1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 #include <linux/watch_queue.h> 28 #include <linux/sysctl.h> 29 30 #include <linux/uaccess.h> 31 #include <asm/ioctls.h> 32 33 #include "internal.h" 34 35 /* 36 * New pipe buffers will be restricted to this size while the user is exceeding 37 * their pipe buffer quota. The general pipe use case needs at least two 38 * buffers: one for data yet to be read, and one for new data. If this is less 39 * than two, then a write to a non-empty pipe may block even if the pipe is not 40 * full. This can occur with GNU make jobserver or similar uses of pipes as 41 * semaphores: multiple processes may be waiting to write tokens back to the 42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/. 43 * 44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their 45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is 46 * emptied. 47 */ 48 #define PIPE_MIN_DEF_BUFFERS 2 49 50 /* 51 * The max size that a non-root user is allowed to grow the pipe. Can 52 * be set by root in /proc/sys/fs/pipe-max-size 53 */ 54 static unsigned int pipe_max_size = 1048576; 55 56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 57 * matches default values. 58 */ 59 static unsigned long pipe_user_pages_hard; 60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 61 62 /* 63 * We use head and tail indices that aren't masked off, except at the point of 64 * dereference, but rather they're allowed to wrap naturally. This means there 65 * isn't a dead spot in the buffer, but the ring has to be a power of two and 66 * <= 2^31. 67 * -- David Howells 2019-09-23. 68 * 69 * Reads with count = 0 should always return 0. 70 * -- Julian Bradfield 1999-06-07. 71 * 72 * FIFOs and Pipes now generate SIGIO for both readers and writers. 73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 74 * 75 * pipe_read & write cleanup 76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 77 */ 78 79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) 80 { 81 if (pipe->files) 82 mutex_lock_nested(&pipe->mutex, subclass); 83 } 84 85 void pipe_lock(struct pipe_inode_info *pipe) 86 { 87 /* 88 * pipe_lock() nests non-pipe inode locks (for writing to a file) 89 */ 90 pipe_lock_nested(pipe, I_MUTEX_PARENT); 91 } 92 EXPORT_SYMBOL(pipe_lock); 93 94 void pipe_unlock(struct pipe_inode_info *pipe) 95 { 96 if (pipe->files) 97 mutex_unlock(&pipe->mutex); 98 } 99 EXPORT_SYMBOL(pipe_unlock); 100 101 static inline void __pipe_lock(struct pipe_inode_info *pipe) 102 { 103 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT); 104 } 105 106 static inline void __pipe_unlock(struct pipe_inode_info *pipe) 107 { 108 mutex_unlock(&pipe->mutex); 109 } 110 111 void pipe_double_lock(struct pipe_inode_info *pipe1, 112 struct pipe_inode_info *pipe2) 113 { 114 BUG_ON(pipe1 == pipe2); 115 116 if (pipe1 < pipe2) { 117 pipe_lock_nested(pipe1, I_MUTEX_PARENT); 118 pipe_lock_nested(pipe2, I_MUTEX_CHILD); 119 } else { 120 pipe_lock_nested(pipe2, I_MUTEX_PARENT); 121 pipe_lock_nested(pipe1, I_MUTEX_CHILD); 122 } 123 } 124 125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 126 struct pipe_buffer *buf) 127 { 128 struct page *page = buf->page; 129 130 /* 131 * If nobody else uses this page, and we don't already have a 132 * temporary page, let's keep track of it as a one-deep 133 * allocation cache. (Otherwise just release our reference to it) 134 */ 135 if (page_count(page) == 1 && !pipe->tmp_page) 136 pipe->tmp_page = page; 137 else 138 put_page(page); 139 } 140 141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, 142 struct pipe_buffer *buf) 143 { 144 struct page *page = buf->page; 145 146 if (page_count(page) != 1) 147 return false; 148 memcg_kmem_uncharge_page(page, 0); 149 __SetPageLocked(page); 150 return true; 151 } 152 153 /** 154 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer 155 * @pipe: the pipe that the buffer belongs to 156 * @buf: the buffer to attempt to steal 157 * 158 * Description: 159 * This function attempts to steal the &struct page attached to 160 * @buf. If successful, this function returns 0 and returns with 161 * the page locked. The caller may then reuse the page for whatever 162 * he wishes; the typical use is insertion into a different file 163 * page cache. 164 */ 165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, 166 struct pipe_buffer *buf) 167 { 168 struct page *page = buf->page; 169 170 /* 171 * A reference of one is golden, that means that the owner of this 172 * page is the only one holding a reference to it. lock the page 173 * and return OK. 174 */ 175 if (page_count(page) == 1) { 176 lock_page(page); 177 return true; 178 } 179 return false; 180 } 181 EXPORT_SYMBOL(generic_pipe_buf_try_steal); 182 183 /** 184 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 185 * @pipe: the pipe that the buffer belongs to 186 * @buf: the buffer to get a reference to 187 * 188 * Description: 189 * This function grabs an extra reference to @buf. It's used in 190 * the tee() system call, when we duplicate the buffers in one 191 * pipe into another. 