1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 #include <linux/watch_queue.h> 28 #include <linux/sysctl.h> 29 30 #include <linux/uaccess.h> 31 #include <asm/ioctls.h> 32 33 #include "internal.h" 34 35 /* 36 * New pipe buffers will be restricted to this size while the user is exceeding 37 * their pipe buffer quota. The general pipe use case needs at least two 38 * buffers: one for data yet to be read, and one for new data. If this is less 39 * than two, then a write to a non-empty pipe may block even if the pipe is not 40 * full. This can occur with GNU make jobserver or similar uses of pipes as 41 * semaphores: multiple processes may be waiting to write tokens back to the 42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/. 43 * 44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their 45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is 46 * emptied. 47 */ 48 #define PIPE_MIN_DEF_BUFFERS 2 49 50 /* 51 * The max size that a non-root user is allowed to grow the pipe. Can 52 * be set by root in /proc/sys/fs/pipe-max-size 53 */ 54 static unsigned int pipe_max_size = 1048576; 55 56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 57 * matches default values. 58 */ 59 static unsigned long pipe_user_pages_hard; 60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 61 62 /* 63 * We use head and tail indices that aren't masked off, except at the point of 64 * dereference, but rather they're allowed to wrap naturally. This means there 65 * isn't a dead spot in the buffer, but the ring has to be a power of two and 66 * <= 2^31. 67 * -- David Howells 2019-09-23. 68 * 69 * Reads with count = 0 should always return 0. 70 * -- Julian Bradfield 1999-06-07. 71 * 72 * FIFOs and Pipes now generate SIGIO for both readers and writers. 73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 74 * 75 * pipe_read & write cleanup 76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 77 */ 78 79 #define cmp_int(l, r) ((l > r) - (l < r)) 80 81 #ifdef CONFIG_PROVE_LOCKING 82 static int pipe_lock_cmp_fn(const struct lockdep_map *a, 83 const struct lockdep_map *b) 84 { 85 return cmp_int((unsigned long) a, (unsigned long) b); 86 } 87 #endif 88 89 void pipe_lock(struct pipe_inode_info *pipe) 90 { 91 if (pipe->files) 92 mutex_lock(&pipe->mutex); 93 } 94 EXPORT_SYMBOL(pipe_lock); 95 96 void pipe_unlock(struct pipe_inode_info *pipe) 97 { 98 if (pipe->files) 99 mutex_unlock(&pipe->mutex); 100 } 101 EXPORT_SYMBOL(pipe_unlock); 102 103 void pipe_double_lock(struct pipe_inode_info *pipe1, 104 struct pipe_inode_info *pipe2) 105 { 106 BUG_ON(pipe1 == pipe2); 107 108 if (pipe1 > pipe2) 109 swap(pipe1, pipe2); 110 111 pipe_lock(pipe1); 112 pipe_lock(pipe2); 113 } 114 115 static struct page *anon_pipe_get_page(struct pipe_inode_info *pipe) 116 { 117 for (int i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) { 118 if (pipe->tmp_page[i]) { 119 struct page *page = pipe->tmp_page[i]; 120 pipe->tmp_page[i] = NULL; 121 return page; 122 } 123 } 124 125 return alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 126 } 127 128 static void anon_pipe_put_page(struct pipe_inode_info *pipe, 129 struct page *page) 130 { 131 if (page_count(page) == 1) { 132 for (int i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) { 133 if (!pipe->tmp_page[i]) { 134 pipe->tmp_page[i] = page; 135 return; 136 } 137 } 138 } 139 140 put_page(page); 141 } 142 143 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 144 struct pipe_buffer *buf) 145 { 146 struct page *page = buf->page; 147 148 anon_pipe_put_page(pipe, page); 149 } 150 151 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, 152 struct pipe_buffer *buf) 153 { 154 struct page *page = buf->page; 155 156 if (page_count(page) != 1) 157 return false; 158 memcg_kmem_uncharge_page(page, 0); 159 __SetPageLocked(page); 160 return true; 161 } 162 163 /** 164 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer 165 * @pipe: the pipe that the buffer belongs to 166 * @buf: the buffer to attempt to steal 167 * 168 * Description: 169 * This function attempts to steal the &struct page attached to 170 * @buf. If successful, this function returns 0 and returns with 171 * the page locked. The caller may then reuse the page for whatever 172 * he wishes; the typical use is insertion into a different file 173 * page cache. 