xref: /linux/fs/pipe.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1 /*
2  *  linux/fs/pipe.c
3  *
4  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/mount.h>
15 #include <linux/pipe_fs_i.h>
16 #include <linux/uio.h>
17 #include <linux/highmem.h>
18 #include <linux/pagemap.h>
19 
20 #include <asm/uaccess.h>
21 #include <asm/ioctls.h>
22 
23 /*
24  * We use a start+len construction, which provides full use of the
25  * allocated memory.
26  * -- Florian Coosmann (FGC)
27  *
28  * Reads with count = 0 should always return 0.
29  * -- Julian Bradfield 1999-06-07.
30  *
31  * FIFOs and Pipes now generate SIGIO for both readers and writers.
32  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
33  *
34  * pipe_read & write cleanup
35  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
36  */
37 
38 /* Drop the inode semaphore and wait for a pipe event, atomically */
39 void pipe_wait(struct pipe_inode_info *pipe)
40 {
41 	DEFINE_WAIT(wait);
42 
43 	/*
44 	 * Pipes are system-local resources, so sleeping on them
45 	 * is considered a noninteractive wait:
46 	 */
47 	prepare_to_wait(&pipe->wait, &wait,
48 			TASK_INTERRUPTIBLE | TASK_NONINTERACTIVE);
49 	if (pipe->inode)
50 		mutex_unlock(&pipe->inode->i_mutex);
51 	schedule();
52 	finish_wait(&pipe->wait, &wait);
53 	if (pipe->inode)
54 		mutex_lock(&pipe->inode->i_mutex);
55 }
56 
57 static int
58 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
59 			int atomic)
60 {
61 	unsigned long copy;
62 
63 	while (len > 0) {
64 		while (!iov->iov_len)
65 			iov++;
66 		copy = min_t(unsigned long, len, iov->iov_len);
67 
68 		if (atomic) {
69 			if (__copy_from_user_inatomic(to, iov->iov_base, copy))
70 				return -EFAULT;
71 		} else {
72 			if (copy_from_user(to, iov->iov_base, copy))
73 				return -EFAULT;
74 		}
75 		to += copy;
76 		len -= copy;
77 		iov->iov_base += copy;
78 		iov->iov_len -= copy;
79 	}
80 	return 0;
81 }
82 
83 static int
84 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
85 		      int atomic)
86 {
87 	unsigned long copy;
88 
89 	while (len > 0) {
90 		while (!iov->iov_len)
91 			iov++;
92 		copy = min_t(unsigned long, len, iov->iov_len);
93 
94 		if (atomic) {
95 			if (__copy_to_user_inatomic(iov->iov_base, from, copy))
96 				return -EFAULT;
97 		} else {
98 			if (copy_to_user(iov->iov_base, from, copy))
99 				return -EFAULT;
100 		}
101 		from += copy;
102 		len -= copy;
103 		iov->iov_base += copy;
104 		iov->iov_len -= copy;
105 	}
106 	return 0;
107 }
108 
109 /*
110  * Attempt to pre-fault in the user memory, so we can use atomic copies.
111  * Returns the number of bytes not faulted in.
112  */
113 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
114 {
115 	while (!iov->iov_len)
116 		iov++;
117 
118 	while (len > 0) {
119 		unsigned long this_len;
120 
121 		this_len = min_t(unsigned long, len, iov->iov_len);
122 		if (fault_in_pages_writeable(iov->iov_base, this_len))
123 			break;
124 
125 		len -= this_len;
126 		iov++;
127 	}
128 
129 	return len;
130 }
131 
132 /*
133  * Pre-fault in the user memory, so we can use atomic copies.
