1 /* 2 * linux/fs/pipe.c 3 * 4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/file.h> 9 #include <linux/poll.h> 10 #include <linux/slab.h> 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/mount.h> 15 #include <linux/pipe_fs_i.h> 16 #include <linux/uio.h> 17 #include <linux/highmem.h> 18 #include <linux/pagemap.h> 19 #include <linux/audit.h> 20 21 #include <asm/uaccess.h> 22 #include <asm/ioctls.h> 23 24 /* 25 * We use a start+len construction, which provides full use of the 26 * allocated memory. 27 * -- Florian Coosmann (FGC) 28 * 29 * Reads with count = 0 should always return 0. 30 * -- Julian Bradfield 1999-06-07. 31 * 32 * FIFOs and Pipes now generate SIGIO for both readers and writers. 33 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 34 * 35 * pipe_read & write cleanup 36 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 37 */ 38 39 /* Drop the inode semaphore and wait for a pipe event, atomically */ 40 void pipe_wait(struct pipe_inode_info *pipe) 41 { 42 DEFINE_WAIT(wait); 43 44 /* 45 * Pipes are system-local resources, so sleeping on them 46 * is considered a noninteractive wait: 47 */ 48 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE); 49 if (pipe->inode) 50 mutex_unlock(&pipe->inode->i_mutex); 51 schedule(); 52 finish_wait(&pipe->wait, &wait); 53 if (pipe->inode) 54 mutex_lock(&pipe->inode->i_mutex); 55 } 56 57 static int 58 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len, 59 int atomic) 60 { 61 unsigned long copy; 62 63 while (len > 0) { 64 while (!iov->iov_len) 65 iov++; 66 copy = min_t(unsigned long, len, iov->iov_len); 67 68 if (atomic) { 69 if (__copy_from_user_inatomic(to, iov->iov_base, copy)) 70 return -EFAULT; 71 } else { 72 if (copy_from_user(to, iov->iov_base, copy)) 73 return -EFAULT; 74 } 75 to += copy; 76 len -= copy; 77 iov->iov_base += copy; 78 iov->iov_len -= copy; 79 } 80 return 0; 81 } 82 83 static int 84 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len, 85 int atomic) 86 { 87 unsigned long copy; 88 89 while (len > 0) { 90 while (!iov->iov_len) 91 iov++; 92 copy = min_t(unsigned long, len, iov->iov_len); 93 94 if (atomic) { 95 if (__copy_to_user_inatomic(iov->iov_base, from, copy)) 96 return -EFAULT; 97 } else { 98 if (copy_to_user(iov->iov_base, from, copy)) 99 return -EFAULT; 100 } 101 from += copy; 102 len -= copy; 103 iov->iov_base += copy; 104 iov->iov_len -= copy; 105 } 106 return 0; 107 } 108 109 /* 110 * Attempt to pre-fault in the user memory, so we can use atomic copies. 111 * Returns the number of bytes not faulted in. 112 */ 113 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len) 114 { 115 while (!iov->iov_len) 116 iov++; 117 118 while (len > 0) { 119 unsigned long this_len; 120 121 this_len = min_t(unsigned long, len, iov->iov_len); 122 if (fault_in_pages_writeable(iov->iov_base, this_len)) 123 break; 124 125 len -= this_len; 126 iov++; 127 } 128 129 return len; 130 } 131 132 /* 133 * Pre-fault in the user memory, so we can use atomic copies. 