xref: /linux/fs/pipe.c (revision d1e879ec600f9b3bdd253167533959facfefb17b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29 
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32 
33 #include "internal.h"
34 
35 /*
36  * New pipe buffers will be restricted to this size while the user is exceeding
37  * their pipe buffer quota. The general pipe use case needs at least two
38  * buffers: one for data yet to be read, and one for new data. If this is less
39  * than two, then a write to a non-empty pipe may block even if the pipe is not
40  * full. This can occur with GNU make jobserver or similar uses of pipes as
41  * semaphores: multiple processes may be waiting to write tokens back to the
42  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43  *
44  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46  * emptied.
47  */
48 #define PIPE_MIN_DEF_BUFFERS 2
49 
50 /*
51  * The max size that a non-root user is allowed to grow the pipe. Can
52  * be set by root in /proc/sys/fs/pipe-max-size
53  */
54 static unsigned int pipe_max_size = 1048576;
55 
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57  * matches default values.
58  */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61 
62 /*
63  * We use head and tail indices that aren't masked off, except at the point of
64  * dereference, but rather they're allowed to wrap naturally.  This means there
65  * isn't a dead spot in the buffer, but the ring has to be a power of two and
66  * <= 2^31.
67  * -- David Howells 2019-09-23.
68  *
69  * Reads with count = 0 should always return 0.
70  * -- Julian Bradfield 1999-06-07.
71  *
72  * FIFOs and Pipes now generate SIGIO for both readers and writers.
73  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74  *
75  * pipe_read & write cleanup
76  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77  */
78 
79 #define cmp_int(l, r)		((l > r) - (l < r))
80 
81 #ifdef CONFIG_PROVE_LOCKING
82 static int pipe_lock_cmp_fn(const struct lockdep_map *a,
83 			    const struct lockdep_map *b)
84 {
85 	return cmp_int((unsigned long) a, (unsigned long) b);
86 }
87 #endif
88 
89 void pipe_lock(struct pipe_inode_info *pipe)
90 {
91 	if (pipe->files)
92 		mutex_lock(&pipe->mutex);
93 }
94 EXPORT_SYMBOL(pipe_lock);
95 
96 void pipe_unlock(struct pipe_inode_info *pipe)
97 {
98 	if (pipe->files)
99 		mutex_unlock(&pipe->mutex);
100 }
101 EXPORT_SYMBOL(pipe_unlock);
102 
103 void pipe_double_lock(struct pipe_inode_info *pipe1,
104 		      struct pipe_inode_info *pipe2)
105 {
106 	BUG_ON(pipe1 == pipe2);
107 
108 	if (pipe1 > pipe2)
109 		swap(pipe1, pipe2);
110 
111 	pipe_lock(pipe1);
112 	pipe_lock(pipe2);
113 }
114 
115 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
116 				  struct pipe_buffer *buf)
117 {
118 	struct page *page = buf->page;
119 
120 	/*
121 	 * If nobody else uses this page, and we don't already have a
122 	 * temporary page, let's keep track of it as a one-deep
123 	 * allocation cache. (Otherwise just release our reference to it)
124 	 */
125 	if (page_count(page) == 1 && !pipe->tmp_page)
126 		pipe->tmp_page = page;
127 	else
128 		put_page(page);
129 }
130 
131 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
132 		struct pipe_buffer *buf)
133 {
134 	struct page *page = buf->page;
135 
136 	if (page_count(page) != 1)
137 		return false;
138 	memcg_kmem_uncharge_page(page, 0);
139 	__SetPageLocked(page);
140 	return true;
141 }
142 
143 /**
144  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
145  * @pipe:	the pipe that the buffer belongs to
146  * @buf:	the buffer to attempt to steal
147  *
148  * Description:
149  *	This function attempts to steal the &struct page attached to
150  *	@buf. If successful, this function returns 0 and returns with
151  *	the page locked. The caller may then reuse the page for whatever
152  *	he wishes; the typical use is insertion into a different file
153  *	page cache.
154  */
155 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
156 		struct pipe_buffer *buf)
157 {
158 	struct page *page = buf->page;
159 
160 	/*
161 	 * A reference of one is golden, that means that the owner of this
162 	 * page is the only one holding a reference to it. lock the page
163 	 * and return OK.
164 	 */
165 	if (page_count(page) == 1) {
166 		lock_page(page);
167 		return true;
168 	}
169 	return false;
170 }
171 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
172 
173 /**
174  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
175  * @pipe:	the pipe that the buffer belongs to
176  * @buf:	the buffer to get a reference to
177  *
178  * Description:
179  *	This function grabs an extra reference to @buf. It's used in
180  *	the tee() system call, when we duplicate the buffers in one
181  *	pipe into another.
182  */
183 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
184 {
185 	return try_get_page(buf->page);
186 }
187 EXPORT_SYMBOL(generic_pipe_buf_get);
188 
189 /**
190  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
191  * @pipe:	the pipe that the buffer belongs to
192  * @buf:	the buffer to put a reference to
193  *
194  * Description:
195  *	This function releases a reference to @buf.
196  */
197 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
198 			      struct pipe_buffer *buf)
199 {
200 	put_page(buf->page);
201 }
202 EXPORT_SYMBOL(generic_pipe_buf_release);
203 
204 static const struct pipe_buf_operations anon_pipe_buf_ops = {
205 	.release	= anon_pipe_buf_release,
206 	.try_steal	= anon_pipe_buf_try_steal,
207 	.get		= generic_pipe_buf_get,
208 };
209 
210 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
211 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
212 {
213 	unsigned int head = READ_ONCE(pipe->head);
214 	unsigned int tail = READ_ONCE(pipe->tail);
215 	unsigned int writers = READ_ONCE(pipe->writers);
216 
217 	return !pipe_empty(head, tail) || !writers;
218 }
219 
220 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe,
221 					    struct pipe_buffer *buf,
222 					    unsigned int tail)
223 {
224 	pipe_buf_release(pipe, buf);
225 
226 	/*
227 	 * If the pipe has a watch_queue, we need additional protection
228 	 * by the spinlock because notifications get posted with only
229 	 * this spinlock, no mutex
230 	 */
231 	if (pipe_has_watch_queue(pipe)) {
232 		spin_lock_irq(&pipe->rd_wait.lock);
233 #ifdef CONFIG_WATCH_QUEUE
234 		if (buf->flags & PIPE_BUF_FLAG_LOSS)
235 			pipe->note_loss = true;
236 #endif
237 		pipe->tail = ++tail;
238 		spin_unlock_irq(&pipe->rd_wait.lock);
239 		return tail;
240 	}
241 
242 	/*
243 	 * Without a watch_queue, we can simply increment the tail
244 	 * without the spinlock - the mutex is enough.
