1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 #include <linux/watch_queue.h> 28 29 #include <linux/uaccess.h> 30 #include <asm/ioctls.h> 31 32 #include "internal.h" 33 34 /* 35 * New pipe buffers will be restricted to this size while the user is exceeding 36 * their pipe buffer quota. The general pipe use case needs at least two 37 * buffers: one for data yet to be read, and one for new data. If this is less 38 * than two, then a write to a non-empty pipe may block even if the pipe is not 39 * full. This can occur with GNU make jobserver or similar uses of pipes as 40 * semaphores: multiple processes may be waiting to write tokens back to the 41 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/. 42 * 43 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their 44 * own risk, namely: pipe writes to non-full pipes may block until the pipe is 45 * emptied. 46 */ 47 #define PIPE_MIN_DEF_BUFFERS 2 48 49 /* 50 * The max size that a non-root user is allowed to grow the pipe. Can 51 * be set by root in /proc/sys/fs/pipe-max-size 52 */ 53 unsigned int pipe_max_size = 1048576; 54 55 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 56 * matches default values. 57 */ 58 unsigned long pipe_user_pages_hard; 59 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 60 61 /* 62 * We use head and tail indices that aren't masked off, except at the point of 63 * dereference, but rather they're allowed to wrap naturally. This means there 64 * isn't a dead spot in the buffer, but the ring has to be a power of two and 65 * <= 2^31. 66 * -- David Howells 2019-09-23. 67 * 68 * Reads with count = 0 should always return 0. 69 * -- Julian Bradfield 1999-06-07. 70 * 71 * FIFOs and Pipes now generate SIGIO for both readers and writers. 72 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 73 * 74 * pipe_read & write cleanup 75 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 76 */ 77 78 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) 79 { 80 if (pipe->files) 81 mutex_lock_nested(&pipe->mutex, subclass); 82 } 83 84 void pipe_lock(struct pipe_inode_info *pipe) 85 { 86 /* 87 * pipe_lock() nests non-pipe inode locks (for writing to a file) 88 */ 89 pipe_lock_nested(pipe, I_MUTEX_PARENT); 90 } 91 EXPORT_SYMBOL(pipe_lock); 92 93 void pipe_unlock(struct pipe_inode_info *pipe) 94 { 95 if (pipe->files) 96 mutex_unlock(&pipe->mutex); 97 } 98 EXPORT_SYMBOL(pipe_unlock); 99 100 static inline void __pipe_lock(struct pipe_inode_info *pipe) 101 { 102 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT); 103 } 104 105 static inline void __pipe_unlock(struct pipe_inode_info *pipe) 106 { 107 mutex_unlock(&pipe->mutex); 108 } 109 110 void pipe_double_lock(struct pipe_inode_info *pipe1, 111 struct pipe_inode_info *pipe2) 112 { 113 BUG_ON(pipe1 == pipe2); 114 115 if (pipe1 < pipe2) { 116 pipe_lock_nested(pipe1, I_MUTEX_PARENT); 117 pipe_lock_nested(pipe2, I_MUTEX_CHILD); 118 } else { 119 pipe_lock_nested(pipe2, I_MUTEX_PARENT); 120 pipe_lock_nested(pipe1, I_MUTEX_CHILD); 121 } 122 } 123 124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 125 struct pipe_buffer *buf) 126 { 127 struct page *page = buf->page; 128 129 /* 130 * If nobody else uses this page, and we don't already have a 131 * temporary page, let's keep track of it as a one-deep 132 * allocation cache. (Otherwise just release our reference to it) 133 */ 134 if (page_count(page) == 1 && !pipe->tmp_page) 135 pipe->tmp_page = page; 136 else 137 put_page(page); 138 } 139 140 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, 141 struct pipe_buffer *buf) 142 { 143 struct page *page = buf->page; 144 145 if (page_count(page) != 1) 146 return false; 147 memcg_kmem_uncharge_page(page, 0); 148 __SetPageLocked(page); 149 return true; 150 } 151 152 /** 153 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer 154 * @pipe: the pipe that the buffer belongs to 155 * @buf: the buffer to attempt to steal 156 * 157 * Description: 158 * This function attempts to steal the &struct page attached to 159 * @buf. If successful, this function returns 0 and returns with 160 * the page locked. The caller may then reuse the page for whatever 161 * he wishes; the typical use is insertion into a different file 162 * page cache. 163 */ 164 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, 165 struct pipe_buffer *buf) 166 { 167 struct page *page = buf->page; 168 169 /* 170 * A reference of one is golden, that means that the owner of this 171 * page is the only one holding a reference to it. lock the page 172 * and return OK. 173 */ 174 if (page_count(page) == 1) { 175 lock_page(page); 176 return true; 177 } 178 return false; 179 } 180 EXPORT_SYMBOL(generic_pipe_buf_try_steal); 181 182 /** 183 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 184 * @pipe: the pipe that the buffer belongs to 185 * @buf: the buffer to get a reference to 186 * 187 * Description: 188 * This function grabs an extra reference to @buf. It's used in 189 * the tee() system call, when we duplicate the buffers in one 190 * pipe into another. 