174 */ 175 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, 176 struct pipe_buffer *buf) 177 { 178 struct page *page = buf->page; 179 180 /* 181 * A reference of one is golden, that means that the owner of this 182 * page is the only one holding a reference to it. lock the page 183 * and return OK. 184 */ 185 if (page_count(page) == 1) { 186 lock_page(page); 187 return true; 188 } 189 return false; 190 } 191 EXPORT_SYMBOL(generic_pipe_buf_try_steal); 192 193 /** 194 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 195 * @pipe: the pipe that the buffer belongs to 196 * @buf: the buffer to get a reference to 197 * 198 * Description: 199 * This function grabs an extra reference to @buf. It's used in 200 * the tee() system call, when we duplicate the buffers in one 201 * pipe into another. 202 */ 203 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 204 { 205 return try_get_page(buf->page); 206 } 207 EXPORT_SYMBOL(generic_pipe_buf_get); 208 209 /** 210 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 211 * @pipe: the pipe that the buffer belongs to 212 * @buf: the buffer to put a reference to 213 * 214 * Description: 215 * This function releases a reference to @buf. 216 */ 217 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 218 struct pipe_buffer *buf) 219 { 220 put_page(buf->page); 221 } 222 EXPORT_SYMBOL(generic_pipe_buf_release); 223 224 static const struct pipe_buf_operations anon_pipe_buf_ops = { 225 .release = anon_pipe_buf_release, 226 .try_steal = anon_pipe_buf_try_steal, 227 .get = generic_pipe_buf_get, 228 }; 229 230 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 231 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 232 { 233 union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) }; 234 unsigned int writers = READ_ONCE(pipe->writers); 235 236 return !pipe_empty(idx.head, idx.tail) || !writers; 237 } 238 239 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe, 240 struct pipe_buffer *buf, 241 unsigned int tail) 242 { 243 pipe_buf_release(pipe, buf); 244 245 /* 246 * If the pipe has a watch_queue, we need additional protection 247 * by the spinlock because notifications get posted with only 248 * this spinlock, no mutex 249 */ 250 if (pipe_has_watch_queue(pipe)) { 251 spin_lock_irq(&pipe->rd_wait.lock); 252 #ifdef CONFIG_WATCH_QUEUE 253 if (buf->flags & PIPE_BUF_FLAG_LOSS) 254 pipe->note_loss = true; 255 #endif 256 pipe->tail = ++tail; 257 spin_unlock_irq(&pipe->rd_wait.lock); 258 return tail; 259 } 260 261 /* 262 * Without a watch_queue, we can simply increment the tail 263 * without the spinlock - the mutex is enough. 264 */ 265 pipe->tail = ++tail; 266 return tail; 267 } 268 269 static ssize_t 270 anon_pipe_read(struct kiocb *iocb, struct iov_iter *to) 271 { 272 size_t total_len = iov_iter_count(to); 273 struct file *filp = iocb->ki_filp; 274 struct pipe_inode_info *pipe = filp->private_data; 275 bool wake_writer = false, wake_next_reader = false; 276 ssize_t ret; 277 278 /* Null read succeeds. */ 279 if (unlikely(total_len == 0)) 280 return 0; 281 282 ret = 0; 283 mutex_lock(&pipe->mutex); 284 285 /* 286 * We only wake up writers if the pipe was full when we started reading 287 * and it is no longer full after reading to avoid unnecessary wakeups. 