134 */ 135 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len) 136 { 137 while (!iov->iov_len) 138 iov++; 139 140 while (len > 0) { 141 unsigned long this_len; 142 143 this_len = min_t(unsigned long, len, iov->iov_len); 144 fault_in_pages_readable(iov->iov_base, this_len); 145 len -= this_len; 146 iov++; 147 } 148 } 149 150 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 151 struct pipe_buffer *buf) 152 { 153 struct page *page = buf->page; 154 155 /* 156 * If nobody else uses this page, and we don't already have a 157 * temporary page, let's keep track of it as a one-deep 158 * allocation cache. (Otherwise just release our reference to it) 159 */ 160 if (page_count(page) == 1 && !pipe->tmp_page) 161 pipe->tmp_page = page; 162 else 163 page_cache_release(page); 164 } 165 166 /** 167 * generic_pipe_buf_map - virtually map a pipe buffer 168 * @pipe: the pipe that the buffer belongs to 169 * @buf: the buffer that should be mapped 170 * @atomic: whether to use an atomic map 171 * 172 * Description: 173 * This function returns a kernel virtual address mapping for the 174 * passed in @pipe_buffer. If @atomic is set, an atomic map is provided 175 * and the caller has to be careful not to fault before calling 176 * the unmap function. 177 * 178 * Note that this function occupies KM_USER0 if @atomic != 0. 179 */ 180 void *generic_pipe_buf_map(struct pipe_inode_info *pipe, 181 struct pipe_buffer *buf, int atomic) 182 { 183 if (atomic) { 184 buf->flags |= PIPE_BUF_FLAG_ATOMIC; 185 return kmap_atomic(buf->page, KM_USER0); 186 } 187 188 return kmap(buf->page); 189 } 190 191 /** 192 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer 193 * @pipe: the pipe that the buffer belongs to 194 * @buf: the buffer that should be unmapped 195 * @map_data: the data that the mapping function returned 196 * 197 * Description: 198 * This function undoes the mapping that ->map() provided. 199 */ 200 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe, 201 struct pipe_buffer *buf, void *map_data) 202 { 203 if (buf->flags & PIPE_BUF_FLAG_ATOMIC) { 204 buf->flags &= ~PIPE_BUF_FLAG_ATOMIC; 205 kunmap_atomic(map_data, KM_USER0); 206 } else 207 kunmap(buf->page); 208 } 209 210 /** 211 * generic_pipe_buf_steal - attempt to take ownership of a @pipe_buffer 212 * @pipe: the pipe that the buffer belongs to 213 * @buf: the buffer to attempt to steal 214 * 215 * Description: 216 * This function attempts to steal the @struct page attached to 217 * @buf. If successful, this function returns 0 and returns with 218 * the page locked. The caller may then reuse the page for whatever 219 * he wishes, the typical use is insertion into a different file 220 * page cache. 221 */ 222 int generic_pipe_buf_steal(struct pipe_inode_info *pipe, 223 struct pipe_buffer *buf) 224 { 225 struct page *page = buf->page; 226 227 /* 228 * A reference of one is golden, that means that the owner of this 229 * page is the only one holding a reference to it. lock the page 230 * and return OK. 231 */ 232 if (page_count(page) == 1) { 233 lock_page(page); 234 return 0; 235 } 236 237 return 1; 238 } 239 240 /** 241 * generic_pipe_buf_get - get a reference to a @struct pipe_buffer 242 * @pipe: the pipe that the buffer belongs to 243 * @buf: the buffer to get a reference to 244 * 245 * Description: 246 * This function grabs an extra reference to @buf. It's used in 247 * in the tee() system call, when we duplicate the buffers in one 248 * pipe into another. 