245 	 */
246 	pipe->tail = ++tail;
247 	return tail;
248 }
249 
250 static ssize_t
251 pipe_read(struct kiocb *iocb, struct iov_iter *to)
252 {
253 	size_t total_len = iov_iter_count(to);
254 	struct file *filp = iocb->ki_filp;
255 	struct pipe_inode_info *pipe = filp->private_data;
256 	bool wake_writer = false, wake_next_reader = false;
257 	ssize_t ret;
258 
259 	/* Null read succeeds. */
260 	if (unlikely(total_len == 0))
261 		return 0;
262 
263 	ret = 0;
264 	mutex_lock(&pipe->mutex);
265 
266 	/*
267 	 * We only wake up writers if the pipe was full when we started reading
268 	 * and it is no longer full after reading to avoid unnecessary wakeups.
269 	 *
270 	 * But when we do wake up writers, we do so using a sync wakeup
271 	 * (WF_SYNC), because we want them to get going and generate more
272 	 * data for us.
273 	 */
274 	for (;;) {
275 		/* Read ->head with a barrier vs post_one_notification() */
276 		unsigned int head = smp_load_acquire(&pipe->head);
277 		unsigned int tail = pipe->tail;
278 		unsigned int mask = pipe->ring_size - 1;
279 
280 #ifdef CONFIG_WATCH_QUEUE
281 		if (pipe->note_loss) {
282 			struct watch_notification n;
283 
284 			if (total_len < 8) {
285 				if (ret == 0)
286 					ret = -ENOBUFS;
287 				break;
288 			}
289 
290 			n.type = WATCH_TYPE_META;
291 			n.subtype = WATCH_META_LOSS_NOTIFICATION;
292 			n.info = watch_sizeof(n);
293 			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
294 				if (ret == 0)
295 					ret = -EFAULT;
296 				break;
297 			}
298 			ret += sizeof(n);
299 			total_len -= sizeof(n);
300 			pipe->note_loss = false;
301 		}
302 #endif
303 
304 		if (!pipe_empty(head, tail)) {
305 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
306 			size_t chars = buf->len;
307 			size_t written;
308 			int error;
309 
310 			if (chars > total_len) {
311 				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
312 					if (ret == 0)
313 						ret = -ENOBUFS;
314 					break;
315 				}
316 				chars = total_len;
317 			}
318 
319 			error = pipe_buf_confirm(pipe, buf);
320 			if (error) {
321 				if (!ret)
322 					ret = error;
323 				break;
324 			}
325 
326 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
327 			if (unlikely(written < chars)) {
328 				if (!ret)
329 					ret = -EFAULT;
330 				break;
331 			}
332 			ret += chars;
333 			buf->offset += chars;
334 			buf->len -= chars;
335 
336 			/* Was it a packet buffer? Clean up and exit */
337 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
338 				total_len = chars;
339 				buf->len = 0;
340 			}
341 
342 			if (!buf->len) {
343 				wake_writer |= pipe_full(head, tail, pipe->max_usage);
344 				tail = pipe_update_tail(pipe, buf, tail);
345 			}
346 			total_len -= chars;
347 			if (!total_len)
348 				break;	/* common path: read succeeded */
349 			if (!pipe_empty(head, tail))	/* More to do? */
350 				continue;
351 		}
352 
353 		if (!pipe->writers)
354 			break;
355 		if (ret)
356 			break;
357 		if ((filp->f_flags & O_NONBLOCK) ||
358 		    (iocb->ki_flags & IOCB_NOWAIT)) {
359 			ret = -EAGAIN;
360 			break;
361 		}
362 		mutex_unlock(&pipe->mutex);
363 
364 		/*
365 		 * We only get here if we didn't actually read anything.
366 		 *
367 		 * However, we could have seen (and removed) a zero-sized
368 		 * pipe buffer, and might have made space in the buffers
369 		 * that way.
370 		 *
371 		 * You can't make zero-sized pipe buffers by doing an empty
372 		 * write (not even in packet mode), but they can happen if
373 		 * the writer gets an EFAULT when trying to fill a buffer
374 		 * that already got allocated and inserted in the buffer
375 		 * array.
376 		 *
377 		 * So we still need to wake up any pending writers in the
378 		 * _very_ unlikely case that the pipe was full, but we got
379 		 * no data.
380 		 */
381 		if (unlikely(wake_writer))
382 			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
383 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
384 
385 		/*
386 		 * But because we didn't read anything, at this point we can
387 		 * just return directly with -ERESTARTSYS if we're interrupted,
388 		 * since we've done any required wakeups and there's no need
389 		 * to mark anything accessed. And we've dropped the lock.
