1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 #include <linux/watch_queue.h> 28 #include <linux/sysctl.h> 29 30 #include <linux/uaccess.h> 31 #include <asm/ioctls.h> 32 33 #include "internal.h" 34 35 /* 36 * New pipe buffers will be restricted to this size while the user is exceeding 37 * their pipe buffer quota. The general pipe use case needs at least two 38 * buffers: one for data yet to be read, and one for new data. If this is less 39 * than two, then a write to a non-empty pipe may block even if the pipe is not 40 * full. This can occur with GNU make jobserver or similar uses of pipes as 41 * semaphores: multiple processes may be waiting to write tokens back to the 42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/. 43 * 44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their 45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is 46 * emptied. 47 */ 48 #define PIPE_MIN_DEF_BUFFERS 2 49 50 /* 51 * The max size that a non-root user is allowed to grow the pipe. Can 52 * be set by root in /proc/sys/fs/pipe-max-size 53 */ 54 static unsigned int pipe_max_size = 1048576; 55 56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 57 * matches default values. 58 */ 59 static unsigned long pipe_user_pages_hard; 60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 61 62 /* 63 * We use head and tail indices that aren't masked off, except at the point of 64 * dereference, but rather they're allowed to wrap naturally. This means there 65 * isn't a dead spot in the buffer, but the ring has to be a power of two and 66 * <= 2^31. 67 * -- David Howells 2019-09-23. 68 * 69 * Reads with count = 0 should always return 0. 70 * -- Julian Bradfield 1999-06-07. 71 * 72 * FIFOs and Pipes now generate SIGIO for both readers and writers. 73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 74 * 75 * pipe_read & write cleanup 76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 77 */ 78 79 #define cmp_int(l, r) ((l > r) - (l < r)) 80 81 #ifdef CONFIG_PROVE_LOCKING 82 static int pipe_lock_cmp_fn(const struct lockdep_map *a, 83 const struct lockdep_map *b) 84 { 85 return cmp_int((unsigned long) a, (unsigned long) b); 86 } 87 #endif 88 89 void pipe_lock(struct pipe_inode_info *pipe) 90 { 91 if (pipe->files) 92 mutex_lock(&pipe->mutex); 93 } 94 EXPORT_SYMBOL(pipe_lock); 95 96 void pipe_unlock(struct pipe_inode_info *pipe) 97 { 98 if (pipe->files) 99 mutex_unlock(&pipe->mutex); 100 } 101 EXPORT_SYMBOL(pipe_unlock); 102 103 void pipe_double_lock(struct pipe_inode_info *pipe1, 104 struct pipe_inode_info *pipe2) 105 { 106 BUG_ON(pipe1 == pipe2); 107 108 if (pipe1 > pipe2) 109 swap(pipe1, pipe2); 110 111 pipe_lock(pipe1); 112 pipe_lock(pipe2); 113 } 114 115 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 116 struct pipe_buffer *buf) 117 { 118 struct page *page = buf->page; 119 120 /* 121 * If nobody else uses this page, and we don't already have a 122 * temporary page, let's keep track of it as a one-deep 123 * allocation cache. (Otherwise just release our reference to it) 124 */ 125 if (page_count(page) == 1 && !pipe->tmp_page) 126 pipe->tmp_page = page; 127 else 128 put_page(page); 129 } 130 131 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, 132 struct pipe_buffer *buf) 133 { 134 struct page *page = buf->page; 135 136 if (page_count(page) != 1) 137 return false; 138 memcg_kmem_uncharge_page(page, 0); 139 __SetPageLocked(page); 140 return true; 141 } 142 143 /** 144 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer 145 * @pipe: the pipe that the buffer belongs to 146 * @buf: the buffer to attempt to steal 147 * 148 * Description: 149 * This function attempts to steal the &struct page attached to 150 * @buf. If successful, this function returns 0 and returns with 151 * the page locked. The caller may then reuse the page for whatever 152 * he wishes; the typical use is insertion into a different file 153 * page cache. 154 */ 155 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, 156 struct pipe_buffer *buf) 157 { 158 struct page *page = buf->page; 159 160 /* 161 * A reference of one is golden, that means that the owner of this 162 * page is the only one holding a reference to it. lock the page 163 * and return OK. 164 */ 165 if (page_count(page) == 1) { 166 lock_page(page); 167 return true; 168 } 169 return false; 170 } 171 EXPORT_SYMBOL(generic_pipe_buf_try_steal); 172 173 /** 174 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 175 * @pipe: the pipe that the buffer belongs to 176 * @buf: the buffer to get a reference to 177 * 178 * Description: 179 * This function grabs an extra reference to @buf. It's used in 180 * the tee() system call, when we duplicate the buffers in one 181 * pipe into another. 