xref: /linux/fs/pipe.c (revision 9632e78e82648aa98340df78eab9106f63da151e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 
29 #include <linux/uaccess.h>
30 #include <asm/ioctls.h>
31 
32 #include "internal.h"
33 
34 /*
35  * New pipe buffers will be restricted to this size while the user is exceeding
36  * their pipe buffer quota. The general pipe use case needs at least two
37  * buffers: one for data yet to be read, and one for new data. If this is less
38  * than two, then a write to a non-empty pipe may block even if the pipe is not
39  * full. This can occur with GNU make jobserver or similar uses of pipes as
40  * semaphores: multiple processes may be waiting to write tokens back to the
41  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
42  *
43  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
44  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
45  * emptied.
46  */
47 #define PIPE_MIN_DEF_BUFFERS 2
48 
49 /*
50  * The max size that a non-root user is allowed to grow the pipe. Can
51  * be set by root in /proc/sys/fs/pipe-max-size
52  */
53 unsigned int pipe_max_size = 1048576;
54 
55 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
56  * matches default values.
57  */
58 unsigned long pipe_user_pages_hard;
59 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
60 
61 /*
62  * We use head and tail indices that aren't masked off, except at the point of
63  * dereference, but rather they're allowed to wrap naturally.  This means there
64  * isn't a dead spot in the buffer, but the ring has to be a power of two and
65  * <= 2^31.
66  * -- David Howells 2019-09-23.
67  *
68  * Reads with count = 0 should always return 0.
69  * -- Julian Bradfield 1999-06-07.
70  *
71  * FIFOs and Pipes now generate SIGIO for both readers and writers.
72  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
73  *
74  * pipe_read & write cleanup
75  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
76  */
77 
78 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
79 {
80 	if (pipe->files)
81 		mutex_lock_nested(&pipe->mutex, subclass);
82 }
83 
84 void pipe_lock(struct pipe_inode_info *pipe)
85 {
86 	/*
87 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
88 	 */
89 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
90 }
91 EXPORT_SYMBOL(pipe_lock);
92 
93 void pipe_unlock(struct pipe_inode_info *pipe)
94 {
95 	if (pipe->files)
96 		mutex_unlock(&pipe->mutex);
97 }
98 EXPORT_SYMBOL(pipe_unlock);
99 
100 static inline void __pipe_lock(struct pipe_inode_info *pipe)
101 {
102 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
103 }
104 
105 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
106 {
107 	mutex_unlock(&pipe->mutex);
108 }
109 
110 void pipe_double_lock(struct pipe_inode_info *pipe1,
111 		      struct pipe_inode_info *pipe2)
112 {
113 	BUG_ON(pipe1 == pipe2);
114 
115 	if (pipe1 < pipe2) {
116 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
117 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
118 	} else {
119 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
120 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
121 	}
122 }
123 
124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
125 				  struct pipe_buffer *buf)
126 {
127 	struct page *page = buf->page;
128 
129 	/*
130 	 * If nobody else uses this page, and we don't already have a
131 	 * temporary page, let's keep track of it as a one-deep
132 	 * allocation cache. (Otherwise just release our reference to it)
133 	 */
134 	if (page_count(page) == 1 && !pipe->tmp_page)
135 		pipe->tmp_page = page;
136 	else
137 		put_page(page);
138 }
139 
140 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
141 		struct pipe_buffer *buf)
142 {
143 	struct page *page = buf->page;
144 
145 	if (page_count(page) != 1)
146 		return false;
147 	memcg_kmem_uncharge_page(page, 0);
148 	__SetPageLocked(page);
149 	return true;
150 }
151 
152 /**
153  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
154  * @pipe:	the pipe that the buffer belongs to
155  * @buf:	the buffer to attempt to steal
156  *
157  * Description:
158  *	This function attempts to steal the &struct page attached to
159  *	@buf. If successful, this function returns 0 and returns with
160  *	the page locked. The caller may then reuse the page for whatever
161  *	he wishes; the typical use is insertion into a different file
162  *	page cache.
163  */
164 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
165 		struct pipe_buffer *buf)
166 {
167 	struct page *page = buf->page;
168 
169 	/*
170 	 * A reference of one is golden, that means that the owner of this
171 	 * page is the only one holding a reference to it. lock the page
172 	 * and return OK.
173 	 */
174 	if (page_count(page) == 1) {
175 		lock_page(page);
176 		return true;
177 	}
178 	return false;
179 }
180 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
181 
182 /**
183  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
184  * @pipe:	the pipe that the buffer belongs to
185  * @buf:	the buffer to get a reference to
186  *
187  * Description:
188  *	This function grabs an extra reference to @buf. It's used in
189  *	the tee() system call, when we duplicate the buffers in one
190  *	pipe into another.
191  */
192 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
193 {
194 	return try_get_page(buf->page);
195 }
196 EXPORT_SYMBOL(generic_pipe_buf_get);
197 
198 /**
199  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
200  * @pipe:	the pipe that the buffer belongs to
201  * @buf:	the buffer to put a reference to
202  *
203  * Description:
204  *	This function releases a reference to @buf.