390 		 */
391 		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
392 			return -ERESTARTSYS;
393 
394 		wake_writer = false;
395 		wake_next_reader = true;
396 		mutex_lock(&pipe->mutex);
397 	}
398 	if (pipe_empty(pipe->head, pipe->tail))
399 		wake_next_reader = false;
400 	mutex_unlock(&pipe->mutex);
401 
402 	if (wake_writer)
403 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
404 	if (wake_next_reader)
405 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
406 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
407 	if (ret > 0)
408 		file_accessed(filp);
409 	return ret;
410 }
411 
412 static inline int is_packetized(struct file *file)
413 {
414 	return (file->f_flags & O_DIRECT) != 0;
415 }
416 
417 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
418 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
419 {
420 	unsigned int head = READ_ONCE(pipe->head);
421 	unsigned int tail = READ_ONCE(pipe->tail);
422 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
423 
424 	return !pipe_full(head, tail, max_usage) ||
425 		!READ_ONCE(pipe->readers);
426 }
427 
428 static ssize_t
429 pipe_write(struct kiocb *iocb, struct iov_iter *from)
430 {
431 	struct file *filp = iocb->ki_filp;
432 	struct pipe_inode_info *pipe = filp->private_data;
433 	unsigned int head;
434 	ssize_t ret = 0;
435 	size_t total_len = iov_iter_count(from);
436 	ssize_t chars;
437 	bool was_empty = false;
438 	bool wake_next_writer = false;
439 
440 	/*
441 	 * Reject writing to watch queue pipes before the point where we lock
442 	 * the pipe.
443 	 * Otherwise, lockdep would be unhappy if the caller already has another
444 	 * pipe locked.
445 	 * If we had to support locking a normal pipe and a notification pipe at
446 	 * the same time, we could set up lockdep annotations for that, but
447 	 * since we don't actually need that, it's simpler to just bail here.
448 	 */
449 	if (pipe_has_watch_queue(pipe))
450 		return -EXDEV;
451 
452 	/* Null write succeeds. */
453 	if (unlikely(total_len == 0))
454 		return 0;
455 
456 	mutex_lock(&pipe->mutex);
457 
458 	if (!pipe->readers) {
459 		send_sig(SIGPIPE, current, 0);
460 		ret = -EPIPE;
461 		goto out;
462 	}
463 
464 	/*
465 	 * If it wasn't empty we try to merge new data into
466 	 * the last buffer.
467 	 *
468 	 * That naturally merges small writes, but it also
469 	 * page-aligns the rest of the writes for large writes
470 	 * spanning multiple pages.
471 	 */
472 	head = pipe->head;
473 	was_empty = pipe_empty(head, pipe->tail);
474 	chars = total_len & (PAGE_SIZE-1);
475 	if (chars && !was_empty) {
476 		unsigned int mask = pipe->ring_size - 1;
477 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
478 		int offset = buf->offset + buf->len;
479 
480 		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
481 		    offset + chars <= PAGE_SIZE) {
482 			ret = pipe_buf_confirm(pipe, buf);
483 			if (ret)
484 				goto out;
485 
486 			ret = copy_page_from_iter(buf->page, offset, chars, from);
487 			if (unlikely(ret < chars)) {
488 				ret = -EFAULT;
489 				goto out;
490 			}
491 
492 			buf->len += ret;
493 			if (!iov_iter_count(from))
494 				goto out;
495 		}
496 	}
497 
498 	for (;;) {
499 		if (!pipe->readers) {
500 			send_sig(SIGPIPE, current, 0);
501 			if (!ret)
502 				ret = -EPIPE;
503 			break;
504 		}
505 
506 		head = pipe->head;
507 		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
508 			unsigned int mask = pipe->ring_size - 1;
509 			struct pipe_buffer *buf;
510 			struct page *page = pipe->tmp_page;
511 			int copied;
512 
513 			if (!page) {
514 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
515 				if (unlikely(!page)) {
516 					ret = ret ? : -ENOMEM;
517 					break;
518 				}
519 				pipe->tmp_page = page;
520 			}
521 
522 			/* Allocate a slot in the ring in advance and attach an
523 			 * empty buffer.  If we fault or otherwise fail to use
524 			 * it, either the reader will consume it or it'll still
525 			 * be there for the next write.
526 			 */
527 			pipe->head = head + 1;
528 
529 			/* Insert it into the buffer array */
530 			buf = &pipe->bufs[head & mask];
531 			buf->page = page;
532 			buf->ops = &anon_pipe_buf_ops;
533 			buf->offset = 0;
534 			buf->len = 0;
535 			if (is_packetized(filp))
536 				buf->flags = PIPE_BUF_FLAG_PACKET;
537 			else
538 				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
539 			pipe->tmp_page = NULL;
540 
541 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
542 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
543 				if (!ret)
544 					ret = -EFAULT;
545 				break;
546 			}
547 			ret += copied;
548 			buf->len = copied;
549 
550 			if (!iov_iter_count(from))
551 				break;
552 		}
553 
554 		if (!pipe_full(head, pipe->tail, pipe->max_usage))
555 			continue;
556 
557 		/* Wait for buffer space to become available. */
558 		if ((filp->f_flags & O_NONBLOCK) ||
559 		    (iocb->ki_flags & IOCB_NOWAIT)) {
560 			if (!ret)
561 				ret = -EAGAIN;
562 			break;
563 		}
564 		if (signal_pending(current)) {
565 			if (!ret)
566 				ret = -ERESTARTSYS;
567 			break;
568 		}
569 
570 		/*
571 		 * We're going to release the pipe lock and wait for more
572 		 * space. We wake up any readers if necessary, and then
573 		 * after waiting we need to re-check whether the pipe
574 		 * become empty while we dropped the lock.
575 		 */
576 		mutex_unlock(&pipe->mutex);
577 		if (was_empty)
578 			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
579 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
580 		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
581 		mutex_lock(&pipe->mutex);
582 		was_empty = pipe_empty(pipe->head, pipe->tail);
583 		wake_next_writer = true;
584 	}
585 out:
586 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
587 		wake_next_writer = false;
588 	mutex_unlock(&pipe->mutex);
589 
590 	/*
591 	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
592 	 * want the reader to start processing things asap, rather than
593 	 * leave the data pending.
594 	 *
595 	 * This is particularly important for small writes, because of
596 	 * how (for example) the GNU make jobserver uses small writes to
597 	 * wake up pending jobs
598 	 *
599 	 * Epoll nonsensically wants a wakeup whether the pipe
600 	 * was already empty or not.