182 */ 183 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 184 { 185 return try_get_page(buf->page); 186 } 187 EXPORT_SYMBOL(generic_pipe_buf_get); 188 189 /** 190 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 191 * @pipe: the pipe that the buffer belongs to 192 * @buf: the buffer to put a reference to 193 * 194 * Description: 195 * This function releases a reference to @buf. 196 */ 197 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 198 struct pipe_buffer *buf) 199 { 200 put_page(buf->page); 201 } 202 EXPORT_SYMBOL(generic_pipe_buf_release); 203 204 static const struct pipe_buf_operations anon_pipe_buf_ops = { 205 .release = anon_pipe_buf_release, 206 .try_steal = anon_pipe_buf_try_steal, 207 .get = generic_pipe_buf_get, 208 }; 209 210 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 211 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 212 { 213 unsigned int head = READ_ONCE(pipe->head); 214 unsigned int tail = READ_ONCE(pipe->tail); 215 unsigned int writers = READ_ONCE(pipe->writers); 216 217 return !pipe_empty(head, tail) || !writers; 218 } 219 220 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe, 221 struct pipe_buffer *buf, 222 unsigned int tail) 223 { 224 pipe_buf_release(pipe, buf); 225 226 /* 227 * If the pipe has a watch_queue, we need additional protection 228 * by the spinlock because notifications get posted with only 229 * this spinlock, no mutex 230 */ 231 if (pipe_has_watch_queue(pipe)) { 232 spin_lock_irq(&pipe->rd_wait.lock); 233 #ifdef CONFIG_WATCH_QUEUE 234 if (buf->flags & PIPE_BUF_FLAG_LOSS) 235 pipe->note_loss = true; 236 #endif 237 pipe->tail = ++tail; 238 spin_unlock_irq(&pipe->rd_wait.lock); 239 return tail; 240 } 241 242 /* 243 * Without a watch_queue, we can simply increment the tail 244 * without the spinlock - the mutex is enough. 245 */ 246 pipe->tail = ++tail; 247 return tail; 248 } 249 250 static ssize_t 251 pipe_read(struct kiocb *iocb, struct iov_iter *to) 252 { 253 size_t total_len = iov_iter_count(to); 254 struct file *filp = iocb->ki_filp; 255 struct pipe_inode_info *pipe = filp->private_data; 256 bool wake_writer = false, wake_next_reader = false; 257 ssize_t ret; 258 259 /* Null read succeeds. */ 260 if (unlikely(total_len == 0)) 261 return 0; 262 263 ret = 0; 264 mutex_lock(&pipe->mutex); 265 266 /* 267 * We only wake up writers if the pipe was full when we started reading 268 * and it is no longer full after reading to avoid unnecessary wakeups. 269 * 270 * But when we do wake up writers, we do so using a sync wakeup 271 * (WF_SYNC), because we want them to get going and generate more 272 * data for us. 273 */ 274 for (;;) { 275 /* Read ->head with a barrier vs post_one_notification() */ 276 unsigned int head = smp_load_acquire(&pipe->head); 277 unsigned int tail = pipe->tail; 278 unsigned int mask = pipe->ring_size - 1; 279 280 #ifdef CONFIG_WATCH_QUEUE 281 if (pipe->note_loss) { 282 struct watch_notification n; 283 284 if (total_len < 8) { 285 if (ret == 0) 286 ret = -ENOBUFS; 287 break; 288 } 289 290 n.type = WATCH_TYPE_META; 291 n.subtype = WATCH_META_LOSS_NOTIFICATION; 292 n.info = watch_sizeof(n); 293 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) { 294 if (ret == 0) 295 ret = -EFAULT; 296 break; 297 } 298 ret += sizeof(n); 299 total_len -= sizeof(n); 300 pipe->note_loss = false; 301 } 302 #endif 303 304 if (!pipe_empty(head, tail)) { 305 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 306 size_t chars = buf->len; 307 size_t written; 308 int error; 309 310 if (chars > total_len) { 311 if (buf->flags & PIPE_BUF_FLAG_WHOLE) { 312 if (ret == 0) 313 ret = -ENOBUFS; 314 break; 315 } 316 chars = total_len; 317 } 318 319 error = pipe_buf_confirm(pipe, buf); 320 if (error) { 321 if (!ret) 322 ret = error; 323 break; 324 } 325 326 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 327 if (unlikely(written < chars)) { 328 if (!ret) 329 ret = -EFAULT; 330 break; 331 } 332 ret += chars; 333 buf->offset += chars; 334 buf->len -= chars; 335 336 /* Was it a packet buffer? Clean up and exit */ 337 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 338 total_len = chars; 339 buf->len = 0; 340 } 341 342 if (!buf->len) { 343 wake_writer |= pipe_full(head, tail, pipe->max_usage); 344 tail = pipe_update_tail(pipe, buf, tail); 345 } 346 total_len -= chars; 347 if (!total_len) 348 break; /* common path: read succeeded */ 349 if (!pipe_empty(head, tail)) /* More to do? */ 350 continue; 351 } 352 353 if (!pipe->writers) 354 break; 355 if (ret) 356 break; 357 if ((filp->f_flags & O_NONBLOCK) || 358 (iocb->ki_flags & IOCB_NOWAIT)) { 359 ret = -EAGAIN; 360 break; 361 } 362 mutex_unlock(&pipe->mutex); 363 364 /* 365 * We only get here if we didn't actually read anything. 366 * 367 * However, we could have seen (and removed) a zero-sized 368 * pipe buffer, and might have made space in the buffers 369 * that way. 370 * 371 * You can't make zero-sized pipe buffers by doing an empty 372 * write (not even in packet mode), but they can happen if 373 * the writer gets an EFAULT when trying to fill a buffer 374 * that already got allocated and inserted in the buffer 375 * array. 