192 */ 193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 194 { 195 return try_get_page(buf->page); 196 } 197 EXPORT_SYMBOL(generic_pipe_buf_get); 198 199 /** 200 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 201 * @pipe: the pipe that the buffer belongs to 202 * @buf: the buffer to put a reference to 203 * 204 * Description: 205 * This function releases a reference to @buf. 206 */ 207 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 208 struct pipe_buffer *buf) 209 { 210 put_page(buf->page); 211 } 212 EXPORT_SYMBOL(generic_pipe_buf_release); 213 214 static const struct pipe_buf_operations anon_pipe_buf_ops = { 215 .release = anon_pipe_buf_release, 216 .try_steal = anon_pipe_buf_try_steal, 217 .get = generic_pipe_buf_get, 218 }; 219 220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 221 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 222 { 223 unsigned int head = READ_ONCE(pipe->head); 224 unsigned int tail = READ_ONCE(pipe->tail); 225 unsigned int writers = READ_ONCE(pipe->writers); 226 227 return !pipe_empty(head, tail) || !writers; 228 } 229 230 static ssize_t 231 pipe_read(struct kiocb *iocb, struct iov_iter *to) 232 { 233 size_t total_len = iov_iter_count(to); 234 struct file *filp = iocb->ki_filp; 235 struct pipe_inode_info *pipe = filp->private_data; 236 bool was_full, wake_next_reader = false; 237 ssize_t ret; 238 239 /* Null read succeeds. */ 240 if (unlikely(total_len == 0)) 241 return 0; 242 243 ret = 0; 244 __pipe_lock(pipe); 245 246 /* 247 * We only wake up writers if the pipe was full when we started 248 * reading in order to avoid unnecessary wakeups. 249 * 250 * But when we do wake up writers, we do so using a sync wakeup 251 * (WF_SYNC), because we want them to get going and generate more 252 * data for us. 253 */ 254 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 255 for (;;) { 256 unsigned int head = pipe->head; 257 unsigned int tail = pipe->tail; 258 unsigned int mask = pipe->ring_size - 1; 259 260 #ifdef CONFIG_WATCH_QUEUE 261 if (pipe->note_loss) { 262 struct watch_notification n; 263 264 if (total_len < 8) { 265 if (ret == 0) 266 ret = -ENOBUFS; 267 break; 268 } 269 270 n.type = WATCH_TYPE_META; 271 n.subtype = WATCH_META_LOSS_NOTIFICATION; 272 n.info = watch_sizeof(n); 273 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) { 274 if (ret == 0) 275 ret = -EFAULT; 276 break; 277 } 278 ret += sizeof(n); 279 total_len -= sizeof(n); 280 pipe->note_loss = false; 281 } 282 #endif 283 284 if (!pipe_empty(head, tail)) { 285 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 286 size_t chars = buf->len; 287 size_t written; 288 int error; 289 290 if (chars > total_len) { 291 if (buf->flags & PIPE_BUF_FLAG_WHOLE) { 292 if (ret == 0) 293 ret = -ENOBUFS; 294 break; 295 } 296 chars = total_len; 297 } 298 299 error = pipe_buf_confirm(pipe, buf); 300 if (error) { 301 if (!ret) 302 ret = error; 303 break; 304 } 305 306 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 307 if (unlikely(written < chars)) { 308 if (!ret) 309 ret = -EFAULT; 310 break; 311 } 312 ret += chars; 313 buf->offset += chars; 314 buf->len -= chars; 315 316 /* Was it a packet buffer? Clean up and exit */ 317 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 318 total_len = chars; 319 buf->len = 0; 320 } 321 322 if (!buf->len) { 323 pipe_buf_release(pipe, buf); 324 spin_lock_irq(&pipe->rd_wait.lock); 325 #ifdef CONFIG_WATCH_QUEUE 326 if (buf->flags & PIPE_BUF_FLAG_LOSS) 327 pipe->note_loss = true; 328 #endif 329 tail++; 330 pipe->tail = tail; 331 spin_unlock_irq(&pipe->rd_wait.lock); 332 } 333 total_len -= chars; 334 if (!total_len) 335 break; /* common path: read succeeded */ 336 if (!pipe_empty(head, tail)) /* More to do? */ 337 continue; 338 } 339 340 if (!pipe->writers) 341 break; 342 if (ret) 343 break; 344 if (filp->f_flags & O_NONBLOCK) { 345 ret = -EAGAIN; 346 break; 347 } 348 __pipe_unlock(pipe); 349 350 /* 351 * We only get here if we didn't actually read anything. 352 * 353 * However, we could have seen (and removed) a zero-sized 354 * pipe buffer, and might have made space in the buffers 355 * that way. 356 * 357 * You can't make zero-sized pipe buffers by doing an empty 358 * write (not even in packet mode), but they can happen if 359 * the writer gets an EFAULT when trying to fill a buffer 360 * that already got allocated and inserted in the buffer 361 * array. 