xref: /linux/fs/pipe.c (revision 87c34ed3aba9249cb06d1a1f100cd3618f29268c)
1 /*
2  *  linux/fs/pipe.c
3  *
4  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
24 
25 #include <asm/uaccess.h>
26 #include <asm/ioctls.h>
27 
28 /*
29  * The max size that a non-root user is allowed to grow the pipe. Can
30  * be set by root in /proc/sys/fs/pipe-max-size
31  */
32 unsigned int pipe_max_size = 1048576;
33 
34 /*
35  * Minimum pipe size, as required by POSIX
36  */
37 unsigned int pipe_min_size = PAGE_SIZE;
38 
39 /*
40  * We use a start+len construction, which provides full use of the
41  * allocated memory.
42  * -- Florian Coosmann (FGC)
43  *
44  * Reads with count = 0 should always return 0.
45  * -- Julian Bradfield 1999-06-07.
46  *
47  * FIFOs and Pipes now generate SIGIO for both readers and writers.
48  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
49  *
50  * pipe_read & write cleanup
51  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
52  */
53 
54 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
55 {
56 	if (pipe->inode)
57 		mutex_lock_nested(&pipe->inode->i_mutex, subclass);
58 }
59 
60 void pipe_lock(struct pipe_inode_info *pipe)
61 {
62 	/*
63 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
64 	 */
65 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
66 }
67 EXPORT_SYMBOL(pipe_lock);
68 
69 void pipe_unlock(struct pipe_inode_info *pipe)
70 {
71 	if (pipe->inode)
72 		mutex_unlock(&pipe->inode->i_mutex);
73 }
74 EXPORT_SYMBOL(pipe_unlock);
75 
76 void pipe_double_lock(struct pipe_inode_info *pipe1,
77 		      struct pipe_inode_info *pipe2)
78 {
79 	BUG_ON(pipe1 == pipe2);
80 
81 	if (pipe1 < pipe2) {
82 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
83 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
84 	} else {
85 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
86 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
87 	}
88 }
89 
90 /* Drop the inode semaphore and wait for a pipe event, atomically */
91 void pipe_wait(struct pipe_inode_info *pipe)
92 {
93 	DEFINE_WAIT(wait);
94 
95 	/*
96 	 * Pipes are system-local resources, so sleeping on them
97 	 * is considered a noninteractive wait:
98 	 */
99 	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
100 	pipe_unlock(pipe);
101 	schedule();
102 	finish_wait(&pipe->wait, &wait);
103 	pipe_lock(pipe);
104 }
105 
106 static int
107 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
108 			int atomic)
109 {
110 	unsigned long copy;
111 
112 	while (len > 0) {
113 		while (!iov->iov_len)
114 			iov++;
115 		copy = min_t(unsigned long, len, iov->iov_len);
116 
117 		if (atomic) {
118 			if (__copy_from_user_inatomic(to, iov->iov_base, copy))
119 				return -EFAULT;
120 		} else {
121 			if (copy_from_user(to, iov->iov_base, copy))
122 				return -EFAULT;
123 		}
124 		to += copy;
125 		len -= copy;
126 		iov->iov_base += copy;
127 		iov->iov_len -= copy;
128 	}
129 	return 0;
130 }
131 
132 static int
133 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
134 		      int atomic)
135 {
136 	unsigned long copy;
137 
138 	while (len > 0) {
139 		while (!iov->iov_len)
140 			iov++;
141 		copy = min_t(unsigned long, len, iov->iov_len);
142 
143 		if (atomic) {
144 			if (__copy_to_user_inatomic(iov->iov_base, from, copy))
145 				return -EFAULT;
146 		} else {
147 			if (copy_to_user(iov->iov_base, from, copy))
148 				return -EFAULT;
149 		}
150 		from += copy;
151 		len -= copy;
152 		iov->iov_base += copy;
153 		iov->iov_len -= copy;
154 	}
155 	return 0;
156 }
157 
158 /*
159  * Attempt to pre-fault in the user memory, so we can use atomic copies.
160  * Returns the number of bytes not faulted in.
161  */
162 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
163 {
164 	while (!iov->iov_len)
165 		iov++;
166 
167 	while (len > 0) {
168 		unsigned long this_len;
169 
170 		this_len = min_t(unsigned long, len, iov->iov_len);
171 		if (fault_in_pages_writeable(iov->iov_base, this_len))
172 			break;
173 
174 		len -= this_len;
175 		iov++;
176 	}
177 
178 	return len;
179 }
180 
181 /*
182  * Pre-fault in the user memory, so we can use atomic copies.