249 */ 250 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 251 { 252 page_cache_get(buf->page); 253 } 254 255 /** 256 * generic_pipe_buf_confirm - verify contents of the pipe buffer 257 * @info: the pipe that the buffer belongs to 258 * @buf: the buffer to confirm 259 * 260 * Description: 261 * This function does nothing, because the generic pipe code uses 262 * pages that are always good when inserted into the pipe. 263 */ 264 int generic_pipe_buf_confirm(struct pipe_inode_info *info, 265 struct pipe_buffer *buf) 266 { 267 return 0; 268 } 269 270 static const struct pipe_buf_operations anon_pipe_buf_ops = { 271 .can_merge = 1, 272 .map = generic_pipe_buf_map, 273 .unmap = generic_pipe_buf_unmap, 274 .confirm = generic_pipe_buf_confirm, 275 .release = anon_pipe_buf_release, 276 .steal = generic_pipe_buf_steal, 277 .get = generic_pipe_buf_get, 278 }; 279 280 static ssize_t 281 pipe_read(struct kiocb *iocb, const struct iovec *_iov, 282 unsigned long nr_segs, loff_t pos) 283 { 284 struct file *filp = iocb->ki_filp; 285 struct inode *inode = filp->f_path.dentry->d_inode; 286 struct pipe_inode_info *pipe; 287 int do_wakeup; 288 ssize_t ret; 289 struct iovec *iov = (struct iovec *)_iov; 290 size_t total_len; 291 292 total_len = iov_length(iov, nr_segs); 293 /* Null read succeeds. */ 294 if (unlikely(total_len == 0)) 295 return 0; 296 297 do_wakeup = 0; 298 ret = 0; 299 mutex_lock(&inode->i_mutex); 300 pipe = inode->i_pipe; 301 for (;;) { 302 int bufs = pipe->nrbufs; 303 if (bufs) { 304 int curbuf = pipe->curbuf; 305 struct pipe_buffer *buf = pipe->bufs + curbuf; 306 const struct pipe_buf_operations *ops = buf->ops; 307 void *addr; 308 size_t chars = buf->len; 309 int error, atomic; 310 311 if (chars > total_len) 312 chars = total_len; 313 314 error = ops->confirm(pipe, buf); 315 if (error) { 316 if (!ret) 317 error = ret; 318 break; 319 } 320 321 atomic = !iov_fault_in_pages_write(iov, chars); 322 redo: 323 addr = ops->map(pipe, buf, atomic); 324 error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic); 325 ops->unmap(pipe, buf, addr); 326 if (unlikely(error)) { 327 /* 328 * Just retry with the slow path if we failed. 329 */ 330 if (atomic) { 331 atomic = 0; 332 goto redo; 333 } 334 if (!ret) 335 ret = error; 336 break; 337 } 338 ret += chars; 339 buf->offset += chars; 340 buf->len -= chars; 341 if (!buf->len) { 342 buf->ops = NULL; 343 ops->release(pipe, buf); 344 curbuf = (curbuf + 1) & (PIPE_BUFFERS-1); 345 pipe->curbuf = curbuf; 346 pipe->nrbufs = --bufs; 347 do_wakeup = 1; 348 } 349 total_len -= chars; 350 if (!total_len) 351 break; /* common path: read succeeded */ 352 } 353 if (bufs) /* More to do? */ 354 continue; 355 if (!pipe->writers) 356 break; 357 if (!pipe->waiting_writers) { 358 /* syscall merging: Usually we must not sleep 359 * if O_NONBLOCK is set, or if we got some data. 360 * But if a writer sleeps in kernel space, then 361 * we can wait for that data without violating POSIX. 362 */ 363 if (ret) 364 break; 365 if (filp->f_flags & O_NONBLOCK) { 366 ret = -EAGAIN; 367 break; 368 } 369 } 370 if (signal_pending(current)) { 371 if (!ret) 372 ret = -ERESTARTSYS; 373 break; 374 } 375 if (do_wakeup) { 376 wake_up_interruptible_sync(&pipe->wait); 377 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 378 } 379 pipe_wait(pipe); 380 } 381 mutex_unlock(&inode->i_mutex); 382 383 /* Signal writers asynchronously that there is more room. */ 384 if (do_wakeup) { 385 wake_up_interruptible_sync(&pipe->wait); 386 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 387 } 388 if (ret > 0) 389 file_accessed(filp); 390 return ret; 391 } 392 393 static ssize_t 394 pipe_write(struct kiocb *iocb, const struct iovec *_iov, 395 unsigned long nr_segs, loff_t ppos) 396 { 397 struct file *filp = iocb->ki_filp; 398 struct inode *inode = filp->f_path.dentry->d_inode; 399 struct pipe_inode_info *pipe; 