362 * 363 * So we still need to wake up any pending writers in the 364 * _very_ unlikely case that the pipe was full, but we got 365 * no data. 366 */ 367 if (unlikely(was_full)) 368 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 369 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 370 371 /* 372 * But because we didn't read anything, at this point we can 373 * just return directly with -ERESTARTSYS if we're interrupted, 374 * since we've done any required wakeups and there's no need 375 * to mark anything accessed. And we've dropped the lock. 376 */ 377 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) 378 return -ERESTARTSYS; 379 380 __pipe_lock(pipe); 381 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 382 wake_next_reader = true; 383 } 384 if (pipe_empty(pipe->head, pipe->tail)) 385 wake_next_reader = false; 386 __pipe_unlock(pipe); 387 388 if (was_full) 389 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 390 if (wake_next_reader) 391 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 392 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 393 if (ret > 0) 394 file_accessed(filp); 395 return ret; 396 } 397 398 static inline int is_packetized(struct file *file) 399 { 400 return (file->f_flags & O_DIRECT) != 0; 401 } 402 403 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 404 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 405 { 406 unsigned int head = READ_ONCE(pipe->head); 407 unsigned int tail = READ_ONCE(pipe->tail); 408 unsigned int max_usage = READ_ONCE(pipe->max_usage); 409 410 return !pipe_full(head, tail, max_usage) || 411 !READ_ONCE(pipe->readers); 412 } 413 414 static ssize_t 415 pipe_write(struct kiocb *iocb, struct iov_iter *from) 416 { 417 struct file *filp = iocb->ki_filp; 418 struct pipe_inode_info *pipe = filp->private_data; 419 unsigned int head; 420 ssize_t ret = 0; 421 size_t total_len = iov_iter_count(from); 422 ssize_t chars; 423 bool was_empty = false; 424 bool wake_next_writer = false; 425 426 /* Null write succeeds. */ 427 if (unlikely(total_len == 0)) 428 return 0; 429 430 __pipe_lock(pipe); 431 432 if (!pipe->readers) { 433 send_sig(SIGPIPE, current, 0); 434 ret = -EPIPE; 435 goto out; 436 } 437 438 #ifdef CONFIG_WATCH_QUEUE 439 if (pipe->watch_queue) { 440 ret = -EXDEV; 441 goto out; 442 } 443 #endif 444 445 /* 446 * If it wasn't empty we try to merge new data into 447 * the last buffer. 448 * 449 * That naturally merges small writes, but it also 450 * page-aligns the rest of the writes for large writes 451 * spanning multiple pages. 452 */ 453 head = pipe->head; 454 was_empty = pipe_empty(head, pipe->tail); 455 chars = total_len & (PAGE_SIZE-1); 456 if (chars && !was_empty) { 457 unsigned int mask = pipe->ring_size - 1; 458 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask]; 459 int offset = buf->offset + buf->len; 460 461 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && 462 offset + chars <= PAGE_SIZE) { 463 ret = pipe_buf_confirm(pipe, buf); 464 if (ret) 465 goto out; 466 467 ret = copy_page_from_iter(buf->page, offset, chars, from); 468 if (unlikely(ret < chars)) { 469 ret = -EFAULT; 470 goto out; 471 } 472 473 buf->len += ret; 474 if (!iov_iter_count(from)) 475 goto out; 476 } 477 } 478 479 for (;;) { 480 if (!pipe->readers) { 481 send_sig(SIGPIPE, current, 0); 482 if (!ret) 483 ret = -EPIPE; 484 break; 485 } 486 487 head = pipe->head; 488 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 489 unsigned int mask = pipe->ring_size - 1; 490 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 491 struct page *page = pipe->tmp_page; 492 int copied; 493 494 if (!page) { 495 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 496 if (unlikely(!page)) { 497 ret = ret ? : -ENOMEM; 498 break; 499 } 500 pipe->tmp_page = page; 501 } 502 503 /* Allocate a slot in the ring in advance and attach an 504 * empty buffer. If we fault or otherwise fail to use 505 * it, either the reader will consume it or it'll still 506 * be there for the next write. 507 */ 508 spin_lock_irq(&pipe->rd_wait.lock); 509 510 head = pipe->head; 511 if (pipe_full(head, pipe->tail, pipe->max_usage)) { 512 spin_unlock_irq(&pipe->rd_wait.lock); 513 continue; 514 } 515 516 pipe->head = head + 1; 517 spin_unlock_irq(&pipe->rd_wait.lock); 518 519 /* Insert it into the buffer array */ 520 buf = &pipe->bufs[head & mask]; 521 buf->page = page; 522 buf->ops = &anon_pipe_buf_ops; 523 buf->offset = 0; 524 buf->len = 0; 525 if (is_packetized(filp)) 526 buf->flags = PIPE_BUF_FLAG_PACKET; 527 else 528 buf->flags = PIPE_BUF_FLAG_CAN_MERGE; 529 pipe->tmp_page = NULL; 530 531 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 532 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 533 if (!ret) 534 ret = -EFAULT; 535 break; 536 } 537 ret += copied; 538 buf->offset = 0; 539 buf->len = copied; 540 541 if (!iov_iter_count(from)) 542 break; 543 } 544 545 if (!pipe_full(head, pipe->tail, pipe->max_usage)) 546 continue; 547 548 /* Wait for buffer space to become available. */ 549 if (filp->f_flags & O_NONBLOCK) { 550 if (!ret) 551 ret = -EAGAIN; 552 break; 553 } 554 if (signal_pending(current)) { 555 if (!ret) 556 ret = -ERESTARTSYS; 557 break; 558 } 559 560 /* 561 * We're going to release the pipe lock and wait for more 562 * space. We wake up any readers if necessary, and then 563 * after waiting we need to re-check whether the pipe 564 * become empty while we dropped the lock. 565 */ 566 __pipe_unlock(pipe); 567 if (was_empty) 568 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 569 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 570 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); 571 __pipe_lock(pipe); 572 was_empty = pipe_empty(pipe->head, pipe->tail); 573 wake_next_writer = true; 574 } 575 out: 576 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 577 wake_next_writer = false; 578 __pipe_unlock(pipe); 579 580 /* 581 * If we do do a wakeup event, we do a 'sync' wakeup, because we 582 * want the reader to start processing things asap, rather than 583 * leave the data pending. 