183  */
184 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
185 {
186 	while (!iov->iov_len)
187 		iov++;
188 
189 	while (len > 0) {
190 		unsigned long this_len;
191 
192 		this_len = min_t(unsigned long, len, iov->iov_len);
193 		fault_in_pages_readable(iov->iov_base, this_len);
194 		len -= this_len;
195 		iov++;
196 	}
197 }
198 
199 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
200 				  struct pipe_buffer *buf)
201 {
202 	struct page *page = buf->page;
203 
204 	/*
205 	 * If nobody else uses this page, and we don't already have a
206 	 * temporary page, let's keep track of it as a one-deep
207 	 * allocation cache. (Otherwise just release our reference to it)
208 	 */
209 	if (page_count(page) == 1 && !pipe->tmp_page)
210 		pipe->tmp_page = page;
211 	else
212 		page_cache_release(page);
213 }
214 
215 /**
216  * generic_pipe_buf_map - virtually map a pipe buffer
217  * @pipe:	the pipe that the buffer belongs to
218  * @buf:	the buffer that should be mapped
219  * @atomic:	whether to use an atomic map
220  *
221  * Description:
222  *	This function returns a kernel virtual address mapping for the
223  *	pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
224  *	and the caller has to be careful not to fault before calling
225  *	the unmap function.
226  *
227  *	Note that this function occupies KM_USER0 if @atomic != 0.
228  */
229 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
230 			   struct pipe_buffer *buf, int atomic)
231 {
232 	if (atomic) {
233 		buf->flags |= PIPE_BUF_FLAG_ATOMIC;
234 		return kmap_atomic(buf->page);
235 	}
236 
237 	return kmap(buf->page);
238 }
239 EXPORT_SYMBOL(generic_pipe_buf_map);
240 
241 /**
242  * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
243  * @pipe:	the pipe that the buffer belongs to
244  * @buf:	the buffer that should be unmapped
245  * @map_data:	the data that the mapping function returned
246  *
247  * Description:
248  *	This function undoes the mapping that ->map() provided.
249  */
250 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
251 			    struct pipe_buffer *buf, void *map_data)
252 {
253 	if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
254 		buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
255 		kunmap_atomic(map_data);
256 	} else
257 		kunmap(buf->page);
258 }
259 EXPORT_SYMBOL(generic_pipe_buf_unmap);
260 
261 /**
262  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
263  * @pipe:	the pipe that the buffer belongs to
264  * @buf:	the buffer to attempt to steal
265  *
266  * Description:
267  *	This function attempts to steal the &struct page attached to
268  *	@buf. If successful, this function returns 0 and returns with
269  *	the page locked. The caller may then reuse the page for whatever
270  *	he wishes; the typical use is insertion into a different file
271  *	page cache.
272  */
273 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
274 			   struct pipe_buffer *buf)
275 {
276 	struct page *page = buf->page;
277 
278 	/*
279 	 * A reference of one is golden, that means that the owner of this
280 	 * page is the only one holding a reference to it. lock the page
281 	 * and return OK.
282 	 */
283 	if (page_count(page) == 1) {
284 		lock_page(page);
285 		return 0;
286 	}
287 
288 	return 1;
289 }
290 EXPORT_SYMBOL(generic_pipe_buf_steal);
291 
292 /**
293  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
294  * @pipe:	the pipe that the buffer belongs to
295  * @buf:	the buffer to get a reference to
296  *
297  * Description:
298  *	This function grabs an extra reference to @buf. It's used in
299  *	in the tee() system call, when we duplicate the buffers in one
300  *	pipe into another.
301  */
302 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
303 {
304 	page_cache_get(buf->page);
305 }
306 EXPORT_SYMBOL(generic_pipe_buf_get);
307 
308 /**
309  * generic_pipe_buf_confirm - verify contents of the pipe buffer
310  * @info:	the pipe that the buffer belongs to
311  * @buf:	the buffer to confirm
312  *
313  * Description:
314  *	This function does nothing, because the generic pipe code uses
315  *	pages that are always good when inserted into the pipe.
316  */
317 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
318 			     struct pipe_buffer *buf)
319 {
320 	return 0;
321 }
322 EXPORT_SYMBOL(generic_pipe_buf_confirm);
323 
324 /**
325  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
326  * @pipe:	the pipe that the buffer belongs to
327  * @buf:	the buffer to put a reference to
328  *
329  * Description:
330  *	This function releases a reference to @buf.