134  */
135 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
136 {
137 	while (!iov->iov_len)
138 		iov++;
139 
140 	while (len > 0) {
141 		unsigned long this_len;
142 
143 		this_len = min_t(unsigned long, len, iov->iov_len);
144 		fault_in_pages_readable(iov->iov_base, this_len);
145 		len -= this_len;
146 		iov++;
147 	}
148 }
149 
150 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
151 				  struct pipe_buffer *buf)
152 {
153 	struct page *page = buf->page;
154 
155 	/*
156 	 * If nobody else uses this page, and we don't already have a
157 	 * temporary page, let's keep track of it as a one-deep
158 	 * allocation cache. (Otherwise just release our reference to it)
159 	 */
160 	if (page_count(page) == 1 && !pipe->tmp_page)
161 		pipe->tmp_page = page;
162 	else
163 		page_cache_release(page);
164 }
165 
166 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
167 			   struct pipe_buffer *buf, int atomic)
168 {
169 	if (atomic) {
170 		buf->flags |= PIPE_BUF_FLAG_ATOMIC;
171 		return kmap_atomic(buf->page, KM_USER0);
172 	}
173 
174 	return kmap(buf->page);
175 }
176 
177 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
178 			    struct pipe_buffer *buf, void *map_data)
179 {
180 	if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
181 		buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
182 		kunmap_atomic(map_data, KM_USER0);
183 	} else
184 		kunmap(buf->page);
185 }
186 
187 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
188 			   struct pipe_buffer *buf)
189 {
190 	struct page *page = buf->page;
191 
192 	if (page_count(page) == 1) {
193 		lock_page(page);
194 		return 0;
195 	}
196 
197 	return 1;
198 }
199 
200 void generic_pipe_buf_get(struct pipe_inode_info *info, struct pipe_buffer *buf)
201 {
202 	page_cache_get(buf->page);
203 }
204 
205 int generic_pipe_buf_pin(struct pipe_inode_info *info, struct pipe_buffer *buf)
206 {
207 	return 0;
208 }
209 
210 static const struct pipe_buf_operations anon_pipe_buf_ops = {
211 	.can_merge = 1,
212 	.map = generic_pipe_buf_map,
213 	.unmap = generic_pipe_buf_unmap,
214 	.pin = generic_pipe_buf_pin,
215 	.release = anon_pipe_buf_release,
216 	.steal = generic_pipe_buf_steal,
217 	.get = generic_pipe_buf_get,
218 };
219 
220 static ssize_t
221 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
222 	   unsigned long nr_segs, loff_t pos)
223 {
224 	struct file *filp = iocb->ki_filp;
225 	struct inode *inode = filp->f_path.dentry->d_inode;
226 	struct pipe_inode_info *pipe;
227 	int do_wakeup;
228 	ssize_t ret;
229 	struct iovec *iov = (struct iovec *)_iov;
230 	size_t total_len;
231 
232 	total_len = iov_length(iov, nr_segs);
233 	/* Null read succeeds. */
234 	if (unlikely(total_len == 0))
235 		return 0;
236 
237 	do_wakeup = 0;
238 	ret = 0;
239 	mutex_lock(&inode->i_mutex);
240 	pipe = inode->i_pipe;
241 	for (;;) {
242 		int bufs = pipe->nrbufs;
243 		if (bufs) {
244 			int curbuf = pipe->curbuf;
245 			struct pipe_buffer *buf = pipe->bufs + curbuf;
246 			const struct pipe_buf_operations *ops = buf->ops;
247 			void *addr;
248 			size_t chars = buf->len;
249 			int error, atomic;
250 
251 			if (chars > total_len)
252 				chars = total_len;
253 
254 			error = ops->pin(pipe, buf);
255 			if (error) {
256 				if (!ret)
257 					error = ret;
258 				break;
259 			}
260 
261 			atomic = !iov_fault_in_pages_write(iov, chars);
262 redo:
263 			addr = ops->map(pipe, buf, atomic);
264 			error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
265 			ops->unmap(pipe, buf, addr);
266 			if (unlikely(error)) {
267 				/*
268 				 * Just retry with the slow path if we failed.