601 	 */
602 	if (was_empty || pipe->poll_usage)
603 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
604 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
605 	if (wake_next_writer)
606 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
607 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
608 		int err = file_update_time(filp);
609 		if (err)
610 			ret = err;
611 		sb_end_write(file_inode(filp)->i_sb);
612 	}
613 	return ret;
614 }
615 
616 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
617 {
618 	struct pipe_inode_info *pipe = filp->private_data;
619 	unsigned int count, head, tail, mask;
620 
621 	switch (cmd) {
622 	case FIONREAD:
623 		mutex_lock(&pipe->mutex);
624 		count = 0;
625 		head = pipe->head;
626 		tail = pipe->tail;
627 		mask = pipe->ring_size - 1;
628 
629 		while (tail != head) {
630 			count += pipe->bufs[tail & mask].len;
631 			tail++;
632 		}
633 		mutex_unlock(&pipe->mutex);
634 
635 		return put_user(count, (int __user *)arg);
636 
637 #ifdef CONFIG_WATCH_QUEUE
638 	case IOC_WATCH_QUEUE_SET_SIZE: {
639 		int ret;
640 		mutex_lock(&pipe->mutex);
641 		ret = watch_queue_set_size(pipe, arg);
642 		mutex_unlock(&pipe->mutex);
643 		return ret;
644 	}
645 
646 	case IOC_WATCH_QUEUE_SET_FILTER:
647 		return watch_queue_set_filter(
648 			pipe, (struct watch_notification_filter __user *)arg);
649 #endif
650 
651 	default:
652 		return -ENOIOCTLCMD;
653 	}
654 }
655 
656 /* No kernel lock held - fine */
657 static __poll_t
658 pipe_poll(struct file *filp, poll_table *wait)
659 {
660 	__poll_t mask;
661 	struct pipe_inode_info *pipe = filp->private_data;
662 	unsigned int head, tail;
663 
664 	/* Epoll has some historical nasty semantics, this enables them */
665 	WRITE_ONCE(pipe->poll_usage, true);
666 
667 	/*
668 	 * Reading pipe state only -- no need for acquiring the semaphore.
669 	 *
670 	 * But because this is racy, the code has to add the
671 	 * entry to the poll table _first_ ..
672 	 */
673 	if (filp->f_mode & FMODE_READ)
674 		poll_wait(filp, &pipe->rd_wait, wait);
675 	if (filp->f_mode & FMODE_WRITE)
676 		poll_wait(filp, &pipe->wr_wait, wait);
677 
678 	/*
679 	 * .. and only then can you do the racy tests. That way,
680 	 * if something changes and you got it wrong, the poll
681 	 * table entry will wake you up and fix it.
682 	 */
683 	head = READ_ONCE(pipe->head);
684 	tail = READ_ONCE(pipe->tail);
685 
686 	mask = 0;
687 	if (filp->f_mode & FMODE_READ) {
688 		if (!pipe_empty(head, tail))
689 			mask |= EPOLLIN | EPOLLRDNORM;
690 		if (!pipe->writers && filp->f_pipe != pipe->w_counter)
691 			mask |= EPOLLHUP;
692 	}
693 
694 	if (filp->f_mode & FMODE_WRITE) {
695 		if (!pipe_full(head, tail, pipe->max_usage))
696 			mask |= EPOLLOUT | EPOLLWRNORM;
697 		/*
698 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
699 		 * behave exactly like pipes for poll().
700 		 */
701 		if (!pipe->readers)
702 			mask |= EPOLLERR;
703 	}
704 
705 	return mask;
706 }
707 
708 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
709 {
710 	int kill = 0;
711 
712 	spin_lock(&inode->i_lock);
713 	if (!--pipe->files) {
714 		inode->i_pipe = NULL;
715 		kill = 1;
716 	}
717 	spin_unlock(&inode->i_lock);
718 
719 	if (kill)
720 		free_pipe_info(pipe);
721 }
722 
723 static int
724 pipe_release(struct inode *inode, struct file *file)
725 {
726 	struct pipe_inode_info *pipe = file->private_data;
727 
728 	mutex_lock(&pipe->mutex);
729 	if (file->f_mode & FMODE_READ)
730 		pipe->readers--;
731 	if (file->f_mode & FMODE_WRITE)
732 		pipe->writers--;
733 
734 	/* Was that the last reader or writer, but not the other side? */
735 	if (!pipe->readers != !pipe->writers) {
736 		wake_up_interruptible_all(&pipe->rd_wait);
737 		wake_up_interruptible_all(&pipe->wr_wait);
738 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
739 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
740 	}
741 	mutex_unlock(&pipe->mutex);
742 
743 	put_pipe_info(inode, pipe);
744 	return 0;
745 }
746 
747 static int
748 pipe_fasync(int fd, struct file *filp, int on)
749 {
750 	struct pipe_inode_info *pipe = filp->private_data;
751 	int retval = 0;
752 
753 	mutex_lock(&pipe->mutex);
754 	if (filp->f_mode & FMODE_READ)
755 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
756 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
757 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
758 		if (retval < 0 && (filp->f_mode & FMODE_READ))
759 			/* this can happen only if on == T */
760 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
761 	}
762 	mutex_unlock(&pipe->mutex);
763 	return retval;
764 }
765 
766 unsigned long account_pipe_buffers(struct user_struct *user,
767 				   unsigned long old, unsigned long new)
768 {
769 	return atomic_long_add_return(new - old, &user->pipe_bufs);
770 }
771 
772 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
773 {
774 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
775 
776 	return soft_limit && user_bufs > soft_limit;
777 }
778 