331  */
332 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
333 			      struct pipe_buffer *buf)
334 {
335 	page_cache_release(buf->page);
336 }
337 EXPORT_SYMBOL(generic_pipe_buf_release);
338 
339 static const struct pipe_buf_operations anon_pipe_buf_ops = {
340 	.can_merge = 1,
341 	.map = generic_pipe_buf_map,
342 	.unmap = generic_pipe_buf_unmap,
343 	.confirm = generic_pipe_buf_confirm,
344 	.release = anon_pipe_buf_release,
345 	.steal = generic_pipe_buf_steal,
346 	.get = generic_pipe_buf_get,
347 };
348 
349 static ssize_t
350 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
351 	   unsigned long nr_segs, loff_t pos)
352 {
353 	struct file *filp = iocb->ki_filp;
354 	struct inode *inode = filp->f_path.dentry->d_inode;
355 	struct pipe_inode_info *pipe;
356 	int do_wakeup;
357 	ssize_t ret;
358 	struct iovec *iov = (struct iovec *)_iov;
359 	size_t total_len;
360 
361 	total_len = iov_length(iov, nr_segs);
362 	/* Null read succeeds. */
363 	if (unlikely(total_len == 0))
364 		return 0;
365 
366 	do_wakeup = 0;
367 	ret = 0;
368 	mutex_lock(&inode->i_mutex);
369 	pipe = inode->i_pipe;
370 	for (;;) {
371 		int bufs = pipe->nrbufs;
372 		if (bufs) {
373 			int curbuf = pipe->curbuf;
374 			struct pipe_buffer *buf = pipe->bufs + curbuf;
375 			const struct pipe_buf_operations *ops = buf->ops;
376 			void *addr;
377 			size_t chars = buf->len;
378 			int error, atomic;
379 
380 			if (chars > total_len)
381 				chars = total_len;
382 
383 			error = ops->confirm(pipe, buf);
384 			if (error) {
385 				if (!ret)
386 					ret = error;
387 				break;
388 			}
389 
390 			atomic = !iov_fault_in_pages_write(iov, chars);
391 redo:
392 			addr = ops->map(pipe, buf, atomic);
393 			error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
394 			ops->unmap(pipe, buf, addr);
395 			if (unlikely(error)) {
396 				/*
397 				 * Just retry with the slow path if we failed.
398 				 */
399 				if (atomic) {
400 					atomic = 0;
401 					goto redo;
402 				}
403 				if (!ret)
404 					ret = error;
405 				break;
406 			}
407 			ret += chars;
408 			buf->offset += chars;
409 			buf->len -= chars;
410 			if (!buf->len) {
411 				buf->ops = NULL;
412 				ops->release(pipe, buf);
413 				curbuf = (curbuf + 1) & (pipe->buffers - 1);
414 				pipe->curbuf = curbuf;
415 				pipe->nrbufs = --bufs;
416 				do_wakeup = 1;
417 			}
418 			total_len -= chars;
419 			if (!total_len)
420 				break;	/* common path: read succeeded */
421 		}
422 		if (bufs)	/* More to do? */
423 			continue;
424 		if (!pipe->writers)
425 			break;
426 		if (!pipe->waiting_writers) {
427 			/* syscall merging: Usually we must not sleep
428 			 * if O_NONBLOCK is set, or if we got some data.
429 			 * But if a writer sleeps in kernel space, then
430 			 * we can wait for that data without violating POSIX.
431 			 */
432 			if (ret)
433 				break;
434 			if (filp->f_flags & O_NONBLOCK) {
435 				ret = -EAGAIN;
436 				break;
437 			}
438 		}
439 		if (signal_pending(current)) {
440 			if (!ret)
441 				ret = -ERESTARTSYS;
442 			break;
443 		}
444 		if (do_wakeup) {
445 			wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
446  			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
447 		}
448 		pipe_wait(pipe);
449 	}
450 	mutex_unlock(&inode->i_mutex);
451 
452 	/* Signal writers asynchronously that there is more room. */
453 	if (do_wakeup) {
454 		wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
455 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
456 	}
457 	if (ret > 0)
458 		file_accessed(filp);
459 	return ret;
460 }
461 
462 static ssize_t
463 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
464 	    unsigned long nr_segs, loff_t ppos)
465 {
466 	struct file *filp = iocb->ki_filp;
467 	struct inode *inode = filp->f_path.dentry->d_inode;
468 	struct pipe_inode_info *pipe;
469 	ssize_t ret;
470 	int do_wakeup;
471 	struct iovec *iov = (struct iovec *)_iov;
472 	size_t total_len;
473 	ssize_t chars;
474 
475 	total_len = iov_length(iov, nr_segs);
476 	/* Null write succeeds. */
477 	if (unlikely(total_len == 0))
478 		return 0;
479 
480 	do_wakeup = 0;
481 	ret = 0;
482 	mutex_lock(&inode->i_mutex);
483 	pipe = inode->i_pipe;
484 
485 	if (!pipe->readers) {
486 		send_sig(SIGPIPE, current, 0);
487 		ret = -EPIPE;
488 		goto out;
489 	}
490 
491 	/* We try to merge small writes */
492 	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
493 	if (pipe->nrbufs && chars != 0) {
494 		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
495 							(pipe->buffers - 1);
496 		struct pipe_buffer *buf = pipe->bufs + lastbuf;
497 		const struct pipe_buf_operations *ops = buf->ops;
498 		int offset = buf->offset + buf->len;
499 
500 		if (ops->can_merge && offset + chars <= PAGE_SIZE) {
501 			int error, atomic = 1;
502 			void *addr;
503 
504 			error = ops->confirm(pipe, buf);
