xref: /linux/fs/pipe.c (revision 8cfba76383e902acbed95092163052b1572f17a8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 
29 #include <linux/uaccess.h>
30 #include <asm/ioctls.h>
31 
32 #include "internal.h"
33 
34 /*
35  * The max size that a non-root user is allowed to grow the pipe. Can
36  * be set by root in /proc/sys/fs/pipe-max-size
37  */
38 unsigned int pipe_max_size = 1048576;
39 
40 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
41  * matches default values.
42  */
43 unsigned long pipe_user_pages_hard;
44 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
45 
46 /*
47  * We use head and tail indices that aren't masked off, except at the point of
48  * dereference, but rather they're allowed to wrap naturally.  This means there
49  * isn't a dead spot in the buffer, but the ring has to be a power of two and
50  * <= 2^31.
51  * -- David Howells 2019-09-23.
52  *
53  * Reads with count = 0 should always return 0.
54  * -- Julian Bradfield 1999-06-07.
55  *
56  * FIFOs and Pipes now generate SIGIO for both readers and writers.
57  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
58  *
59  * pipe_read & write cleanup
60  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
61  */
62 
63 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
64 {
65 	if (pipe->files)
66 		mutex_lock_nested(&pipe->mutex, subclass);
67 }
68 
69 void pipe_lock(struct pipe_inode_info *pipe)
70 {
71 	/*
72 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
73 	 */
74 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
75 }
76 EXPORT_SYMBOL(pipe_lock);
77 
78 void pipe_unlock(struct pipe_inode_info *pipe)
79 {
80 	if (pipe->files)
81 		mutex_unlock(&pipe->mutex);
82 }
83 EXPORT_SYMBOL(pipe_unlock);
84 
85 static inline void __pipe_lock(struct pipe_inode_info *pipe)
86 {
87 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
88 }
89 
90 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
91 {
92 	mutex_unlock(&pipe->mutex);
93 }
94 
95 void pipe_double_lock(struct pipe_inode_info *pipe1,
96 		      struct pipe_inode_info *pipe2)
97 {
98 	BUG_ON(pipe1 == pipe2);
99 
100 	if (pipe1 < pipe2) {
101 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
102 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
103 	} else {
104 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
105 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
106 	}
107 }
108 
109 /* Drop the inode semaphore and wait for a pipe event, atomically */
110 void pipe_wait(struct pipe_inode_info *pipe)
111 {
112 	DEFINE_WAIT(rdwait);
113 	DEFINE_WAIT(wrwait);
114 
115 	/*
116 	 * Pipes are system-local resources, so sleeping on them
117 	 * is considered a noninteractive wait:
118 	 */
119 	prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
120 	prepare_to_wait(&pipe->wr_wait, &wrwait, TASK_INTERRUPTIBLE);
121 	pipe_unlock(pipe);
122 	schedule();
123 	finish_wait(&pipe->rd_wait, &rdwait);
124 	finish_wait(&pipe->wr_wait, &wrwait);
125 	pipe_lock(pipe);
126 }
127 
128 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
129 				  struct pipe_buffer *buf)
130 {
131 	struct page *page = buf->page;
132 
133 	/*
134 	 * If nobody else uses this page, and we don't already have a
135 	 * temporary page, let's keep track of it as a one-deep
136 	 * allocation cache. (Otherwise just release our reference to it)
137 	 */
138 	if (page_count(page) == 1 && !pipe->tmp_page)
139 		pipe->tmp_page = page;
140 	else
141 		put_page(page);
142 }
143 
144 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
145 			       struct pipe_buffer *buf)
146 {
147 	struct page *page = buf->page;
148 
149 	if (page_count(page) == 1) {
150 		memcg_kmem_uncharge_page(page, 0);
151 		__SetPageLocked(page);
152 		return 0;
153 	}
154 	return 1;
155 }
156 
157 /**
158  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
159  * @pipe:	the pipe that the buffer belongs to
160  * @buf:	the buffer to attempt to steal
161  *
162  * Description:
163  *	This function attempts to steal the &struct page attached to
164  *	@buf. If successful, this function returns 0 and returns with
165  *	the page locked. The caller may then reuse the page for whatever
166  *	he wishes; the typical use is insertion into a different file
167  *	page cache.
168  */
169 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
170 			   struct pipe_buffer *buf)
171 {
172 	struct page *page = buf->page;
173 
174 	/*
175 	 * A reference of one is golden, that means that the owner of this
176 	 * page is the only one holding a reference to it. lock the page
177 	 * and return OK.
178 	 */
179 	if (page_count(page) == 1) {
180 		lock_page(page);
181 		return 0;
182 	}
183 
184 	return 1;
185 }
186 EXPORT_SYMBOL(generic_pipe_buf_steal);
187 
188 /**
189  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
190  * @pipe:	the pipe that the buffer belongs to
191  * @buf:	the buffer to get a reference to
192  *
193  * Description:
194  *	This function grabs an extra reference to @buf. It's used in
195  *	in the tee() system call, when we duplicate the buffers in one
196  *	pipe into another.
197  */
198 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
199 {
200 	return try_get_page(buf->page);
201 }
202 EXPORT_SYMBOL(generic_pipe_buf_get);
203 
204 /**
205  * generic_pipe_buf_confirm - verify contents of the pipe buffer
206  * @info:	the pipe that the buffer belongs to
207  * @buf:	the buffer to confirm
208  *
209  * Description:
210  *	This function does nothing, because the generic pipe code uses
211  *	pages that are always good when inserted into the pipe.