205  */
206 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
207 			      struct pipe_buffer *buf)
208 {
209 	put_page(buf->page);
210 }
211 EXPORT_SYMBOL(generic_pipe_buf_release);
212 
213 static const struct pipe_buf_operations anon_pipe_buf_ops = {
214 	.release	= anon_pipe_buf_release,
215 	.try_steal	= anon_pipe_buf_try_steal,
216 	.get		= generic_pipe_buf_get,
217 };
218 
219 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
220 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
221 {
222 	unsigned int head = READ_ONCE(pipe->head);
223 	unsigned int tail = READ_ONCE(pipe->tail);
224 	unsigned int writers = READ_ONCE(pipe->writers);
225 
226 	return !pipe_empty(head, tail) || !writers;
227 }
228 
229 static ssize_t
230 pipe_read(struct kiocb *iocb, struct iov_iter *to)
231 {
232 	size_t total_len = iov_iter_count(to);
233 	struct file *filp = iocb->ki_filp;
234 	struct pipe_inode_info *pipe = filp->private_data;
235 	bool was_full, wake_next_reader = false;
236 	ssize_t ret;
237 
238 	/* Null read succeeds. */
239 	if (unlikely(total_len == 0))
240 		return 0;
241 
242 	ret = 0;
243 	__pipe_lock(pipe);
244 
245 	/*
246 	 * We only wake up writers if the pipe was full when we started
247 	 * reading in order to avoid unnecessary wakeups.
248 	 *
249 	 * But when we do wake up writers, we do so using a sync wakeup
250 	 * (WF_SYNC), because we want them to get going and generate more
251 	 * data for us.
252 	 */
253 	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
254 	for (;;) {
255 		unsigned int head = pipe->head;
256 		unsigned int tail = pipe->tail;
257 		unsigned int mask = pipe->ring_size - 1;
258 
259 #ifdef CONFIG_WATCH_QUEUE
260 		if (pipe->note_loss) {
261 			struct watch_notification n;
262 
263 			if (total_len < 8) {
264 				if (ret == 0)
265 					ret = -ENOBUFS;
266 				break;
267 			}
268 
269 			n.type = WATCH_TYPE_META;
270 			n.subtype = WATCH_META_LOSS_NOTIFICATION;
271 			n.info = watch_sizeof(n);
272 			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
273 				if (ret == 0)
274 					ret = -EFAULT;
275 				break;
276 			}
277 			ret += sizeof(n);
278 			total_len -= sizeof(n);
279 			pipe->note_loss = false;
280 		}
281 #endif
282 
283 		if (!pipe_empty(head, tail)) {
284 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
285 			size_t chars = buf->len;
286 			size_t written;
287 			int error;
288 
289 			if (chars > total_len) {
290 				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
291 					if (ret == 0)
292 						ret = -ENOBUFS;
293 					break;
294 				}
295 				chars = total_len;
296 			}
297 
298 			error = pipe_buf_confirm(pipe, buf);
299 			if (error) {
300 				if (!ret)
301 					ret = error;
302 				break;
303 			}
304 
305 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
306 			if (unlikely(written < chars)) {
307 				if (!ret)
308 					ret = -EFAULT;
309 				break;
310 			}
311 			ret += chars;
312 			buf->offset += chars;
313 			buf->len -= chars;
314 
315 			/* Was it a packet buffer? Clean up and exit */
316 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
317 				total_len = chars;
318 				buf->len = 0;
319 			}
320 
321 			if (!buf->len) {
322 				pipe_buf_release(pipe, buf);
323 				spin_lock_irq(&pipe->rd_wait.lock);
324 #ifdef CONFIG_WATCH_QUEUE
325 				if (buf->flags & PIPE_BUF_FLAG_LOSS)
326 					pipe->note_loss = true;
327 #endif
328 				tail++;
329 				pipe->tail = tail;
330 				spin_unlock_irq(&pipe->rd_wait.lock);
331 			}
332 			total_len -= chars;
333 			if (!total_len)
334 				break;	/* common path: read succeeded */
335 			if (!pipe_empty(head, tail))	/* More to do? */
336 				continue;
337 		}
338 
339 		if (!pipe->writers)
340 			break;
341 		if (ret)
342 			break;
343 		if (filp->f_flags & O_NONBLOCK) {
344 			ret = -EAGAIN;
345 			break;
346 		}
347 		__pipe_unlock(pipe);
348 
349 		/*
350 		 * We only get here if we didn't actually read anything.
351 		 *
352 		 * However, we could have seen (and removed) a zero-sized
353 		 * pipe buffer, and might have made space in the buffers
354 		 * that way.
355 		 *
356 		 * You can't make zero-sized pipe buffers by doing an empty
357 		 * write (not even in packet mode), but they can happen if
358 		 * the writer gets an EFAULT when trying to fill a buffer
359 		 * that already got allocated and inserted in the buffer
360 		 * array.
361 		 *
362 		 * So we still need to wake up any pending writers in the
363 		 * _very_ unlikely case that the pipe was full, but we got
364 		 * no data.
365 		 */
366 		if (unlikely(was_full)) {
367 			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
368 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
369 		}
370 
371 		/*
372 		 * But because we didn't read anything, at this point we can
373 		 * just return directly with -ERESTARTSYS if we're interrupted,
374 		 * since we've done any required wakeups and there's no need
375 		 * to mark anything accessed. And we've dropped the lock.