584 * 585 * This is particularly important for small writes, because of 586 * how (for example) the GNU make jobserver uses small writes to 587 * wake up pending jobs 588 * 589 * Epoll nonsensically wants a wakeup whether the pipe 590 * was already empty or not. 591 */ 592 if (was_empty || pipe->poll_usage) 593 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 594 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 595 if (wake_next_writer) 596 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 597 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 598 int err = file_update_time(filp); 599 if (err) 600 ret = err; 601 sb_end_write(file_inode(filp)->i_sb); 602 } 603 return ret; 604 } 605 606 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 607 { 608 struct pipe_inode_info *pipe = filp->private_data; 609 int count, head, tail, mask; 610 611 switch (cmd) { 612 case FIONREAD: 613 __pipe_lock(pipe); 614 count = 0; 615 head = pipe->head; 616 tail = pipe->tail; 617 mask = pipe->ring_size - 1; 618 619 while (tail != head) { 620 count += pipe->bufs[tail & mask].len; 621 tail++; 622 } 623 __pipe_unlock(pipe); 624 625 return put_user(count, (int __user *)arg); 626 627 #ifdef CONFIG_WATCH_QUEUE 628 case IOC_WATCH_QUEUE_SET_SIZE: { 629 int ret; 630 __pipe_lock(pipe); 631 ret = watch_queue_set_size(pipe, arg); 632 __pipe_unlock(pipe); 633 return ret; 634 } 635 636 case IOC_WATCH_QUEUE_SET_FILTER: 637 return watch_queue_set_filter( 638 pipe, (struct watch_notification_filter __user *)arg); 639 #endif 640 641 default: 642 return -ENOIOCTLCMD; 643 } 644 } 645 646 /* No kernel lock held - fine */ 647 static __poll_t 648 pipe_poll(struct file *filp, poll_table *wait) 649 { 650 __poll_t mask; 651 struct pipe_inode_info *pipe = filp->private_data; 652 unsigned int head, tail; 653 654 /* Epoll has some historical nasty semantics, this enables them */ 655 pipe->poll_usage = 1; 656 657 /* 658 * Reading pipe state only -- no need for acquiring the semaphore. 659 * 660 * But because this is racy, the code has to add the 661 * entry to the poll table _first_ .. 662 */ 663 if (filp->f_mode & FMODE_READ) 664 poll_wait(filp, &pipe->rd_wait, wait); 665 if (filp->f_mode & FMODE_WRITE) 666 poll_wait(filp, &pipe->wr_wait, wait); 667 668 /* 669 * .. and only then can you do the racy tests. That way, 670 * if something changes and you got it wrong, the poll 671 * table entry will wake you up and fix it. 672 */ 673 head = READ_ONCE(pipe->head); 674 tail = READ_ONCE(pipe->tail); 675 676 mask = 0; 677 if (filp->f_mode & FMODE_READ) { 678 if (!pipe_empty(head, tail)) 679 mask |= EPOLLIN | EPOLLRDNORM; 680 if (!pipe->writers && filp->f_version != pipe->w_counter) 681 mask |= EPOLLHUP; 682 } 683 684 if (filp->f_mode & FMODE_WRITE) { 685 if (!pipe_full(head, tail, pipe->max_usage)) 686 mask |= EPOLLOUT | EPOLLWRNORM; 687 /* 688 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 689 * behave exactly like pipes for poll(). 690 */ 691 if (!pipe->readers) 692 mask |= EPOLLERR; 693 } 694 695 return mask; 696 } 697 698 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 699 { 700 int kill = 0; 701 702 spin_lock(&inode->i_lock); 703 if (!--pipe->files) { 704 inode->i_pipe = NULL; 705 kill = 1; 706 } 707 spin_unlock(&inode->i_lock); 708 709 if (kill) 710 free_pipe_info(pipe); 711 } 712 713 static int 714 pipe_release(struct inode *inode, struct file *file) 715 { 716 struct pipe_inode_info *pipe = file->private_data; 717 718 __pipe_lock(pipe); 719 if (file->f_mode & FMODE_READ) 720 pipe->readers--; 721 if (file->f_mode & FMODE_WRITE) 722 pipe->writers--; 723 724 /* Was that the last reader or writer, but not the other side? */ 725 if (!pipe->readers != !pipe->writers) { 726 wake_up_interruptible_all(&pipe->rd_wait); 727 wake_up_interruptible_all(&pipe->wr_wait); 728 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 729 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 730 } 731 __pipe_unlock(pipe); 732 733 put_pipe_info(inode, pipe); 734 return 0; 735 } 736 737 static int 738 pipe_fasync(int fd, struct file *filp, int on) 739 { 740 struct pipe_inode_info *pipe = filp->private_data; 741 int retval = 0; 742 743 __pipe_lock(pipe); 744 if (filp->f_mode & FMODE_READ) 745 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 746 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 747 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 748 if (retval < 0 && (filp->f_mode & FMODE_READ)) 749 /* this can happen only if on == T */ 750 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 751 } 752 __pipe_unlock(pipe); 753 return retval; 754 } 755 756 unsigned long account_pipe_buffers(struct user_struct *user, 757 unsigned long old, unsigned long new) 758 { 759 return atomic_long_add_return(new - old, &user->pipe_bufs); 760 } 761 762 bool too_many_pipe_buffers_soft(unsigned long user_bufs) 763 { 764 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 765 766 return soft_limit && user_bufs > soft_limit; 767 } 768 769 bool too_many_pipe_buffers_hard(unsigned long user_bufs) 770 { 771 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 772 773 return hard_limit && user_bufs > hard_limit; 774 } 775 776 bool pipe_is_unprivileged_user(void) 777 { 778 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 779 } 780 781 struct pipe_inode_info *alloc_pipe_info(void) 782 { 783 struct pipe_inode_info *pipe; 784 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 785 struct user_struct *user = get_current_user(); 786 unsigned long user_bufs; 787 unsigned int max_size = READ_ONCE(pipe_max_size); 788 789 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 790 if (pipe == NULL) 791 goto out_free_uid; 792 793 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 794 pipe_bufs = max_size >> PAGE_SHIFT; 795 796 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 797 798 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { 799 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS); 800 pipe_bufs = PIPE_MIN_DEF_BUFFERS; 801 } 802 803 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) 804 goto out_revert_acct; 805 806 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 807 GFP_KERNEL_ACCOUNT); 808 809 if (pipe->bufs) { 810 init_waitqueue_head(&pipe->rd_wait); 811 init_waitqueue_head(&pipe->wr_wait); 812 pipe->r_counter = pipe->w_counter = 1; 813 pipe->max_usage = pipe_bufs; 814 pipe->ring_size = pipe_bufs; 815 pipe->nr_accounted = pipe_bufs; 816 pipe->user = user; 817 mutex_init(&pipe->mutex); 818 return pipe; 819 } 820 821 out_revert_acct: 822 (void) account_pipe_buffers(user, pipe_bufs, 0); 823 kfree(pipe); 824 out_free_uid: 825 free_uid(user); 826 return NULL; 827 } 828 829 void free_pipe_info(struct pipe_inode_info *pipe) 830 { 831 int i; 832 833 #ifdef CONFIG_WATCH_QUEUE 834 if (pipe->watch_queue) { 835 watch_queue_clear(pipe->watch_queue); 836 put_watch_queue(pipe->watch_queue); 837 } 838 #endif 839 840 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0); 841 free_uid(pipe->user); 842 for (i = 0; i < pipe->ring_size; i++) { 843 struct pipe_buffer *buf = pipe->bufs + i; 844 if (buf->ops) 845 pipe_buf_release(pipe, buf); 846 } 847 if (pipe->tmp_page) 848 __free_page(pipe->tmp_page); 849 kfree(pipe->bufs); 850 kfree(pipe); 851 } 852 853 static struct vfsmount *pipe_mnt __read_mostly; 854 855 /* 856 * pipefs_dname() is called from d_path(). 857 */ 858 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 859 { 860 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]", 861 d_inode(dentry)->i_ino); 862 } 863 864 static const struct dentry_operations pipefs_dentry_operations = { 865 .d_dname = pipefs_dname, 866 }; 867 868 static struct inode * get_pipe_inode(void) 869 { 870 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 871 struct pipe_inode_info *pipe; 872 873 if (!inode) 874 goto fail_inode; 875 876 inode->i_ino = get_next_ino(); 877 878 pipe = alloc_pipe_info(); 879 if (!pipe) 880 goto fail_iput; 881 882 inode->i_pipe = pipe; 883 pipe->files = 2; 884 pipe->readers = pipe->writers = 1; 885 inode->i_fop = &pipefifo_fops; 886 887 /* 888 * Mark the inode dirty from the very beginning, 889 * that way it will never be moved to the dirty 890 * list because "mark_inode_dirty()" will think 891 * that it already _is_ on the dirty list. 892 */ 893 inode->i_state = I_DIRTY; 894 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 895 inode->i_uid = current_fsuid(); 896 inode->i_gid = current_fsgid(); 897 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 898 899 return inode; 900 901 fail_iput: 902 iput(inode); 903 904 fail_inode: 905 return NULL; 906 } 907 908 int create_pipe_files(struct file **res, int flags) 909 { 910 struct inode *inode = get_pipe_inode(); 911 struct file *f; 912 int error; 913 914 if (!inode) 915 return -ENFILE; 916 917 if (flags & O_NOTIFICATION_PIPE) { 918 error = watch_queue_init(inode->i_pipe); 919 if (error) { 920 free_pipe_info(inode->i_pipe); 921 iput(inode); 922 return error; 923 } 924 } 925 926 f = alloc_file_pseudo(inode, pipe_mnt, "", 927 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 928 &pipefifo_fops); 929 if (IS_ERR(f)) { 