400 ssize_t ret; 401 int do_wakeup; 402 struct iovec *iov = (struct iovec *)_iov; 403 size_t total_len; 404 ssize_t chars; 405 406 total_len = iov_length(iov, nr_segs); 407 /* Null write succeeds. */ 408 if (unlikely(total_len == 0)) 409 return 0; 410 411 do_wakeup = 0; 412 ret = 0; 413 mutex_lock(&inode->i_mutex); 414 pipe = inode->i_pipe; 415 416 if (!pipe->readers) { 417 send_sig(SIGPIPE, current, 0); 418 ret = -EPIPE; 419 goto out; 420 } 421 422 /* We try to merge small writes */ 423 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */ 424 if (pipe->nrbufs && chars != 0) { 425 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) & 426 (PIPE_BUFFERS-1); 427 struct pipe_buffer *buf = pipe->bufs + lastbuf; 428 const struct pipe_buf_operations *ops = buf->ops; 429 int offset = buf->offset + buf->len; 430 431 if (ops->can_merge && offset + chars <= PAGE_SIZE) { 432 int error, atomic = 1; 433 void *addr; 434 435 error = ops->confirm(pipe, buf); 436 if (error) 437 goto out; 438 439 iov_fault_in_pages_read(iov, chars); 440 redo1: 441 addr = ops->map(pipe, buf, atomic); 442 error = pipe_iov_copy_from_user(offset + addr, iov, 443 chars, atomic); 444 ops->unmap(pipe, buf, addr); 445 ret = error; 446 do_wakeup = 1; 447 if (error) { 448 if (atomic) { 449 atomic = 0; 450 goto redo1; 451 } 452 goto out; 453 } 454 buf->len += chars; 455 total_len -= chars; 456 ret = chars; 457 if (!total_len) 458 goto out; 459 } 460 } 461 462 for (;;) { 463 int bufs; 464 465 if (!pipe->readers) { 466 send_sig(SIGPIPE, current, 0); 467 if (!ret) 468 ret = -EPIPE; 469 break; 470 } 471 bufs = pipe->nrbufs; 472 if (bufs < PIPE_BUFFERS) { 473 int newbuf = (pipe->curbuf + bufs) & (PIPE_BUFFERS-1); 474 struct pipe_buffer *buf = pipe->bufs + newbuf; 475 struct page *page = pipe->tmp_page; 476 char *src; 477 int error, atomic = 1; 478 479 if (!page) { 480 page = alloc_page(GFP_HIGHUSER); 481 if (unlikely(!page)) { 482 ret = ret ? : -ENOMEM; 483 break; 484 } 485 pipe->tmp_page = page; 486 } 487 /* Always wake up, even if the copy fails. Otherwise 488 * we lock up (O_NONBLOCK-)readers that sleep due to 489 * syscall merging. 490 * FIXME! Is this really true? 491 */ 492 do_wakeup = 1; 493 chars = PAGE_SIZE; 494 if (chars > total_len) 495 chars = total_len; 496 497 iov_fault_in_pages_read(iov, chars); 498 redo2: 499 if (atomic) 500 src = kmap_atomic(page, KM_USER0); 501 else 502 src = kmap(page); 503 504 error = pipe_iov_copy_from_user(src, iov, chars, 505 atomic); 506 if (atomic) 507 kunmap_atomic(src, KM_USER0); 508 else 509 kunmap(page); 510 511 if (unlikely(error)) { 512 if (atomic) { 513 atomic = 0; 514 goto redo2; 515 } 516 if (!ret) 517 ret = error; 518 break; 519 } 520 ret += chars; 521 522 /* Insert it into the buffer array */ 523 buf->page = page; 524 buf->ops = &anon_pipe_buf_ops; 525 buf->offset = 0; 526 buf->len = chars; 527 pipe->nrbufs = ++bufs; 528 pipe->tmp_page = NULL; 529 530 total_len -= chars; 531 if (!total_len) 532 break; 533 } 534 if (bufs < PIPE_BUFFERS) 535 continue; 536 if (filp->f_flags & O_NONBLOCK) { 537 if (!ret) 538 ret = -EAGAIN; 539 break; 540 } 541 if (signal_pending(current)) { 542 if (!ret) 543 ret = -ERESTARTSYS; 544 break; 545 } 546 if (do_wakeup) { 547 wake_up_interruptible_sync(&pipe->wait); 548 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 549 do_wakeup = 0; 550 } 551 pipe->waiting_writers++; 552 pipe_wait(pipe); 553 pipe->waiting_writers--; 554 } 555 out: 556 