505 			if (error)
506 				goto out;
507 
508 			iov_fault_in_pages_read(iov, chars);
509 redo1:
510 			addr = ops->map(pipe, buf, atomic);
511 			error = pipe_iov_copy_from_user(offset + addr, iov,
512 							chars, atomic);
513 			ops->unmap(pipe, buf, addr);
514 			ret = error;
515 			do_wakeup = 1;
516 			if (error) {
517 				if (atomic) {
518 					atomic = 0;
519 					goto redo1;
520 				}
521 				goto out;
522 			}
523 			buf->len += chars;
524 			total_len -= chars;
525 			ret = chars;
526 			if (!total_len)
527 				goto out;
528 		}
529 	}
530 
531 	for (;;) {
532 		int bufs;
533 
534 		if (!pipe->readers) {
535 			send_sig(SIGPIPE, current, 0);
536 			if (!ret)
537 				ret = -EPIPE;
538 			break;
539 		}
540 		bufs = pipe->nrbufs;
541 		if (bufs < pipe->buffers) {
542 			int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
543 			struct pipe_buffer *buf = pipe->bufs + newbuf;
544 			struct page *page = pipe->tmp_page;
545 			char *src;
546 			int error, atomic = 1;
547 
548 			if (!page) {
549 				page = alloc_page(GFP_HIGHUSER);
550 				if (unlikely(!page)) {
551 					ret = ret ? : -ENOMEM;
552 					break;
553 				}
554 				pipe->tmp_page = page;
555 			}
556 			/* Always wake up, even if the copy fails. Otherwise
557 			 * we lock up (O_NONBLOCK-)readers that sleep due to
558 			 * syscall merging.
559 			 * FIXME! Is this really true?
560 			 */
561 			do_wakeup = 1;
562 			chars = PAGE_SIZE;
563 			if (chars > total_len)
564 				chars = total_len;
565 
566 			iov_fault_in_pages_read(iov, chars);
567 redo2:
568 			if (atomic)
569 				src = kmap_atomic(page);
570 			else
571 				src = kmap(page);
572 
573 			error = pipe_iov_copy_from_user(src, iov, chars,
574 							atomic);
575 			if (atomic)
576 				kunmap_atomic(src);
577 			else
578 				kunmap(page);
579 
580 			if (unlikely(error)) {
581 				if (atomic) {
582 					atomic = 0;
583 					goto redo2;
584 				}
585 				if (!ret)
586 					ret = error;
587 				break;
588 			}
589 			ret += chars;
590 
591 			/* Insert it into the buffer array */
592 			buf->page = page;
593 			buf->ops = &anon_pipe_buf_ops;
594 			buf->offset = 0;
595 			buf->len = chars;
596 			pipe->nrbufs = ++bufs;
597 			pipe->tmp_page = NULL;
598 
599 			total_len -= chars;
600 			if (!total_len)
601 				break;
602 		}
603 		if (bufs < pipe->buffers)
604 			continue;
605 		if (filp->f_flags & O_NONBLOCK) {
606 			if (!ret)
607 				ret = -EAGAIN;
608 			break;
609 		}
610 		if (signal_pending(current)) {
611 			if (!ret)
612 				ret = -ERESTARTSYS;
613 			break;
614 		}
615 		if (do_wakeup) {
616 			wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
617 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
618 			do_wakeup = 0;
619 		}
620 		pipe->waiting_writers++;
621 		pipe_wait(pipe);
622 		pipe->waiting_writers--;
623 	}
624 out:
625 	mutex_unlock(&inode->i_mutex);
626 	if (do_wakeup) {
627 		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
628 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
629 	}
630 	if (ret > 0)
631 		file_update_time(filp);
632 	return ret;
633 }
634 
635 static ssize_t
636 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
637 {
638 	return -EBADF;
639 }
640 
641 static ssize_t
642 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
643 	   loff_t *ppos)
644 {
645 	return -EBADF;
646 }
647 
648 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
649 {
650 	struct inode *inode = filp->f_path.dentry->d_inode;
651 	struct pipe_inode_info *pipe;
652 	int count, buf, nrbufs;
653 
654 	switch (cmd) {
655 		case FIONREAD:
656 			mutex_lock(&inode->i_mutex);
657 			pipe = inode->i_pipe;
658 			count = 0;
659 			buf = pipe->curbuf;
660 			nrbufs = pipe->nrbufs;
661 			while (--nrbufs >= 0) {
662 				count += pipe->bufs[buf].len;
663 				buf = (buf+1) & (pipe->buffers - 1);
664 			}
665 			mutex_unlock(&inode->i_mutex);
666 
667 			return put_user(count, (int __user *)arg);
668 		default:
669 			return -EINVAL;
670 	}
671 }
672 
673 /* No kernel lock held - fine */
674 static unsigned int
675 pipe_poll(struct file *filp, poll_table *wait)
676 {
677 	unsigned int mask;
678 	struct inode *inode = filp->f_path.dentry->d_inode;
679 	struct pipe_inode_info *pipe = inode->i_pipe;
680 	int nrbufs;
681 
682 	poll_wait(filp, &pipe->wait, wait);
683 
684 	/* Reading only -- no need for acquiring the semaphore.  */
685 	nrbufs = pipe->nrbufs;
686 	mask = 0;
687 	if (filp->f_mode & FMODE_READ) {
688 		mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
689 		if (!pipe->writers && filp->f_version != pipe->w_counter)
690 			mask |= POLLHUP;
691 	}
692 
693 	if (filp->f_mode & FMODE_WRITE) {
694 		mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
695 		/*
696 		 * Most Unices do not set POLLERR for FIFOs but on Linux they
697 		 * behave exactly like pipes for poll().