376 * 377 * So we still need to wake up any pending writers in the 378 * _very_ unlikely case that the pipe was full, but we got 379 * no data. 380 */ 381 if (unlikely(wake_writer)) 382 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 383 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 384 385 /* 386 * But because we didn't read anything, at this point we can 387 * just return directly with -ERESTARTSYS if we're interrupted, 388 * since we've done any required wakeups and there's no need 389 * to mark anything accessed. And we've dropped the lock. 390 */ 391 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) 392 return -ERESTARTSYS; 393 394 wake_writer = false; 395 wake_next_reader = true; 396 mutex_lock(&pipe->mutex); 397 } 398 if (pipe_empty(pipe->head, pipe->tail)) 399 wake_next_reader = false; 400 mutex_unlock(&pipe->mutex); 401 402 if (wake_writer) 403 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 404 if (wake_next_reader) 405 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 406 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 407 if (ret > 0) 408 file_accessed(filp); 409 return ret; 410 } 411 412 static inline int is_packetized(struct file *file) 413 { 414 return (file->f_flags & O_DIRECT) != 0; 415 } 416 417 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 418 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 419 { 420 unsigned int head = READ_ONCE(pipe->head); 421 unsigned int tail = READ_ONCE(pipe->tail); 422 unsigned int max_usage = READ_ONCE(pipe->max_usage); 423 424 return !pipe_full(head, tail, max_usage) || 425 !READ_ONCE(pipe->readers); 426 } 427 428 static ssize_t 429 pipe_write(struct kiocb *iocb, struct iov_iter *from) 430 { 431 struct file *filp = iocb->ki_filp; 432 struct pipe_inode_info *pipe = filp->private_data; 433 unsigned int head; 434 ssize_t ret = 0; 435 size_t total_len = iov_iter_count(from); 436 ssize_t chars; 437 bool was_empty = false; 438 bool wake_next_writer = false; 439 440 /* 441 * Reject writing to watch queue pipes before the point where we lock 442 * the pipe. 443 * Otherwise, lockdep would be unhappy if the caller already has another 444 * pipe locked. 445 * If we had to support locking a normal pipe and a notification pipe at 446 * the same time, we could set up lockdep annotations for that, but 447 * since we don't actually need that, it's simpler to just bail here. 448 */ 449 if (pipe_has_watch_queue(pipe)) 450 return -EXDEV; 451 452 /* Null write succeeds. */ 453 if (unlikely(total_len == 0)) 454 return 0; 455 456 mutex_lock(&pipe->mutex); 457 458 if (!pipe->readers) { 459 send_sig(SIGPIPE, current, 0); 460 ret = -EPIPE; 461 goto out; 462 } 463 464 /* 465 * If it wasn't empty we try to merge new data into 466 * the last buffer. 467 * 468 * That naturally merges small writes, but it also 469 * page-aligns the rest of the writes for large writes 470 * spanning multiple pages. 471 */ 472 head = pipe->head; 473 was_empty = pipe_empty(head, pipe->tail); 474 chars = total_len & (PAGE_SIZE-1); 475 if (chars && !was_empty) { 476 unsigned int mask = pipe->ring_size - 1; 477 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask]; 478 int offset = buf->offset + buf->len; 479 480 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && 481 offset + chars <= PAGE_SIZE) { 482 ret = pipe_buf_confirm(pipe, buf); 483 if (ret) 484 goto out; 485 486 ret = copy_page_from_iter(buf->page, offset, chars, from); 487 if (unlikely(ret < chars)) { 488 ret = -EFAULT; 489 goto out; 490 } 491 492 buf->len += ret; 493 if (!iov_iter_count(from)) 494 goto out; 495 } 496 } 497 498 for (;;) { 499 if (!pipe->readers) { 500 send_sig(SIGPIPE, current, 0); 501 if (!ret) 502 ret = -EPIPE; 503 break; 504 } 505 506 head = pipe->head; 507 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 508 unsigned int mask = pipe->ring_size - 1; 509 struct pipe_buffer *buf; 510 struct page *page = pipe->tmp_page; 511 int copied; 512 513 if (!page) { 514 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 515 if (unlikely(!page)) { 516 ret = ret ? : -ENOMEM; 517 break; 518 } 519 pipe->tmp_page = page; 520 } 521 522 /* Allocate a slot in the ring in advance and attach an 523 * empty buffer. If we fault or otherwise fail to use 524 * it, either the reader will consume it or it'll still 525 * be there for the next write. 526 */ 527 pipe->head = head + 1; 528 529 /* Insert it into the buffer array */ 530 buf = &pipe->bufs[head & mask]; 531 buf->page = page; 532 buf->ops = &anon_pipe_buf_ops; 533 buf->offset = 0; 534 buf->len = 0; 535 if (is_packetized(filp)) 536 buf->flags = PIPE_BUF_FLAG_PACKET; 537 else 538 buf->flags = PIPE_BUF_FLAG_CAN_MERGE; 539 pipe->tmp_page = NULL; 540 541 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 542 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 543 if (!ret) 544 ret = -EFAULT; 545 break; 546 } 547 ret += copied; 548 buf->len = copied; 549 550 if (!iov_iter_count(from)) 551 break; 552 } 553 554 if (!pipe_full(head, pipe->tail, pipe->max_usage)) 555 continue; 556 557 /* Wait for buffer space to become available. */ 558 if ((filp->f_flags & O_NONBLOCK) || 559 (iocb->ki_flags & IOCB_NOWAIT)) { 560 if (!ret) 561 ret = -EAGAIN; 562 break; 563 } 564 if (signal_pending(current)) { 565 if (!ret) 566 ret = -ERESTARTSYS; 567 break; 568 } 569 570 /* 571 * We're going to