212  */
213 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
214 			     struct pipe_buffer *buf)
215 {
216 	return 0;
217 }
218 EXPORT_SYMBOL(generic_pipe_buf_confirm);
219 
220 /**
221  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
222  * @pipe:	the pipe that the buffer belongs to
223  * @buf:	the buffer to put a reference to
224  *
225  * Description:
226  *	This function releases a reference to @buf.
227  */
228 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
229 			      struct pipe_buffer *buf)
230 {
231 	put_page(buf->page);
232 }
233 EXPORT_SYMBOL(generic_pipe_buf_release);
234 
235 /* New data written to a pipe may be appended to a buffer with this type. */
236 static const struct pipe_buf_operations anon_pipe_buf_ops = {
237 	.confirm = generic_pipe_buf_confirm,
238 	.release = anon_pipe_buf_release,
239 	.steal = anon_pipe_buf_steal,
240 	.get = generic_pipe_buf_get,
241 };
242 
243 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = {
244 	.confirm = generic_pipe_buf_confirm,
245 	.release = anon_pipe_buf_release,
246 	.steal = anon_pipe_buf_steal,
247 	.get = generic_pipe_buf_get,
248 };
249 
250 static const struct pipe_buf_operations packet_pipe_buf_ops = {
251 	.confirm = generic_pipe_buf_confirm,
252 	.release = anon_pipe_buf_release,
253 	.steal = anon_pipe_buf_steal,
254 	.get = generic_pipe_buf_get,
255 };
256 
257 /**
258  * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable
259  * @buf:	the buffer to mark
260  *
261  * Description:
262  *	This function ensures that no future writes will be merged into the
263  *	given &struct pipe_buffer. This is necessary when multiple pipe buffers
264  *	share the same backing page.
265  */
266 void pipe_buf_mark_unmergeable(struct pipe_buffer *buf)
267 {
268 	if (buf->ops == &anon_pipe_buf_ops)
269 		buf->ops = &anon_pipe_buf_nomerge_ops;
270 }
271 
272 static bool pipe_buf_can_merge(struct pipe_buffer *buf)
273 {
274 	return buf->ops == &anon_pipe_buf_ops;
275 }
276 
277 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
278 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
279 {
280 	unsigned int head = READ_ONCE(pipe->head);
281 	unsigned int tail = READ_ONCE(pipe->tail);
282 	unsigned int writers = READ_ONCE(pipe->writers);
283 
284 	return !pipe_empty(head, tail) || !writers;
285 }
286 
287 static ssize_t
288 pipe_read(struct kiocb *iocb, struct iov_iter *to)
289 {
290 	size_t total_len = iov_iter_count(to);
291 	struct file *filp = iocb->ki_filp;
292 	struct pipe_inode_info *pipe = filp->private_data;
293 	bool was_full, wake_next_reader = false;
294 	ssize_t ret;
295 
296 	/* Null read succeeds. */
297 	if (unlikely(total_len == 0))
298 		return 0;
299 
300 	ret = 0;
301 	__pipe_lock(pipe);
302 
303 	/*
304 	 * We only wake up writers if the pipe was full when we started
305 	 * reading in order to avoid unnecessary wakeups.
306 	 *
307 	 * But when we do wake up writers, we do so using a sync wakeup
308 	 * (WF_SYNC), because we want them to get going and generate more
309 	 * data for us.
310 	 */
311 	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
312 	for (;;) {
313 		unsigned int head = pipe->head;
314 		unsigned int tail = pipe->tail;
315 		unsigned int mask = pipe->ring_size - 1;
316 
317 		if (!pipe_empty(head, tail)) {
318 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
319 			size_t chars = buf->len;
320 			size_t written;
321 			int error;
322 
323 			if (chars > total_len) {
324 				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
325 					if (ret == 0)
326 						ret = -ENOBUFS;
327 					break;
328 				}
329 				chars = total_len;
330 			}
331 
332 			error = pipe_buf_confirm(pipe, buf);
333 			if (error) {
334 				if (!ret)
335 					ret = error;
336 				break;
337 			}
338 
339 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
340 			if (unlikely(written < chars)) {
341 				if (!ret)
342 					ret = -EFAULT;
343 				break;
344 			}
345 			ret += chars;
346 			buf->offset += chars;
347 			buf->len -= chars;
348 
349 			/* Was it a packet buffer? Clean up and exit */
350 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
351 				total_len = chars;
352 				buf->len = 0;
353 			}
354 
355 			if (!buf->len) {
356 				pipe_buf_release(pipe, buf);
357 				spin_lock_irq(&pipe->rd_wait.lock);
358 				tail++;
359 				pipe->tail = tail;
360 				spin_unlock_irq(&pipe->rd_wait.lock);
361 			}
362 			total_len -= chars;
363 			if (!total_len)
364 				break;	/* common path: read succeeded */
365 			if (!pipe_empty(head, tail))	/* More to do? */
366 				continue;
367 		}
368 
369 		if (!pipe->writers)
370 			break;
371 		if (ret)
372 			break;
373 		if (filp->f_flags & O_NONBLOCK) {
374 			ret = -EAGAIN;
375 			break;
376 		}
377 		__pipe_unlock(pipe);
378 
379 		/*
380 		 * We only get here if we didn't actually read anything.
381 		 *
382 		 * However, we could have seen (and removed) a zero-sized
383 		 * pipe buffer, and might have made space in the buffers
384 		 * that way.