779 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
780 {
781 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
782 
783 	return hard_limit && user_bufs > hard_limit;
784 }
785 
786 bool pipe_is_unprivileged_user(void)
787 {
788 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
789 }
790 
791 struct pipe_inode_info *alloc_pipe_info(void)
792 {
793 	struct pipe_inode_info *pipe;
794 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
795 	struct user_struct *user = get_current_user();
796 	unsigned long user_bufs;
797 	unsigned int max_size = READ_ONCE(pipe_max_size);
798 
799 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
800 	if (pipe == NULL)
801 		goto out_free_uid;
802 
803 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
804 		pipe_bufs = max_size >> PAGE_SHIFT;
805 
806 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
807 
808 	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
809 		user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
810 		pipe_bufs = PIPE_MIN_DEF_BUFFERS;
811 	}
812 
813 	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
814 		goto out_revert_acct;
815 
816 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
817 			     GFP_KERNEL_ACCOUNT);
818 
819 	if (pipe->bufs) {
820 		init_waitqueue_head(&pipe->rd_wait);
821 		init_waitqueue_head(&pipe->wr_wait);
822 		pipe->r_counter = pipe->w_counter = 1;
823 		pipe->max_usage = pipe_bufs;
824 		pipe->ring_size = pipe_bufs;
825 		pipe->nr_accounted = pipe_bufs;
826 		pipe->user = user;
827 		mutex_init(&pipe->mutex);
828 		lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL);
829 		return pipe;
830 	}
831 
832 out_revert_acct:
833 	(void) account_pipe_buffers(user, pipe_bufs, 0);
834 	kfree(pipe);
835 out_free_uid:
836 	free_uid(user);
837 	return NULL;
838 }
839 
840 void free_pipe_info(struct pipe_inode_info *pipe)
841 {
842 	unsigned int i;
843 
844 #ifdef CONFIG_WATCH_QUEUE
845 	if (pipe->watch_queue)
846 		watch_queue_clear(pipe->watch_queue);
847 #endif
848 
849 	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
850 	free_uid(pipe->user);
851 	for (i = 0; i < pipe->ring_size; i++) {
852 		struct pipe_buffer *buf = pipe->bufs + i;
853 		if (buf->ops)
854 			pipe_buf_release(pipe, buf);
855 	}
856 #ifdef CONFIG_WATCH_QUEUE
857 	if (pipe->watch_queue)
858 		put_watch_queue(pipe->watch_queue);
859 #endif
860 	if (pipe->tmp_page)
861 		__free_page(pipe->tmp_page);
862 	kfree(pipe->bufs);
863 	kfree(pipe);
864 }
865 
866 static struct vfsmount *pipe_mnt __ro_after_init;
867 
868 /*
869  * pipefs_dname() is called from d_path().
870  */
871 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
872 {
873 	return dynamic_dname(buffer, buflen, "pipe:[%lu]",
874 				d_inode(dentry)->i_ino);
875 }
876 
877 static const struct dentry_operations pipefs_dentry_operations = {
878 	.d_dname	= pipefs_dname,
879 };
880 
881 static struct inode * get_pipe_inode(void)
882 {
883 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
884 	struct pipe_inode_info *pipe;
885 
886 	if (!inode)
887 		goto fail_inode;
888 
889 	inode->i_ino = get_next_ino();
890 
891 	pipe = alloc_pipe_info();
892 	if (!pipe)
893 		goto fail_iput;
894 
895 	inode->i_pipe = pipe;
896 	pipe->files = 2;
897 	pipe->readers = pipe->writers = 1;
898 	inode->i_fop = &pipefifo_fops;
899 
900 	/*
901 	 * Mark the inode dirty from the very beginning,
902 	 * that way it will never be moved to the dirty
903 	 * list because "mark_inode_dirty()" will think
904 	 * that it already _is_ on the dirty list.
905 	 */
906 	inode->i_state = I_DIRTY;
907 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
908 	inode->i_uid = current_fsuid();
909 	inode->i_gid = current_fsgid();
910 	simple_inode_init_ts(inode);
911 
912 	return inode;
913 
914 fail_iput:
915 	iput(inode);
916 
917 fail_inode:
918 	return NULL;
919 }
920 
921 int create_pipe_files(struct file **res, int flags)
922 {
923 	struct inode *inode = get_pipe_inode();
924 	struct file *f;
925 	int error;
926 
927 	if (!inode)
928 		return -ENFILE;
929 
930 	if (flags & O_NOTIFICATION_PIPE) {
931 		error = watch_queue_init(inode->i_pipe);
932 		if (error) {
933 			free_pipe_info(inode->i_pipe);
934 			iput(inode);
935 			return error;
936 		}
937 	}
938 
939 	f = alloc_file_pseudo(inode, pipe_mnt, "",
940 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
941 				&pipefifo_fops);
942 	if (IS_ERR(f)) {
943 		free_pipe_info(inode->i_pipe);
944 		iput(inode);
945 		return PTR_ERR(f);
946 	}
947 
948 	f->private_data = inode->i_pipe;
949 	f->f_pipe = 0;
950 
951 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
952 				  &pipefifo_fops);
953 	if (IS_ERR(res[0])) {
954 		put_pipe_info(inode, inode->i_pipe);
955 		fput(f);
956 		return PTR_ERR(res[0]);
957 	}
958 	res[0]->private_data = inode->i_pipe;
959 	res[0]->f_pipe = 0;
960 	res[1] = f;
961 	stream_open(inode, res[0]);
962 	stream_open(inode, res[1]);
963 	/*
964 	 * Disable permission and pre-content events, but enable legacy
965 	 * inotify events for legacy users.