release the pipe lock and wait for more 572 * space. We wake up any readers if necessary, and then 573 * after waiting we need to re-check whether the pipe 574 * become empty while we dropped the lock. 575 */ 576 mutex_unlock(&pipe->mutex); 577 if (was_empty) 578 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 579 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 580 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); 581 mutex_lock(&pipe->mutex); 582 was_empty = pipe_empty(pipe->head, pipe->tail); 583 wake_next_writer = true; 584 } 585 out: 586 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 587 wake_next_writer = false; 588 mutex_unlock(&pipe->mutex); 589 590 /* 591 * If we do do a wakeup event, we do a 'sync' wakeup, because we 592 * want the reader to start processing things asap, rather than 593 * leave the data pending. 594 * 595 * This is particularly important for small writes, because of 596 * how (for example) the GNU make jobserver uses small writes to 597 * wake up pending jobs 598 * 599 * Epoll nonsensically wants a wakeup whether the pipe 600 * was already empty or not. 601 */ 602 if (was_empty || pipe->poll_usage) 603 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 604 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 605 if (wake_next_writer) 606 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 607 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 608 int err = file_update_time(filp); 609 if (err) 610 ret = err; 611 sb_end_write(file_inode(filp)->i_sb); 612 } 613 return ret; 614 } 615 616 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 617 { 618 struct pipe_inode_info *pipe = filp->private_data; 619 unsigned int count, head, tail, mask; 620 621 switch (cmd) { 622 case FIONREAD: 623 mutex_lock(&pipe->mutex); 624 count = 0; 625 head = pipe->head; 626 tail = pipe->tail; 627 mask = pipe->ring_size - 1; 628 629 while (tail != head) { 630 count += pipe->bufs[tail & mask].len; 631 tail++; 632 } 633 mutex_unlock(&pipe->mutex); 634 635 return put_user(count, (int __user *)arg); 636 637 #ifdef CONFIG_WATCH_QUEUE 638 case IOC_WATCH_QUEUE_SET_SIZE: { 639 int ret; 640 mutex_lock(&pipe->mutex); 641 ret = watch_queue_set_size(pipe, arg); 642 mutex_unlock(&pipe->mutex); 643 return ret; 644 } 645 646 case IOC_WATCH_QUEUE_SET_FILTER: 647 return watch_queue_set_filter( 648 pipe, (struct watch_notification_filter __user *)arg); 649 #endif 650 651 default: 652 return -ENOIOCTLCMD; 653 } 654 } 655 656 /* No kernel lock held - fine */ 657 static __poll_t 658 pipe_poll(struct file *filp, poll_table *wait) 659 { 660 __poll_t mask; 661 struct pipe_inode_info *pipe = filp->private_data; 662 unsigned int head, tail; 663 664 /* Epoll has some historical nasty semantics, this enables them */ 665 WRITE_ONCE(pipe->poll_usage, true); 666 667 /* 668 * Reading pipe state only -- no need for acquiring the semaphore. 669 * 670 * But because this is racy, the code has to add the 671 * entry to the poll table _first_ .. 672 */ 673 if (filp->f_mode & FMODE_READ) 674 poll_wait(filp, &pipe->rd_wait, wait); 675 if (filp->f_mode & FMODE_WRITE) 676 poll_wait(filp, &pipe->wr_wait, wait); 677 678 /* 679 * .. and only then can you do the racy tests. That way, 680 * if something changes and you got it wrong, the poll 681 * table entry will wake you up and fix it. 682 */ 683 head = READ_ONCE(pipe->head); 684 tail = READ_ONCE(pipe->tail); 685 686 mask = 0; 687 if (filp->f_mode & FMODE_READ) { 688 if (!pipe_empty(head, tail)) 689 mask |= EPOLLIN | EPOLLRDNORM; 690 if (!pipe->writers && filp->f_pipe != pipe->w_counter) 691 mask |= EPOLLHUP; 692 } 693 694 if (filp->f_mode & FMODE_WRITE) { 695 if (!pipe_full(head, tail, pipe->max_usage)) 696 mask |= EPOLLOUT | EPOLLWRNORM; 697 /* 698 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 699 * behave exactly like pipes for poll(). 700 */ 701 if (!pipe->readers) 702 mask |= EPOLLERR; 703 } 704 705 return mask; 706 } 707 708 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 709 { 710 int kill = 0; 711 712 spin_lock(&inode->i_lock); 713 if (!--pipe->files) { 714 inode->i_pipe = NULL; 715 kill = 1; 716 } 717 spin_unlock(&inode->i_lock); 718 719 if (kill) 720 free_pipe_info(pipe); 721 } 722 723 static int 724 pipe_release(struct inode *inode, struct file *file) 725 { 726 struct pipe_inode_info *pipe = file->private_data; 727 728 mutex_lock(&pipe->mutex); 729 if (file->f_mode & FMODE_READ) 730 pipe->readers--; 731 if (file->f_mode & FMODE_WRITE) 732 pipe->writers--; 733 734 /* Was that the last reader or writer, but not the other side? */ 735 if (!pipe->readers != !pipe->writers) { 736 wake_up_interruptible_all(&pipe->rd_wait); 737 wake_up_interruptible_all(&pipe->wr_wait); 738 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 739 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 740 } 741 mutex_unlock(&pipe->mutex); 742 743 put_pipe_info(inode, pipe); 744 return 0; 745 } 746 747 static int 748 pipe_fasync(int fd, struct file *filp, int on) 749 { 750 struct pipe_inode_info *pipe = filp->private_data; 751 int retval = 0; 752 753 mutex_lock(&pipe->mutex); 754 if (filp->f_mode & FMODE_READ) 755 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 756 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 757 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 758 if (retval < 0 && (filp->f_mode & FMODE_READ)) 759 /* this can happen only if on == T */ 760 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 761 } 762 mutex_unlock(&pipe->mutex); 763 return retval; 764 } 765 766 unsigned long account_pipe_buffers(struct user_struct *user, 767 unsigned long old, unsigned long new) 768 { 769 return atomic_long_add_return(new - old, &user->pipe_bufs); 770 } 771 772 bool too_many_pipe_buffers_soft(unsigned long user_bufs) 773 { 774 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 775 776 return soft_limit && user_bufs > soft_limit; 777 } 778 779 bool too_many_pipe_buffers_hard(unsigned long user_bufs) 780 { 781 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 782 783 return hard_limit && user_bufs > hard_limit; 784 } 785 786 bool pipe_is_unprivileged_user(void) 787 { 788 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 789 } 790 791 struct pipe_inode_info *alloc_pipe_info(void) 792 { 793 struct pipe_inode_info *pipe; 794 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 795 struct user_struct *user = get_current_user(); 796 unsigned long user_bufs; 797 unsigned int max_size = READ_ONCE(pipe_max_size); 798 799 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 800 if (pipe == NULL) 801 goto out_free_uid; 802 803 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 804 pipe_bufs = max_size >> PAGE_SHIFT; 805 806 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 807 808 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { 809 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS); 810 pipe_bufs = PIPE_MIN_DEF_BUFFERS; 811 } 812 813 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) 814 goto out_revert_acct; 815 816 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 817 GFP_KERNEL_ACCOUNT); 818 819 if (pipe->bufs) { 820 init_waitqueue_head(&pipe->rd_wait); 821 init_waitqueue_head(&pipe->wr_wait); 822 pipe->r_counter = pipe->w_counter = 1; 823 pipe->max_usage = pipe_bufs; 824 pipe->ring_size = pipe_bufs; 825 pipe->nr_accounted = pipe_bufs; 826 pipe->user = user; 827 mutex_init(&pipe->mutex); 828 lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL); 829 return pipe; 830 } 831 832 out_revert_acct: 833 (void) account_pipe_buffers(user, pipe_bufs, 0); 834 kfree(pipe); 835 out_free_uid: 836 free_uid(user); 837 return NULL; 838 } 839 840 void free_pipe_info(struct pipe_inode_info *pipe) 841 { 842 unsigned int i; 843 844 #ifdef CONFIG_WATCH_QUEUE 845 if (pipe->watch_queue) 846 watch_queue_clear(pipe->watch_queue); 847 #endif 848 849 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0); 850 free_uid(pipe->user); 851 for (i = 0; i < pipe->ring_size; i++) { 852 struct pipe_buffer *buf = pipe->bufs + i; 853 if (buf->ops) 854 pipe_buf_release(pipe, buf); 855 } 856 #ifdef CONFIG_WATCH_QUEUE 857 if (pipe->watch_queue) 858 put_watch_queue(pipe->watch_queue); 859 #endif 860 if (pipe->tmp_page) 861 __free_page(pipe->tmp_page); 862 kfree(pipe->bufs); 863 kfree(pipe); 864 } 865 866 static struct vfsmount *pipe_mnt __ro_after_init; 867 868 /* 869 * pipefs_dname() is called from d_path(). 870 */ 871 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 872 { 873 return dynamic_dname(buffer, buflen, "pipe:[%lu]", 874 d_inode(dentry)->i_ino); 875 } 876 877 static const struct dentry_operations pipefs_dentry_operations = { 878 .d_dname = pipefs_dname, 879 }; 880 881 static struct inode * get_pipe_inode(void) 882 { 883 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 884 struct pipe_inode_info *pipe; 885 886 if (!inode) 887 goto fail_inode; 888 889 inode->i_ino = get_next_ino(); 890 891 pipe = alloc_pipe_info(); 892 if (!pipe) 893 goto fail_iput; 894 895 inode->i_pipe = pipe; 896 pipe->files = 2; 897 pipe->readers = pipe->writers = 1; 898 inode->i_fop = &pipefifo_fops; 899 900 /* 901 * Mark the inode dirty from the very beginning, 902 * that way it will never be moved to the dirty 903 * list because "mark_inode_dirty()" will think 904 * that it already _is_ on the dirty list. 905 */ 906 inode->i_state = I_DIRTY; 907 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 908 inode->i_uid = current_fsuid(); 909 inode->i_gid = current_fsgid(); 910 simple_inode_init_ts(inode); 911 912 return inode; 913 914 fail_iput: 915 iput(inode); 916 917 fail_inode: 918 return NULL; 919 } 920 921 int create_pipe_files(struct file **res, int flags) 922 { 923 struct inode *inode = get_pipe_inode(); 924 struct file *f; 925 int error; 926 927 if (!inode) 928 return -ENFILE; 929 930 if (flags & O_NOTIFICATION_PIPE) { 931 error = watch_queue_init(inode->i_pipe); 932 if (error) { 933 free_pipe_info(inode->i_pipe); 934 iput(inode); 935 return error; 936 } 937 } 938 939 f = alloc_file_pseudo(inode, pipe_mnt, "", 940 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 941 &pipefifo_fops); 942 if (IS_ERR(f)) { 943 free_pipe_info(inode->i_pipe); 944 iput(inode); 945 return PTR_ERR(f); 946 } 947 948 f->private_data = inode->i_pipe; 949 f->f_pipe = 0; 950 951 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 952 &pipefifo_fops); 953 if (IS_ERR(res[0])) { 954 put_pipe_info(inode, inode->i_pipe); 955 fput(f); 956 return PTR_ERR(res[0]); 957 } 958 res[0]->private_data = inode->i_pipe; 959 res[0]->f_pipe = 0; 960 res[1] = f; 961 stream_open(inode, res[0]); 962 stream_open(inode, res[1]); 963 /* 964 * Disable permission and pre-content events, but enable legacy 965 * inotify events for legacy users. 