269 				 */
270 				if (atomic) {
271 					atomic = 0;
272 					goto redo;
273 				}
274 				if (!ret)
275 					ret = error;
276 				break;
277 			}
278 			ret += chars;
279 			buf->offset += chars;
280 			buf->len -= chars;
281 			if (!buf->len) {
282 				buf->ops = NULL;
283 				ops->release(pipe, buf);
284 				curbuf = (curbuf + 1) & (PIPE_BUFFERS-1);
285 				pipe->curbuf = curbuf;
286 				pipe->nrbufs = --bufs;
287 				do_wakeup = 1;
288 			}
289 			total_len -= chars;
290 			if (!total_len)
291 				break;	/* common path: read succeeded */
292 		}
293 		if (bufs)	/* More to do? */
294 			continue;
295 		if (!pipe->writers)
296 			break;
297 		if (!pipe->waiting_writers) {
298 			/* syscall merging: Usually we must not sleep
299 			 * if O_NONBLOCK is set, or if we got some data.
300 			 * But if a writer sleeps in kernel space, then
301 			 * we can wait for that data without violating POSIX.
302 			 */
303 			if (ret)
304 				break;
305 			if (filp->f_flags & O_NONBLOCK) {
306 				ret = -EAGAIN;
307 				break;
308 			}
309 		}
310 		if (signal_pending(current)) {
311 			if (!ret)
312 				ret = -ERESTARTSYS;
313 			break;
314 		}
315 		if (do_wakeup) {
316 			wake_up_interruptible_sync(&pipe->wait);
317  			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
318 		}
319 		pipe_wait(pipe);
320 	}
321 	mutex_unlock(&inode->i_mutex);
322 
323 	/* Signal writers asynchronously that there is more room. */
324 	if (do_wakeup) {
325 		wake_up_interruptible(&pipe->wait);
326 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
327 	}
328 	if (ret > 0)
329 		file_accessed(filp);
330 	return ret;
331 }
332 
333 static ssize_t
334 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
335 	    unsigned long nr_segs, loff_t ppos)
336 {
337 	struct file *filp = iocb->ki_filp;
338 	struct inode *inode = filp->f_path.dentry->d_inode;
339 	struct pipe_inode_info *pipe;
340 	ssize_t ret;
341 	int do_wakeup;
342 	struct iovec *iov = (struct iovec *)_iov;
343 	size_t total_len;
344 	ssize_t chars;
345 
346 	total_len = iov_length(iov, nr_segs);
347 	/* Null write succeeds. */
348 	if (unlikely(total_len == 0))
349 		return 0;
350 
351 	do_wakeup = 0;
352 	ret = 0;
353 	mutex_lock(&inode->i_mutex);
354 	pipe = inode->i_pipe;
355 
356 	if (!pipe->readers) {
357 		send_sig(SIGPIPE, current, 0);
358 		ret = -EPIPE;
359 		goto out;
360 	}
361 
362 	/* We try to merge small writes */
363 	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
364 	if (pipe->nrbufs && chars != 0) {
365 		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
366 							(PIPE_BUFFERS-1);
367 		struct pipe_buffer *buf = pipe->bufs + lastbuf;
368 		const struct pipe_buf_operations *ops = buf->ops;
369 		int offset = buf->offset + buf->len;
370 
371 		if (ops->can_merge && offset + chars <= PAGE_SIZE) {
372 			int error, atomic = 1;
373 			void *addr;
374 
375 			error = ops->pin(pipe, buf);
376 			if (error)
377 				goto out;
378 
379 			iov_fault_in_pages_read(iov, chars);
380 redo1:
381 			addr = ops->map(pipe, buf, atomic);
382 			error = pipe_iov_copy_from_user(offset + addr, iov,
383 							chars, atomic);
384 			ops->unmap(pipe, buf, addr);
385 			ret = error;
386 			do_wakeup = 1;
387 			if (error) {
388 				if (atomic) {
389 					atomic = 0;
390 					goto redo1;
391 				}
392 				goto out;
393 			}
394 			buf->len += chars;
395 			total_len -= chars;
396 			ret = chars;
397 			if (!total_len)
398 				goto out;
399 		}
400 	}
401 
402 	for (;;) {
403 		int bufs;
404 
405 		if (!pipe->readers) {
406 			send_sig(SIGPIPE, current, 0);
407 			if (!ret)
408 				ret = -EPIPE;
409 			break;
410 		}
411 		bufs = pipe->nrbufs;
412 		if (bufs < PIPE_BUFFERS) {
413 			int newbuf = (pipe->curbuf + bufs) & (PIPE_BUFFERS-1);
414 			struct pipe_buffer *buf = pipe->bufs + newbuf;
415 			struct page *page = pipe->tmp_page;
416 			char *src;
417 			int error, atomic = 1;
418 
419 			if (!page) {
420 				page = alloc_page(GFP_HIGHUSER);
421 				if (unlikely(!page)) {
422 					ret = ret ? : -ENOMEM;
423 					break;
424 				}
425 				pipe->tmp_page = page;
426 			}
427 			/* Always wake up, even if the copy fails. Otherwise
428 			 * we lock up (O_NONBLOCK-)readers that sleep due to
429 			 * syscall merging.