376 		 */
377 		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
378 			return -ERESTARTSYS;
379 
380 		__pipe_lock(pipe);
381 		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
382 		wake_next_reader = true;
383 	}
384 	if (pipe_empty(pipe->head, pipe->tail))
385 		wake_next_reader = false;
386 	__pipe_unlock(pipe);
387 
388 	if (was_full) {
389 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
390 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
391 	}
392 	if (wake_next_reader)
393 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
394 	if (ret > 0)
395 		file_accessed(filp);
396 	return ret;
397 }
398 
399 static inline int is_packetized(struct file *file)
400 {
401 	return (file->f_flags & O_DIRECT) != 0;
402 }
403 
404 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
405 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
406 {
407 	unsigned int head = READ_ONCE(pipe->head);
408 	unsigned int tail = READ_ONCE(pipe->tail);
409 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
410 
411 	return !pipe_full(head, tail, max_usage) ||
412 		!READ_ONCE(pipe->readers);
413 }
414 
415 static ssize_t
416 pipe_write(struct kiocb *iocb, struct iov_iter *from)
417 {
418 	struct file *filp = iocb->ki_filp;
419 	struct pipe_inode_info *pipe = filp->private_data;
420 	unsigned int head;
421 	ssize_t ret = 0;
422 	size_t total_len = iov_iter_count(from);
423 	ssize_t chars;
424 	bool was_empty = false;
425 	bool wake_next_writer = false;
426 
427 	/* Null write succeeds. */
428 	if (unlikely(total_len == 0))
429 		return 0;
430 
431 	__pipe_lock(pipe);
432 
433 	if (!pipe->readers) {
434 		send_sig(SIGPIPE, current, 0);
435 		ret = -EPIPE;
436 		goto out;
437 	}
438 
439 #ifdef CONFIG_WATCH_QUEUE
440 	if (pipe->watch_queue) {
441 		ret = -EXDEV;
442 		goto out;
443 	}
444 #endif
445 
446 	/*
447 	 * Epoll nonsensically wants a wakeup whether the pipe
448 	 * was already empty or not.
449 	 *
450 	 * If it wasn't empty we try to merge new data into
451 	 * the last buffer.
452 	 *
453 	 * That naturally merges small writes, but it also
454 	 * page-aligns the rest of the writes for large writes
455 	 * spanning multiple pages.
456 	 */
457 	head = pipe->head;
458 	was_empty = true;
459 	chars = total_len & (PAGE_SIZE-1);
460 	if (chars && !pipe_empty(head, pipe->tail)) {
461 		unsigned int mask = pipe->ring_size - 1;
462 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
463 		int offset = buf->offset + buf->len;
464 
465 		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
466 		    offset + chars <= PAGE_SIZE) {
467 			ret = pipe_buf_confirm(pipe, buf);
468 			if (ret)
469 				goto out;
470 
471 			ret = copy_page_from_iter(buf->page, offset, chars, from);
472 			if (unlikely(ret < chars)) {
473 				ret = -EFAULT;
474 				goto out;
475 			}
476 
477 			buf->len += ret;
478 			if (!iov_iter_count(from))
479 				goto out;
480 		}
481 	}
482 
483 	for (;;) {
484 		if (!pipe->readers) {
485 			send_sig(SIGPIPE, current, 0);
486 			if (!ret)
487 				ret = -EPIPE;
488 			break;
489 		}
490 
491 		head = pipe->head;
492 		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
493 			unsigned int mask = pipe->ring_size - 1;
494 			struct pipe_buffer *buf = &pipe->bufs[head & mask];
495 			struct page *page = pipe->tmp_page;
496 			int copied;
497 
498 			if (!page) {
499 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
500 				if (unlikely(!page)) {
501 					ret = ret ? : -ENOMEM;
502 					break;
503 				}
504 				pipe->tmp_page = page;
505 			}
506 
507 			/* Allocate a slot in the ring in advance and attach an
508 			 * empty buffer.  If we fault or otherwise fail to use
509 			 * it, either the reader will consume it or it'll still
510 			 * be there for the next write.
511 			 */
512 			spin_lock_irq(&pipe->rd_wait.lock);
513 
514 			head = pipe->head;
515 			if (pipe_full(head, pipe->tail, pipe->max_usage)) {
516 				spin_unlock_irq(&pipe->rd_wait.lock);
517 				continue;
518 			}
519 
520 			pipe->head = head + 1;
521 			spin_unlock_irq(&pipe->rd_wait.lock);
522 
523 			/* Insert it into the buffer array */
524 			buf = &pipe->bufs[head & mask];
525 			buf->page = page;
526 			buf->ops = &anon_pipe_buf_ops;
527 			buf->offset = 0;
528 			buf->len = 0;
529 			if (is_packetized(filp))
530 				buf->flags = PIPE_BUF_FLAG_PACKET;
531 			else
532 				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
533 			pipe->tmp_page = NULL;
534 
535 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
536 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
537 				if (!ret)
538 					ret = -EFAULT;
539 				break;
540 			}
541 			ret += copied;
542 			buf->offset = 0;
543 			buf->len = copied;
544 
545 			if (!iov_iter_count(from))
546 				break;
547 		}
548 
549 		if (!pipe_full(head, pipe->tail, pipe->max_usage))
550 			continue;
551 
552 		/* Wait for buffer space to become available. */
553 		if (filp->f_flags & O_NONBLOCK) {
554 			if (!ret)
555 				ret = -EAGAIN;
556 			break;
557 		}
558 		if (signal_pending(current)) {
559 			if (!ret)
560 				ret = -ERESTARTSYS;
561 			break;
562 		}
563 
564 		/*
565 		 * We're going to release the pipe lock and wait for more
566 		 * space. We wake up any readers if necessary, and then
567 		 * after waiting we need to re-check whether the pipe
568 		 * become empty while we dropped the lock.