385 		 *
386 		 * You can't make zero-sized pipe buffers by doing an empty
387 		 * write (not even in packet mode), but they can happen if
388 		 * the writer gets an EFAULT when trying to fill a buffer
389 		 * that already got allocated and inserted in the buffer
390 		 * array.
391 		 *
392 		 * So we still need to wake up any pending writers in the
393 		 * _very_ unlikely case that the pipe was full, but we got
394 		 * no data.
395 		 */
396 		if (unlikely(was_full)) {
397 			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
398 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
399 		}
400 
401 		/*
402 		 * But because we didn't read anything, at this point we can
403 		 * just return directly with -ERESTARTSYS if we're interrupted,
404 		 * since we've done any required wakeups and there's no need
405 		 * to mark anything accessed. And we've dropped the lock.
406 		 */
407 		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
408 			return -ERESTARTSYS;
409 
410 		__pipe_lock(pipe);
411 		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
412 		wake_next_reader = true;
413 	}
414 	if (pipe_empty(pipe->head, pipe->tail))
415 		wake_next_reader = false;
416 	__pipe_unlock(pipe);
417 
418 	if (was_full) {
419 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
420 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
421 	}
422 	if (wake_next_reader)
423 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
424 	if (ret > 0)
425 		file_accessed(filp);
426 	return ret;
427 }
428 
429 static inline int is_packetized(struct file *file)
430 {
431 	return (file->f_flags & O_DIRECT) != 0;
432 }
433 
434 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
435 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
436 {
437 	unsigned int head = READ_ONCE(pipe->head);
438 	unsigned int tail = READ_ONCE(pipe->tail);
439 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
440 
441 	return !pipe_full(head, tail, max_usage) ||
442 		!READ_ONCE(pipe->readers);
443 }
444 
445 static ssize_t
446 pipe_write(struct kiocb *iocb, struct iov_iter *from)
447 {
448 	struct file *filp = iocb->ki_filp;
449 	struct pipe_inode_info *pipe = filp->private_data;
450 	unsigned int head;
451 	ssize_t ret = 0;
452 	size_t total_len = iov_iter_count(from);
453 	ssize_t chars;
454 	bool was_empty = false;
455 	bool wake_next_writer = false;
456 
457 	/* Null write succeeds. */
458 	if (unlikely(total_len == 0))
459 		return 0;
460 
461 	__pipe_lock(pipe);
462 
463 	if (!pipe->readers) {
464 		send_sig(SIGPIPE, current, 0);
465 		ret = -EPIPE;
466 		goto out;
467 	}
468 
469 #ifdef CONFIG_WATCH_QUEUE
470 	if (pipe->watch_queue) {
471 		ret = -EXDEV;
472 		goto out;
473 	}
474 #endif
475 
476 	/*
477 	 * Only wake up if the pipe started out empty, since
478 	 * otherwise there should be no readers waiting.
479 	 *
480 	 * If it wasn't empty we try to merge new data into
481 	 * the last buffer.
482 	 *
483 	 * That naturally merges small writes, but it also
484 	 * page-aligs the rest of the writes for large writes
485 	 * spanning multiple pages.
486 	 */
487 	head = pipe->head;
488 	was_empty = pipe_empty(head, pipe->tail);
489 	chars = total_len & (PAGE_SIZE-1);
490 	if (chars && !was_empty) {
491 		unsigned int mask = pipe->ring_size - 1;
492 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
493 		int offset = buf->offset + buf->len;
494 
495 		if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) {
496 			ret = pipe_buf_confirm(pipe, buf);
497 			if (ret)
498 				goto out;
499 
500 			ret = copy_page_from_iter(buf->page, offset, chars, from);
501 			if (unlikely(ret < chars)) {
502 				ret = -EFAULT;
503 				goto out;
504 			}
505 
506 			buf->len += ret;
507 			if (!iov_iter_count(from))
508 				goto out;
509 		}
510 	}
511 
512 	for (;;) {
513 		if (!pipe->readers) {
514 			send_sig(SIGPIPE, current, 0);
515 			if (!ret)
516 				ret = -EPIPE;
517 			break;
518 		}
519 
520 		head = pipe->head;
521 		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
522 			unsigned int mask = pipe->ring_size - 1;
523 			struct pipe_buffer *buf = &pipe->bufs[head & mask];
524 			struct page *page = pipe->tmp_page;
525 			int copied;
526 
527 			if (!page) {
528 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
529 				if (unlikely(!page)) {
530 					ret = ret ? : -ENOMEM;
531 					break;
532 				}
533 				pipe->tmp_page = page;
534 			}
535 
536 			/* Allocate a slot in the ring in advance and attach an
537 			 * empty buffer.  If we fault or otherwise fail to use
538 			 * it, either the reader will consume it or it'll still
539 			 * be there for the next write.