698 		 */
699 		if (!pipe->readers)
700 			mask |= POLLERR;
701 	}
702 
703 	return mask;
704 }
705 
706 static int
707 pipe_release(struct inode *inode, int decr, int decw)
708 {
709 	struct pipe_inode_info *pipe;
710 
711 	mutex_lock(&inode->i_mutex);
712 	pipe = inode->i_pipe;
713 	pipe->readers -= decr;
714 	pipe->writers -= decw;
715 
716 	if (!pipe->readers && !pipe->writers) {
717 		free_pipe_info(inode);
718 	} else {
719 		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
720 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
721 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
722 	}
723 	mutex_unlock(&inode->i_mutex);
724 
725 	return 0;
726 }
727 
728 static int
729 pipe_read_fasync(int fd, struct file *filp, int on)
730 {
731 	struct inode *inode = filp->f_path.dentry->d_inode;
732 	int retval;
733 
734 	mutex_lock(&inode->i_mutex);
735 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
736 	mutex_unlock(&inode->i_mutex);
737 
738 	return retval;
739 }
740 
741 
742 static int
743 pipe_write_fasync(int fd, struct file *filp, int on)
744 {
745 	struct inode *inode = filp->f_path.dentry->d_inode;
746 	int retval;
747 
748 	mutex_lock(&inode->i_mutex);
749 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
750 	mutex_unlock(&inode->i_mutex);
751 
752 	return retval;
753 }
754 
755 
756 static int
757 pipe_rdwr_fasync(int fd, struct file *filp, int on)
758 {
759 	struct inode *inode = filp->f_path.dentry->d_inode;
760 	struct pipe_inode_info *pipe = inode->i_pipe;
761 	int retval;
762 
763 	mutex_lock(&inode->i_mutex);
764 	retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
765 	if (retval >= 0) {
766 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
767 		if (retval < 0) /* this can happen only if on == T */
768 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
769 	}
770 	mutex_unlock(&inode->i_mutex);
771 	return retval;
772 }
773 
774 
775 static int
776 pipe_read_release(struct inode *inode, struct file *filp)
777 {
778 	return pipe_release(inode, 1, 0);
779 }
780 
781 static int
782 pipe_write_release(struct inode *inode, struct file *filp)
783 {
784 	return pipe_release(inode, 0, 1);
785 }
786 
787 static int
788 pipe_rdwr_release(struct inode *inode, struct file *filp)
789 {
790 	int decr, decw;
791 
792 	decr = (filp->f_mode & FMODE_READ) != 0;
793 	decw = (filp->f_mode & FMODE_WRITE) != 0;
794 	return pipe_release(inode, decr, decw);
795 }
796 
797 static int
798 pipe_read_open(struct inode *inode, struct file *filp)
799 {
800 	int ret = -ENOENT;
801 
802 	mutex_lock(&inode->i_mutex);
803 
804 	if (inode->i_pipe) {
805 		ret = 0;
806 		inode->i_pipe->readers++;
807 	}
808 
809 	mutex_unlock(&inode->i_mutex);
810 
811 	return ret;
812 }
813 
814 static int
815 pipe_write_open(struct inode *inode, struct file *filp)
816 {
817 	int ret = -ENOENT;
818 
819 	mutex_lock(&inode->i_mutex);
820 
821 	if (inode->i_pipe) {
822 		ret = 0;
823 		inode->i_pipe->writers++;
824 	}
825 
826 	mutex_unlock(&inode->i_mutex);
827 
828 	return ret;
829 }
830 
831 static int
832 pipe_rdwr_open(struct inode *inode, struct file *filp)
833 {
834 	int ret = -ENOENT;
835 
836 	mutex_lock(&inode->i_mutex);
837 
838 	if (inode->i_pipe) {
839 		ret = 0;
840 		if (filp->f_mode & FMODE_READ)
841 			inode->i_pipe->readers++;
842 		if (filp->f_mode & FMODE_WRITE)
843 			inode->i_pipe->writers++;
844 	}
845 
846 	mutex_unlock(&inode->i_mutex);
847 
848 	return ret;
849 }
850 
851 /*
852  * The file_operations structs are not static because they
853  * are also used in linux/fs/fifo.c to do operations on FIFOs.