966 */ 967 file_set_fsnotify_mode(res[0], FMODE_NONOTIFY_PERM); 968 file_set_fsnotify_mode(res[1], FMODE_NONOTIFY_PERM); 969 return 0; 970 } 971 972 static int __do_pipe_flags(int *fd, struct file **files, int flags) 973 { 974 int error; 975 int fdw, fdr; 976 977 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) 978 return -EINVAL; 979 980 error = create_pipe_files(files, flags); 981 if (error) 982 return error; 983 984 error = get_unused_fd_flags(flags); 985 if (error < 0) 986 goto err_read_pipe; 987 fdr = error; 988 989 error = get_unused_fd_flags(flags); 990 if (error < 0) 991 goto err_fdr; 992 fdw = error; 993 994 audit_fd_pair(fdr, fdw); 995 fd[0] = fdr; 996 fd[1] = fdw; 997 /* pipe groks IOCB_NOWAIT */ 998 files[0]->f_mode |= FMODE_NOWAIT; 999 files[1]->f_mode |= FMODE_NOWAIT; 1000 return 0; 1001 1002 err_fdr: 1003 put_unused_fd(fdr); 1004 err_read_pipe: 1005 fput(files[0]); 1006 fput(files[1]); 1007 return error; 1008 } 1009 1010 int do_pipe_flags(int *fd, int flags) 1011 { 1012 struct file *files[2]; 1013 int error = __do_pipe_flags(fd, files, flags); 1014 if (!error) { 1015 fd_install(fd[0], files[0]); 1016 fd_install(fd[1], files[1]); 1017 } 1018 return error; 1019 } 1020 1021 /* 1022 * sys_pipe() is the normal C calling standard for creating 1023 * a pipe. It's not the way Unix traditionally does this, though. 1024 */ 1025 static int do_pipe2(int __user *fildes, int flags) 1026 { 1027 struct file *files[2]; 1028 int fd[2]; 1029 int error; 1030 1031 error = __do_pipe_flags(fd, files, flags); 1032 if (!error) { 1033 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 1034 fput(files[0]); 1035 fput(files[1]); 1036 put_unused_fd(fd[0]); 1037 put_unused_fd(fd[1]); 1038 error = -EFAULT; 1039 } else { 1040 fd_install(fd[0], files[0]); 1041 fd_install(fd[1], files[1]); 1042 } 1043 } 1044 return error; 1045 } 1046 1047 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 1048 { 1049 return do_pipe2(fildes, flags); 1050 } 1051 1052 SYSCALL_DEFINE1(pipe, int __user *, fildes) 1053 { 1054 return do_pipe2(fildes, 0); 1055 } 1056 1057 /* 1058 * This is the stupid "wait for pipe to be readable or writable" 1059 * model. 1060 * 1061 * See pipe_read/write() for the proper kind of exclusive wait, 1062 * but that requires that we wake up any other readers/writers 1063 * if we then do not end up reading everything (ie the whole 1064 * "wake_next_reader/writer" logic in pipe_read/write()). 1065 */ 1066 void pipe_wait_readable(struct pipe_inode_info *pipe) 1067 { 1068 pipe_unlock(pipe); 1069 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe)); 1070 pipe_lock(pipe); 1071 } 1072 1073 void pipe_wait_writable(struct pipe_inode_info *pipe) 1074 { 1075 pipe_unlock(pipe); 1076 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe)); 1077 pipe_lock(pipe); 1078 } 1079 1080 /* 1081 * This depends on both the wait (here) and the wakeup (wake_up_partner) 1082 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot 1083 * race with the count check and waitqueue prep. 1084 * 1085 * Normally in order to avoid races, you'd do the prepare_to_wait() first, 1086 * then check the condition you're waiting for, and only then sleep. But 1087 * because of the pipe lock, we can check the condition before being on 1088 * the wait queue. 1089 * 1090 * We use the 'rd_wait' waitqueue for pipe partner waiting. 1091 */ 1092 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 1093 { 1094 DEFINE_WAIT(rdwait); 1095 int cur = *cnt; 1096 1097 while (cur == *cnt) { 1098 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); 1099 pipe_unlock(pipe); 1100 schedule(); 1101 finish_wait(&pipe->rd_wait, &rdwait); 1102 pipe_lock(pipe); 1103 if (signal_pending(current)) 1104 break; 1105 } 1106 return cur == *cnt ? -ERESTARTSYS : 0; 1107 } 1108 1109 static void wake_up_partner(struct pipe_inode_info *pipe) 1110 { 1111 wake_up_interruptible_all(&pipe->rd_wait); 1112 } 1113 1114 static int fifo_open(struct inode *inode, struct file *filp) 1115 { 1116 struct pipe_inode_info *pipe; 1117 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 1118 int ret; 1119 1120 filp->f_pipe = 0; 1121 1122 spin_lock(&inode->i_lock); 1123 if (inode->i_pipe) { 1124 pipe = inode->i_pipe; 1125 pipe->files++; 1126 spin_unlock(&inode->i_lock); 1127 } else { 1128 spin_unlock(&inode->i_lock); 1129 pipe = alloc_pipe_info(); 1130 if (!pipe) 1131 return -ENOMEM; 1132 pipe->files = 1; 1133 spin_lock(&inode->i_lock); 1134 if (unlikely(inode->i_pipe)) { 