966 	 */
967 	file_set_fsnotify_mode(res[0], FMODE_NONOTIFY_PERM);
968 	file_set_fsnotify_mode(res[1], FMODE_NONOTIFY_PERM);
969 	return 0;
970 }
971 
972 static int __do_pipe_flags(int *fd, struct file **files, int flags)
973 {
974 	int error;
975 	int fdw, fdr;
976 
977 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
978 		return -EINVAL;
979 
980 	error = create_pipe_files(files, flags);
981 	if (error)
982 		return error;
983 
984 	error = get_unused_fd_flags(flags);
985 	if (error < 0)
986 		goto err_read_pipe;
987 	fdr = error;
988 
989 	error = get_unused_fd_flags(flags);
990 	if (error < 0)
991 		goto err_fdr;
992 	fdw = error;
993 
994 	audit_fd_pair(fdr, fdw);
995 	fd[0] = fdr;
996 	fd[1] = fdw;
997 	/* pipe groks IOCB_NOWAIT */
998 	files[0]->f_mode |= FMODE_NOWAIT;
999 	files[1]->f_mode |= FMODE_NOWAIT;
1000 	return 0;
1001 
1002  err_fdr:
1003 	put_unused_fd(fdr);
1004  err_read_pipe:
1005 	fput(files[0]);
1006 	fput(files[1]);
1007 	return error;
1008 }
1009 
1010 int do_pipe_flags(int *fd, int flags)
1011 {
1012 	struct file *files[2];
1013 	int error = __do_pipe_flags(fd, files, flags);
1014 	if (!error) {
1015 		fd_install(fd[0], files[0]);
1016 		fd_install(fd[1], files[1]);
1017 	}
1018 	return error;
1019 }
1020 
1021 /*
1022  * sys_pipe() is the normal C calling standard for creating
1023  * a pipe. It's not the way Unix traditionally does this, though.
1024  */
1025 static int do_pipe2(int __user *fildes, int flags)
1026 {
1027 	struct file *files[2];
1028 	int fd[2];
1029 	int error;
1030 
1031 	error = __do_pipe_flags(fd, files, flags);
1032 	if (!error) {
1033 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1034 			fput(files[0]);
1035 			fput(files[1]);
1036 			put_unused_fd(fd[0]);
1037 			put_unused_fd(fd[1]);
1038 			error = -EFAULT;
1039 		} else {
1040 			fd_install(fd[0], files[0]);
1041 			fd_install(fd[1], files[1]);
1042 		}
1043 	}
1044 	return error;
1045 }
1046 
1047 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1048 {
1049 	return do_pipe2(fildes, flags);
1050 }
1051 
1052 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1053 {
1054 	return do_pipe2(fildes, 0);
1055 }
1056 
1057 /*
1058  * This is the stupid "wait for pipe to be readable or writable"
1059  * model.
1060  *
1061  * See pipe_read/write() for the proper kind of exclusive wait,
1062  * but that requires that we wake up any other readers/writers
1063  * if we then do not end up reading everything (ie the whole
1064  * "wake_next_reader/writer" logic in pipe_read/write()).
1065  */
1066 void pipe_wait_readable(struct pipe_inode_info *pipe)
1067 {
1068 	pipe_unlock(pipe);
1069 	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1070 	pipe_lock(pipe);
1071 }
1072 
1073 void pipe_wait_writable(struct pipe_inode_info *pipe)
1074 {
1075 	pipe_unlock(pipe);
1076 	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1077 	pipe_lock(pipe);
1078 }
1079 
1080 /*
1081  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1082  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1083  * race with the count check and waitqueue prep.
1084  *
1085  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1086  * then check the condition you're waiting for, and only then sleep. But
1087  * because of the pipe lock, we can check the condition before being on
1088  * the wait queue.
1089  *
1090  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1091  */
1092 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1093 {
1094 	DEFINE_WAIT(rdwait);
1095 	int cur = *cnt;
1096 
1097 	while (cur == *cnt) {
1098 		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1099 		pipe_unlock(pipe);
1100 		schedule();
1101 		finish_wait(&pipe->rd_wait, &rdwait);
1102 		pipe_lock(pipe);
1103 		if (signal_pending(current))
1104 			break;
1105 	}
1106 	return cur == *cnt ? -ERESTARTSYS : 0;
1107 }
1108 
1109 static void wake_up_partner(struct pipe_inode_info *pipe)
1110 {
1111 	wake_up_interruptible_all(&pipe->rd_wait);
1112 }
1113 
1114 static int fifo_open(struct inode *inode, struct file *filp)
1115 {
1116 	struct pipe_inode_info *pipe;
1117 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1118 	int ret;
1119 
1120 	filp->f_pipe = 0;
1121 
1122 	spin_lock(&inode->i_lock);
1123 	if (inode->i_pipe) {
1124 		pipe = inode->i_pipe;
1125 		pipe->files++;
1126 		spin_unlock(&inode->i_lock);
1127 	} else {
1128 		spin_unlock(&inode->i_lock);
1129 		pipe = alloc_pipe_info();
1130 		if (!pipe)
1131 			return -ENOMEM;
1132 		pipe->files = 1;
1133 		spin_lock(&inode->i_lock);
1134 		if (unlikely(inode->i_pipe)) {
1135 			inode->i_pipe->files++;
1136 			spin_unlock(&inode->i_lock);
1137 			free_pipe_info(pipe);
1138 			pipe = inode->i_pipe;
1139 		} else {
1140 			inode->i_pipe = pipe;
1141 			spin_unlock(&inode->i_lock);
1142 		}
1143 	}
1144 	filp->private_data = pipe;
1145 	/* OK, we have a pipe and it's pinned down */
1146 
1147 	mutex_lock(&pipe->mutex);
1148 
1149 	/* We can only do regular read/write on fifos */
1150 	stream_open(inode, filp);
1151 
1152 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1153 	case FMODE_READ:
1154 	/*
1155 	 *  O_RDONLY
1156 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1157 	 *  opened, even when there is no process writing the FIFO.
1158 	 */
1159 		pipe->r_counter++;
1160 		if (pipe->readers++ == 0)
1161 			wake_up_partner(pipe);
1162 
1163 		if (!is_pipe && !pipe->writers) {
1164 			if ((filp->f_flags & O_NONBLOCK)) {
1165 				/* suppress EPOLLHUP until we have
1166 				 * seen a writer */
1167 				filp->f_pipe = pipe->w_counter;
1168 			} else {
1169 				if (wait_for_partner(pipe, &pipe->w_counter))
1170 					goto err_rd;
1171 			}
1172 		}
1173 		break;
1174 
1175 	case FMODE_WRITE:
1176 	/*
1177 	 *  O_WRONLY
1178 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1179 	 *  errno=ENXIO when there is no process reading the FIFO.