430 			 * FIXME! Is this really true?
431 			 */
432 			do_wakeup = 1;
433 			chars = PAGE_SIZE;
434 			if (chars > total_len)
435 				chars = total_len;
436 
437 			iov_fault_in_pages_read(iov, chars);
438 redo2:
439 			if (atomic)
440 				src = kmap_atomic(page, KM_USER0);
441 			else
442 				src = kmap(page);
443 
444 			error = pipe_iov_copy_from_user(src, iov, chars,
445 							atomic);
446 			if (atomic)
447 				kunmap_atomic(src, KM_USER0);
448 			else
449 				kunmap(page);
450 
451 			if (unlikely(error)) {
452 				if (atomic) {
453 					atomic = 0;
454 					goto redo2;
455 				}
456 				if (!ret)
457 					ret = error;
458 				break;
459 			}
460 			ret += chars;
461 
462 			/* Insert it into the buffer array */
463 			buf->page = page;
464 			buf->ops = &anon_pipe_buf_ops;
465 			buf->offset = 0;
466 			buf->len = chars;
467 			pipe->nrbufs = ++bufs;
468 			pipe->tmp_page = NULL;
469 
470 			total_len -= chars;
471 			if (!total_len)
472 				break;
473 		}
474 		if (bufs < PIPE_BUFFERS)
475 			continue;
476 		if (filp->f_flags & O_NONBLOCK) {
477 			if (!ret)
478 				ret = -EAGAIN;
479 			break;
480 		}
481 		if (signal_pending(current)) {
482 			if (!ret)
483 				ret = -ERESTARTSYS;
484 			break;
485 		}
486 		if (do_wakeup) {
487 			wake_up_interruptible_sync(&pipe->wait);
488 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
489 			do_wakeup = 0;
490 		}
491 		pipe->waiting_writers++;
492 		pipe_wait(pipe);
493 		pipe->waiting_writers--;
494 	}
495 out:
496 	mutex_unlock(&inode->i_mutex);
497 	if (do_wakeup) {
498 		wake_up_interruptible(&pipe->wait);
499 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
500 	}
501 	if (ret > 0)
502 		file_update_time(filp);
503 	return ret;
504 }
505 
506 static ssize_t
507 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
508 {
509 	return -EBADF;
510 }
511 
512 static ssize_t
513 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
514 	   loff_t *ppos)
515 {
516 	return -EBADF;
517 }
518 
519 static int
520 pipe_ioctl(struct inode *pino, struct file *filp,
521 	   unsigned int cmd, unsigned long arg)
522 {
523 	struct inode *inode = filp->f_path.dentry->d_inode;
524 	struct pipe_inode_info *pipe;
525 	int count, buf, nrbufs;
526 
527 	switch (cmd) {
528 		case FIONREAD:
529 			mutex_lock(&inode->i_mutex);
530 			pipe = inode->i_pipe;
531 			count = 0;
532 			buf = pipe->curbuf;
533 			nrbufs = pipe->nrbufs;
534 			while (--nrbufs >= 0) {
535 				count += pipe->bufs[buf].len;
536 				buf = (buf+1) & (PIPE_BUFFERS-1);
537 			}
538 			mutex_unlock(&inode->i_mutex);
539 
540 			return put_user(count, (int __user *)arg);
541 		default:
542 			return -EINVAL;
543 	}
544 }
545 
546 /* No kernel lock held - fine */
547 static unsigned int
548 pipe_poll(struct file *filp, poll_table *wait)
549 {
550 	unsigned int mask;
551 	struct inode *inode = filp->f_path.dentry->d_inode;
552 	struct pipe_inode_info *pipe = inode->i_pipe;
553 	int nrbufs;
554 
555 	poll_wait(filp, &pipe->wait, wait);
556 
557 	/* Reading only -- no need for acquiring the semaphore.  */
558 	nrbufs = pipe->nrbufs;
559 	mask = 0;
560 	if (filp->f_mode & FMODE_READ) {
561 		mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
562 		if (!pipe->writers && filp->f_version != pipe->w_counter)
563 			mask |= POLLHUP;
564 	}
565 
566 	if (filp->f_mode & FMODE_WRITE) {
567 		mask |= (nrbufs < PIPE_BUFFERS) ? POLLOUT | POLLWRNORM : 0;
568 		/*
569 		 * Most Unices do not set POLLERR for FIFOs but on Linux they
570 		 * behave exactly like pipes for poll().