930 free_pipe_info(inode->i_pipe); 931 iput(inode); 932 return PTR_ERR(f); 933 } 934 935 f->private_data = inode->i_pipe; 936 937 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 938 &pipefifo_fops); 939 if (IS_ERR(res[0])) { 940 put_pipe_info(inode, inode->i_pipe); 941 fput(f); 942 return PTR_ERR(res[0]); 943 } 944 res[0]->private_data = inode->i_pipe; 945 res[1] = f; 946 stream_open(inode, res[0]); 947 stream_open(inode, res[1]); 948 return 0; 949 } 950 951 static int __do_pipe_flags(int *fd, struct file **files, int flags) 952 { 953 int error; 954 int fdw, fdr; 955 956 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) 957 return -EINVAL; 958 959 error = create_pipe_files(files, flags); 960 if (error) 961 return error; 962 963 error = get_unused_fd_flags(flags); 964 if (error < 0) 965 goto err_read_pipe; 966 fdr = error; 967 968 error = get_unused_fd_flags(flags); 969 if (error < 0) 970 goto err_fdr; 971 fdw = error; 972 973 audit_fd_pair(fdr, fdw); 974 fd[0] = fdr; 975 fd[1] = fdw; 976 return 0; 977 978 err_fdr: 979 put_unused_fd(fdr); 980 err_read_pipe: 981 fput(files[0]); 982 fput(files[1]); 983 return error; 984 } 985 986 int do_pipe_flags(int *fd, int flags) 987 { 988 struct file *files[2]; 989 int error = __do_pipe_flags(fd, files, flags); 990 if (!error) { 991 fd_install(fd[0], files[0]); 992 fd_install(fd[1], files[1]); 993 } 994 return error; 995 } 996 997 /* 998 * sys_pipe() is the normal C calling standard for creating 999 * a pipe. It's not the way Unix traditionally does this, though. 1000 */ 1001 static int do_pipe2(int __user *fildes, int flags) 1002 { 1003 struct file *files[2]; 1004 int fd[2]; 1005 int error; 1006 1007 error = __do_pipe_flags(fd, files, flags); 1008 if (!error) { 1009 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 1010 fput(files[0]); 1011 fput(files[1]); 1012 put_unused_fd(fd[0]); 1013 put_unused_fd(fd[1]); 1014 error = -EFAULT; 1015 } else { 1016 fd_install(fd[0], files[0]); 1017 fd_install(fd[1], files[1]); 1018 } 1019 } 1020 return error; 1021 } 1022 1023 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 1024 { 1025 return do_pipe2(fildes, flags); 1026 } 1027 1028 SYSCALL_DEFINE1(pipe, int __user *, fildes) 1029 { 1030 return do_pipe2(fildes, 0); 1031 } 1032 1033 /* 1034 * This is the stupid "wait for pipe to be readable or writable" 1035 * model. 1036 * 1037 * See pipe_read/write() for the proper kind of exclusive wait, 1038 * but that requires that we wake up any other readers/writers 1039 * if we then do not end up reading everything (ie the whole 1040 * "wake_next_reader/writer" logic in pipe_read/write()). 1041 */ 1042 void pipe_wait_readable(struct pipe_inode_info *pipe) 1043 { 1044 pipe_unlock(pipe); 1045 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe)); 1046 pipe_lock(pipe); 1047 } 1048 1049 void pipe_wait_writable(struct pipe_inode_info *pipe) 1050 { 1051 pipe_unlock(pipe); 1052 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe)); 1053 pipe_lock(pipe); 1054 } 1055 1056 /* 1057 * This depends on both the wait (here) and the wakeup (wake_up_partner) 1058 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot 1059 * race with the count check and waitqueue prep. 1060 * 1061 * Normally in order to avoid races, you'd do the prepare_to_wait() first, 1062 * then check the condition you're waiting for, and only then sleep. But 1063 * because of the pipe lock, we can check the condition before being on 1064 * the wait queue. 1065 * 1066 * We use the 'rd_wait' waitqueue for pipe partner waiting. 1067 */ 1068 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 1069 { 1070 DEFINE_WAIT(rdwait); 1071 int cur = *cnt; 1072 1073 while (cur == *cnt) { 1074 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); 1075 pipe_unlock(pipe); 1076 schedule(); 1077 finish_wait(&pipe->rd_wait, &rdwait); 1078 pipe_lock(pipe); 1079 if (signal_pending(current)) 1080 break; 1081 } 1082 return cur == *cnt ? -ERESTARTSYS : 0; 1083 } 1084 1085 static void wake_up_partner(struct pipe_inode_info *pipe) 1086 { 1087 wake_up_interruptible_all(&pipe->rd_wait); 1088 } 1089 1090 static int fifo_open(struct inode *inode, struct file *filp) 1091 { 1092 struct pipe_inode_info *pipe; 1093 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 1094 int ret; 1095 1096 filp->f_version = 0; 1097 1098 spin_lock(&inode->i_lock); 1099 if (inode->i_pipe) { 1100 pipe = inode->i_pipe; 1101 pipe->files++; 1102 spin_unlock(&inode->i_lock); 1103 } else { 1104 spin_unlock(&inode->i_lock); 1105 pipe = alloc_pipe_info(); 1106 if (!pipe) 1107 return -ENOMEM; 1108 pipe->files = 1; 1109 spin_lock(&inode->i_lock); 1110 if (unlikely(inode->i_pipe)) { 1111 inode->i_pipe->files++; 1112 spin_unlock(&inode->i_lock); 1113 free_pipe_info(pipe); 1114 pipe = inode->i_pipe; 1115 } else { 1116 inode->i_pipe = pipe; 1117 spin_unlock(&inode->i_lock); 1118 } 1119 } 1120 filp->private_data = pipe; 1121 /* OK, we have a pipe