569 		 */
570 		__pipe_unlock(pipe);
571 		if (was_empty) {
572 			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
573 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
574 		}
575 		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
576 		__pipe_lock(pipe);
577 		was_empty = pipe_empty(pipe->head, pipe->tail);
578 		wake_next_writer = true;
579 	}
580 out:
581 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
582 		wake_next_writer = false;
583 	__pipe_unlock(pipe);
584 
585 	/*
586 	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
587 	 * want the reader to start processing things asap, rather than
588 	 * leave the data pending.
589 	 *
590 	 * This is particularly important for small writes, because of
591 	 * how (for example) the GNU make jobserver uses small writes to
592 	 * wake up pending jobs
593 	 */
594 	if (was_empty) {
595 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
596 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
597 	}
598 	if (wake_next_writer)
599 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
600 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
601 		int err = file_update_time(filp);
602 		if (err)
603 			ret = err;
604 		sb_end_write(file_inode(filp)->i_sb);
605 	}
606 	return ret;
607 }
608 
609 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
610 {
611 	struct pipe_inode_info *pipe = filp->private_data;
612 	int count, head, tail, mask;
613 
614 	switch (cmd) {
615 	case FIONREAD:
616 		__pipe_lock(pipe);
617 		count = 0;
618 		head = pipe->head;
619 		tail = pipe->tail;
620 		mask = pipe->ring_size - 1;
621 
622 		while (tail != head) {
623 			count += pipe->bufs[tail & mask].len;
624 			tail++;
625 		}
626 		__pipe_unlock(pipe);
627 
628 		return put_user(count, (int __user *)arg);
629 
630 #ifdef CONFIG_WATCH_QUEUE
631 	case IOC_WATCH_QUEUE_SET_SIZE: {
632 		int ret;
633 		__pipe_lock(pipe);
634 		ret = watch_queue_set_size(pipe, arg);
635 		__pipe_unlock(pipe);
636 		return ret;
637 	}
638 
639 	case IOC_WATCH_QUEUE_SET_FILTER:
640 		return watch_queue_set_filter(
641 			pipe, (struct watch_notification_filter __user *)arg);
642 #endif
643 
644 	default:
645 		return -ENOIOCTLCMD;
646 	}
647 }
648 
649 /* No kernel lock held - fine */
650 static __poll_t
651 pipe_poll(struct file *filp, poll_table *wait)
652 {
653 	__poll_t mask;
654 	struct pipe_inode_info *pipe = filp->private_data;
655 	unsigned int head, tail;
656 
657 	/*
658 	 * Reading pipe state only -- no need for acquiring the semaphore.
659 	 *
660 	 * But because this is racy, the code has to add the
661 	 * entry to the poll table _first_ ..
662 	 */
663 	if (filp->f_mode & FMODE_READ)
664 		poll_wait(filp, &pipe->rd_wait, wait);
665 	if (filp->f_mode & FMODE_WRITE)
666 		poll_wait(filp, &pipe->wr_wait, wait);
667 
668 	/*
669 	 * .. and only then can you do the racy tests. That way,
670 	 * if something changes and you got it wrong, the poll
671 	 * table entry will wake you up and fix it.
672 	 */
673 	head = READ_ONCE(pipe->head);
674 	tail = READ_ONCE(pipe->tail);
675 
676 	mask = 0;
677 	if (filp->f_mode & FMODE_READ) {
678 		if (!pipe_empty(head, tail))
679 			mask |= EPOLLIN | EPOLLRDNORM;
680 		if (!pipe->writers && filp->f_version != pipe->w_counter)
681 			mask |= EPOLLHUP;
682 	}
683 
684 	if (filp->f_mode & FMODE_WRITE) {
685 		if (!pipe_full(head, tail, pipe->max_usage))
686 			mask |= EPOLLOUT | EPOLLWRNORM;
687 		/*
688 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
689 		 * behave exactly like pipes for poll().