540 			 */
541 			spin_lock_irq(&pipe->rd_wait.lock);
542 
543 			head = pipe->head;
544 			if (pipe_full(head, pipe->tail, pipe->max_usage)) {
545 				spin_unlock_irq(&pipe->rd_wait.lock);
546 				continue;
547 			}
548 
549 			pipe->head = head + 1;
550 			spin_unlock_irq(&pipe->rd_wait.lock);
551 
552 			/* Insert it into the buffer array */
553 			buf = &pipe->bufs[head & mask];
554 			buf->page = page;
555 			buf->ops = &anon_pipe_buf_ops;
556 			buf->offset = 0;
557 			buf->len = 0;
558 			buf->flags = 0;
559 			if (is_packetized(filp)) {
560 				buf->ops = &packet_pipe_buf_ops;
561 				buf->flags = PIPE_BUF_FLAG_PACKET;
562 			}
563 			pipe->tmp_page = NULL;
564 
565 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
566 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
567 				if (!ret)
568 					ret = -EFAULT;
569 				break;
570 			}
571 			ret += copied;
572 			buf->offset = 0;
573 			buf->len = copied;
574 
575 			if (!iov_iter_count(from))
576 				break;
577 		}
578 
579 		if (!pipe_full(head, pipe->tail, pipe->max_usage))
580 			continue;
581 
582 		/* Wait for buffer space to become available. */
583 		if (filp->f_flags & O_NONBLOCK) {
584 			if (!ret)
585 				ret = -EAGAIN;
586 			break;
587 		}
588 		if (signal_pending(current)) {
589 			if (!ret)
590 				ret = -ERESTARTSYS;
591 			break;
592 		}
593 
594 		/*
595 		 * We're going to release the pipe lock and wait for more
596 		 * space. We wake up any readers if necessary, and then
597 		 * after waiting we need to re-check whether the pipe
598 		 * become empty while we dropped the lock.
599 		 */
600 		__pipe_unlock(pipe);
601 		if (was_empty) {
602 			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
603 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
604 		}
605 		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
606 		__pipe_lock(pipe);
607 		was_empty = pipe_empty(pipe->head, pipe->tail);
608 		wake_next_writer = true;
609 	}
610 out:
611 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
612 		wake_next_writer = false;
613 	__pipe_unlock(pipe);
614 
615 	/*
616 	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
617 	 * want the reader to start processing things asap, rather than
618 	 * leave the data pending.
619 	 *
620 	 * This is particularly important for small writes, because of
621 	 * how (for example) the GNU make jobserver uses small writes to
622 	 * wake up pending jobs
623 	 */
624 	if (was_empty) {
625 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
626 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
627 	}
628 	if (wake_next_writer)
629 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
630 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
631 		int err = file_update_time(filp);
632 		if (err)
633 			ret = err;
634 		sb_end_write(file_inode(filp)->i_sb);
635 	}
636 	return ret;
637 }
638 
639 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
640 {
641 	struct pipe_inode_info *pipe = filp->private_data;
642 	int count, head, tail, mask;
643 
644 	switch (cmd) {
645 	case FIONREAD:
646 		__pipe_lock(pipe);
647 		count = 0;
648 		head = pipe->head;
649 		tail = pipe->tail;
650 		mask = pipe->ring_size - 1;
651 
652 		while (tail != head) {
653 			count += pipe->bufs[tail & mask].len;
654 			tail++;
655 		}
656 		__pipe_unlock(pipe);
657 
658 		return put_user(count, (int __user *)arg);
659 
660 #ifdef CONFIG_WATCH_QUEUE
661 	case IOC_WATCH_QUEUE_SET_SIZE: {
662 		int ret;
663 		__pipe_lock(pipe);
664 		ret = watch_queue_set_size(pipe, arg);
665 		__pipe_unlock(pipe);
666 		return ret;
667 	}
668 
669 	case IOC_WATCH_QUEUE_SET_FILTER:
670 		return watch_queue_set_filter(
671 			pipe, (struct watch_notification_filter __user *)arg);
672 #endif
673 
674 	default:
675 		return -ENOIOCTLCMD;
676 	}
677 }
678 
679 /* No kernel lock held - fine */
680 static __poll_t
681 pipe_poll(struct file *filp, poll_table *wait)
682 {
683 	__poll_t mask;
684 	struct pipe_inode_info *pipe = filp->private_data;
685 	unsigned int head, tail;
686 
687 	/*
688 	 * Reading pipe state only -- no need for acquiring the semaphore.
689 	 *
690 	 * But because this is racy, the code has to add the
691 	 * entry to the poll table _first_ ..
692 	 */
693 	if (filp->f_mode & FMODE_READ)
694 		poll_wait(filp, &pipe->rd_wait, wait);
695 	if (filp->f_mode & FMODE_WRITE)
696 		poll_wait(filp, &pipe->wr_wait, wait);
697 
698 	/*
699 	 * .. and only then can you do the racy tests. That way,
700 	 * if something changes and you got it wrong, the poll
701 	 * table entry will wake you up and fix it.
702 	 */
703 	head = READ_ONCE(pipe->head);
704 	tail = READ_ONCE(pipe->tail);
705 
706 	mask = 0;
707 	if (filp->f_mode & FMODE_READ) {
708 		if (!pipe_empty(head, tail))
709 			mask |= EPOLLIN | EPOLLRDNORM;
710 		if (!pipe->writers && filp->f_version != pipe->w_counter)
711 			mask |= EPOLLHUP;
712 	}
713 
714 	if (filp->f_mode & FMODE_WRITE) {
715 		if (!pipe_full(head, tail, pipe->max_usage))
716 			mask |= EPOLLOUT | EPOLLWRNORM;
717 		/*
718 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
719 		 * behave exactly like pipes for poll().