571 		 */
572 		if (!pipe->readers)
573 			mask |= POLLERR;
574 	}
575 
576 	return mask;
577 }
578 
579 static int
580 pipe_release(struct inode *inode, int decr, int decw)
581 {
582 	struct pipe_inode_info *pipe;
583 
584 	mutex_lock(&inode->i_mutex);
585 	pipe = inode->i_pipe;
586 	pipe->readers -= decr;
587 	pipe->writers -= decw;
588 
589 	if (!pipe->readers && !pipe->writers) {
590 		free_pipe_info(inode);
591 	} else {
592 		wake_up_interruptible(&pipe->wait);
593 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
594 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
595 	}
596 	mutex_unlock(&inode->i_mutex);
597 
598 	return 0;
599 }
600 
601 static int
602 pipe_read_fasync(int fd, struct file *filp, int on)
603 {
604 	struct inode *inode = filp->f_path.dentry->d_inode;
605 	int retval;
606 
607 	mutex_lock(&inode->i_mutex);
608 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
609 	mutex_unlock(&inode->i_mutex);
610 
611 	if (retval < 0)
612 		return retval;
613 
614 	return 0;
615 }
616 
617 
618 static int
619 pipe_write_fasync(int fd, struct file *filp, int on)
620 {
621 	struct inode *inode = filp->f_path.dentry->d_inode;
622 	int retval;
623 
624 	mutex_lock(&inode->i_mutex);
625 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
626 	mutex_unlock(&inode->i_mutex);
627 
628 	if (retval < 0)
629 		return retval;
630 
631 	return 0;
632 }
633 
634 
635 static int
636 pipe_rdwr_fasync(int fd, struct file *filp, int on)
637 {
638 	struct inode *inode = filp->f_path.dentry->d_inode;
639 	struct pipe_inode_info *pipe = inode->i_pipe;
640 	int retval;
641 
642 	mutex_lock(&inode->i_mutex);
643 
644 	retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
645 
646 	if (retval >= 0)
647 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
648 
649 	mutex_unlock(&inode->i_mutex);
650 
651 	if (retval < 0)
652 		return retval;
653 
654 	return 0;
655 }
656 
657 
658 static int
659 pipe_read_release(struct inode *inode, struct file *filp)
660 {
661 	pipe_read_fasync(-1, filp, 0);
662 	return pipe_release(inode, 1, 0);
663 }
664 
665 static int
666 pipe_write_release(struct inode *inode, struct file *filp)
667 {
668 	pipe_write_fasync(-1, filp, 0);
669 	return pipe_release(inode, 0, 1);
670 }
671 
672 static int
673 pipe_rdwr_release(struct inode *inode, struct file *filp)
674 {
675 	int decr, decw;
676 
677 	pipe_rdwr_fasync(-1, filp, 0);
678 	decr = (filp->f_mode & FMODE_READ) != 0;
679 	decw = (filp->f_mode & FMODE_WRITE) != 0;
680 	return pipe_release(inode, decr, decw);
681 }
682 
683 static int
684 pipe_read_open(struct inode *inode, struct file *filp)
685 {
686 	/* We could have perhaps used atomic_t, but this and friends
687 	   below are the only places.  So it doesn't seem worthwhile.  */
688 	mutex_lock(&inode->i_mutex);
689 	inode->i_pipe->readers++;
690 	mutex_unlock(&inode->i_mutex);