288 * 289 * But when we do wake up writers, we do so using a sync wakeup 290 * (WF_SYNC), because we want them to get going and generate more 291 * data for us. 292 */ 293 for (;;) { 294 /* Read ->head with a barrier vs post_one_notification() */ 295 unsigned int head = smp_load_acquire(&pipe->head); 296 unsigned int tail = pipe->tail; 297 298 #ifdef CONFIG_WATCH_QUEUE 299 if (pipe->note_loss) { 300 struct watch_notification n; 301 302 if (total_len < 8) { 303 if (ret == 0) 304 ret = -ENOBUFS; 305 break; 306 } 307 308 n.type = WATCH_TYPE_META; 309 n.subtype = WATCH_META_LOSS_NOTIFICATION; 310 n.info = watch_sizeof(n); 311 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) { 312 if (ret == 0) 313 ret = -EFAULT; 314 break; 315 } 316 ret += sizeof(n); 317 total_len -= sizeof(n); 318 pipe->note_loss = false; 319 } 320 #endif 321 322 if (!pipe_empty(head, tail)) { 323 struct pipe_buffer *buf = pipe_buf(pipe, tail); 324 size_t chars = buf->len; 325 size_t written; 326 int error; 327 328 if (chars > total_len) { 329 if (buf->flags & PIPE_BUF_FLAG_WHOLE) { 330 if (ret == 0) 331 ret = -ENOBUFS; 332 break; 333 } 334 chars = total_len; 335 } 336 337 error = pipe_buf_confirm(pipe, buf); 338 if (error) { 339 if (!ret) 340 ret = error; 341 break; 342 } 343 344 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 345 if (unlikely(written < chars)) { 346 if (!ret) 347 ret = -EFAULT; 348 break; 349 } 350 ret += chars; 351 buf->offset += chars; 352 buf->len -= chars; 353 354 /* Was it a packet buffer? Clean up and exit */ 355 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 356 total_len = chars; 357 buf->len = 0; 358 } 359 360 if (!buf->len) { 361 wake_writer |= pipe_full(head, tail, pipe->max_usage); 362 tail = pipe_update_tail(pipe, buf, tail); 363 } 364 total_len -= chars; 365 if (!total_len) 366 break; /* common path: read succeeded */ 367 if (!pipe_empty(head, tail)) /* More to do? */ 368 continue; 369 } 370 371 if (!pipe->writers) 372 break; 373 if (ret) 374 break; 375 if ((filp->f_flags & O_NONBLOCK) || 376 (iocb->ki_flags & IOCB_NOWAIT)) { 377 ret = -EAGAIN; 378 break; 379 } 380 mutex_unlock(&pipe->mutex); 381 /* 382 * We only get here if we didn't actually read anything. 383 * 384 * But because we didn't read anything, at this point we can 385 * just return directly with -ERESTARTSYS if we're interrupted, 386 * since we've done any required wakeups and there's no need 387 * to mark anything accessed. And we've dropped the lock. 388 */ 389 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) 390 return -ERESTARTSYS; 391 392 wake_next_reader = true; 393 mutex_lock(&pipe->mutex); 394 } 395 if (pipe_is_empty(pipe)) 396 wake_next_reader = false; 397 mutex_unlock(&pipe->mutex); 398 399 if (wake_writer) 400 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 401 if (wake_next_reader) 402 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 403 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 404 return ret; 405 } 406 407 static ssize_t 408 fifo_pipe_read(struct kiocb *iocb, struct iov_iter *to) 409 { 410 int ret = anon_pipe_read(iocb, to); 411 if (ret > 0) 412 file_accessed(iocb->ki_filp); 413 return ret; 414 } 415 416 static inline int is_packetized(struct file *file) 417 { 418 return (file->f_flags & O_DIRECT) != 0; 419 } 420 421 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 422 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 423 { 424 union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) }; 425 unsigned int max_usage = READ_ONCE(pipe->max_usage); 426 427 return !pipe_full(idx.head, idx.tail, max_usage) || 428 !READ_ONCE(pipe->readers); 429 } 430 431 static ssize_t 432 anon_pipe_write(struct kiocb *iocb, struct iov_iter *from) 433 { 434 struct file *filp = iocb->ki_filp; 435 struct pipe_inode_info *pipe = filp->private_data; 436 unsigned int head; 437 ssize_t ret = 0; 438 size_t total_len = iov_iter_count(from); 439 ssize_t chars; 440 bool was_empty = false; 441 bool wake_next_writer = false; 442 443 /* 444 * Reject writing to watch queue pipes before the point where we lock 445 * the pipe. 446 * Otherwise, lockdep would be unhappy if the caller already has another 447 * pipe locked. 