854  *
855  * Pipes reuse fifos' file_operations structs.
856  */
857 const struct file_operations read_pipefifo_fops = {
858 	.llseek		= no_llseek,
859 	.read		= do_sync_read,
860 	.aio_read	= pipe_read,
861 	.write		= bad_pipe_w,
862 	.poll		= pipe_poll,
863 	.unlocked_ioctl	= pipe_ioctl,
864 	.open		= pipe_read_open,
865 	.release	= pipe_read_release,
866 	.fasync		= pipe_read_fasync,
867 };
868 
869 const struct file_operations write_pipefifo_fops = {
870 	.llseek		= no_llseek,
871 	.read		= bad_pipe_r,
872 	.write		= do_sync_write,
873 	.aio_write	= pipe_write,
874 	.poll		= pipe_poll,
875 	.unlocked_ioctl	= pipe_ioctl,
876 	.open		= pipe_write_open,
877 	.release	= pipe_write_release,
878 	.fasync		= pipe_write_fasync,
879 };
880 
881 const struct file_operations rdwr_pipefifo_fops = {
882 	.llseek		= no_llseek,
883 	.read		= do_sync_read,
884 	.aio_read	= pipe_read,
885 	.write		= do_sync_write,
886 	.aio_write	= pipe_write,
887 	.poll		= pipe_poll,
888 	.unlocked_ioctl	= pipe_ioctl,
889 	.open		= pipe_rdwr_open,
890 	.release	= pipe_rdwr_release,
891 	.fasync		= pipe_rdwr_fasync,
892 };
893 
894 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
895 {
896 	struct pipe_inode_info *pipe;
897 
898 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
899 	if (pipe) {
900 		pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
901 		if (pipe->bufs) {
902 			init_waitqueue_head(&pipe->wait);
903 			pipe->r_counter = pipe->w_counter = 1;
904 			pipe->inode = inode;
905 			pipe->buffers = PIPE_DEF_BUFFERS;
906 			return pipe;
907 		}
908 		kfree(pipe);
909 	}
910 
911 	return NULL;
912 }
913 
914 void __free_pipe_info(struct pipe_inode_info *pipe)
915 {
916 	int i;
917 
918 	for (i = 0; i < pipe->buffers; i++) {
919 		struct pipe_buffer *buf = pipe->bufs + i;
920 		if (buf->ops)
921 			buf->ops->release(pipe, buf);
922 	}
923 	if (pipe->tmp_page)
924 		__free_page(pipe->tmp_page);
925 	kfree(pipe->bufs);
926 	kfree(pipe);
927 }
928 
929 void free_pipe_info(struct inode *inode)
930 {
931 	__free_pipe_info(inode->i_pipe);
932 	inode->i_pipe = NULL;
933 }
934 
935 static struct vfsmount *pipe_mnt __read_mostly;
936 
937 /*
938  * pipefs_dname() is called from d_path().
939  */
940 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
941 {
942 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
943 				dentry->d_inode->i_ino);
944 }
945 
946 static const struct dentry_operations pipefs_dentry_operations = {
947 	.d_dname	= pipefs_dname,
948 };
949 
950 static struct inode * get_pipe_inode(void)
951 {
952 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
953 	struct pipe_inode_info *pipe;
954 
955 	if (!inode)
956 		goto fail_inode;
957 
958 	inode->i_ino = get_next_ino();
959 
960 	pipe = alloc_pipe_info(inode);
961 	if (!pipe)
962 		goto fail_iput;
963 	inode->i_pipe = pipe;
964 
965 	pipe->readers = pipe->writers = 1;
966 	inode->i_fop = &rdwr_pipefifo_fops;
967 
968 	/*
969 	 * Mark the inode dirty from the very beginning,
970 	 * that way it will never be moved to the dirty
971 	 * list because "mark_inode_dirty()" will think
972 	 * that it already _is_ on the dirty list.