191 */ 192 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 193 { 194 return try_get_page(buf->page); 195 } 196 EXPORT_SYMBOL(generic_pipe_buf_get); 197 198 /** 199 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 200 * @pipe: the pipe that the buffer belongs to 201 * @buf: the buffer to put a reference to 202 * 203 * Description: 204 * This function releases a reference to @buf. 205 */ 206 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 207 struct pipe_buffer *buf) 208 { 209 put_page(buf->page); 210 } 211 EXPORT_SYMBOL(generic_pipe_buf_release); 212 213 static const struct pipe_buf_operations anon_pipe_buf_ops = { 214 .release = anon_pipe_buf_release, 215 .try_steal = anon_pipe_buf_try_steal, 216 .get = generic_pipe_buf_get, 217 }; 218 219 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 220 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 221 { 222 unsigned int head = READ_ONCE(pipe->head); 223 unsigned int tail = READ_ONCE(pipe->tail); 224 unsigned int writers = READ_ONCE(pipe->writers); 225 226 return !pipe_empty(head, tail) || !writers; 227 } 228 229 static ssize_t 230 pipe_read(struct kiocb *iocb, struct iov_iter *to) 231 { 232 size_t total_len = iov_iter_count(to); 233 struct file *filp = iocb->ki_filp; 234 struct pipe_inode_info *pipe = filp->private_data; 235 bool was_full, wake_next_reader = false; 236 ssize_t ret; 237 238 /* Null read succeeds. */ 239 if (unlikely(total_len == 0)) 240 return 0; 241 242 ret = 0; 243 __pipe_lock(pipe); 244 245 /* 246 * We only wake up writers if the pipe was full when we started 247 * reading in order to avoid unnecessary wakeups. 248 * 249 * But when we do wake up writers, we do so using a sync wakeup 250 * (WF_SYNC), because we want them to get going and generate more 251 * data for us. 252 */ 253 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 254 for (;;) { 255 unsigned int head = pipe->head; 256 unsigned int tail = pipe->tail; 257 unsigned int mask = pipe->ring_size - 1; 258 259 #ifdef CONFIG_WATCH_QUEUE 260 if (pipe->note_loss) { 261 struct watch_notification n; 262 263 if (total_len < 8) { 264 if (ret == 0) 265 ret = -ENOBUFS; 266 break; 267 } 268 269 n.type = WATCH_TYPE_META; 270 n.subtype = WATCH_META_LOSS_NOTIFICATION; 271 n.info = watch_sizeof(n); 272 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) { 273 if (ret == 0) 274 ret = -EFAULT; 275 break; 276 } 277 ret += sizeof(n); 278 total_len -= sizeof(n); 279 pipe->note_loss = false; 280 } 281 #endif 282 283 if (!pipe_empty(head, tail)) { 284 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 285 size_t chars = buf->len; 286 size_t written; 287 int error; 288 289 if (chars > total_len) { 290 if (buf->flags & PIPE_BUF_FLAG_WHOLE) { 291 if (ret == 0) 292 ret = -ENOBUFS; 293 break; 294 } 295 chars = total_len; 296 } 297 298 error = pipe_buf_confirm(pipe, buf); 299 if (error) { 300 if (!ret) 301 ret = error; 302 break; 303 } 304 305 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 306 if (unlikely(written < chars)) { 307 if (!ret) 308 ret = -EFAULT; 309 break; 310 } 311 ret += chars; 312 buf->offset += chars; 313 buf->len -= chars; 314 315 /* Was it a packet buffer? Clean up and exit */ 316 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 317 total_len = chars; 318 buf->len = 0; 319 } 320 321 if (!buf->len) { 322 pipe_buf_release(pipe, buf); 323 spin_lock_irq(&pipe->rd_wait.lock); 324 #ifdef CONFIG_WATCH_QUEUE 325 if (buf->flags & PIPE_BUF_FLAG_LOSS) 326 pipe->note_loss = true; 327 #endif 328 tail++; 329 pipe->tail = tail; 330 spin_unlock_irq(&pipe->rd_wait.lock); 331 } 332 total_len -= chars; 333 if (!total_len) 334 break; /* common path: read succeeded */ 335 if (!pipe_empty(head, tail)) /* More to do? */ 336 continue; 337 } 338 339 if (!pipe->writers) 340 break; 341 if (ret) 342 break; 343 if (filp->f_flags & O_NONBLOCK) { 344 ret = -EAGAIN; 345 break; 346 } 347 __pipe_unlock(pipe); 348 349 /* 350 * We only get here if we didn't actually read anything. 351 * 352 * However, we could have seen (and removed) a zero-sized 353 * pipe buffer, and might have made space in the buffers 354 * that way. 355 * 356 * You can't make zero-sized pipe buffers by doing an empty 357 * write (not even in packet mode), but they can happen if 358 * the writer gets an EFAULT when trying to fill a buffer 359 * that already got allocated and inserted in the buffer 360 * array. 