690 		 */
691 		if (!pipe->readers)
692 			mask |= EPOLLERR;
693 	}
694 
695 	return mask;
696 }
697 
698 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
699 {
700 	int kill = 0;
701 
702 	spin_lock(&inode->i_lock);
703 	if (!--pipe->files) {
704 		inode->i_pipe = NULL;
705 		kill = 1;
706 	}
707 	spin_unlock(&inode->i_lock);
708 
709 	if (kill)
710 		free_pipe_info(pipe);
711 }
712 
713 static int
714 pipe_release(struct inode *inode, struct file *file)
715 {
716 	struct pipe_inode_info *pipe = file->private_data;
717 
718 	__pipe_lock(pipe);
719 	if (file->f_mode & FMODE_READ)
720 		pipe->readers--;
721 	if (file->f_mode & FMODE_WRITE)
722 		pipe->writers--;
723 
724 	/* Was that the last reader or writer, but not the other side? */
725 	if (!pipe->readers != !pipe->writers) {
726 		wake_up_interruptible_all(&pipe->rd_wait);
727 		wake_up_interruptible_all(&pipe->wr_wait);
728 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
729 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
730 	}
731 	__pipe_unlock(pipe);
732 
733 	put_pipe_info(inode, pipe);
734 	return 0;
735 }
736 
737 static int
738 pipe_fasync(int fd, struct file *filp, int on)
739 {
740 	struct pipe_inode_info *pipe = filp->private_data;
741 	int retval = 0;
742 
743 	__pipe_lock(pipe);
744 	if (filp->f_mode & FMODE_READ)
745 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
746 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
747 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
748 		if (retval < 0 && (filp->f_mode & FMODE_READ))
749 			/* this can happen only if on == T */
750 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
751 	}
752 	__pipe_unlock(pipe);
753 	return retval;
754 }
755 
756 unsigned long account_pipe_buffers(struct user_struct *user,
757 				   unsigned long old, unsigned long new)
758 {
759 	return atomic_long_add_return(new - old, &user->pipe_bufs);
760 }
761 
762 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
763 {
764 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
765 
766 	return soft_limit && user_bufs > soft_limit;
767 }
768 
769 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
770 {
771 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
772 
773 	return hard_limit && user_bufs > hard_limit;
774 }
775 
776 bool pipe_is_unprivileged_user(void)
777 {
778 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
779 }
780 
781 struct pipe_inode_info *alloc_pipe_info(void)
782 {
783 	struct pipe_inode_info *pipe;
784 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
785 	struct user_struct *user = get_current_user();
786 	unsigned long user_bufs;
787 	unsigned int max_size = READ_ONCE(pipe_max_size);
788 
789 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
790 	if (pipe == NULL)
791 		goto out_free_uid;
792 
793 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
794 		pipe_bufs = max_size >> PAGE_SHIFT;
795 
796 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
797 
798 	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
799 		user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
800 		pipe_bufs = PIPE_MIN_DEF_BUFFERS;
801 	}
802 
803 	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
804 		goto out_revert_acct;
805 
806 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
807 			     GFP_KERNEL_ACCOUNT);
808 
809 	if (pipe->bufs) {
810 		init_waitqueue_head(&pipe->rd_wait);
811 		init_waitqueue_head(&pipe->wr_wait);
812 		pipe->r_counter = pipe->w_counter = 1;
813 		pipe->max_usage = pipe_bufs;
814 		pipe->ring_size = pipe_bufs;
815 		pipe->nr_accounted = pipe_bufs;
816 		pipe->user = user;
817 		mutex_init(&pipe->mutex);
818 		return pipe;
819 	}
820 
821 out_revert_acct:
822 	(void) account_pipe_buffers(user, pipe_bufs, 0);
823 	kfree(pipe);
824 out_free_uid:
825 	free_uid(user);
826 	return NULL;
827 }
828 
829 void free_pipe_info(struct pipe_inode_info *pipe)
830 {
831 	int i;
832 
833 #ifdef CONFIG_WATCH_QUEUE
834 	if (pipe->watch_queue) {
835 		watch_queue_clear(pipe->watch_queue);
836 		put_watch_queue(pipe->watch_queue);
837 	}
838 #endif
839 
840 	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
841 	free_uid(pipe->user);
842 	for (i = 0; i < pipe->ring_size; i++) {
843 		struct pipe_buffer *buf = pipe->bufs + i;
844 		if (buf->ops)
845 			pipe_buf_release(pipe, buf);
846 	}
847 	if (pipe->tmp_page)
848 		__free_page(pipe->tmp_page);
849 	kfree(pipe->bufs);
850 	kfree(pipe);
851 }
852 
853 static struct vfsmount *pipe_mnt __read_mostly;
854 
855 /*
856  * pipefs_dname() is called from d_path().
857  */
858 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
859 {
860 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
861 				d_inode(dentry)->i_ino);
862 }
863 
864 static const struct dentry_operations pipefs_dentry_operations = {
865 	.d_dname	= pipefs_dname,
866 };
867 
868 static struct inode * get_pipe_inode(void)
869 {
870 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
871 	struct pipe_inode_info *pipe;
872 
873 	if (!inode)
874 		goto fail_inode;
875 
876 	inode->i_ino = get_next_ino();
877 
878 	pipe = alloc_pipe_info();
879 	if (!pipe)
880 		goto fail_iput;
881 
882 	inode->i_pipe = pipe;
883 	pipe->files = 2;
884 	pipe->readers = pipe->writers = 1;
885 	inode->i_fop = &pipefifo_fops;
886 
887 	/*
888 	 * Mark the inode dirty from the very beginning,
889 	 * that way it will never be moved to the dirty
890 	 * list because "mark_inode_dirty()" will think
891 	 * that it already _is_ on the dirty list.