691 
692 	return 0;
693 }
694 
695 static int
696 pipe_write_open(struct inode *inode, struct file *filp)
697 {
698 	mutex_lock(&inode->i_mutex);
699 	inode->i_pipe->writers++;
700 	mutex_unlock(&inode->i_mutex);
701 
702 	return 0;
703 }
704 
705 static int
706 pipe_rdwr_open(struct inode *inode, struct file *filp)
707 {
708 	mutex_lock(&inode->i_mutex);
709 	if (filp->f_mode & FMODE_READ)
710 		inode->i_pipe->readers++;
711 	if (filp->f_mode & FMODE_WRITE)
712 		inode->i_pipe->writers++;
713 	mutex_unlock(&inode->i_mutex);
714 
715 	return 0;
716 }
717 
718 /*
719  * The file_operations structs are not static because they
720  * are also used in linux/fs/fifo.c to do operations on FIFOs.
721  */
722 const struct file_operations read_fifo_fops = {
723 	.llseek		= no_llseek,
724 	.read		= do_sync_read,
725 	.aio_read	= pipe_read,
726 	.write		= bad_pipe_w,
727 	.poll		= pipe_poll,
728 	.ioctl		= pipe_ioctl,
729 	.open		= pipe_read_open,
730 	.release	= pipe_read_release,
731 	.fasync		= pipe_read_fasync,
732 };
733 
734 const struct file_operations write_fifo_fops = {
735 	.llseek		= no_llseek,
736 	.read		= bad_pipe_r,
737 	.write		= do_sync_write,
738 	.aio_write	= pipe_write,
739 	.poll		= pipe_poll,
740 	.ioctl		= pipe_ioctl,
741 	.open		= pipe_write_open,
742 	.release	= pipe_write_release,
743 	.fasync		= pipe_write_fasync,
744 };
745 
746 const struct file_operations rdwr_fifo_fops = {
747 	.llseek		= no_llseek,
748 	.read		= do_sync_read,
749 	.aio_read	= pipe_read,
750 	.write		= do_sync_write,
751 	.aio_write	= pipe_write,
752 	.poll		= pipe_poll,
753 	.ioctl		= pipe_ioctl,
754 	.open		= pipe_rdwr_open,
755 	.release	= pipe_rdwr_release,
756 	.fasync		= pipe_rdwr_fasync,
757 };
758 
759 static const struct file_operations read_pipe_fops = {
760 	.llseek		= no_llseek,
761 	.read		= do_sync_read,
762 	.aio_read	= pipe_read,
763 	.write		= bad_pipe_w,
764 	.poll		= pipe_poll,
765 	.ioctl		= pipe_ioctl,
766 	.open		= pipe_read_open,
767 	.release	= pipe_read_release,
768 	.fasync		= pipe_read_fasync,
769 };
770 
771 static const struct file_operations write_pipe_fops = {
772 	.llseek		= no_llseek,
773 	.read		= bad_pipe_r,
774 	.write		= do_sync_write,
775 	.aio_write	= pipe_write,
776 	.poll		= pipe_poll,
777 	.ioctl		= pipe_ioctl,
778 	.open		= pipe_write_open,
779 	.release	= pipe_write_release,
780 	.fasync		= pipe_write_fasync,
781 };
782 
783 static const struct file_operations rdwr_pipe_fops = {
784 	.llseek		= no_llseek,
785 	.read		= do_sync_read,
786 	.aio_read	= pipe_read,
787 	.write		= do_sync_write,
788 	.aio_write	= pipe_write,
789 	.poll		= pipe_poll,
790 	.ioctl		= pipe_ioctl,
791 	.open		= pipe_rdwr_open,
792 	.release	= pipe_rdwr_release,
793 	.fasync		= pipe_rdwr_fasync,
794 };
795 
796 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
797 {
798 	struct pipe_inode_info *pipe;
799 