361 * 362 * So we still need to wake up any pending writers in the 363 * _very_ unlikely case that the pipe was full, but we got 364 * no data. 365 */ 366 if (unlikely(was_full)) { 367 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 368 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 369 } 370 371 /* 372 * But because we didn't read anything, at this point we can 373 * just return directly with -ERESTARTSYS if we're interrupted, 374 * since we've done any required wakeups and there's no need 375 * to mark anything accessed. And we've dropped the lock. 376 */ 377 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) 378 return -ERESTARTSYS; 379 380 __pipe_lock(pipe); 381 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 382 wake_next_reader = true; 383 } 384 if (pipe_empty(pipe->head, pipe->tail)) 385 wake_next_reader = false; 386 __pipe_unlock(pipe); 387 388 if (was_full) { 389 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 390 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 391 } 392 if (wake_next_reader) 393 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 394 if (ret > 0) 395 file_accessed(filp); 396 return ret; 397 } 398 399 static inline int is_packetized(struct file *file) 400 { 401 return (file->f_flags & O_DIRECT) != 0; 402 } 403 404 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 405 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 406 { 407 unsigned int head = READ_ONCE(pipe->head); 408 unsigned int tail = READ_ONCE(pipe->tail); 409 unsigned int max_usage = READ_ONCE(pipe->max_usage); 410 411 return !pipe_full(head, tail, max_usage) || 412 !READ_ONCE(pipe->readers); 413 } 414 415 static ssize_t 416 pipe_write(struct kiocb *iocb, struct iov_iter *from) 417 { 418 struct file *filp = iocb->ki_filp; 419 struct pipe_inode_info *pipe = filp->private_data; 420 unsigned int head; 421 ssize_t ret = 0; 422 size_t total_len = iov_iter_count(from); 423 ssize_t chars; 424 bool was_empty = false; 425 bool wake_next_writer = false; 426 427 /* Null write succeeds. */ 428 if (unlikely(total_len == 0)) 429 return 0; 430 431 __pipe_lock(pipe); 432 433 if (!pipe->readers) { 434 send_sig(SIGPIPE, current, 0); 435 ret = -EPIPE; 436 goto out; 437 } 438 439 #ifdef CONFIG_WATCH_QUEUE 440 if (pipe->watch_queue) { 441 ret = -EXDEV; 442 goto out; 443 } 444 #endif 445 446 /* 447 * Epoll nonsensically wants a wakeup whether the pipe 448 * was already empty or not. 449 * 450 * If it wasn't empty we try to merge new data into 451 * the last buffer. 452 * 453 * That naturally merges small writes, but it also 454 * page-aligns the rest of the writes for large writes 455 * spanning multiple pages. 456 */ 457 head = pipe->head; 458 was_empty = true; 459 chars = total_len & (PAGE_SIZE-1); 460 if (chars && !pipe_empty(head, pipe->tail)) { 461 unsigned int mask = pipe->ring_size - 1; 462 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask]; 463 int offset = buf->offset + buf->len; 464 465 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && 466 offset + chars <= PAGE_SIZE) { 467 ret = pipe_buf_confirm(pipe, buf); 468 if (ret) 469 goto out; 470 471 ret = copy_page_from_iter(buf->page, offset, chars, from); 472 if (unlikely(ret < chars)) { 473 ret = -EFAULT; 474 goto out; 475 } 476 477 buf->len += ret; 478 if (!iov_iter_count(from)) 479 goto out; 480 } 481 } 482 483 for (;;) { 484 if (!pipe->readers) { 485 send_sig(SIGPIPE, current, 0); 486 if (!ret) 487 ret = -EPIPE; 488 break; 489 } 490 491 head = pipe->head; 492 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 493 unsigned int mask = pipe->ring_size - 1; 494 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 495 struct page *page = pipe->tmp_page; 496 int copied; 497 498 if (!page) { 499 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 500 if (unlikely(!page)) { 501 ret = ret ? : -ENOMEM; 502 break; 503 } 504 pipe->tmp_page = page; 505 } 506 507 /* Allocate a slot in the ring in advance and attach an 508 * empty buffer. If we fault or otherwise fail to use 509 * it, either the reader will consume it or it'll still 510 * be there for the next write. 