1135 inode->i_pipe->files++; 1136 spin_unlock(&inode->i_lock); 1137 free_pipe_info(pipe); 1138 pipe = inode->i_pipe; 1139 } else { 1140 inode->i_pipe = pipe; 1141 spin_unlock(&inode->i_lock); 1142 } 1143 } 1144 filp->private_data = pipe; 1145 /* OK, we have a pipe and it's pinned down */ 1146 1147 mutex_lock(&pipe->mutex); 1148 1149 /* We can only do regular read/write on fifos */ 1150 stream_open(inode, filp); 1151 1152 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1153 case FMODE_READ: 1154 /* 1155 * O_RDONLY 1156 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1157 * opened, even when there is no process writing the FIFO. 1158 */ 1159 pipe->r_counter++; 1160 if (pipe->readers++ == 0) 1161 wake_up_partner(pipe); 1162 1163 if (!is_pipe && !pipe->writers) { 1164 if ((filp->f_flags & O_NONBLOCK)) { 1165 /* suppress EPOLLHUP until we have 1166 * seen a writer */ 1167 filp->f_pipe = pipe->w_counter; 1168 } else { 1169 if (wait_for_partner(pipe, &pipe->w_counter)) 1170 goto err_rd; 1171 } 1172 } 1173 break; 1174 1175 case FMODE_WRITE: 1176 /* 1177 * O_WRONLY 1178 * POSIX.1 says that O_NONBLOCK means return -1 with 1179 * errno=ENXIO when there is no process reading the FIFO. 1180 */ 1181 ret = -ENXIO; 1182 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1183 goto err; 1184 1185 pipe->w_counter++; 1186 if (!pipe->writers++) 1187 wake_up_partner(pipe); 1188 1189 if (!is_pipe && !pipe->readers) { 1190 if (wait_for_partner(pipe, &pipe->r_counter)) 1191 goto err_wr; 1192 } 1193 break; 1194 1195 case FMODE_READ | FMODE_WRITE: 1196 /* 1197 * O_RDWR 1198 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1199 * This implementation will NEVER block on a O_RDWR open, since 1200 * the process can at least talk to itself. 1201 */ 1202 1203 pipe->readers++; 1204 pipe->writers++; 1205 pipe->r_counter++; 1206 pipe->w_counter++; 1207 if (pipe->readers == 1 || pipe->writers == 1) 1208 wake_up_partner(pipe); 1209 break; 1210 1211 default: 1212 ret = -EINVAL; 1213 goto err; 1214 } 1215 1216 /* Ok! */ 1217 mutex_unlock(&pipe->mutex); 1218 return 0; 1219 1220 err_rd: 1221 if (!--pipe->readers) 1222 wake_up_interruptible(&pipe->wr_wait); 1223 ret = -ERESTARTSYS; 1224 goto err; 1225 1226 err_wr: 1227 if (!--pipe->writers) 1228 wake_up_interruptible_all(&pipe->rd_wait); 1229 ret = -ERESTARTSYS; 1230 goto err; 1231 1232 err: 1233 mutex_unlock(&pipe->mutex); 1234 1235 put_pipe_info(inode, pipe); 1236 return ret; 1237 } 1238 1239 const struct file_operations pipefifo_fops = { 1240 .open = fifo_open, 1241 .read_iter = pipe_read, 1242 .write_iter = pipe_write, 1243 .poll = pipe_poll, 1244 .unlocked_ioctl = pipe_ioctl, 1245 .release = pipe_release, 1246 .fasync = pipe_fasync, 1247 .splice_write = iter_file_splice_write, 1248 }; 1249 1250 /* 1251 * Currently we rely on the pipe array holding a power-of-2 number 1252 * of pages. Returns 0 on error. 1253 */ 1254 unsigned int round_pipe_size(unsigned int size) 1255 { 1256 if (size > (1U << 31)) 1257 return 0; 1258 1259 /* Minimum pipe size, as required by POSIX */ 1260 if (size < PAGE_SIZE) 1261 return PAGE_SIZE; 1262 1263 return roundup_pow_of_two(size); 1264 } 1265 1266 /* 1267 * Resize the pipe ring to a number of slots. 1268 * 1269 * Note the pipe can be reduced in capacity, but only if the current 1270 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be 1271 * returned instead. 1272 */ 1273 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots) 1274 { 1275 struct pipe_buffer *bufs; 1276 unsigned int head, tail, mask, n; 1277 1278 bufs = kcalloc(nr_slots, sizeof(*bufs), 1279 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1280 if (unlikely(!bufs)) 1281 return -ENOMEM; 1282 1283 spin_lock_irq(&pipe->rd_wait.lock); 1284 mask = pipe->ring_size - 1; 1285 head = pipe->head; 1286 tail = pipe->tail; 1287 1288 n = pipe_occupancy(head, tail); 1289 if (nr_slots < n) { 1290 spin_unlock_irq(&pipe->rd_wait.lock); 1291 kfree(bufs); 1292 return -EBUSY; 1293 } 1294 1295 /* 1296 * The pipe array wraps around, so just start the new one at zero 1297 * and adjust the indices. 1298 */ 1299 if (n > 0) { 1300 unsigned int h = head & mask; 1301 unsigned int t = tail & mask; 1302 if (h > t) { 1303 memcpy(bufs, pipe->bufs + t, 1304 n * sizeof(struct pipe_buffer)); 1305 } else { 1306 unsigned int tsize = pipe->ring_size - t; 1307 if (h > 0) 1308 memcpy(bufs + tsize, pipe->bufs, 1309 h * sizeof(struct pipe_buffer)); 1310 memcpy(bufs, pipe->bufs + t, 1311 tsize * sizeof(struct pipe_buffer)); 1312 } 1313 } 1314 1315 head = n; 1316 tail = 0; 1317 1318 kfree(pipe->bufs); 1319 pipe->bufs = bufs; 1320 pipe->ring_size = nr_slots; 1321 if (pipe->max_usage > nr_slots) 1322 pipe->max_usage = nr_slots; 1323 pipe->tail = tail; 1324 pipe->head = head; 1325 1326 if (!pipe_has_watch_queue(pipe)) { 1327 pipe->max_usage = nr_slots; 1328 pipe->nr_accounted = nr_slots; 1329 } 1330 1331 spin_unlock_irq(&pipe->rd_wait.lock); 1332 1333 /* This might have made more room for writers */ 1334 wake_up_interruptible(&pipe->wr_wait); 1335 return 0; 1336 } 1337 1338 /* 1339 * Allocate a new array of pipe buffers and copy the info over. Returns the 1340 * pipe size if successful, or return -ERROR on error. 