448 * If we had to support locking a normal pipe and a notification pipe at 449 * the same time, we could set up lockdep annotations for that, but 450 * since we don't actually need that, it's simpler to just bail here. 451 */ 452 if (pipe_has_watch_queue(pipe)) 453 return -EXDEV; 454 455 /* Null write succeeds. */ 456 if (unlikely(total_len == 0)) 457 return 0; 458 459 mutex_lock(&pipe->mutex); 460 461 if (!pipe->readers) { 462 send_sig(SIGPIPE, current, 0); 463 ret = -EPIPE; 464 goto out; 465 } 466 467 /* 468 * If it wasn't empty we try to merge new data into 469 * the last buffer. 470 * 471 * That naturally merges small writes, but it also 472 * page-aligns the rest of the writes for large writes 473 * spanning multiple pages. 474 */ 475 head = pipe->head; 476 was_empty = pipe_empty(head, pipe->tail); 477 chars = total_len & (PAGE_SIZE-1); 478 if (chars && !was_empty) { 479 struct pipe_buffer *buf = pipe_buf(pipe, head - 1); 480 int offset = buf->offset + buf->len; 481 482 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && 483 offset + chars <= PAGE_SIZE) { 484 ret = pipe_buf_confirm(pipe, buf); 485 if (ret) 486 goto out; 487 488 ret = copy_page_from_iter(buf->page, offset, chars, from); 489 if (unlikely(ret < chars)) { 490 ret = -EFAULT; 491 goto out; 492 } 493 494 buf->len += ret; 495 if (!iov_iter_count(from)) 496 goto out; 497 } 498 } 499 500 for (;;) { 501 if (!pipe->readers) { 502 send_sig(SIGPIPE, current, 0); 503 if (!ret) 504 ret = -EPIPE; 505 break; 506 } 507 508 head = pipe->head; 509 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 510 struct pipe_buffer *buf; 511 struct page *page; 512 int copied; 513 514 page = anon_pipe_get_page(pipe); 515 if (unlikely(!page)) { 516 if (!ret) 517 ret = -ENOMEM; 518 break; 519 } 520 521 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 522 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 523 anon_pipe_put_page(pipe, page); 524 if (!ret) 525 ret = -EFAULT; 526 break; 527 } 528 529 pipe->head = head + 1; 530 /* Insert it into the buffer array */ 531 buf = pipe_buf(pipe, head); 532 buf->page = page; 533 buf->ops = &anon_pipe_buf_ops; 534 buf->offset = 0; 535 if (is_packetized(filp)) 536 buf->flags = PIPE_BUF_FLAG_PACKET; 537 else 538 buf->flags = PIPE_BUF_FLAG_CAN_MERGE; 539 540 buf->len = copied; 541 ret += copied; 542 543 if (!iov_iter_count(from)) 544 break; 545 546 continue; 547 } 548 549 /* Wait for buffer space to become available. */ 550 if ((filp->f_flags & O_NONBLOCK) || 551 (iocb->ki_flags & IOCB_NOWAIT)) { 552 if (!ret) 553 ret = -EAGAIN; 554 break; 555 } 556 if (signal_pending(current)) { 557 if (!ret) 558 ret = -ERESTARTSYS; 559 break; 560 } 561 562 /* 563 * We're going to release the pipe lock and wait for more 564 * space. We wake up any readers if necessary, and then 565 * after waiting we need to re-check whether the pipe 566 * become empty while we dropped the lock. 567 */ 568 mutex_unlock(&pipe->mutex); 569 if (was_empty) 570 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 571 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 572 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); 573 mutex_lock(&pipe->mutex); 574 was_empty = pipe_is_empty(pipe); 575 wake_next_writer = true; 576 } 577 out: 578 if (pipe_is_full(pipe)) 579 wake_next_writer = false; 580 mutex_unlock(&pipe->mutex); 581 582 /* 583 * If we do do a wakeup event, we do a 'sync' wakeup, because we 584 * want the reader to start processing things asap, rather than 585 * leave the data pending. 