511 */ 512 spin_lock_irq(&pipe->rd_wait.lock); 513 514 head = pipe->head; 515 if (pipe_full(head, pipe->tail, pipe->max_usage)) { 516 spin_unlock_irq(&pipe->rd_wait.lock); 517 continue; 518 } 519 520 pipe->head = head + 1; 521 spin_unlock_irq(&pipe->rd_wait.lock); 522 523 /* Insert it into the buffer array */ 524 buf = &pipe->bufs[head & mask]; 525 buf->page = page; 526 buf->ops = &anon_pipe_buf_ops; 527 buf->offset = 0; 528 buf->len = 0; 529 if (is_packetized(filp)) 530 buf->flags = PIPE_BUF_FLAG_PACKET; 531 else 532 buf->flags = PIPE_BUF_FLAG_CAN_MERGE; 533 pipe->tmp_page = NULL; 534 535 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 536 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 537 if (!ret) 538 ret = -EFAULT; 539 break; 540 } 541 ret += copied; 542 buf->offset = 0; 543 buf->len = copied; 544 545 if (!iov_iter_count(from)) 546 break; 547 } 548 549 if (!pipe_full(head, pipe->tail, pipe->max_usage)) 550 continue; 551 552 /* Wait for buffer space to become available. */ 553 if (filp->f_flags & O_NONBLOCK) { 554 if (!ret) 555 ret = -EAGAIN; 556 break; 557 } 558 if (signal_pending(current)) { 559 if (!ret) 560 ret = -ERESTARTSYS; 561 break; 562 } 563 564 /* 565 * We're going to release the pipe lock and wait for more 566 * space. We wake up any readers if necessary, and then 567 * after waiting we need to re-check whether the pipe 568 * become empty while we dropped the lock. 569 */ 570 __pipe_unlock(pipe); 571 if (was_empty) { 572 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 573 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 574 } 575 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); 576 __pipe_lock(pipe); 577 was_empty = pipe_empty(pipe->head, pipe->tail); 578 wake_next_writer = true; 579 } 580 out: 581 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 582 wake_next_writer = false; 583 __pipe_unlock(pipe); 584 585 /* 586 * If we do do a wakeup event, we do a 'sync' wakeup, because we 587 * want the reader to start processing things asap, rather than 588 * leave the data pending. 589 * 590 * This is particularly important for small writes, because of 591 * how (for example) the GNU make jobserver uses small writes to 592 * wake up pending jobs 593 */ 594 if (was_empty) { 595 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 596 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 597 } 598 if (wake_next_writer) 599 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 600 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 601 int err = file_update_time(filp); 602 if (err) 603 ret = err; 604 sb_end_write(file_inode(filp)->i_sb); 605 } 606 return ret; 607 } 608 609 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 610 { 611 struct pipe_inode_info *pipe = filp->private_data; 612 int count, head, tail, mask; 613 614 switch (cmd) { 615 case FIONREAD: 616 __pipe_lock(pipe); 617 count = 0; 618 head = pipe->head; 619 tail = pipe->tail; 620 mask = pipe->ring_size - 1; 621 622 while (tail != head) { 623 count += pipe->bufs[tail & mask].len; 624 tail++; 625 } 626 __pipe_unlock(pipe); 627 628 return put_user(count, (int __user *)arg); 629 630 #ifdef CONFIG_WATCH_QUEUE 631 case IOC_WATCH_QUEUE_SET_SIZE: { 632 int ret; 633 __pipe_lock(pipe); 634 ret = watch_queue_set_size(pipe, arg); 635 __pipe_unlock(pipe); 636 return ret; 637 } 638 639 case IOC_WATCH_QUEUE_SET_FILTER: 640 return watch_queue_set_filter( 641 pipe, (struct watch_notification_filter __user *)arg); 642 #endif 643 644 default: 645 return -ENOIOCTLCMD; 646 } 647 } 648 649 /* No kernel lock held - fine */ 650 static __poll_t 651 pipe_poll(struct file *filp, poll_table *wait) 652 { 653 __poll_t mask; 654 struct pipe_inode_info *pipe = filp->private_data; 655 unsigned int head, tail; 656 657 /* 658 * Reading pipe state only -- no need for acquiring the semaphore. 659 * 660 * But because this is racy, the code has to add the 661 * entry to the poll table _first_ .. 662 */ 663 if (filp->f_mode & FMODE_READ) 664 poll_wait(filp, &pipe->rd_wait, wait); 665 if (filp->f_mode & FMODE_WRITE) 666 poll_wait(filp, &pipe->wr_wait, wait); 667 668 /* 669 * .. and only then can you do the racy tests. That way, 670 * if something changes and you got it wrong, the poll 671 * table entry will wake you up and fix it. 672 */ 673 head = READ_ONCE(pipe->head); 674 tail = READ_ONCE(pipe->tail); 675 676 mask = 0; 677 if (filp->f_mode & FMODE_READ) { 678 if (!pipe_empty(head, tail)) 679 mask |= EPOLLIN | EPOLLRDNORM; 680 if (!pipe->writers && filp->f_version != pipe->w_counter) 681 mask |= EPOLLHUP; 682 } 683 684 if (filp->f_mode & FMODE_WRITE) { 685 if (!pipe_full(head, tail, pipe->max_usage)) 686 mask |= EPOLLOUT | EPOLLWRNORM; 687 /* 688 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 689 * behave exactly like pipes for poll(). 690 */ 691 if (!pipe->readers) 692 mask |= EPOLLERR; 693 } 694 695 return mask; 696 } 697 698 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 699 { 700 int kill = 0; 701 702 spin_lock(&inode->i_lock); 703 if (!