720 		 */
721 		if (!pipe->readers)
722 			mask |= EPOLLERR;
723 	}
724 
725 	return mask;
726 }
727 
728 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
729 {
730 	int kill = 0;
731 
732 	spin_lock(&inode->i_lock);
733 	if (!--pipe->files) {
734 		inode->i_pipe = NULL;
735 		kill = 1;
736 	}
737 	spin_unlock(&inode->i_lock);
738 
739 	if (kill)
740 		free_pipe_info(pipe);
741 }
742 
743 static int
744 pipe_release(struct inode *inode, struct file *file)
745 {
746 	struct pipe_inode_info *pipe = file->private_data;
747 
748 	__pipe_lock(pipe);
749 	if (file->f_mode & FMODE_READ)
750 		pipe->readers--;
751 	if (file->f_mode & FMODE_WRITE)
752 		pipe->writers--;
753 
754 	/* Was that the last reader or writer, but not the other side? */
755 	if (!pipe->readers != !pipe->writers) {
756 		wake_up_interruptible_all(&pipe->rd_wait);
757 		wake_up_interruptible_all(&pipe->wr_wait);
758 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
759 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
760 	}
761 	__pipe_unlock(pipe);
762 
763 	put_pipe_info(inode, pipe);
764 	return 0;
765 }
766 
767 static int
768 pipe_fasync(int fd, struct file *filp, int on)
769 {
770 	struct pipe_inode_info *pipe = filp->private_data;
771 	int retval = 0;
772 
773 	__pipe_lock(pipe);
774 	if (filp->f_mode & FMODE_READ)
775 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
776 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
777 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
778 		if (retval < 0 && (filp->f_mode & FMODE_READ))
779 			/* this can happen only if on == T */
780 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
781 	}
782 	__pipe_unlock(pipe);
783 	return retval;
784 }
785 
786 unsigned long account_pipe_buffers(struct user_struct *user,
787 				   unsigned long old, unsigned long new)
788 {
789 	return atomic_long_add_return(new - old, &user->pipe_bufs);
790 }
791 
792 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
793 {
794 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
795 
796 	return soft_limit && user_bufs > soft_limit;
797 }
798 
799 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
800 {
801 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
802 
803 	return hard_limit && user_bufs > hard_limit;
804 }
805 
806 bool pipe_is_unprivileged_user(void)
807 {
808 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
809 }
810 
811 struct pipe_inode_info *alloc_pipe_info(void)
812 {
813 	struct pipe_inode_info *pipe;
814 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
815 	struct user_struct *user = get_current_user();
816 	unsigned long user_bufs;
817 	unsigned int max_size = READ_ONCE(pipe_max_size);
818 
819 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
820 	if (pipe == NULL)
821 		goto out_free_uid;
822 
823 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
824 		pipe_bufs = max_size >> PAGE_SHIFT;
825 
826 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
827 
828 	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
829 		user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
830 		pipe_bufs = 1;
831 	}
832 
833 	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
834 		goto out_revert_acct;
835 
836 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
837 			     GFP_KERNEL_ACCOUNT);
838 
839 	if (pipe->bufs) {
840 		init_waitqueue_head(&pipe->rd_wait);
841 		init_waitqueue_head(&pipe->wr_wait);
842 		pipe->r_counter = pipe->w_counter = 1;
843 		pipe->max_usage = pipe_bufs;
844 		pipe->ring_size = pipe_bufs;
845 		pipe->nr_accounted = pipe_bufs;
846 		pipe->user = user;
847 		mutex_init(&pipe->mutex);
848 		return pipe;
849 	}
850 
851 out_revert_acct:
852 	(void) account_pipe_buffers(user, pipe_bufs, 0);
853 	kfree(pipe);
854 out_free_uid:
855 	free_uid(user);
856 	return NULL;
857 }
858 
859 void free_pipe_info(struct pipe_inode_info *pipe)
860 {
861 	int i;
862 
863 #ifdef CONFIG_WATCH_QUEUE
864 	if (pipe->watch_queue) {
865 		watch_queue_clear(pipe->watch_queue);
866 		put_watch_queue(pipe->watch_queue);
867 	}
868 #endif
869 
870 	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
871 	free_uid(pipe->user);
872 	for (i = 0; i < pipe->ring_size; i++) {
873 		struct pipe_buffer *buf = pipe->bufs + i;
874 		if (buf->ops)
875 			pipe_buf_release(pipe, buf);
876 	}
877 	if (pipe->tmp_page)
878 		__free_page(pipe->tmp_page);
879 	kfree(pipe->bufs);
880 	kfree(pipe);
881 }
882 
883 static struct vfsmount *pipe_mnt __read_mostly;
884 
885 /*
886  * pipefs_dname() is called from d_path().
887  */
888 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
889 {
890 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
891 				d_inode(dentry)->i_ino);
892 }
893 
894 static const struct dentry_operations pipefs_dentry_operations = {
895 	.d_dname	= pipefs_dname,
896 };
897 
898 static struct inode * get_pipe_inode(void)
899 {
900 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
901 	struct pipe_inode_info *pipe;
902 
903 	if (!inode)
904 		goto fail_inode;
905 
906 	inode->i_ino = get_next_ino();
907 
908 	pipe = alloc_pipe_info();
909 	if (!pipe)
910 		goto fail_iput;
911 
912 	inode->i_pipe = pipe;
913 	pipe->files = 2;
914 	pipe->readers = pipe->writers = 1;
915 	inode->i_fop = &pipefifo_fops;
916 
917 	/*
918 	 * Mark the inode dirty from the very beginning,
919 	 * that way it will never be moved to the dirty
920 	 * list because "mark_inode_dirty()" will think
921 	 * that it already _is_ on the dirty list.