586 * 587 * This is particularly important for small writes, because of 588 * how (for example) the GNU make jobserver uses small writes to 589 * wake up pending jobs 590 * 591 * Epoll nonsensically wants a wakeup whether the pipe 592 * was already empty or not. 593 */ 594 if (was_empty || pipe->poll_usage) 595 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 596 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 597 if (wake_next_writer) 598 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 599 return ret; 600 } 601 602 static ssize_t 603 fifo_pipe_write(struct kiocb *iocb, struct iov_iter *from) 604 { 605 int ret = anon_pipe_write(iocb, from); 606 if (ret > 0) { 607 struct file *filp = iocb->ki_filp; 608 if (sb_start_write_trylock(file_inode(filp)->i_sb)) { 609 int err = file_update_time(filp); 610 if (err) 611 ret = err; 612 sb_end_write(file_inode(filp)->i_sb); 613 } 614 } 615 return ret; 616 } 617 618 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 619 { 620 struct pipe_inode_info *pipe = filp->private_data; 621 unsigned int count, head, tail; 622 623 switch (cmd) { 624 case FIONREAD: 625 mutex_lock(&pipe->mutex); 626 count = 0; 627 head = pipe->head; 628 tail = pipe->tail; 629 630 while (!pipe_empty(head, tail)) { 631 count += pipe_buf(pipe, tail)->len; 632 tail++; 633 } 634 mutex_unlock(&pipe->mutex); 635 636 return put_user(count, (int __user *)arg); 637 638 #ifdef CONFIG_WATCH_QUEUE 639 case IOC_WATCH_QUEUE_SET_SIZE: { 640 int ret; 641 mutex_lock(&pipe->mutex); 642 ret = watch_queue_set_size(pipe, arg); 643 mutex_unlock(&pipe->mutex); 644 return ret; 645 } 646 647 case IOC_WATCH_QUEUE_SET_FILTER: 648 return watch_queue_set_filter( 649 pipe, (struct watch_notification_filter __user *)arg); 650 #endif 651 652 default: 653 return -ENOIOCTLCMD; 654 } 655 } 656 657 /* No kernel lock held - fine */ 658 static __poll_t 659 pipe_poll(struct file *filp, poll_table *wait) 660 { 661 __poll_t mask; 662 struct pipe_inode_info *pipe = filp->private_data; 663 union pipe_index idx; 664 665 /* Epoll has some historical nasty semantics, this enables them */ 666 WRITE_ONCE(pipe->poll_usage, true); 667 668 /* 669 * Reading pipe state only -- no need for acquiring the semaphore. 670 * 671 * But because this is racy, the code has to add the 672 * entry to the poll table _first_ .. 673 */ 674 if (filp->f_mode & FMODE_READ) 675 poll_wait(filp, &pipe->rd_wait, wait); 676 if (filp->f_mode & FMODE_WRITE) 677 poll_wait(filp, &pipe->wr_wait, wait); 678 679 /* 680 * .. and only then can you do the racy tests. That way, 681 * if something changes and you got it wrong, the poll 682 * table entry will wake you up and fix it. 683 */ 684 idx.head_tail = READ_ONCE(pipe->head_tail); 685 686 mask = 0; 687 if (filp->f_mode & FMODE_READ) { 688 if (!pipe_empty(idx.head, idx.tail)) 689 mask |= EPOLLIN | EPOLLRDNORM; 690 if (!pipe->writers && filp->f_pipe != pipe->w_counter) 691 mask |= EPOLLHUP; 692 } 693 694 if (filp->f_mode & FMODE_WRITE) { 695 if (!pipe_full(idx.head, idx.tail, pipe->max_usage)) 696 mask |= EPOLLOUT | EPOLLWRNORM; 697 /* 698 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 699 * behave exactly like pipes for poll(). 700 */ 701 if (!pipe->readers) 702 mask |= EPOLLERR; 703 } 704 705 return mask; 706 } 707 708 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 709 { 710 int kill = 0; 711 712 spin_lock(&inode->i_lock); 713 if (!--pipe->files) { 714 inode->i_pipe = NULL; 715 kill = 1; 716 } 717 spin_unlock(&inode->i_lock); 718 719 if (kill) 720 free_pipe_info(pipe); 721 } 722 723 static int 724 pipe_release(struct inode *inode, struct file *file) 725 { 726 struct pipe_inode_info *pipe = file->private_data; 727 728 mutex_lock(&pipe->mutex); 729 if (file->f_mode & FMODE_READ) 730 pipe->readers--; 731 if (file->f_mode & FMODE_WRITE) 732 pipe->writers--; 733 734 /* Was that the last reader or writer, but not the other side? */ 735 if (!pipe->readers != !pipe->writers) { 736 wake_up_interruptible_all(&pipe->rd_wait); 737 wake_up_interruptible_all(&pipe->wr_wait); 738 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 739 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 740 } 741 mutex_unlock(&pipe->mutex); 742 743 put_pipe_info(inode, pipe); 744 return 0; 745 } 746 747 static int 748 pipe_fasync(int fd, struct file *filp, int on) 749 { 750 struct pipe_inode_info *pipe = filp->private_data; 751 int retval = 0; 752 753 mutex_lock(&pipe->mutex); 