mutex_unlock(&inode->i_mutex); 557 if (do_wakeup) { 558 wake_up_interruptible_sync(&pipe->wait); 559 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 560 } 561 if (ret > 0) 562 file_update_time(filp); 563 return ret; 564 } 565 566 static ssize_t 567 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos) 568 { 569 return -EBADF; 570 } 571 572 static ssize_t 573 bad_pipe_w(struct file *filp, const char __user *buf, size_t count, 574 loff_t *ppos) 575 { 576 return -EBADF; 577 } 578 579 static int 580 pipe_ioctl(struct inode *pino, struct file *filp, 581 unsigned int cmd, unsigned long arg) 582 { 583 struct inode *inode = filp->f_path.dentry->d_inode; 584 struct pipe_inode_info *pipe; 585 int count, buf, nrbufs; 586 587 switch (cmd) { 588 case FIONREAD: 589 mutex_lock(&inode->i_mutex); 590 pipe = inode->i_pipe; 591 count = 0; 592 buf = pipe->curbuf; 593 nrbufs = pipe->nrbufs; 594 while (--nrbufs >= 0) { 595 count += pipe->bufs[buf].len; 596 buf = (buf+1) & (PIPE_BUFFERS-1); 597 } 598 mutex_unlock(&inode->i_mutex); 599 600 return put_user(count, (int __user *)arg); 601 default: 602 return -EINVAL; 603 } 604 } 605 606 /* No kernel lock held - fine */ 607 static unsigned int 608 pipe_poll(struct file *filp, poll_table *wait) 609 { 610 unsigned int mask; 611 struct inode *inode = filp->f_path.dentry->d_inode; 612 struct pipe_inode_info *pipe = inode->i_pipe; 613 int nrbufs; 614 615 poll_wait(filp, &pipe->wait, wait); 616 617 /* Reading only -- no need for acquiring the semaphore. */ 618 nrbufs = pipe->nrbufs; 619 mask = 0; 620 if (filp->f_mode & FMODE_READ) { 621 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0; 622 if (!pipe->writers && filp->f_version != pipe->w_counter) 623 mask |= POLLHUP; 624 } 625 626 if (filp->f_mode & FMODE_WRITE) { 627 mask |= (nrbufs < PIPE_BUFFERS) ? POLLOUT | POLLWRNORM : 0; 628 /* 629 * Most Unices do not set POLLERR for FIFOs but on Linux they 630 * behave exactly like pipes for poll(). 631 */ 632 if (!pipe->readers) 633 mask |= POLLERR; 634 } 635 636 return mask; 637 } 638 639 static int 640 pipe_release(struct inode *inode, int decr, int decw) 641 { 642 struct pipe_inode_info *pipe; 643 644 mutex_lock(&inode->i_mutex); 645 pipe = inode->i_pipe; 646 pipe->readers -= decr; 647 pipe->writers -= decw; 648 649 if (!pipe->readers && !pipe->writers) { 650 free_pipe_info(inode); 651 } else { 652 wake_up_interruptible_sync(&pipe->wait); 653 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 654 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 655 } 656 mutex_unlock(&inode->i_mutex); 657 658 return 0; 659 } 660 661 static int 662 pipe_read_fasync(int fd, struct file *filp, int on) 663 { 664 struct inode *inode = filp->f_path.dentry->d_inode; 665 int retval; 666 667 mutex_lock(&inode->i_mutex); 668 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers); 669 mutex_unlock(&inode->i_mutex); 670 671 if (retval < 0) 672 return retval; 673 674 return 0; 675 } 676 677 678 static int 679 pipe_write_fasync(int fd, struct file *filp, int on) 680 { 681 struct inode *inode = filp->f_path.dentry->d_inode; 682 int retval; 683 684 mutex_lock(&inode->i_mutex); 685 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers); 686 mutex_unlock(&inode->i_mutex); 687 688 if (retval < 0) 689 return retval; 690 691 return 0; 692 } 693 694 695 static int 696 pipe_rdwr_fasync(int fd, struct file *filp, int on) 697 { 698 struct inode *inode = filp->f_path.dentry->d_inode; 