922 	 */
923 	inode->i_state = I_DIRTY;
924 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
925 	inode->i_uid = current_fsuid();
926 	inode->i_gid = current_fsgid();
927 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
928 
929 	return inode;
930 
931 fail_iput:
932 	iput(inode);
933 
934 fail_inode:
935 	return NULL;
936 }
937 
938 int create_pipe_files(struct file **res, int flags)
939 {
940 	struct inode *inode = get_pipe_inode();
941 	struct file *f;
942 
943 	if (!inode)
944 		return -ENFILE;
945 
946 	if (flags & O_NOTIFICATION_PIPE) {
947 #ifdef CONFIG_WATCH_QUEUE
948 		if (watch_queue_init(inode->i_pipe) < 0) {
949 			iput(inode);
950 			return -ENOMEM;
951 		}
952 #else
953 		return -ENOPKG;
954 #endif
955 	}
956 
957 	f = alloc_file_pseudo(inode, pipe_mnt, "",
958 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
959 				&pipefifo_fops);
960 	if (IS_ERR(f)) {
961 		free_pipe_info(inode->i_pipe);
962 		iput(inode);
963 		return PTR_ERR(f);
964 	}
965 
966 	f->private_data = inode->i_pipe;
967 
968 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
969 				  &pipefifo_fops);
970 	if (IS_ERR(res[0])) {
971 		put_pipe_info(inode, inode->i_pipe);
972 		fput(f);
973 		return PTR_ERR(res[0]);
974 	}
975 	res[0]->private_data = inode->i_pipe;
976 	res[1] = f;
977 	stream_open(inode, res[0]);
978 	stream_open(inode, res[1]);
979 	return 0;
980 }
981 
982 static int __do_pipe_flags(int *fd, struct file **files, int flags)
983 {
984 	int error;
985 	int fdw, fdr;
986 
987 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
988 		return -EINVAL;
989 
990 	error = create_pipe_files(files, flags);
991 	if (error)
992 		return error;
993 
994 	error = get_unused_fd_flags(flags);
995 	if (error < 0)
996 		goto err_read_pipe;
997 	fdr = error;
998 
999 	error = get_unused_fd_flags(flags);
1000 	if (error < 0)
1001 		goto err_fdr;
1002 	fdw = error;
1003 
1004 	audit_fd_pair(fdr, fdw);
1005 	fd[0] = fdr;
1006 	fd[1] = fdw;
1007 	return 0;
1008 
1009  err_fdr:
1010 	put_unused_fd(fdr);
1011  err_read_pipe:
1012 	fput(files[0]);
1013 	fput(files[1]);
1014 	return error;
1015 }
1016 
1017 int do_pipe_flags(int *fd, int flags)
1018 {
1019 	struct file *files[2];
1020 	int error = __do_pipe_flags(fd, files, flags);
1021 	if (!error) {
1022 		fd_install(fd[0], files[0]);
1023 		fd_install(fd[1], files[1]);
1024 	}
1025 	return error;
1026 }
1027 
1028 /*
1029  * sys_pipe() is the normal C calling standard for creating
1030  * a pipe. It's not the way Unix traditionally does this, though.
1031  */
1032 static int do_pipe2(int __user *fildes, int flags)
1033 {
1034 	struct file *files[2];
1035 	int fd[2];
1036 	int error;
1037 
1038 	error = __do_pipe_flags(fd, files, flags);
1039 	if (!error) {
1040 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1041 			fput(files[0]);
1042 			fput(files[1]);
1043 			put_unused_fd(fd[0]);
1044 			put_unused_fd(fd[1]);
1045 			error = -EFAULT;
1046 		} else {
1047 			fd_install(fd[0], files[0]);
1048 			fd_install(fd[1], files[1]);
1049 		}
1050 	}
1051 	return error;
1052 }
1053 
1054 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1055 {
1056 	return do_pipe2(fildes, flags);
1057 }
1058 
1059 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1060 {
1061 	return do_pipe2(fildes, 0);
1062 }
1063 
1064 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1065 {
1066 	int cur = *cnt;
1067 
1068 	while (cur == *cnt) {
1069 		pipe_wait(pipe);
1070 		if (signal_pending(current))
1071 			break;
1072 	}
1073 	return cur == *cnt ? -ERESTARTSYS : 0;
1074 }
1075 
1076 static void wake_up_partner(struct pipe_inode_info *pipe)
1077 {
1078 	wake_up_interruptible_all(&pipe->rd_wait);
1079 	wake_up_interruptible_all(&pipe->wr_wait);
1080 }
1081 
1082 static int fifo_open(struct inode *inode, struct file *filp)
1083 {
1084 	struct pipe_inode_info *pipe;
1085 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1086 	int ret;
1087 
1088 	filp->f_version = 0;
1089 
1090 	spin_lock(&inode->i_lock);
1091 	if (inode->i_pipe) {
1092 		pipe = inode->i_pipe;
1093 		pipe->files++;
1094 		spin_unlock(&inode->i_lock);
1095 	} else {
1096 		spin_unlock(&inode->i_lock);
1097 		pipe = alloc_pipe_info();
1098 		if (!pipe)
1099 			return -ENOMEM;
1100 		pipe->files = 1;
1101 		spin_lock(&inode->i_lock);
1102 		if (unlikely(inode->i_pipe)) {
1103 			inode->i_pipe->files++;
1104 			spin_unlock(&inode->i_lock);
1105 			free_pipe_info(pipe);
1106 			pipe = inode->i_pipe;
1107 		} else {
1108 			inode->i_pipe = pipe;
1109 			spin_unlock(&inode->i_lock);
1110 		}
1111 	}
1112 	filp->private_data = pipe;
1113 	/* OK, we have a pipe and it's pinned down */
1114 
1115 	__pipe_lock(pipe);
1116 
1117 	/* We can only do regular read/write on fifos */
1118 	stream_open(inode, filp);
1119 
1120 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1121 	case FMODE_READ:
1122 	/*
1123 	 *  O_RDONLY
1124 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1125 	 *  opened, even when there is no process writing the FIFO.