800 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
801 	if (pipe) {
802 		init_waitqueue_head(&pipe->wait);
803 		pipe->r_counter = pipe->w_counter = 1;
804 		pipe->inode = inode;
805 	}
806 
807 	return pipe;
808 }
809 
810 void __free_pipe_info(struct pipe_inode_info *pipe)
811 {
812 	int i;
813 
814 	for (i = 0; i < PIPE_BUFFERS; i++) {
815 		struct pipe_buffer *buf = pipe->bufs + i;
816 		if (buf->ops)
817 			buf->ops->release(pipe, buf);
818 	}
819 	if (pipe->tmp_page)
820 		__free_page(pipe->tmp_page);
821 	kfree(pipe);
822 }
823 
824 void free_pipe_info(struct inode *inode)
825 {
826 	__free_pipe_info(inode->i_pipe);
827 	inode->i_pipe = NULL;
828 }
829 
830 static struct vfsmount *pipe_mnt __read_mostly;
831 static int pipefs_delete_dentry(struct dentry *dentry)
832 {
833 	/*
834 	 * At creation time, we pretended this dentry was hashed
835 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
836 	 * At delete time, we restore the truth : not hashed.
837 	 * (so that dput() can proceed correctly)
838 	 */
839 	dentry->d_flags |= DCACHE_UNHASHED;
840 	return 0;
841 }
842 
843 static struct dentry_operations pipefs_dentry_operations = {
844 	.d_delete	= pipefs_delete_dentry,
845 };
846 
847 static struct inode * get_pipe_inode(void)
848 {
849 	struct inode *inode = new_inode(pipe_mnt->mnt_sb);
850 	struct pipe_inode_info *pipe;
851 
852 	if (!inode)
853 		goto fail_inode;
854 
855 	pipe = alloc_pipe_info(inode);
856 	if (!pipe)
857 		goto fail_iput;
858 	inode->i_pipe = pipe;
859 
860 	pipe->readers = pipe->writers = 1;
861 	inode->i_fop = &rdwr_pipe_fops;
862 
863 	/*
864 	 * Mark the inode dirty from the very beginning,
865 	 * that way it will never be moved to the dirty
866 	 * list because "mark_inode_dirty()" will think
867 	 * that it already _is_ on the dirty list.
868 	 */
869 	inode->i_state = I_DIRTY;
870 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
871 	inode->i_uid = current->fsuid;
872 	inode->i_gid = current->fsgid;
873 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
874 
875 	return inode;
876 
877 fail_iput:
878 	iput(inode);
879 
880 fail_inode:
881 	return NULL;
882 }
883 
884 struct file *create_write_pipe(void)
885 {
886 	int err;
887 	struct inode *inode;
888 	struct file *f;
889 	struct dentry *dentry;
890 	char name[32];
891 	struct qstr this;
892 
893 	f = get_empty_filp();
894 	if (!f)
895 		return ERR_PTR(-ENFILE);
896 	err = -ENFILE;
897 	inode = get_pipe_inode();
898 	if (!inode)
899 		goto err_file;
900 
901 	this.len = sprintf(name, "[%lu]", inode->i_ino);
902 	this.name = name;
903 	this.hash = 0;
904 	err = -ENOMEM;
905 	dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &this);
906 	if (!dentry)
907 		goto err_inode;
908 
909 	dentry->d_op = &pipefs_dentry_operations;
910 	/*
911 	 * We dont want to publish this dentry into global dentry hash table.