892 	 */
893 	inode->i_state = I_DIRTY;
894 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
895 	inode->i_uid = current_fsuid();
896 	inode->i_gid = current_fsgid();
897 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
898 
899 	return inode;
900 
901 fail_iput:
902 	iput(inode);
903 
904 fail_inode:
905 	return NULL;
906 }
907 
908 int create_pipe_files(struct file **res, int flags)
909 {
910 	struct inode *inode = get_pipe_inode();
911 	struct file *f;
912 	int error;
913 
914 	if (!inode)
915 		return -ENFILE;
916 
917 	if (flags & O_NOTIFICATION_PIPE) {
918 		error = watch_queue_init(inode->i_pipe);
919 		if (error) {
920 			free_pipe_info(inode->i_pipe);
921 			iput(inode);
922 			return error;
923 		}
924 	}
925 
926 	f = alloc_file_pseudo(inode, pipe_mnt, "",
927 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
928 				&pipefifo_fops);
929 	if (IS_ERR(f)) {
930 		free_pipe_info(inode->i_pipe);
931 		iput(inode);
932 		return PTR_ERR(f);
933 	}
934 
935 	f->private_data = inode->i_pipe;
936 
937 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
938 				  &pipefifo_fops);
939 	if (IS_ERR(res[0])) {
940 		put_pipe_info(inode, inode->i_pipe);
941 		fput(f);
942 		return PTR_ERR(res[0]);
943 	}
944 	res[0]->private_data = inode->i_pipe;
945 	res[1] = f;
946 	stream_open(inode, res[0]);
947 	stream_open(inode, res[1]);
948 	return 0;
949 }
950 
951 static int __do_pipe_flags(int *fd, struct file **files, int flags)
952 {
953 	int error;
954 	int fdw, fdr;
955 
956 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
957 		return -EINVAL;
958 
959 	error = create_pipe_files(files, flags);
960 	if (error)
961 		return error;
962 
963 	error = get_unused_fd_flags(flags);
964 	if (error < 0)
965 		goto err_read_pipe;
966 	fdr = error;
967 
968 	error = get_unused_fd_flags(flags);
969 	if (error < 0)
970 		goto err_fdr;
971 	fdw = error;
972 
973 	audit_fd_pair(fdr, fdw);
974 	fd[0] = fdr;
975 	fd[1] = fdw;
976 	return 0;
977 
978  err_fdr:
979 	put_unused_fd(fdr);
980  err_read_pipe:
981 	fput(files[0]);
982 	fput(files[1]);
983 	return error;
984 }
985 
986 int do_pipe_flags(int *fd, int flags)
987 {
988 	struct file *files[2];
989 	int error = __do_pipe_flags(fd, files, flags);
990 	if (!error) {
991 		fd_install(fd[0], files[0]);
992 		fd_install(fd[1], files[1]);
993 	}
994 	return error;
995 }
996 
997 /*
998  * sys_pipe() is the normal C calling standard for creating
999  * a pipe. It's not the way Unix traditionally does this, though.
1000  */
1001 static int do_pipe2(int __user *fildes, int flags)
1002 {
1003 	struct file *files[2];
1004 	int fd[2];
1005 	int error;
1006 
1007 	error = __do_pipe_flags(fd, files, flags);
1008 	if (!error) {
1009 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1010 			fput(files[0]);
1011 			fput(files[1]);
1012 			put_unused_fd(fd[0]);
1013 			put_unused_fd(fd[1]);
1014 			error = -EFAULT;
1015 		} else {
1016 			fd_install(fd[0], files[0]);
1017 			fd_install(fd[1], files[1]);
1018 		}
1019 	}
1020 	return error;
1021 }
1022 
1023 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1024 {
1025 	return do_pipe2(fildes, flags);
1026 }
1027 
1028 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1029 {
1030 	return do_pipe2(fildes, 0);
1031 }
1032 
1033 /*
1034  * This is the stupid "wait for pipe to be readable or writable"
1035  * model.
1036  *
1037  * See pipe_read/write() for the proper kind of exclusive wait,
1038  * but that requires that we wake up any other readers/writers
1039  * if we then do not end up reading everything (ie the whole
1040  * "wake_next_reader/writer" logic in pipe_read/write()).
1041  */
1042 void pipe_wait_readable(struct pipe_inode_info *pipe)
1043 {
1044 	pipe_unlock(pipe);
1045 	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1046 	pipe_lock(pipe);
1047 }
1048 
1049 void pipe_wait_writable(struct pipe_inode_info *pipe)
1050 {
1051 	pipe_unlock(pipe);
1052 	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1053 	pipe_lock(pipe);
1054 }
1055 
1056 /*
1057  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1058  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1059  * race with the count check and waitqueue prep.
1060  *
1061  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1062  * then check the condition you're waiting for, and only then sleep. But
1063  * because of the pipe lock, we can check the condition before being on
1064  * the wait queue.
1065  *
1066  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1067  */
1068 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1069 {
1070 	DEFINE_WAIT(rdwait);
1071 	int cur = *cnt;
1072 
1073 	while (cur == *cnt) {
1074 		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1075 		pipe_unlock(pipe);
1076 		schedule();
1077 		finish_wait(&pipe->rd_wait, &rdwait);
1078 		pipe_lock(pipe);
1079 		if (signal_pending(current))
1080 			break;
1081 	}
1082 	return cur == *cnt ? -ERESTARTSYS : 0;
1083 }
1084 
1085 static void wake_up_partner(struct pipe_inode_info *pipe)
1086 {
1087 	wake_up_interruptible_all(&pipe->rd_wait);
1088 }
1089 
1090 static int fifo_open(struct inode *inode, struct file *filp)
1091 {
1092 	struct pipe_inode_info *pipe;
1093 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1094 	int ret;
1095 
1096 	filp->f_version = 0;
1097 
1098 	spin_lock(&inode->i_lock);
1099 	if (inode->i_pipe) {
1100 		pipe = inode->i_pipe;
1101 		pipe->files++;
1102 		spin_unlock(&inode->i_lock);
1103 	} else {
1104 		spin_unlock(&inode->i_lock);
1105 		pipe = alloc_pipe_info();
1106 		if (!pipe)
1107 			return -ENOMEM;
1108 		pipe->files = 1;
1109 		spin_lock(&inode->i_lock);
1110 		if (unlikely(inode->i_pipe)) {
1111 			inode->i_pipe->files++;
1112 			spin_unlock(&inode->i_lock);
1113 			free_pipe_info(pipe);
1114 			pipe = inode->i_pipe;
1115 		} else {
1116 			inode->i_pipe = pipe;
1117 			spin_unlock(&inode->i_lock);
1118 		}
1119 	}
1120 	filp->private_data = pipe;
1121 	/* OK, we have a pipe and it's pinned down */
1122 
1123 	__pipe_lock(pipe);
1124 
1125 	/* We can only do regular read/write on fifos */
1126 	stream_open(inode, filp);
1127 
1128 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1129 	case FMODE_READ:
1130 	/*
1131 	 *  O_RDONLY
1132 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1133 	 *  opened, even when there is no process writing the FIFO.