1126 	 */
1127 		pipe->r_counter++;
1128 		if (pipe->readers++ == 0)
1129 			wake_up_partner(pipe);
1130 
1131 		if (!is_pipe && !pipe->writers) {
1132 			if ((filp->f_flags & O_NONBLOCK)) {
1133 				/* suppress EPOLLHUP until we have
1134 				 * seen a writer */
1135 				filp->f_version = pipe->w_counter;
1136 			} else {
1137 				if (wait_for_partner(pipe, &pipe->w_counter))
1138 					goto err_rd;
1139 			}
1140 		}
1141 		break;
1142 
1143 	case FMODE_WRITE:
1144 	/*
1145 	 *  O_WRONLY
1146 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1147 	 *  errno=ENXIO when there is no process reading the FIFO.
1148 	 */
1149 		ret = -ENXIO;
1150 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1151 			goto err;
1152 
1153 		pipe->w_counter++;
1154 		if (!pipe->writers++)
1155 			wake_up_partner(pipe);
1156 
1157 		if (!is_pipe && !pipe->readers) {
1158 			if (wait_for_partner(pipe, &pipe->r_counter))
1159 				goto err_wr;
1160 		}
1161 		break;
1162 
1163 	case FMODE_READ | FMODE_WRITE:
1164 	/*
1165 	 *  O_RDWR
1166 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1167 	 *  This implementation will NEVER block on a O_RDWR open, since
1168 	 *  the process can at least talk to itself.
1169 	 */
1170 
1171 		pipe->readers++;
1172 		pipe->writers++;
1173 		pipe->r_counter++;
1174 		pipe->w_counter++;
1175 		if (pipe->readers == 1 || pipe->writers == 1)
1176 			wake_up_partner(pipe);
1177 		break;
1178 
1179 	default:
1180 		ret = -EINVAL;
1181 		goto err;
1182 	}
1183 
1184 	/* Ok! */
1185 	__pipe_unlock(pipe);
1186 	return 0;
1187 
1188 err_rd:
1189 	if (!--pipe->readers)
1190 		wake_up_interruptible(&pipe->wr_wait);
1191 	ret = -ERESTARTSYS;
1192 	goto err;
1193 
1194 err_wr:
1195 	if (!--pipe->writers)
1196 		wake_up_interruptible_all(&pipe->rd_wait);
1197 	ret = -ERESTARTSYS;
1198 	goto err;
1199 
1200 err:
1201 	__pipe_unlock(pipe);
1202 
1203 	put_pipe_info(inode, pipe);
1204 	return ret;
1205 }
1206 
1207 const struct file_operations pipefifo_fops = {
1208 	.open		= fifo_open,
1209 	.llseek		= no_llseek,
1210 	.read_iter	= pipe_read,
1211 	.write_iter	= pipe_write,
1212 	.poll		= pipe_poll,
1213 	.unlocked_ioctl	= pipe_ioctl,
1214 	.release	= pipe_release,
1215 	.fasync		= pipe_fasync,
1216 };
1217 
1218 /*
1219  * Currently we rely on the pipe array holding a power-of-2 number
1220  * of pages. Returns 0 on error.
1221  */
1222 unsigned int round_pipe_size(unsigned long size)
1223 {
1224 	if (size > (1U << 31))
1225 		return 0;
1226 
1227 	/* Minimum pipe size, as required by POSIX */
1228 	if (size < PAGE_SIZE)
1229 		return PAGE_SIZE;
1230 
1231 	return roundup_pow_of_two(size);
1232 }
1233 
1234 /*
1235  * Resize the pipe ring to a number of slots.
1236  */
1237 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1238 {
1239 	struct pipe_buffer *bufs;
1240 	unsigned int head, tail, mask, n;
1241 
1242 	/*
1243 	 * We can shrink the pipe, if arg is greater than the ring occupancy.
1244 	 * Since we don't expect a lot of shrink+grow operations, just free and
1245 	 * allocate again like we would do for growing.  If the pipe currently
1246 	 * contains more buffers than arg, then return busy.
1247 	 */
1248 	mask = pipe->ring_size - 1;
1249 	head = pipe->head;
1250 	tail = pipe->tail;
1251 	n = pipe_occupancy(pipe->head, pipe->tail);
1252 	if (nr_slots < n)
1253 		return -EBUSY;
1254 
1255 	bufs = kcalloc(nr_slots, sizeof(*bufs),
1256 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1257 	if (unlikely(!bufs))
1258 		return -ENOMEM;
1259 
1260 	/*
1261 	 * The pipe array wraps around, so just start the new one at zero
1262 	 * and adjust the indices.