--pipe->files) { 704 inode->i_pipe = NULL; 705 kill = 1; 706 } 707 spin_unlock(&inode->i_lock); 708 709 if (kill) 710 free_pipe_info(pipe); 711 } 712 713 static int 714 pipe_release(struct inode *inode, struct file *file) 715 { 716 struct pipe_inode_info *pipe = file->private_data; 717 718 __pipe_lock(pipe); 719 if (file->f_mode & FMODE_READ) 720 pipe->readers--; 721 if (file->f_mode & FMODE_WRITE) 722 pipe->writers--; 723 724 /* Was that the last reader or writer, but not the other side? */ 725 if (!pipe->readers != !pipe->writers) { 726 wake_up_interruptible_all(&pipe->rd_wait); 727 wake_up_interruptible_all(&pipe->wr_wait); 728 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 729 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 730 } 731 __pipe_unlock(pipe); 732 733 put_pipe_info(inode, pipe); 734 return 0; 735 } 736 737 static int 738 pipe_fasync(int fd, struct file *filp, int on) 739 { 740 struct pipe_inode_info *pipe = filp->private_data; 741 int retval = 0; 742 743 __pipe_lock(pipe); 744 if (filp->f_mode & FMODE_READ) 745 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 746 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 747 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 748 if (retval < 0 && (filp->f_mode & FMODE_READ)) 749 /* this can happen only if on == T */ 750 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 751 } 752 __pipe_unlock(pipe); 753 return retval; 754 } 755 756 unsigned long account_pipe_buffers(struct user_struct *user, 757 unsigned long old, unsigned long new) 758 { 759 return atomic_long_add_return(new - old, &user->pipe_bufs); 760 } 761 762 bool too_many_pipe_buffers_soft(unsigned long user_bufs) 763 { 764 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 765 766 return soft_limit && user_bufs > soft_limit; 767 } 768 769 bool too_many_pipe_buffers_hard(unsigned long user_bufs) 770 { 771 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 772 773 return hard_limit && user_bufs > hard_limit; 774 } 775 776 bool pipe_is_unprivileged_user(void) 777 { 778 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 779 } 780 781 struct pipe_inode_info *alloc_pipe_info(void) 782 { 783 struct pipe_inode_info *pipe; 784 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 785 struct user_struct *user = get_current_user(); 786 unsigned long user_bufs; 787 unsigned int max_size = READ_ONCE(pipe_max_size); 788 789 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 790 if (pipe == NULL) 791 goto out_free_uid; 792 793 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 794 pipe_bufs = max_size >> PAGE_SHIFT; 795 796 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 797 798 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { 799 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS); 800 pipe_bufs = PIPE_MIN_DEF_BUFFERS; 801 } 802 803 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) 804 goto out_revert_acct; 805 806 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 807 GFP_KERNEL_ACCOUNT); 808 809 if (pipe->bufs) { 810 init_waitqueue_head(&pipe->rd_wait); 811 init_waitqueue_head(&pipe->wr_wait); 812 pipe->r_counter = pipe->w_counter = 1; 813 pipe->max_usage = pipe_bufs; 814 pipe->ring_size = pipe_bufs; 815 pipe->nr_accounted = pipe_bufs; 816 pipe->user = user; 817 mutex_init(&pipe->mutex); 818 return pipe; 819 } 820 821 out_revert_acct: 822 (void) account_pipe_buffers(user, pipe_bufs, 0); 823 kfree(pipe); 824 out_free_uid: 825 free_uid(user); 826 return NULL; 827 } 828 829 void free_pipe_info(struct pipe_inode_info *pipe) 830 { 831 int i; 832 833 #ifdef CONFIG_WATCH_QUEUE 834 if (pipe->watch_queue) { 835 watch_queue_clear(pipe->watch_queue); 836 put_watch_queue(pipe->watch_queue); 837 } 838 #endif 839 840 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0); 841 free_uid(pipe->user); 842 for (i = 0; i < pipe->ring_size; i++) { 843 struct pipe_buffer *buf = pipe->bufs + i; 844 if (buf->ops) 845 pipe_buf_release(pipe, buf); 846 } 847 if (pipe->tmp_page) 848 __free_page(pipe->tmp_page); 849 kfree(pipe->bufs); 850 kfree(pipe); 851 } 852 853 static struct vfsmount *pipe_mnt __read_mostly; 854 855 /* 856 * pipefs_dname() is called from d_path(). 857 */ 858 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 859 { 860 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]", 861 d_inode(dentry)->i_ino); 862 } 863 864 static const struct dentry_operations pipefs_dentry_operations = { 865 .d_dname = pipefs_dname, 866 }; 867 868 static struct inode * get_pipe_inode(void) 869 { 870 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 871 struct pipe_inode_info *pipe; 872 873 if (!inode) 874 goto fail_inode; 875 876 inode->i_ino = get_next_ino(); 877 878 pipe = alloc_pipe_info(); 879 if (!pipe) 880 goto fail_iput; 881 882 inode->i_pipe = pipe; 883 pipe->files = 2; 884 pipe->readers = pipe->writers = 1; 885 inode->i_fop = &pipefifo_fops; 886 887 /* 888 * Mark the inode dirty from the very beginning, 889 * that way it will never be moved to the dirty 890 * list because "mark_inode_dirty()" will think 891 * that it already _is_ on the dirty list. 892 */ 893 inode->i_state = I_DIRTY; 894 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 895 inode->i_uid = current_fsuid(); 896 inode->i_gid = current_fsgid(); 897 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 898 899 return inode; 900 901 fail_iput: 902 iput(inode); 903 904 fail_inode: 905 return NULL; 906 } 907 908 int create_pipe_files(struct file **res, int flags) 909 { 910 struct inode *inode = get_pipe_inode(); 911 struct file *f; 912 int error; 913 914 if (!inode) 915 return -ENFILE; 916 917 if (flags & O_NOTIFICATION_PIPE) { 918 error = watch_queue_init(inode->i_pipe); 919 if (error) { 920 free_pipe_info(inode->i_pipe); 921 iput(inode); 922 return error; 923 } 924 } 925 926 f = alloc_file_pseudo(inode, pipe_mnt, "", 927 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 928 &pipefifo_fops); 929 if (IS_ERR(f)) { 930 free_pipe_info(inode->i_pipe); 931 iput(inode); 932 return PTR_ERR(f); 933 } 934 935 f->private_data = inode->i_pipe; 936 937 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 938 &pipefifo_fops); 939 if (IS_ERR(res[0])) { 940 put_pipe_info(inode, inode->i_pipe); 941 fput(f); 942 return PTR_ERR(res[0]); 943 } 944 res[0]->private_data = inode->i_pipe; 945 res[1] = f; 946 stream_open(inode, res[0]); 947 stream_open(inode, res[1]); 948 return 0; 949 } 950 951 static int __do_pipe_flags(int *fd, struct file **files, int flags) 952 { 953 int error; 954 int fdw, fdr; 955 956 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) 957 return -EINVAL; 958 959 error = create_pipe_files(files, flags); 960 if (error) 961 return error; 962 963 error = get_unused_fd_flags(flags); 964 if (error < 0) 965 goto err_read_pipe; 966 fdr = error; 967 968 error = get_unused_fd_flags(flags); 969 if (error < 0) 970 goto err_fdr; 971 fdw = error; 972 973 audit_fd_pair(fdr, fdw); 974 fd[0] = fdr; 975 fd[1] = fdw; 976 return 0; 977 978 err_fdr: 979 put_unused_fd(fdr); 980 err_read_pipe: 981 fput(files[0]); 982 fput(files[1]); 983 return error; 984 } 985 986 int do_pipe_flags(int *fd, int flags) 987 { 988 struct file *files[2]; 989 int error = __do_pipe_flags(fd, files, flags); 990 if (!error) { 991 fd_install(fd[0], files[0]); 992 fd_install(fd[1], files[1]); 993 } 994 return error; 995 } 996 997 /* 998 * sys_pipe() is the normal C calling standard for creating 999 * a pipe. It's not the way Unix traditionally does this, though. 1000 */ 1001 static int do_pipe2(int __user *fildes, int flags) 1002 { 1003 struct file *files[2]; 1004 int fd[2]; 1005 int error; 1006 1007 error = __do_pipe_flags(fd, files, flags); 1008 if (!error) { 1009 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 1010 fput(files[0]); 1011 fput(files[1]); 1012 put_unused_fd(fd[0]); 1013 put_unused_fd(fd[1]); 1014 error = -EFAULT; 1015 } else { 1016 fd_install(fd[0], files[0]); 1017 fd_install(fd[1], files[1]); 1018 } 1019 } 1020 return error; 1021 } 1022 1023 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 1024 { 1025 return do_pipe2(fildes, flags); 1026 } 1027 1028 SYSCALL_DEFINE1(pipe, int __user *, fildes) 1029 { 1030 return do_pipe2(fildes, 0); 1031 } 1032 1033 /* 1034 * This is the stupid "wait for pipe to be readable or writable" 1035 * model. 1036 * 1037 * See pipe_read/write() for the proper kind of exclusive wait, 1038 * but that requires that we wake up any other readers/writers 1039 * if we then do not end up reading everything (ie the whole 1040 * "wake_next_reader/writer" logic in pipe_read/write()). 1041 */ 1042 void pipe_wait_readable(struct pipe_inode_info *pipe) 1043 { 1044 pipe_unlock(pipe); 1045 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe)); 1046 pipe_lock(pipe); 1047 } 1048 1049 void pipe_wait_writable(struct pipe_inode_info *pipe) 1050 { 1051 pipe_unlock(pipe); 1052 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe)); 1053 pipe_lock(pipe); 1054 } 1055 1056 /* 1057 * This depends on both the wait (here) and the wakeup (wake_up_partner) 1058 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot 1059 * race with the count check and waitqueue prep. 1060 * 1061 * Normally in order to avoid races, you'd do the prepare_to_wait() first, 1062 * then check the condition you're waiting for, and only then sleep. But 1063 * because of the pipe lock, we can check the condition before being on 1064 * the wait queue. 1065 * 1066 * We use the 'rd_wait' waitqueue for pipe partner waiting. 