1341 */ 1342 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg) 1343 { 1344 unsigned long user_bufs; 1345 unsigned int nr_slots, size; 1346 long ret = 0; 1347 1348 if (pipe_has_watch_queue(pipe)) 1349 return -EBUSY; 1350 1351 size = round_pipe_size(arg); 1352 nr_slots = size >> PAGE_SHIFT; 1353 1354 if (!nr_slots) 1355 return -EINVAL; 1356 1357 /* 1358 * If trying to increase the pipe capacity, check that an 1359 * unprivileged user is not trying to exceed various limits 1360 * (soft limit check here, hard limit check just below). 1361 * Decreasing the pipe capacity is always permitted, even 1362 * if the user is currently over a limit. 1363 */ 1364 if (nr_slots > pipe->max_usage && 1365 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1366 return -EPERM; 1367 1368 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots); 1369 1370 if (nr_slots > pipe->max_usage && 1371 (too_many_pipe_buffers_hard(user_bufs) || 1372 too_many_pipe_buffers_soft(user_bufs)) && 1373 pipe_is_unprivileged_user()) { 1374 ret = -EPERM; 1375 goto out_revert_acct; 1376 } 1377 1378 ret = pipe_resize_ring(pipe, nr_slots); 1379 if (ret < 0) 1380 goto out_revert_acct; 1381 1382 return pipe->max_usage * PAGE_SIZE; 1383 1384 out_revert_acct: 1385 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted); 1386 return ret; 1387 } 1388 1389 /* 1390 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is 1391 * not enough to verify that this is a pipe. 1392 */ 1393 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) 1394 { 1395 struct pipe_inode_info *pipe = file->private_data; 1396 1397 if (file->f_op != &pipefifo_fops || !pipe) 1398 return NULL; 1399 if (for_splice && pipe_has_watch_queue(pipe)) 1400 return NULL; 1401 return pipe; 1402 } 1403 1404 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg) 1405 { 1406 struct pipe_inode_info *pipe; 1407 long ret; 1408 1409 pipe = get_pipe_info(file, false); 1410 if (!pipe) 1411 return -EBADF; 1412 1413 mutex_lock(&pipe->mutex); 1414 1415 switch (cmd) { 1416 case F_SETPIPE_SZ: 1417 ret = pipe_set_size(pipe, arg); 1418 break; 1419 case F_GETPIPE_SZ: 1420 ret = pipe->max_usage * PAGE_SIZE; 1421 break; 1422 default: 1423 ret = -EINVAL; 1424 break; 1425 } 1426 1427 mutex_unlock(&pipe->mutex); 1428 return ret; 1429 } 1430 1431 static const struct super_operations pipefs_ops = { 1432 .destroy_inode = free_inode_nonrcu, 1433 .statfs = simple_statfs, 1434 }; 1435 1436 /* 1437 * pipefs should _never_ be mounted by userland - too much of security hassle, 1438 * no real gain from having the whole file system mounted. So we don't need 1439 * any operations on the root directory. However, we need a non-trivial 1440 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1441 */ 1442 1443 static int pipefs_init_fs_context(struct fs_context *fc) 1444 { 1445 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1446 if (!ctx) 1447 return -ENOMEM; 1448 ctx->ops = &pipefs_ops; 1449 ctx->dops = &pipefs_dentry_operations; 1450 return 0; 1451 } 1452 1453 static struct file_system_type pipe_fs_type = { 1454 .name = "pipefs", 1455 .init_fs_context = pipefs_init_fs_context, 1456 .kill_sb = kill_anon_super, 1457 }; 1458 1459 #ifdef CONFIG_SYSCTL 1460 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp, 1461 unsigned int *valp, 1462 int write, void *data) 1463 { 1464 if (write) { 1465 unsigned int val; 1466 1467 val = round_pipe_size(*lvalp); 1468 if (val == 0) 1469 return -EINVAL; 1470 1471 *valp = val; 1472 } else { 1473 unsigned int val = *valp; 1474 *lvalp = (unsigned long) val; 1475 } 1476 1477 return 0; 1478 } 1479 1480 static int proc_dopipe_max_size(const struct ctl_table *table, int write, 1481 void *buffer, size_t *lenp, loff_t *ppos) 1482 { 1483 return do_proc_douintvec(table, write, buffer, lenp, ppos, 1484 do_proc_dopipe_max_size_conv, NULL); 1485 } 1486 1487 static const struct ctl_table fs_pipe_sysctls[] = { 1488 { 1489 .procname = "pipe-max-size", 1490 .data = &pipe_max_size, 1491 .maxlen = sizeof(pipe_max_size), 1492 .mode = 0644, 1493 .proc_handler = proc_dopipe_max_size, 1494 }, 1495 { 1496 .procname = "pipe-user-pages-hard", 1497 .data = &pipe_user_pages_hard, 1498 .maxlen = sizeof(pipe_user_pages_hard), 1499 .mode = 0644, 1500 .proc_handler = proc_doulongvec_minmax, 1501 }, 1502 { 1503 .procname = "pipe-user-pages-soft", 1504 .data = &pipe_user_pages_soft, 1505 .maxlen = sizeof(pipe_user_pages_soft), 1506 .mode = 0644, 1507 .proc_handler = proc_doulongvec_minmax, 1508 }, 1509 }; 1510 #endif 1511 1512 static int __init init_pipe_fs(void) 1513 { 1514 int err = register_filesystem(&pipe_fs_type); 1515 1516 if (!err) { 1517 pipe_mnt = kern_mount(&pipe_fs_type); 1518 if (IS_ERR(pipe_mnt)) { 1519 err = PTR_ERR(pipe_mnt); 1520 unregister_filesystem(&pipe_fs_type); 1521 } 1522 } 1523 #ifdef CONFIG_SYSCTL 1524 register_sysctl_init("fs", fs_pipe_sysctls); 1525 #endif 1526 return err; 1527 } 1528 1529 fs_initcall(init_pipe_fs); 1530