912 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
913 	 * This permits a working /proc/$pid/fd/XXX on pipes
914 	 */
915 	dentry->d_flags &= ~DCACHE_UNHASHED;
916 	d_instantiate(dentry, inode);
917 	f->f_path.mnt = mntget(pipe_mnt);
918 	f->f_path.dentry = dentry;
919 	f->f_mapping = inode->i_mapping;
920 
921 	f->f_flags = O_WRONLY;
922 	f->f_op = &write_pipe_fops;
923 	f->f_mode = FMODE_WRITE;
924 	f->f_version = 0;
925 
926 	return f;
927 
928  err_inode:
929 	free_pipe_info(inode);
930 	iput(inode);
931  err_file:
932 	put_filp(f);
933 	return ERR_PTR(err);
934 }
935 
936 void free_write_pipe(struct file *f)
937 {
938 	free_pipe_info(f->f_dentry->d_inode);
939 	dput(f->f_path.dentry);
940 	mntput(f->f_path.mnt);
941 	put_filp(f);
942 }
943 
944 struct file *create_read_pipe(struct file *wrf)
945 {
946 	struct file *f = get_empty_filp();
947 	if (!f)
948 		return ERR_PTR(-ENFILE);
949 
950 	/* Grab pipe from the writer */
951 	f->f_path.mnt = mntget(wrf->f_path.mnt);
952 	f->f_path.dentry = dget(wrf->f_path.dentry);
953 	f->f_mapping = wrf->f_path.dentry->d_inode->i_mapping;
954 
955 	f->f_pos = 0;
956 	f->f_flags = O_RDONLY;
957 	f->f_op = &read_pipe_fops;
958 	f->f_mode = FMODE_READ;
959 	f->f_version = 0;
960 
961 	return f;
962 }
963 
964 int do_pipe(int *fd)
965 {
966 	struct file *fw, *fr;
967 	int error;
968 	int fdw, fdr;
969 
970 	fw = create_write_pipe();
971 	if (IS_ERR(fw))
972 		return PTR_ERR(fw);
973 	fr = create_read_pipe(fw);
974 	error = PTR_ERR(fr);
975 	if (IS_ERR(fr))
976 		goto err_write_pipe;
977 
978 	error = get_unused_fd();
979 	if (error < 0)
980 		goto err_read_pipe;
981 	fdr = error;
982 
983 	error = get_unused_fd();
984 	if (error < 0)
985 		goto err_fdr;
986 	fdw = error;
987 
988 	fd_install(fdr, fr);
989 	fd_install(fdw, fw);
990 	fd[0] = fdr;
991 	fd[1] = fdw;
992 
993 	return 0;
994 
995  err_fdr:
996 	put_unused_fd(fdr);
997  err_read_pipe:
998 	dput(fr->f_dentry);
999 	mntput(fr->f_vfsmnt);
1000 	put_filp(fr);
1001  err_write_pipe:
1002 	free_write_pipe(fw);
1003 	return error;
1004 }
1005 
1006 /*
1007  * pipefs should _never_ be mounted by userland - too much of security hassle,
1008  * no real gain from having the whole whorehouse mounted. So we don't need
1009  * any operations on the root directory. However, we need a non-trivial
1010  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1011  */
1012 static int pipefs_get_sb(struct file_system_type *fs_type,
1013 			 int flags, const char *dev_name, void *data,
1014 			 struct vfsmount *mnt)
1015 {
1016 	return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt);
1017 }
1018 
1019 static struct file_system_type pipe_fs_type = {
1020 	.name		= "pipefs",
1021 	.get_sb		= pipefs_get_sb,
1022 	.kill_sb	= kill_anon_super,
1023 };
1024 
1025 static int __init init_pipe_fs(void)
1026 {
1027 	int err = register_filesystem(&pipe_fs_type);
1028 
1029 	if (!err) {
1030 		pipe_mnt = kern_mount(&pipe_fs_type);
1031 		if (IS_ERR(pipe_mnt)) {
1032 			err = PTR_ERR(pipe_mnt);
1033 			unregister_filesystem(&pipe_fs_type);
1034 		}
1035 	}
1036 	return err;
1037 }
1038 
1039 static void __exit exit_pipe_fs(void)
1040 {
1041 	unregister_filesystem(&pipe_fs_type);
1042 	mntput(pipe_mnt);
1043 }
1044 
1045 fs_initcall(init_pipe_fs);
1046 module_exit(exit_pipe_fs);
1047