and it's pinned down */ 1122 1123 __pipe_lock(pipe); 1124 1125 /* We can only do regular read/write on fifos */ 1126 stream_open(inode, filp); 1127 1128 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1129 case FMODE_READ: 1130 /* 1131 * O_RDONLY 1132 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1133 * opened, even when there is no process writing the FIFO. 1134 */ 1135 pipe->r_counter++; 1136 if (pipe->readers++ == 0) 1137 wake_up_partner(pipe); 1138 1139 if (!is_pipe && !pipe->writers) { 1140 if ((filp->f_flags & O_NONBLOCK)) { 1141 /* suppress EPOLLHUP until we have 1142 * seen a writer */ 1143 filp->f_version = pipe->w_counter; 1144 } else { 1145 if (wait_for_partner(pipe, &pipe->w_counter)) 1146 goto err_rd; 1147 } 1148 } 1149 break; 1150 1151 case FMODE_WRITE: 1152 /* 1153 * O_WRONLY 1154 * POSIX.1 says that O_NONBLOCK means return -1 with 1155 * errno=ENXIO when there is no process reading the FIFO. 1156 */ 1157 ret = -ENXIO; 1158 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1159 goto err; 1160 1161 pipe->w_counter++; 1162 if (!pipe->writers++) 1163 wake_up_partner(pipe); 1164 1165 if (!is_pipe && !pipe->readers) { 1166 if (wait_for_partner(pipe, &pipe->r_counter)) 1167 goto err_wr; 1168 } 1169 break; 1170 1171 case FMODE_READ | FMODE_WRITE: 1172 /* 1173 * O_RDWR 1174 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1175 * This implementation will NEVER block on a O_RDWR open, since 1176 * the process can at least talk to itself. 1177 */ 1178 1179 pipe->readers++; 1180 pipe->writers++; 1181 pipe->r_counter++; 1182 pipe->w_counter++; 1183 if (pipe->readers == 1 || pipe->writers == 1) 1184 wake_up_partner(pipe); 1185 break; 1186 1187 default: 1188 ret = -EINVAL; 1189 goto err; 1190 } 1191 1192 /* Ok! */ 1193 __pipe_unlock(pipe); 1194 return 0; 1195 1196 err_rd: 1197 if (!--pipe->readers) 1198 wake_up_interruptible(&pipe->wr_wait); 1199 ret = -ERESTARTSYS; 1200 goto err; 1201 1202 err_wr: 1203 if (!--pipe->writers) 1204 wake_up_interruptible_all(&pipe->rd_wait); 1205 ret = -ERESTARTSYS; 1206 goto err; 1207 1208 err: 1209 __pipe_unlock(pipe); 1210 1211 put_pipe_info(inode, pipe); 1212 return ret; 1213 } 1214 1215 const struct file_operations pipefifo_fops = { 1216 .open = fifo_open, 1217 .llseek = no_llseek, 1218 .read_iter = pipe_read, 1219 .write_iter = pipe_write, 1220 .poll = pipe_poll, 1221 .unlocked_ioctl = pipe_ioctl, 1222 .release = pipe_release, 1223 .fasync = pipe_fasync, 1224 .splice_write = iter_file_splice_write, 1225 }; 1226 1227 /* 1228 * Currently we rely on the pipe array holding a power-of-2 number 1229 * of pages. Returns 0 on error. 1230 */ 1231 unsigned int round_pipe_size(unsigned long size) 1232 { 1233 if (size > (1U << 31)) 1234 return 0; 1235 1236 /* Minimum pipe size, as required by POSIX */ 1237 if (size < PAGE_SIZE) 1238 return PAGE_SIZE; 1239 1240 return roundup_pow_of_two(size); 1241 } 1242 1243 /* 1244 * Resize the pipe ring to a number of slots. 1245 */ 1246 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots) 1247 { 1248 struct pipe_buffer *bufs; 1249 unsigned int head, tail, mask, n; 1250 1251 /* 1252 * We can shrink the pipe, if arg is greater than the ring occupancy. 1253 * Since we don't expect a lot of shrink+grow operations, just free and 1254 * allocate again like we would do for growing. If the pipe currently 1255 * contains more buffers than arg, then return busy. 1256 */ 1257 mask = pipe->ring_size - 1; 1258 head = pipe->head; 1259 tail = pipe->tail; 1260 n = pipe_occupancy(pipe->head, pipe->tail); 1261 if (nr_slots < n) 1262 return -EBUSY; 1263 1264 bufs = kcalloc(nr_slots, sizeof(*bufs), 1265 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1266 if (unlikely(!bufs)) 1267 return -ENOMEM; 1268 1269 /* 1270 * The pipe array wraps around, so just start the new one at zero 1271 * and adjust the indices. 1272 */ 1273 if (n > 0) { 1274 unsigned int h = head & mask; 1275 unsigned int t = tail & mask; 1276 if (h > t) { 1277 memcpy(bufs, pipe->bufs + t, 1278 n * sizeof(struct pipe_buffer)); 1279 } else { 1280 unsigned int tsize = pipe->ring_size - t; 1281 if (h > 0) 1282 memcpy(bufs + tsize, pipe->bufs, 1283 h * sizeof(struct pipe_buffer)); 1284 memcpy(bufs, pipe->bufs + t, 1285 tsize * sizeof(struct pipe_buffer)); 1286 } 1287 } 1288 1289 head = n; 1290 tail = 0; 1291 1292 kfree(pipe->bufs); 1293 pipe->bufs = bufs; 1294 pipe->ring_size = nr_slots; 1295 if (pipe->max_usage > nr_slots) 1296 pipe->max_usage = nr_slots; 1297 pipe->tail = tail; 1298 pipe->head = head; 1299 1300 /* This might have made more room for writers */ 1301 wake_up_interruptible(&pipe->wr_wait); 1302 return 0; 1303 } 1304 1305 /* 1306 * Allocate a new array of pipe buffers and copy the info over. Returns the 1307 * pipe size if successful, or return -ERROR on error. 