699 struct pipe_inode_info *pipe = inode->i_pipe; 700 int retval; 701 702 mutex_lock(&inode->i_mutex); 703 704 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 705 706 if (retval >= 0) 707 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 708 709 mutex_unlock(&inode->i_mutex); 710 711 if (retval < 0) 712 return retval; 713 714 return 0; 715 } 716 717 718 static int 719 pipe_read_release(struct inode *inode, struct file *filp) 720 { 721 pipe_read_fasync(-1, filp, 0); 722 return pipe_release(inode, 1, 0); 723 } 724 725 static int 726 pipe_write_release(struct inode *inode, struct file *filp) 727 { 728 pipe_write_fasync(-1, filp, 0); 729 return pipe_release(inode, 0, 1); 730 } 731 732 static int 733 pipe_rdwr_release(struct inode *inode, struct file *filp) 734 { 735 int decr, decw; 736 737 pipe_rdwr_fasync(-1, filp, 0); 738 decr = (filp->f_mode & FMODE_READ) != 0; 739 decw = (filp->f_mode & FMODE_WRITE) != 0; 740 return pipe_release(inode, decr, decw); 741 } 742 743 static int 744 pipe_read_open(struct inode *inode, struct file *filp) 745 { 746 /* We could have perhaps used atomic_t, but this and friends 747 below are the only places. So it doesn't seem worthwhile. */ 748 mutex_lock(&inode->i_mutex); 749 inode->i_pipe->readers++; 750 mutex_unlock(&inode->i_mutex); 751 752 return 0; 753 } 754 755 static int 756 pipe_write_open(struct inode *inode, struct file *filp) 757 { 758 mutex_lock(&inode->i_mutex); 759 inode->i_pipe->writers++; 760 mutex_unlock(&inode->i_mutex); 761 762 return 0; 763 } 764 765 static int 766 pipe_rdwr_open(struct inode *inode, struct file *filp) 767 { 768 mutex_lock(&inode->i_mutex); 769 if (filp->f_mode & FMODE_READ) 770 inode->i_pipe->readers++; 771 if (filp->f_mode & FMODE_WRITE) 772 inode->i_pipe->writers++; 773 mutex_unlock(&inode->i_mutex); 774 775 return 0; 776 } 777 778 /* 779 * The file_operations structs are not static because they 780 * are also used in linux/fs/fifo.c to do operations on FIFOs. 781 */ 782 const struct file_operations read_fifo_fops = { 783 .llseek = no_llseek, 784 .read = do_sync_read, 785 .aio_read = pipe_read, 786 .write = bad_pipe_w, 787 .poll = pipe_poll, 788 .ioctl = pipe_ioctl, 789 .open = pipe_read_open, 790 .release = pipe_read_release, 791 .fasync = pipe_read_fasync, 792 }; 793 794 const struct file_operations write_fifo_fops = { 795 .llseek = no_llseek, 796 .read = bad_pipe_r, 797 .write = do_sync_write, 798 .aio_write = pipe_write, 799 .poll = pipe_poll, 800 .ioctl = pipe_ioctl, 801 .open = pipe_write_open, 802 .release = pipe_write_release, 803 .fasync = pipe_write_fasync, 804 }; 805 806 const struct file_operations rdwr_fifo_fops = { 807 .llseek = no_llseek, 808 .read = do_sync_read, 809 .aio_read = pipe_read, 810 .write = do_sync_write, 811 .aio_write = pipe_write, 812 .poll = pipe_poll, 813 .ioctl = pipe_ioctl, 814 .open = pipe_rdwr_open, 815 .release = pipe_rdwr_release, 816 .fasync = pipe_rdwr_fasync, 817 }; 818 819 static const struct file_operations read_pipe_fops = { 820 .llseek = no_llseek, 821 .read = do_sync_read, 822 .aio_read = pipe_read, 823 .write = bad_pipe_w, 824 .poll = pipe_poll, 825 .ioctl = pipe_ioctl, 826 .open = pipe_read_open, 827 .release = pipe_read_release, 828 .fasync = pipe_read_fasync, 829 }; 830 831 static const struct file_operations write_pipe_fops = { 832 .llseek = no_llseek, 833 .read = bad_pipe_r, 834 .write = do_sync_write, 835 .aio_write = pipe_write, 836 .poll = pipe_poll, 837 .ioctl = pipe_ioctl, 838 .open = pipe_write_open, 839 .release = pipe_write_release, 840 .fasync = pipe_write_fasync, 841 }; 842 843 static const struct file_operations rdwr_pipe_fops = { 844 .llseek = no_llseek, 845 .read = do_sync_read, 846 .aio_read = pipe_read, 847 .write = do_sync_write, 848 .aio_write = pipe_write, 849 .poll = pipe_poll, 850 .ioctl = pipe_ioctl, 851 .open = pipe_rdwr_open, 852 .release = pipe_rdwr_release, 853 .fasync = pipe_rdwr_fasync, 854 }; 855 856 struct pipe_inode_info * alloc_pipe_info(struct inode *inode) 857 { 858 struct pipe_inode_info *pipe; 859 860 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL); 861 if (pipe) { 862 init_waitqueue_head(&pipe->wait); 863 pipe->r_counter = pipe->w_counter = 1; 864 pipe->inode = inode; 865 } 866 867 return pipe; 868 } 869 870 void __free_pipe_info(struct pipe_inode_info *pipe) 871 { 872 int i; 873 874 for (i = 0; i < PIPE_BUFFERS; i++) { 875 struct pipe_buffer *buf = pipe->bufs + i; 876 if (buf->ops) 877 buf->ops->release(pipe, buf); 878 } 879 if (pipe->tmp_page) 880 __free_page(pipe->tmp_page); 881 kfree(pipe); 882 } 883 884 void free_pipe_info(struct inode *inode) 885 { 886 __free_pipe_info(inode->i_pipe); 887 inode->i_pipe = NULL; 888 } 889 890 static struct vfsmount *pipe_mnt __read_mostly; 891 static int pipefs_delete_dentry(struct dentry *dentry) 892 { 893 /* 894 * At creation time, we pretended this dentry was hashed 895 * (by clearing DCACHE_UNHASHED bit in d_flags) 896 * At delete time, we restore the truth : not hashed. 897 * (so that dput() can proceed correctly) 898 */ 899 dentry->d_flags |= DCACHE_UNHASHED; 900 return 0; 901 } 902 903 /* 904 * pipefs_dname() is called from d_path(). 905 */ 906 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 907 { 908 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]", 909 dentry->d_inode->i_ino); 910 } 911 912 static struct dentry_operations pipefs_dentry_operations = { 913 .d_delete = pipefs_delete_dentry, 914 .d_dname = pipefs_dname, 915 }; 916 917 static struct inode * get_pipe_inode(void) 918 { 919 struct inode *inode = new_inode(pipe_mnt->mnt_sb); 920 struct pipe_inode_info *pipe; 921 922 if (!inode) 923 goto fail_inode; 924 925 pipe = alloc_pipe_info(inode); 926 if (!pipe) 927 goto fail_iput; 928 inode->i_pipe = pipe; 929 930 pipe->readers = pipe->writers = 1; 931 inode->i_fop = &rdwr_pipe_fops; 932 933 /* 934 * Mark the inode dirty from the very beginning, 935 * that way it will never be moved to the dirty 936 * list because "mark_inode_dirty()" will think 937 * that it already _is_ on the dirty list. 938 */ 939 inode->i_state = I_DIRTY; 940 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 941 inode->i_uid = current->fsuid; 942 inode->i_gid = current->fsgid; 943 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 944 945 return inode; 946 947 fail_iput: 948 iput(inode); 949 950 fail_inode: 951 return NULL; 952 } 953 954 struct file *create_write_pipe(void) 955 { 956 int err; 957 struct inode *inode; 958 struct file *f; 959 struct dentry *dentry; 960 struct qstr name = { .name = "" }; 961 962 f = get_empty_filp(); 963 if (!f) 964 return ERR_PTR(-ENFILE); 965 err = -ENFILE; 966 inode = get_pipe_inode(); 967 if (!inode) 968 goto err_file; 969 970 err = -ENOMEM; 971 dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &name); 972 if (!dentry) 973 goto err_inode; 974 975 dentry->d_op = &pipefs_dentry_operations; 976 /* 977 * We dont want to publish this dentry into global dentry hash table. 