1180 	 */
1181 		ret = -ENXIO;
1182 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1183 			goto err;
1184 
1185 		pipe->w_counter++;
1186 		if (!pipe->writers++)
1187 			wake_up_partner(pipe);
1188 
1189 		if (!is_pipe && !pipe->readers) {
1190 			if (wait_for_partner(pipe, &pipe->r_counter))
1191 				goto err_wr;
1192 		}
1193 		break;
1194 
1195 	case FMODE_READ | FMODE_WRITE:
1196 	/*
1197 	 *  O_RDWR
1198 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1199 	 *  This implementation will NEVER block on a O_RDWR open, since
1200 	 *  the process can at least talk to itself.
1201 	 */
1202 
1203 		pipe->readers++;
1204 		pipe->writers++;
1205 		pipe->r_counter++;
1206 		pipe->w_counter++;
1207 		if (pipe->readers == 1 || pipe->writers == 1)
1208 			wake_up_partner(pipe);
1209 		break;
1210 
1211 	default:
1212 		ret = -EINVAL;
1213 		goto err;
1214 	}
1215 
1216 	/* Ok! */
1217 	mutex_unlock(&pipe->mutex);
1218 	return 0;
1219 
1220 err_rd:
1221 	if (!--pipe->readers)
1222 		wake_up_interruptible(&pipe->wr_wait);
1223 	ret = -ERESTARTSYS;
1224 	goto err;
1225 
1226 err_wr:
1227 	if (!--pipe->writers)
1228 		wake_up_interruptible_all(&pipe->rd_wait);
1229 	ret = -ERESTARTSYS;
1230 	goto err;
1231 
1232 err:
1233 	mutex_unlock(&pipe->mutex);
1234 
1235 	put_pipe_info(inode, pipe);
1236 	return ret;
1237 }
1238 
1239 const struct file_operations pipefifo_fops = {
1240 	.open		= fifo_open,
1241 	.read_iter	= pipe_read,
1242 	.write_iter	= pipe_write,
1243 	.poll		= pipe_poll,
1244 	.unlocked_ioctl	= pipe_ioctl,
1245 	.release	= pipe_release,
1246 	.fasync		= pipe_fasync,
1247 	.splice_write	= iter_file_splice_write,
1248 };
1249 
1250 /*
1251  * Currently we rely on the pipe array holding a power-of-2 number
1252  * of pages. Returns 0 on error.
1253  */
1254 unsigned int round_pipe_size(unsigned int size)
1255 {
1256 	if (size > (1U << 31))
1257 		return 0;
1258 
1259 	/* Minimum pipe size, as required by POSIX */
1260 	if (size < PAGE_SIZE)
1261 		return PAGE_SIZE;
1262 
1263 	return roundup_pow_of_two(size);
1264 }
1265 
1266 /*
1267  * Resize the pipe ring to a number of slots.
1268  *
1269  * Note the pipe can be reduced in capacity, but only if the current
1270  * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1271  * returned instead.
1272  */
1273 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1274 {
1275 	struct pipe_buffer *bufs;
1276 	unsigned int head, tail, mask, n;
1277 
1278 	bufs = kcalloc(nr_slots, sizeof(*bufs),
1279 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1280 	if (unlikely(!bufs))
1281 		return -ENOMEM;
1282 
1283 	spin_lock_irq(&pipe->rd_wait.lock);
1284 	mask = pipe->ring_size - 1;
1285 	head = pipe->head;
1286 	tail = pipe->tail;
1287 
1288 	n = pipe_occupancy(head, tail);
1289 	if (nr_slots < n) {
1290 		spin_unlock_irq(&pipe->rd_wait.lock);
1291 		kfree(bufs);
1292 		return -EBUSY;
1293 	}
1294 
1295 	/*
1296 	 * The pipe array wraps around, so just start the new one at zero
1297 	 * and adjust the indices.
1298 	 */
1299 	if (n > 0) {
1300 		unsigned int h = head & mask;
1301 		unsigned int t = tail & mask;
1302 		if (h > t) {
1303 			memcpy(bufs, pipe->bufs + t,
1304 			       n * sizeof(struct pipe_buffer));
1305 		} else {
1306 			unsigned int tsize = pipe->ring_size - t;
1307 			if (h > 0)
1308 				memcpy(bufs + tsize, pipe->bufs,
1309 				       h * sizeof(struct pipe_buffer));
1310 			memcpy(bufs, pipe->bufs + t,
1311 			       tsize * sizeof(struct pipe_buffer));
1312 		}
1313 	}
1314 
1315 	head = n;
1316 	tail = 0;
1317 
1318 	kfree(pipe->bufs);
1319 	pipe->bufs = bufs;
1320 	pipe->ring_size = nr_slots;
1321 	if (pipe->max_usage > nr_slots)
1322 		pipe->max_usage = nr_slots;
1323 	pipe->tail = tail;
1324 	pipe->head = head;
1325 
1326 	if (!pipe_has_watch_queue(pipe)) {
1327 		pipe->max_usage = nr_slots;
1328 		pipe->nr_accounted = nr_slots;
1329 	}
1330 
1331 	spin_unlock_irq(&pipe->rd_wait.lock);
1332 
1333 	/* This might have made more room for writers */
1334 	wake_up_interruptible(&pipe->wr_wait);
1335 	return 0;
1336 }
1337 
1338 /*
1339  * Allocate a new array of pipe buffers and copy the info over. Returns the
1340  * pipe size if successful, or return -ERROR on error.
1341  */
1342 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1343 {
1344 	unsigned long user_bufs;
1345 	unsigned int nr_slots, size;
1346 	long ret = 0;
1347 
1348 	if (pipe_has_watch_queue(pipe))
1349 		return -EBUSY;
1350 
1351 	size = round_pipe_size(arg);
1352 	nr_slots = size >> PAGE_SHIFT;
1353 
1354 	if (!nr_slots)
1355 		return -EINVAL;
1356 
1357 	/*
1358 	 * If trying to increase the pipe capacity, check that an
1359 	 * unprivileged user is not trying to exceed various limits
1360 	 * (soft limit check here, hard limit check just below).