1308 */ 1309 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) 1310 { 1311 unsigned long user_bufs; 1312 unsigned int nr_slots, size; 1313 long ret = 0; 1314 1315 #ifdef CONFIG_WATCH_QUEUE 1316 if (pipe->watch_queue) 1317 return -EBUSY; 1318 #endif 1319 1320 size = round_pipe_size(arg); 1321 nr_slots = size >> PAGE_SHIFT; 1322 1323 if (!nr_slots) 1324 return -EINVAL; 1325 1326 /* 1327 * If trying to increase the pipe capacity, check that an 1328 * unprivileged user is not trying to exceed various limits 1329 * (soft limit check here, hard limit check just below). 1330 * Decreasing the pipe capacity is always permitted, even 1331 * if the user is currently over a limit. 1332 */ 1333 if (nr_slots > pipe->max_usage && 1334 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1335 return -EPERM; 1336 1337 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots); 1338 1339 if (nr_slots > pipe->max_usage && 1340 (too_many_pipe_buffers_hard(user_bufs) || 1341 too_many_pipe_buffers_soft(user_bufs)) && 1342 pipe_is_unprivileged_user()) { 1343 ret = -EPERM; 1344 goto out_revert_acct; 1345 } 1346 1347 ret = pipe_resize_ring(pipe, nr_slots); 1348 if (ret < 0) 1349 goto out_revert_acct; 1350 1351 pipe->max_usage = nr_slots; 1352 pipe->nr_accounted = nr_slots; 1353 return pipe->max_usage * PAGE_SIZE; 1354 1355 out_revert_acct: 1356 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted); 1357 return ret; 1358 } 1359 1360 /* 1361 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is 1362 * not enough to verify that this is a pipe. 1363 */ 1364 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) 1365 { 1366 struct pipe_inode_info *pipe = file->private_data; 1367 1368 if (file->f_op != &pipefifo_fops || !pipe) 1369 return NULL; 1370 #ifdef CONFIG_WATCH_QUEUE 1371 if (for_splice && pipe->watch_queue) 1372 return NULL; 1373 #endif 1374 return pipe; 1375 } 1376 1377 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1378 { 1379 struct pipe_inode_info *pipe; 1380 long ret; 1381 1382 pipe = get_pipe_info(file, false); 1383 if (!pipe) 1384 return -EBADF; 1385 1386 __pipe_lock(pipe); 1387 1388 switch (cmd) { 1389 case F_SETPIPE_SZ: 1390 ret = pipe_set_size(pipe, arg); 1391 break; 1392 case F_GETPIPE_SZ: 1393 ret = pipe->max_usage * PAGE_SIZE; 1394 break; 1395 default: 1396 ret = -EINVAL; 1397 break; 1398 } 1399 1400 __pipe_unlock(pipe); 1401 return ret; 1402 } 1403 1404 static const struct super_operations pipefs_ops = { 1405 .destroy_inode = free_inode_nonrcu, 1406 .statfs = simple_statfs, 1407 }; 1408 1409 /* 1410 * pipefs should _never_ be mounted by userland - too much of security hassle, 1411 * no real gain from having the whole whorehouse mounted. So we don't need 1412 * any operations on the root directory. However, we need a non-trivial 1413 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1414 */ 1415 1416 static int pipefs_init_fs_context(struct fs_context *fc) 1417 { 1418 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1419 if (!ctx) 1420 return -ENOMEM; 1421 ctx->ops = &pipefs_ops; 1422 ctx->dops = &pipefs_dentry_operations; 1423 return 0; 1424 } 1425 1426 static struct file_system_type pipe_fs_type = { 1427 .name = "pipefs", 1428 .init_fs_context = pipefs_init_fs_context, 1429 .kill_sb = kill_anon_super, 1430 }; 1431 1432 #ifdef CONFIG_SYSCTL 1433 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp, 1434 unsigned int *valp, 1435 int write, void *data) 1436 { 1437 if (write) { 1438 unsigned int val; 1439 1440 val = round_pipe_size(*lvalp); 1441 if (val == 0) 1442 return -EINVAL; 1443 1444 *valp = val; 1445 } else { 1446 unsigned int val = *valp; 1447 *lvalp = (unsigned long) val; 1448 } 1449 1450 return 0; 1451 } 1452 1453 static int proc_dopipe_max_size(struct ctl_table *table, int write, 1454 void *buffer, size_t *lenp, loff_t *ppos) 1455 { 1456 return do_proc_douintvec(table, write, buffer, lenp, ppos, 1457 do_proc_dopipe_max_size_conv, NULL); 1458 } 1459 1460 static struct ctl_table fs_pipe_sysctls[] = { 1461 { 1462 .procname = "pipe-max-size", 1463 .data = &pipe_max_size, 1464 .maxlen = sizeof(pipe_max_size), 1465 .mode = 0644, 1466 .proc_handler = proc_dopipe_max_size, 1467 }, 1468 { 1469 .procname = "pipe-user-pages-hard", 1470 .data = &pipe_user_pages_hard, 1471 .maxlen = sizeof(pipe_user_pages_hard), 1472 .mode = 0644, 1473 .proc_handler = proc_doulongvec_minmax, 1474 }, 1475 { 1476 .procname = "pipe-user-pages-soft", 1477 .data = &pipe_user_pages_soft, 1478 .maxlen = sizeof(pipe_user_pages_soft), 1479 .mode = 0644, 1480 .proc_handler = proc_doulongvec_minmax, 1481 }, 1482 { } 1483 }; 1484 #endif 1485 1486 static int __init init_pipe_fs(void) 1487 { 1488 int err = register_filesystem(&pipe_fs_type); 1489 1490 if (!err) { 1491 pipe_mnt = kern_mount(&pipe_fs_type); 1492 if (IS_ERR(pipe_mnt)) { 1493 err = PTR_ERR(pipe_mnt); 1494 unregister_filesystem(&pipe_fs_type); 1495 } 1496 } 1497 #ifdef CONFIG_SYSCTL 1498 register_sysctl_init("fs", fs_pipe_sysctls); 1499 #endif 1500 return err; 1501 } 1502 1503 fs_initcall(init_pipe_fs); 1504