1067 */ 1068 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 1069 { 1070 DEFINE_WAIT(rdwait); 1071 int cur = *cnt; 1072 1073 while (cur == *cnt) { 1074 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); 1075 pipe_unlock(pipe); 1076 schedule(); 1077 finish_wait(&pipe->rd_wait, &rdwait); 1078 pipe_lock(pipe); 1079 if (signal_pending(current)) 1080 break; 1081 } 1082 return cur == *cnt ? -ERESTARTSYS : 0; 1083 } 1084 1085 static void wake_up_partner(struct pipe_inode_info *pipe) 1086 { 1087 wake_up_interruptible_all(&pipe->rd_wait); 1088 } 1089 1090 static int fifo_open(struct inode *inode, struct file *filp) 1091 { 1092 struct pipe_inode_info *pipe; 1093 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 1094 int ret; 1095 1096 filp->f_version = 0; 1097 1098 spin_lock(&inode->i_lock); 1099 if (inode->i_pipe) { 1100 pipe = inode->i_pipe; 1101 pipe->files++; 1102 spin_unlock(&inode->i_lock); 1103 } else { 1104 spin_unlock(&inode->i_lock); 1105 pipe = alloc_pipe_info(); 1106 if (!pipe) 1107 return -ENOMEM; 1108 pipe->files = 1; 1109 spin_lock(&inode->i_lock); 1110 if (unlikely(inode->i_pipe)) { 1111 inode->i_pipe->files++; 1112 spin_unlock(&inode->i_lock); 1113 free_pipe_info(pipe); 1114 pipe = inode->i_pipe; 1115 } else { 1116 inode->i_pipe = pipe; 1117 spin_unlock(&inode->i_lock); 1118 } 1119 } 1120 filp->private_data = pipe; 1121 /* OK, we have a pipe and it's pinned down */ 1122 1123 __pipe_lock(pipe); 1124 1125 /* We can only do regular read/write on fifos */ 1126 stream_open(inode, filp); 1127 1128 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1129 case FMODE_READ: 1130 /* 1131 * O_RDONLY 1132 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1133 * opened, even when there is no process writing the FIFO. 1134 */ 1135 pipe->r_counter++; 1136 if (pipe->readers++ == 0) 1137 wake_up_partner(pipe); 1138 1139 if (!is_pipe && !pipe->writers) { 1140 if ((filp->f_flags & O_NONBLOCK)) { 1141 /* suppress EPOLLHUP until we have 1142 * seen a writer */ 1143 filp->f_version = pipe->w_counter; 1144 } else { 1145 if (wait_for_partner(pipe, &pipe->w_counter)) 1146 goto err_rd; 1147 } 1148 } 1149 break; 1150 1151 case FMODE_WRITE: 1152 /* 1153 * O_WRONLY 1154 * POSIX.1 says that O_NONBLOCK means return -1 with 1155 * errno=ENXIO when there is no process reading the FIFO. 1156 */ 1157 ret = -ENXIO; 1158 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1159 goto err; 1160 1161 pipe->w_counter++; 1162 if (!pipe->writers++) 1163 wake_up_partner(pipe); 1164 1165 if (!is_pipe && !pipe->readers) { 1166 if (wait_for_partner(pipe, &pipe->r_counter)) 1167 goto err_wr; 1168 } 1169 break; 1170 1171 case FMODE_READ | FMODE_WRITE: 1172 /* 1173 * O_RDWR 1174 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1175 * This implementation will NEVER block on a O_RDWR open, since 1176 * the process can at least talk to itself. 1177 */ 1178 1179 pipe->readers++; 1180 pipe->writers++; 1181 pipe->r_counter++; 1182 pipe->w_counter++; 1183 if (pipe->readers == 1 || pipe->writers == 1) 1184 wake_up_partner(pipe); 1185 break; 1186 1187 default: 1188 ret = -EINVAL; 1189 goto err; 1190 } 1191 1192 /* Ok! */ 1193 __pipe_unlock(pipe); 1194 return 0; 1195 1196 err_rd: 1197 if (!--pipe->readers) 1198 wake_up_interruptible(&pipe->wr_wait); 1199 ret = -ERESTARTSYS; 1200 goto err; 1201 1202 err_wr: 1203 if (!--pipe->writers) 1204 wake_up_interruptible_all(&pipe->rd_wait); 1205 ret = -ERESTARTSYS; 1206 goto err; 1207 1208 err: 1209 __pipe_unlock(pipe); 1210 1211 put_pipe_info(inode, pipe); 1212 return ret; 1213 } 1214 1215 const struct file_operations pipefifo_fops = { 1216 .open = fifo_open, 1217 .llseek = no_llseek, 1218 .read_iter = pipe_read, 1219 .write_iter = pipe_write, 1220 .poll = pipe_poll, 1221 .unlocked_ioctl = pipe_ioctl, 1222 .release = pipe_release, 1223 .fasync = pipe_fasync, 1224 .splice_write = iter_file_splice_write, 1225 }; 1226 1227 /* 1228 * Currently we rely on the pipe array holding a power-of-2 number 1229 * of pages. Returns 0 on error. 1230 */ 1231 unsigned int round_pipe_size(unsigned long size) 1232 { 1233 if (size > (1U << 31)) 1234 return 0; 1235 1236 /* Minimum pipe size, as required by POSIX */ 1237 if (size < PAGE_SIZE) 1238 return PAGE_SIZE; 1239 1240 return roundup_pow_of_two(size); 1241 } 1242 1243 /* 1244 * Resize the pipe ring to a number of slots. 1245 */ 1246 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots) 1247 { 1248 struct pipe_buffer *bufs; 1249 unsigned int head, tail, mask, n; 1250 1251 /* 1252 * We can shrink the pipe, if arg is greater than the ring occupancy. 1253 * Since we don't expect a lot of shrink+grow operations, just free and 1254 * allocate again like we would do for growing. If the pipe currently 1255 * contains more buffers than arg, then return busy. 1256 */ 1257 mask = pipe->ring_size - 1; 1258 head = pipe->head; 1259 tail = pipe->tail; 1260 n = pipe_occupancy(pipe->head, pipe->tail); 1261 if (nr_slots < n) 1262 return -EBUSY; 1263 1264 bufs = kcalloc(nr_slots, sizeof(*bufs), 1265 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1266 if (unlikely(!bufs)) 1267 return -ENOMEM; 1268 1269 /* 1270 * The pipe array wraps around, so just start the new one at zero 1271 * and adjust the indices. 