1263 	 */
1264 	if (n > 0) {
1265 		unsigned int h = head & mask;
1266 		unsigned int t = tail & mask;
1267 		if (h > t) {
1268 			memcpy(bufs, pipe->bufs + t,
1269 			       n * sizeof(struct pipe_buffer));
1270 		} else {
1271 			unsigned int tsize = pipe->ring_size - t;
1272 			if (h > 0)
1273 				memcpy(bufs + tsize, pipe->bufs,
1274 				       h * sizeof(struct pipe_buffer));
1275 			memcpy(bufs, pipe->bufs + t,
1276 			       tsize * sizeof(struct pipe_buffer));
1277 		}
1278 	}
1279 
1280 	head = n;
1281 	tail = 0;
1282 
1283 	kfree(pipe->bufs);
1284 	pipe->bufs = bufs;
1285 	pipe->ring_size = nr_slots;
1286 	if (pipe->max_usage > nr_slots)
1287 		pipe->max_usage = nr_slots;
1288 	pipe->tail = tail;
1289 	pipe->head = head;
1290 
1291 	/* This might have made more room for writers */
1292 	wake_up_interruptible(&pipe->wr_wait);
1293 	return 0;
1294 }
1295 
1296 /*
1297  * Allocate a new array of pipe buffers and copy the info over. Returns the
1298  * pipe size if successful, or return -ERROR on error.
1299  */
1300 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1301 {
1302 	unsigned long user_bufs;
1303 	unsigned int nr_slots, size;
1304 	long ret = 0;
1305 
1306 #ifdef CONFIG_WATCH_QUEUE
1307 	if (pipe->watch_queue)
1308 		return -EBUSY;
1309 #endif
1310 
1311 	size = round_pipe_size(arg);
1312 	nr_slots = size >> PAGE_SHIFT;
1313 
1314 	if (!nr_slots)
1315 		return -EINVAL;
1316 
1317 	/*
1318 	 * If trying to increase the pipe capacity, check that an
1319 	 * unprivileged user is not trying to exceed various limits
1320 	 * (soft limit check here, hard limit check just below).
1321 	 * Decreasing the pipe capacity is always permitted, even
1322 	 * if the user is currently over a limit.
1323 	 */
1324 	if (nr_slots > pipe->max_usage &&
1325 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1326 		return -EPERM;
1327 
1328 	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1329 
1330 	if (nr_slots > pipe->max_usage &&
1331 			(too_many_pipe_buffers_hard(user_bufs) ||
1332 			 too_many_pipe_buffers_soft(user_bufs)) &&
1333 			pipe_is_unprivileged_user()) {
1334 		ret = -EPERM;
1335 		goto out_revert_acct;
1336 	}
1337 
1338 	ret = pipe_resize_ring(pipe, nr_slots);
1339 	if (ret < 0)
1340 		goto out_revert_acct;
1341 
1342 	pipe->max_usage = nr_slots;
1343 	pipe->nr_accounted = nr_slots;
1344 	return pipe->max_usage * PAGE_SIZE;
1345 
1346 out_revert_acct:
1347 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1348 	return ret;
1349 }
1350 
1351 /*
1352  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1353  * location, so checking ->i_pipe is not enough to verify that this is a
1354  * pipe.
1355  */
1356 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1357 {
1358 	struct pipe_inode_info *pipe = file->private_data;
1359 
1360 	if (file->f_op != &pipefifo_fops || !pipe)
1361 		return NULL;
1362 #ifdef CONFIG_WATCH_QUEUE
1363 	if (for_splice && pipe->watch_queue)
1364 		return NULL;
1365 #endif
1366 	return pipe;
1367 }
1368 
1369 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1370 {
1371 	struct pipe_inode_info *pipe;
1372 	long ret;
1373 
1374 	pipe = get_pipe_info(file, false);
1375 	if (!pipe)
1376 		return -EBADF;
1377 
1378 	__pipe_lock(pipe);
1379 
1380 	switch (cmd) {
1381 	case F_SETPIPE_SZ:
1382 		ret = pipe_set_size(pipe, arg);
1383 		break;
1384 	case F_GETPIPE_SZ:
1385 		ret = pipe->max_usage * PAGE_SIZE;
1386 		break;
1387 	default:
1388 		ret = -EINVAL;
1389 		break;
1390 	}
1391 
1392 	__pipe_unlock(pipe);
1393 	return ret;
1394 }
1395 
1396 static const struct super_operations pipefs_ops = {
1397 	.destroy_inode = free_inode_nonrcu,
1398 	.statfs = simple_statfs,
1399 };
1400 
1401 /*
1402  * pipefs should _never_ be mounted by userland - too much of security hassle,
1403  * no real gain from having the whole whorehouse mounted. So we don't need
1404  * any operations on the root directory. However, we need a non-trivial
1405  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1406  */
1407 
1408 static int pipefs_init_fs_context(struct fs_context *fc)
1409 {
1410 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1411 	if (!ctx)
1412 		return -ENOMEM;
1413 	ctx->ops = &pipefs_ops;
1414 	ctx->dops = &pipefs_dentry_operations;
1415 	return 0;
1416 }
1417 
1418 static struct file_system_type pipe_fs_type = {
1419 	.name		= "pipefs",
1420 	.init_fs_context = pipefs_init_fs_context,
1421 	.kill_sb	= kill_anon_super,
1422 };
1423 
1424 static int __init init_pipe_fs(void)
1425 {
1426 	int err = register_filesystem(&pipe_fs_type);
1427 
1428 	if (!err) {
1429 		pipe_mnt = kern_mount(&pipe_fs_type);
1430 		if (IS_ERR(pipe_mnt)) {
1431 			err = PTR_ERR(pipe_mnt);
1432 			unregister_filesystem(&pipe_fs_type);
1433 		}
1434 	}
1435 	return err;
1436 }
1437 
1438 fs_initcall(init_pipe_fs);
1439