978 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED 979 * This permits a working /proc/$pid/fd/XXX on pipes 980 */ 981 dentry->d_flags &= ~DCACHE_UNHASHED; 982 d_instantiate(dentry, inode); 983 f->f_path.mnt = mntget(pipe_mnt); 984 f->f_path.dentry = dentry; 985 f->f_mapping = inode->i_mapping; 986 987 f->f_flags = O_WRONLY; 988 f->f_op = &write_pipe_fops; 989 f->f_mode = FMODE_WRITE; 990 f->f_version = 0; 991 992 return f; 993 994 err_inode: 995 free_pipe_info(inode); 996 iput(inode); 997 err_file: 998 put_filp(f); 999 return ERR_PTR(err); 1000 } 1001 1002 void free_write_pipe(struct file *f) 1003 { 1004 free_pipe_info(f->f_dentry->d_inode); 1005 dput(f->f_path.dentry); 1006 mntput(f->f_path.mnt); 1007 put_filp(f); 1008 } 1009 1010 struct file *create_read_pipe(struct file *wrf) 1011 { 1012 struct file *f = get_empty_filp(); 1013 if (!f) 1014 return ERR_PTR(-ENFILE); 1015 1016 /* Grab pipe from the writer */ 1017 f->f_path.mnt = mntget(wrf->f_path.mnt); 1018 f->f_path.dentry = dget(wrf->f_path.dentry); 1019 f->f_mapping = wrf->f_path.dentry->d_inode->i_mapping; 1020 1021 f->f_pos = 0; 1022 f->f_flags = O_RDONLY; 1023 f->f_op = &read_pipe_fops; 1024 f->f_mode = FMODE_READ; 1025 f->f_version = 0; 1026 1027 return f; 1028 } 1029 1030 int do_pipe(int *fd) 1031 { 1032 struct file *fw, *fr; 1033 int error; 1034 int fdw, fdr; 1035 1036 fw = create_write_pipe(); 1037 if (IS_ERR(fw)) 1038 return PTR_ERR(fw); 1039 fr = create_read_pipe(fw); 1040 error = PTR_ERR(fr); 1041 if (IS_ERR(fr)) 1042 goto err_write_pipe; 1043 1044 error = get_unused_fd(); 1045 if (error < 0) 1046 goto err_read_pipe; 1047 fdr = error; 1048 1049 error = get_unused_fd(); 1050 if (error < 0) 1051 goto err_fdr; 1052 fdw = error; 1053 1054 error = audit_fd_pair(fdr, fdw); 1055 if (error < 0) 1056 goto err_fdw; 1057 1058 fd_install(fdr, fr); 1059 fd_install(fdw, fw); 1060 fd[0] = fdr; 1061 fd[1] = fdw; 1062 1063 return 0; 1064 1065 err_fdw: 1066 put_unused_fd(fdw); 1067 err_fdr: 1068 put_unused_fd(fdr); 1069 err_read_pipe: 1070 dput(fr->f_dentry); 1071 mntput(fr->f_vfsmnt); 1072 put_filp(fr); 1073 err_write_pipe: 1074 free_write_pipe(fw); 1075 return error; 1076 } 1077 1078 /* 1079 * pipefs should _never_ be mounted by userland - too much of security hassle, 1080 * no real gain from having the whole whorehouse mounted. So we don't need 1081 * any operations on the root directory. However, we need a non-trivial 1082 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1083 */ 1084 static int pipefs_get_sb(struct file_system_type *fs_type, 1085 int flags, const char *dev_name, void *data, 1086 struct vfsmount *mnt) 1087 { 1088 return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt); 1089 } 1090 1091 static struct file_system_type pipe_fs_type = { 1092 .name = "pipefs", 1093 .get_sb = pipefs_get_sb, 1094 .kill_sb = kill_anon_super, 1095 }; 1096 1097 static int __init init_pipe_fs(void) 1098 { 1099 int err = register_filesystem(&pipe_fs_type); 1100 1101 if (!err) { 1102 pipe_mnt = kern_mount(&pipe_fs_type); 1103 if (IS_ERR(pipe_mnt)) { 1104 err = PTR_ERR(pipe_mnt); 1105 unregister_filesystem(&pipe_fs_type); 1106 } 1107 } 1108 return err; 1109 } 1110 1111 static void __exit exit_pipe_fs(void) 1112 { 1113 unregister_filesystem(&pipe_fs_type); 1114 mntput(pipe_mnt); 1115 } 1116 1117 fs_initcall(init_pipe_fs); 1118 module_exit(exit_pipe_fs); 1119