1272 */ 1273 if (n > 0) { 1274 unsigned int h = head & mask; 1275 unsigned int t = tail & mask; 1276 if (h > t) { 1277 memcpy(bufs, pipe->bufs + t, 1278 n * sizeof(struct pipe_buffer)); 1279 } else { 1280 unsigned int tsize = pipe->ring_size - t; 1281 if (h > 0) 1282 memcpy(bufs + tsize, pipe->bufs, 1283 h * sizeof(struct pipe_buffer)); 1284 memcpy(bufs, pipe->bufs + t, 1285 tsize * sizeof(struct pipe_buffer)); 1286 } 1287 } 1288 1289 head = n; 1290 tail = 0; 1291 1292 kfree(pipe->bufs); 1293 pipe->bufs = bufs; 1294 pipe->ring_size = nr_slots; 1295 if (pipe->max_usage > nr_slots) 1296 pipe->max_usage = nr_slots; 1297 pipe->tail = tail; 1298 pipe->head = head; 1299 1300 /* This might have made more room for writers */ 1301 wake_up_interruptible(&pipe->wr_wait); 1302 return 0; 1303 } 1304 1305 /* 1306 * Allocate a new array of pipe buffers and copy the info over. Returns the 1307 * pipe size if successful, or return -ERROR on error. 1308 */ 1309 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) 1310 { 1311 unsigned long user_bufs; 1312 unsigned int nr_slots, size; 1313 long ret = 0; 1314 1315 #ifdef CONFIG_WATCH_QUEUE 1316 if (pipe->watch_queue) 1317 return -EBUSY; 1318 #endif 1319 1320 size = round_pipe_size(arg); 1321 nr_slots = size >> PAGE_SHIFT; 1322 1323 if (!nr_slots) 1324 return -EINVAL; 1325 1326 /* 1327 * If trying to increase the pipe capacity, check that an 1328 * unprivileged user is not trying to exceed various limits 1329 * (soft limit check here, hard limit check just below). 1330 * Decreasing the pipe capacity is always permitted, even 1331 * if the user is currently over a limit. 1332 */ 1333 if (nr_slots > pipe->max_usage && 1334 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1335 return -EPERM; 1336 1337 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots); 1338 1339 if (nr_slots > pipe->max_usage && 1340 (too_many_pipe_buffers_hard(user_bufs) || 1341 too_many_pipe_buffers_soft(user_bufs)) && 1342 pipe_is_unprivileged_user()) { 1343 ret = -EPERM; 1344 goto out_revert_acct; 1345 } 1346 1347 ret = pipe_resize_ring(pipe, nr_slots); 1348 if (ret < 0) 1349 goto out_revert_acct; 1350 1351 pipe->max_usage = nr_slots; 1352 pipe->nr_accounted = nr_slots; 1353 return pipe->max_usage * PAGE_SIZE; 1354 1355 out_revert_acct: 1356 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted); 1357 return ret; 1358 } 1359 1360 /* 1361 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is 1362 * not enough to verify that this is a pipe. 1363 */ 1364 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) 1365 { 1366 struct pipe_inode_info *pipe = file->private_data; 1367 1368 if (file->f_op != &pipefifo_fops || !pipe) 1369 return NULL; 1370 #ifdef CONFIG_WATCH_QUEUE 1371 if (for_splice && pipe->watch_queue) 1372 return NULL; 1373 #endif 1374 return pipe; 1375 } 1376 1377 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1378 { 1379 struct pipe_inode_info *pipe; 1380 long ret; 1381 1382 pipe = get_pipe_info(file, false); 1383 if (!pipe) 1384 return -EBADF; 1385 1386 __pipe_lock(pipe); 1387 1388 switch (cmd) { 1389 case F_SETPIPE_SZ: 1390 ret = pipe_set_size(pipe, arg); 1391 break; 1392 case F_GETPIPE_SZ: 1393 ret = pipe->max_usage * PAGE_SIZE; 1394 break; 1395 default: 1396 ret = -EINVAL; 1397 break; 1398 } 1399 1400 __pipe_unlock(pipe); 1401 return ret; 1402 } 1403 1404 static const struct super_operations pipefs_ops = { 1405 .destroy_inode = free_inode_nonrcu, 1406 .statfs = simple_statfs, 1407 }; 1408 1409 /* 1410 * pipefs should _never_ be mounted by userland - too much of security hassle, 1411 * no real gain from having the whole whorehouse mounted. So we don't need 1412 * any operations on the root directory. However, we need a non-trivial 1413 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1414 */ 1415 1416 static int pipefs_init_fs_context(struct fs_context *fc) 1417 { 1418 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1419 if (!ctx) 1420 return -ENOMEM; 1421 ctx->ops = &pipefs_ops; 1422 ctx->dops = &pipefs_dentry_operations; 1423 return 0; 1424 } 1425 1426 static struct file_system_type pipe_fs_type = { 1427 .name = "pipefs", 1428 .init_fs_context = pipefs_init_fs_context, 1429 .kill_sb = kill_anon_super, 1430 }; 1431 1432 static int __init init_pipe_fs(void) 1433 { 1434 int err = register_filesystem(&pipe_fs_type); 1435 1436 if (!err) { 1437 pipe_mnt = kern_mount(&pipe_fs_type); 1438 if (IS_ERR(pipe_mnt)) { 1439 err = PTR_ERR(pipe_mnt); 1440 unregister_filesystem(&pipe_fs_type); 1441 } 1442 } 1443 return err; 1444 } 1445 1446 fs_initcall(init_pipe_fs); 1447