1134 	 */
1135 		pipe->r_counter++;
1136 		if (pipe->readers++ == 0)
1137 			wake_up_partner(pipe);
1138 
1139 		if (!is_pipe && !pipe->writers) {
1140 			if ((filp->f_flags & O_NONBLOCK)) {
1141 				/* suppress EPOLLHUP until we have
1142 				 * seen a writer */
1143 				filp->f_version = pipe->w_counter;
1144 			} else {
1145 				if (wait_for_partner(pipe, &pipe->w_counter))
1146 					goto err_rd;
1147 			}
1148 		}
1149 		break;
1150 
1151 	case FMODE_WRITE:
1152 	/*
1153 	 *  O_WRONLY
1154 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1155 	 *  errno=ENXIO when there is no process reading the FIFO.
1156 	 */
1157 		ret = -ENXIO;
1158 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1159 			goto err;
1160 
1161 		pipe->w_counter++;
1162 		if (!pipe->writers++)
1163 			wake_up_partner(pipe);
1164 
1165 		if (!is_pipe && !pipe->readers) {
1166 			if (wait_for_partner(pipe, &pipe->r_counter))
1167 				goto err_wr;
1168 		}
1169 		break;
1170 
1171 	case FMODE_READ | FMODE_WRITE:
1172 	/*
1173 	 *  O_RDWR
1174 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1175 	 *  This implementation will NEVER block on a O_RDWR open, since
1176 	 *  the process can at least talk to itself.
1177 	 */
1178 
1179 		pipe->readers++;
1180 		pipe->writers++;
1181 		pipe->r_counter++;
1182 		pipe->w_counter++;
1183 		if (pipe->readers == 1 || pipe->writers == 1)
1184 			wake_up_partner(pipe);
1185 		break;
1186 
1187 	default:
1188 		ret = -EINVAL;
1189 		goto err;
1190 	}
1191 
1192 	/* Ok! */
1193 	__pipe_unlock(pipe);
1194 	return 0;
1195 
1196 err_rd:
1197 	if (!--pipe->readers)
1198 		wake_up_interruptible(&pipe->wr_wait);
1199 	ret = -ERESTARTSYS;
1200 	goto err;
1201 
1202 err_wr:
1203 	if (!--pipe->writers)
1204 		wake_up_interruptible_all(&pipe->rd_wait);
1205 	ret = -ERESTARTSYS;
1206 	goto err;
1207 
1208 err:
1209 	__pipe_unlock(pipe);
1210 
1211 	put_pipe_info(inode, pipe);
1212 	return ret;
1213 }
1214 
1215 const struct file_operations pipefifo_fops = {
1216 	.open		= fifo_open,
1217 	.llseek		= no_llseek,
1218 	.read_iter	= pipe_read,
1219 	.write_iter	= pipe_write,
1220 	.poll		= pipe_poll,
1221 	.unlocked_ioctl	= pipe_ioctl,
1222 	.release	= pipe_release,
1223 	.fasync		= pipe_fasync,
1224 	.splice_write	= iter_file_splice_write,
1225 };
1226 
1227 /*
1228  * Currently we rely on the pipe array holding a power-of-2 number
1229  * of pages. Returns 0 on error.
1230  */
1231 unsigned int round_pipe_size(unsigned long size)
1232 {
1233 	if (size > (1U << 31))
1234 		return 0;
1235 
1236 	/* Minimum pipe size, as required by POSIX */
1237 	if (size < PAGE_SIZE)
1238 		return PAGE_SIZE;
1239 
1240 	return roundup_pow_of_two(size);
1241 }
1242 
1243 /*
1244  * Resize the pipe ring to a number of slots.
1245  */
1246 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1247 {
1248 	struct pipe_buffer *bufs;
1249 	unsigned int head, tail, mask, n;
1250 
1251 	/*
1252 	 * We can shrink the pipe, if arg is greater than the ring occupancy.
1253 	 * Since we don't expect a lot of shrink+grow operations, just free and
1254 	 * allocate again like we would do for growing.  If the pipe currently
1255 	 * contains more buffers than arg, then return busy.
1256 	 */
1257 	mask = pipe->ring_size - 1;
1258 	head = pipe->head;
1259 	tail = pipe->tail;
1260 	n = pipe_occupancy(pipe->head, pipe->tail);
1261 	if (nr_slots < n)
1262 		return -EBUSY;
1263 
1264 	bufs = kcalloc(nr_slots, sizeof(*bufs),
1265 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1266 	if (unlikely(!bufs))
1267 		return -ENOMEM;
1268 
1269 	/*
1270 	 * The pipe array wraps around, so just start the new one at zero
1271 	 * and adjust the indices.
