs(void)
1112 {
1113 	unregister_filesystem(&pipe_fs_type);
1114 	mntput(pipe_mnt);
1115 }
1116 
1117 fs_initcall(init_pipe_fs);
1118 module_exit(exit_pipe_fs);
1119