973 	 */
974 	inode->i_state = I_DIRTY;
975 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
976 	inode->i_uid = current_fsuid();
977 	inode->i_gid = current_fsgid();
978 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
979 
980 	return inode;
981 
982 fail_iput:
983 	iput(inode);
984 
985 fail_inode:
986 	return NULL;
987 }
988 
989 struct file *create_write_pipe(int flags)
990 {
991 	int err;
992 	struct inode *inode;
993 	struct file *f;
994 	struct path path;
995 	struct qstr name = { .name = "" };
996 
997 	err = -ENFILE;
998 	inode = get_pipe_inode();
999 	if (!inode)
1000 		goto err;
1001 
1002 	err = -ENOMEM;
1003 	path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
1004 	if (!path.dentry)
1005 		goto err_inode;
1006 	path.mnt = mntget(pipe_mnt);
1007 
1008 	d_instantiate(path.dentry, inode);
1009 
1010 	err = -ENFILE;
1011 	f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
1012 	if (!f)
1013 		goto err_dentry;
1014 	f->f_mapping = inode->i_mapping;
1015 
1016 	f->f_flags = O_WRONLY | (flags & O_NONBLOCK);
1017 	f->f_version = 0;
1018 
1019 	return f;
1020 
1021  err_dentry:
1022 	free_pipe_info(inode);
1023 	path_put(&path);
1024 	return ERR_PTR(err);
1025 
1026  err_inode:
1027 	free_pipe_info(inode);
1028 	iput(inode);
1029  err:
1030 	return ERR_PTR(err);
1031 }
1032 
1033 void free_write_pipe(struct file *f)
1034 {
1035 	free_pipe_info(f->f_dentry->d_inode);
1036 	path_put(&f->f_path);
1037 	put_filp(f);
1038 }
1039 
1040 struct file *create_read_pipe(struct file *wrf, int flags)
1041 {
1042 	/* Grab pipe from the writer */
1043 	struct file *f = alloc_file(&wrf->f_path, FMODE_READ,
1044 				    &read_pipefifo_fops);
1045 	if (!f)
1046 		return ERR_PTR(-ENFILE);
1047 
1048 	path_get(&wrf->f_path);
1049 	f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1050 
1051 	return f;
1052 }
1053 
1054 int do_pipe_flags(int *fd, int flags)
1055 {
1056 	struct file *fw, *fr;
1057 	int error;
1058 	int fdw, fdr;
1059 
1060 	if (flags & ~(O_CLOEXEC | O_NONBLOCK))
1061 		return -EINVAL;
1062 
1063 	fw = create_write_pipe(flags);
1064 	if (IS_ERR(fw))
1065 		return PTR_ERR(fw);
1066 	fr = create_read_pipe(fw, flags);
1067 	error = PTR_ERR(fr);
1068 	if (IS_ERR(fr))
1069 		goto err_write_pipe;
1070 
1071 	error = get_unused_fd_flags(flags);
1072 	if (error < 0)
1073 		goto err_read_pipe;
1074 	fdr = error;
1075 
1076 	error = get_unused_fd_flags(flags);
1077 	if (error < 0)
1078 		goto err_fdr;
1079 	fdw = error;
1080 
1081 	audit_fd_pair(fdr, fdw);
1082 	fd_install(fdr, fr);
1083 	fd_install(fdw, fw);
1084 	fd[0] = fdr;
1085 	fd[1] = fdw;
1086 
1087 	return 0;
1088 
1089  err_fdr:
1090 	put_unused_fd(fdr);
1091  err_read_pipe:
1092 	path_put(&fr->f_path);
1093 	put_filp(fr);
1094  err_write_pipe:
1095 	free_write_pipe(fw);
1096 	return error;
1097 }
1098 
1099 /*
1100  * sys_pipe() is the normal C calling standard for creating
1101  * a pipe. It's not the way Unix traditionally does this, though.
1102  */
1103 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1104 {
1105 	int fd[2];
1106 	int error;
1107 
1108 	error = do_pipe_flags(fd, flags);
1109 	if (!error) {
1110 		if (copy_to_user(fildes, fd, sizeof(fd))) {
1111 			sys_close(fd[0]);
1112 			sys_close(fd[1]);
1113 			error = -EFAULT;
1114 		}
1115 	}
1116 	return error;
1117 }
1118 
1119 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1120 {
1121 	return sys_pipe2(fildes, 0);
1122 }
1123 
1124 /*
1125  * Allocate a new array of pipe buffers and copy the info over. Returns the
1126  * pipe size if successful, or return -ERROR on error.
1127  */
1128 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1129 {
1130 	struct pipe_buffer *bufs;
1131 
1132 	/*
1133 	 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1134 	 * expect a lot of shrink+grow operations, just free and allocate
1135 	 * again like we would do for growing. If the pipe currently
1136 	 * contains more buffers than arg, then return busy.