1361 	 * Decreasing the pipe capacity is always permitted, even
1362 	 * if the user is currently over a limit.
1363 	 */
1364 	if (nr_slots > pipe->max_usage &&
1365 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1366 		return -EPERM;
1367 
1368 	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1369 
1370 	if (nr_slots > pipe->max_usage &&
1371 			(too_many_pipe_buffers_hard(user_bufs) ||
1372 			 too_many_pipe_buffers_soft(user_bufs)) &&
1373 			pipe_is_unprivileged_user()) {
1374 		ret = -EPERM;
1375 		goto out_revert_acct;
1376 	}
1377 
1378 	ret = pipe_resize_ring(pipe, nr_slots);
1379 	if (ret < 0)
1380 		goto out_revert_acct;
1381 
1382 	return pipe->max_usage * PAGE_SIZE;
1383 
1384 out_revert_acct:
1385 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1386 	return ret;
1387 }
1388 
1389 /*
1390  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1391  * not enough to verify that this is a pipe.
1392  */
1393 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1394 {
1395 	struct pipe_inode_info *pipe = file->private_data;
1396 
1397 	if (file->f_op != &pipefifo_fops || !pipe)
1398 		return NULL;
1399 	if (for_splice && pipe_has_watch_queue(pipe))
1400 		return NULL;
1401 	return pipe;
1402 }
1403 
1404 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1405 {
1406 	struct pipe_inode_info *pipe;
1407 	long ret;
1408 
1409 	pipe = get_pipe_info(file, false);
1410 	if (!pipe)
1411 		return -EBADF;
1412 
1413 	mutex_lock(&pipe->mutex);
1414 
1415 	switch (cmd) {
1416 	case F_SETPIPE_SZ:
1417 		ret = pipe_set_size(pipe, arg);
1418 		break;
1419 	case F_GETPIPE_SZ:
1420 		ret = pipe->max_usage * PAGE_SIZE;
1421 		break;
1422 	default:
1423 		ret = -EINVAL;
1424 		break;
1425 	}
1426 
1427 	mutex_unlock(&pipe->mutex);
1428 	return ret;
1429 }
1430 
1431 static const struct super_operations pipefs_ops = {
1432 	.destroy_inode = free_inode_nonrcu,
1433 	.statfs = simple_statfs,
1434 };
1435 
1436 /*
1437  * pipefs should _never_ be mounted by userland - too much of security hassle,
1438  * no real gain from having the whole file system mounted. So we don't need
1439  * any operations on the root directory. However, we need a non-trivial
1440  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1441  */
1442 
1443 static int pipefs_init_fs_context(struct fs_context *fc)
1444 {
1445 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1446 	if (!ctx)
1447 		return -ENOMEM;
1448 	ctx->ops = &pipefs_ops;
1449 	ctx->dops = &pipefs_dentry_operations;
1450 	return 0;
1451 }
1452 
1453 static struct file_system_type pipe_fs_type = {
1454 	.name		= "pipefs",
1455 	.init_fs_context = pipefs_init_fs_context,
1456 	.kill_sb	= kill_anon_super,
1457 };
1458 
1459 #ifdef CONFIG_SYSCTL
1460 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1461 					unsigned int *valp,
1462 					int write, void *data)
1463 {
1464 	if (write) {
1465 		unsigned int val;
1466 
1467 		val = round_pipe_size(*lvalp);
1468 		if (val == 0)
1469 			return -EINVAL;
1470 
1471 		*valp = val;
1472 	} else {
1473 		unsigned int val = *valp;
1474 		*lvalp = (unsigned long) val;
1475 	}
1476 
1477 	return 0;
1478 }
1479 
1480 static int proc_dopipe_max_size(const struct ctl_table *table, int write,
1481 				void *buffer, size_t *lenp, loff_t *ppos)
1482 {
1483 	return do_proc_douintvec(table, write, buffer, lenp, ppos,
1484 				 do_proc_dopipe_max_size_conv, NULL);
1485 }
1486 
1487 static const struct ctl_table fs_pipe_sysctls[] = {
1488 	{
1489 		.procname	= "pipe-max-size",
1490 		.data		= &pipe_max_size,
1491 		.maxlen		= sizeof(pipe_max_size),
1492 		.mode		= 0644,
1493 		.proc_handler	= proc_dopipe_max_size,
1494 	},
1495 	{
1496 		.procname	= "pipe-user-pages-hard",
1497 		.data		= &pipe_user_pages_hard,
1498 		.maxlen		= sizeof(pipe_user_pages_hard),
1499 		.mode		= 0644,
1500 		.proc_handler	= proc_doulongvec_minmax,
1501 	},
1502 	{
1503 		.procname	= "pipe-user-pages-soft",
1504 		.data		= &pipe_user_pages_soft,
1505 		.maxlen		= sizeof(pipe_user_pages_soft),
1506 		.mode		= 0644,
1507 		.proc_handler	= proc_doulongvec_minmax,
1508 	},
1509 };
1510 #endif
1511 
1512 static int __init init_pipe_fs(void)
1513 {
1514 	int err = register_filesystem(&pipe_fs_type);
1515 
1516 	if (!err) {
1517 		pipe_mnt = kern_mount(&pipe_fs_type);
1518 		if (IS_ERR(pipe_mnt)) {
1519 			err = PTR_ERR(pipe_mnt);
1520 			unregister_filesystem(&pipe_fs_type);
1521 		}
1522 	}
1523 #ifdef CONFIG_SYSCTL
1524 	register_sysctl_init("fs", fs_pipe_sysctls);
1525 #endif
1526 	return err;
1527 }
1528 
1529 fs_initcall(init_pipe_fs);
1530