1272 	 */
1273 	if (n > 0) {
1274 		unsigned int h = head & mask;
1275 		unsigned int t = tail & mask;
1276 		if (h > t) {
1277 			memcpy(bufs, pipe->bufs + t,
1278 			       n * sizeof(struct pipe_buffer));
1279 		} else {
1280 			unsigned int tsize = pipe->ring_size - t;
1281 			if (h > 0)
1282 				memcpy(bufs + tsize, pipe->bufs,
1283 				       h * sizeof(struct pipe_buffer));
1284 			memcpy(bufs, pipe->bufs + t,
1285 			       tsize * sizeof(struct pipe_buffer));
1286 		}
1287 	}
1288 
1289 	head = n;
1290 	tail = 0;
1291 
1292 	kfree(pipe->bufs);
1293 	pipe->bufs = bufs;
1294 	pipe->ring_size = nr_slots;
1295 	if (pipe->max_usage > nr_slots)
1296 		pipe->max_usage = nr_slots;
1297 	pipe->tail = tail;
1298 	pipe->head = head;
1299 
1300 	/* This might have made more room for writers */
1301 	wake_up_interruptible(&pipe->wr_wait);
1302 	return 0;
1303 }
1304 
1305 /*
1306  * Allocate a new array of pipe buffers and copy the info over. Returns the
1307  * pipe size if successful, or return -ERROR on error.
1308  */
1309 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1310 {
1311 	unsigned long user_bufs;
1312 	unsigned int nr_slots, size;
1313 	long ret = 0;
1314 
1315 #ifdef CONFIG_WATCH_QUEUE
1316 	if (pipe->watch_queue)
1317 		return -EBUSY;
1318 #endif
1319 
1320 	size = round_pipe_size(arg);
1321 	nr_slots = size >> PAGE_SHIFT;
1322 
1323 	if (!nr_slots)
1324 		return -EINVAL;
1325 
1326 	/*
1327 	 * If trying to increase the pipe capacity, check that an
1328 	 * unprivileged user is not trying to exceed various limits
1329 	 * (soft limit check here, hard limit check just below).
1330 	 * Decreasing the pipe capacity is always permitted, even
1331 	 * if the user is currently over a limit.
1332 	 */
1333 	if (nr_slots > pipe->max_usage &&
1334 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1335 		return -EPERM;
1336 
1337 	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1338 
1339 	if (nr_slots > pipe->max_usage &&
1340 			(too_many_pipe_buffers_hard(user_bufs) ||
1341 			 too_many_pipe_buffers_soft(user_bufs)) &&
1342 			pipe_is_unprivileged_user()) {
1343 		ret = -EPERM;
1344 		goto out_revert_acct;
1345 	}
1346 
1347 	ret = pipe_resize_ring(pipe, nr_slots);
1348 	if (ret < 0)
1349 		goto out_revert_acct;
1350 
1351 	pipe->max_usage = nr_slots;
1352 	pipe->nr_accounted = nr_slots;
1353 	return pipe->max_usage * PAGE_SIZE;
1354 
1355 out_revert_acct:
1356 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1357 	return ret;
1358 }
1359 
1360 /*
1361  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1362  * not enough to verify that this is a pipe.
1363  */
1364 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1365 {
1366 	struct pipe_inode_info *pipe = file->private_data;
1367 
1368 	if (file->f_op != &pipefifo_fops || !pipe)
1369 		return NULL;
1370 #ifdef CONFIG_WATCH_QUEUE
1371 	if (for_splice && pipe->watch_queue)
1372 		return NULL;
1373 #endif
1374 	return pipe;
1375 }
1376 
1377 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1378 {
1379 	struct pipe_inode_info *pipe;
1380 	long ret;
1381 
1382 	pipe = get_pipe_info(file, false);
1383 	if (!pipe)
1384 		return -EBADF;
1385 
1386 	__pipe_lock(pipe);
1387 
1388 	switch (cmd) {
1389 	case F_SETPIPE_SZ:
1390 		ret = pipe_set_size(pipe, arg);
1391 		break;
1392 	case F_GETPIPE_SZ:
1393 		ret = pipe->max_usage * PAGE_SIZE;
1394 		break;
1395 	default:
1396 		ret = -EINVAL;
1397 		break;
1398 	}
1399 
1400 	__pipe_unlock(pipe);
1401 	return ret;
1402 }
1403 
1404 static const struct super_operations pipefs_ops = {
1405 	.destroy_inode = free_inode_nonrcu,
1406 	.statfs = simple_statfs,
1407 };
1408 
1409 /*
1410  * pipefs should _never_ be mounted by userland - too much of security hassle,
1411  * no real gain from having the whole whorehouse mounted. So we don't need
1412  * any operations on the root directory. However, we need a non-trivial
1413  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1414  */
1415 
1416 static int pipefs_init_fs_context(struct fs_context *fc)
1417 {
1418 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1419 	if (!ctx)
1420 		return -ENOMEM;
1421 	ctx->ops = &pipefs_ops;
1422 	ctx->dops = &pipefs_dentry_operations;
1423 	return 0;
1424 }
1425 
1426 static struct file_system_type pipe_fs_type = {
1427 	.name		= "pipefs",
1428 	.init_fs_context = pipefs_init_fs_context,
1429 	.kill_sb	= kill_anon_super,
1430 };
1431 
1432 static int __init init_pipe_fs(void)
1433 {
1434 	int err = register_filesystem(&pipe_fs_type);
1435 
1436 	if (!err) {
1437 		pipe_mnt = kern_mount(&pipe_fs_type);
1438 		if (IS_ERR(pipe_mnt)) {
1439 			err = PTR_ERR(pipe_mnt);
1440 			unregister_filesystem(&pipe_fs_type);
1441 		}
1442 	}
1443 	return err;
1444 }
1445 
1446 fs_initcall(init_pipe_fs);
1447