1137 	 */
1138 	if (nr_pages < pipe->nrbufs)
1139 		return -EBUSY;
1140 
1141 	bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
1142 	if (unlikely(!bufs))
1143 		return -ENOMEM;
1144 
1145 	/*
1146 	 * The pipe array wraps around, so just start the new one at zero
1147 	 * and adjust the indexes.
1148 	 */
1149 	if (pipe->nrbufs) {
1150 		unsigned int tail;
1151 		unsigned int head;
1152 
1153 		tail = pipe->curbuf + pipe->nrbufs;
1154 		if (tail < pipe->buffers)
1155 			tail = 0;
1156 		else
1157 			tail &= (pipe->buffers - 1);
1158 
1159 		head = pipe->nrbufs - tail;
1160 		if (head)
1161 			memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1162 		if (tail)
1163 			memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1164 	}
1165 
1166 	pipe->curbuf = 0;
1167 	kfree(pipe->bufs);
1168 	pipe->bufs = bufs;
1169 	pipe->buffers = nr_pages;
1170 	return nr_pages * PAGE_SIZE;
1171 }
1172 
1173 /*
1174  * Currently we rely on the pipe array holding a power-of-2 number
1175  * of pages.
1176  */
1177 static inline unsigned int round_pipe_size(unsigned int size)
1178 {
1179 	unsigned long nr_pages;
1180 
1181 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1182 	return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1183 }
1184 
1185 /*
1186  * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1187  * will return an error.
1188  */
1189 int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1190 		 size_t *lenp, loff_t *ppos)
1191 {
1192 	int ret;
1193 
1194 	ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1195 	if (ret < 0 || !write)
1196 		return ret;
1197 
1198 	pipe_max_size = round_pipe_size(pipe_max_size);
1199 	return ret;
1200 }
1201 
1202 /*
1203  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1204  * location, so checking ->i_pipe is not enough to verify that this is a
1205  * pipe.
1206  */
1207 struct pipe_inode_info *get_pipe_info(struct file *file)
1208 {
1209 	struct inode *i = file->f_path.dentry->d_inode;
1210 
1211 	return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL;
1212 }
1213 
1214 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1215 {
1216 	struct pipe_inode_info *pipe;
1217 	long ret;
1218 
1219 	pipe = get_pipe_info(file);
1220 	if (!pipe)
1221 		return -EBADF;
1222 
1223 	mutex_lock(&pipe->inode->i_mutex);
1224 
1225 	switch (cmd) {
1226 	case F_SETPIPE_SZ: {
1227 		unsigned int size, nr_pages;
1228 
1229 		size = round_pipe_size(arg);
1230 		nr_pages = size >> PAGE_SHIFT;
1231 
1232 		ret = -EINVAL;
1233 		if (!nr_pages)
1234 			goto out;
1235 
1236 		if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1237 			ret = -EPERM;
1238 			goto out;
1239 		}
1240 		ret = pipe_set_size(pipe, nr_pages);
1241 		break;
1242 		}
1243 	case F_GETPIPE_SZ:
1244 		ret = pipe->buffers * PAGE_SIZE;
1245 		break;
1246 	default:
1247 		ret = -EINVAL;
1248 		break;
1249 	}
1250 
1251 out:
1252 	mutex_unlock(&pipe->inode->i_mutex);
1253 	return ret;
1254 }
1255 
1256 static const struct super_operations pipefs_ops = {
1257 	.destroy_inode = free_inode_nonrcu,
1258 	.statfs = simple_statfs,
1259 };
1260 
1261 /*
1262  * pipefs should _never_ be mounted by userland - too much of security hassle,
1263  * no real gain from having the whole whorehouse mounted. So we don't need
1264  * any operations on the root directory. However, we need a non-trivial
1265  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1266  */
1267 static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1268 			 int flags, const char *dev_name, void *data)
1269 {
1270 	return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1271 			&pipefs_dentry_operations, PIPEFS_MAGIC);
1272 }
1273 
1274 static struct file_system_type pipe_fs_type = {
1275 	.name		= "pipefs",
1276 	.mount		= pipefs_mount,
1277 	.kill_sb	= kill_anon_super,
1278 };
1279 
1280 static int __init init_pipe_fs(void)
1281 {
1282 	int err = register_filesystem(&pipe_fs_type);
1283 
1284 	if (!err) {
1285 		pipe_mnt = kern_mount(&pipe_fs_type);
1286 		if (IS_ERR(pipe_mnt)) {
1287 			err = PTR_ERR(pipe_mnt);
1288 			unregister_filesystem(&pipe_fs_type);
1289 		}
1290 	}
1291 	return err;
1292 }
1293 
1294 fs_initcall(init_pipe_fs);
1295