754 if (filp->f_mode & FMODE_READ) 755 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 756 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 757 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 758 if (retval < 0 && (filp->f_mode & FMODE_READ)) 759 /* this can happen only if on == T */ 760 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 761 } 762 mutex_unlock(&pipe->mutex); 763 return retval; 764 } 765 766 unsigned long account_pipe_buffers(struct user_struct *user, 767 unsigned long old, unsigned long new) 768 { 769 return atomic_long_add_return(new - old, &user->pipe_bufs); 770 } 771 772 bool too_many_pipe_buffers_soft(unsigned long user_bufs) 773 { 774 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 775 776 return soft_limit && user_bufs > soft_limit; 777 } 778 779 bool too_many_pipe_buffers_hard(unsigned long user_bufs) 780 { 781 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 782 783 return hard_limit && user_bufs > hard_limit; 784 } 785 786 bool pipe_is_unprivileged_user(void) 787 { 788 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 789 } 790 791 struct pipe_inode_info *alloc_pipe_info(void) 792 { 793 struct pipe_inode_info *pipe; 794 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 795 struct user_struct *user = get_current_user(); 796 unsigned long user_bufs; 797 unsigned int max_size = READ_ONCE(pipe_max_size); 798 799 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 800 if (pipe == NULL) 801 goto out_free_uid; 802 803 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 804 pipe_bufs = max_size >> PAGE_SHIFT; 805 806 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 807 808 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { 809 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS); 810 pipe_bufs = PIPE_MIN_DEF_BUFFERS; 811 } 812 813 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) 814 goto out_revert_acct; 815 816 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 817 GFP_KERNEL_ACCOUNT); 818 819 if (pipe->bufs) { 820 init_waitqueue_head(&pipe->rd_wait); 821 init_waitqueue_head(&pipe->wr_wait); 822 pipe->r_counter = pipe->w_counter = 1; 823 pipe->max_usage = pipe_bufs; 824 pipe->ring_size = pipe_bufs; 825 pipe->nr_accounted = pipe_bufs; 826 pipe->user = user; 827 mutex_init(&pipe->mutex); 828 lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL); 829 return pipe; 830 } 831 832 out_revert_acct: 833 (void) account_pipe_buffers(user, pipe_bufs, 0); 834 kfree(pipe); 835 out_free_uid: 836 free_uid(user); 837 return NULL; 838 } 839 840 void free_pipe_info(struct pipe_inode_info *pipe) 841 { 842 unsigned int i; 843 844 #ifdef CONFIG_WATCH_QUEUE 845 if (pipe->watch_queue) 846 watch_queue_clear(pipe->watch_queue); 847 #endif 848 849 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0); 850 free_uid(pipe->user); 851 for (i = 0; i < pipe->ring_size; i++) { 852 struct pipe_buffer *buf = pipe->bufs + i; 853 if (buf->ops) 854 pipe_buf_release(pipe, buf); 855 } 856 #ifdef CONFIG_WATCH_QUEUE 857 if (pipe->watch_queue) 858 put_watch_queue(pipe->watch_queue); 859 #endif 860 for (i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) { 861 if (pipe->tmp_page[i]) 862 __free_page(pipe->tmp_page[i]); 863 } 864 kfree(pipe->bufs); 865 kfree(pipe); 866 } 867 868 static struct vfsmount *pipe_mnt __ro_after_init; 869 870 /* 871 * pipefs_dname() is called from d_path(). 872 */ 873 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 874 { 875 return dynamic_dname(buffer, buflen, "pipe:[%lu]", 876 d_inode(dentry)->i_ino); 877 } 878 879 static const struct dentry_operations pipefs_dentry_operations = { 880 .d_dname = pipefs_dname, 881 }; 882 883 static const struct file_operations pipeanon_fops; 884 885 static struct inode * get_pipe_inode(void) 886 { 887 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 888 struct pipe_inode_info *pipe; 889 890 if (!inode) 891 goto fail_inode; 892 893 inode->i_ino = get_next_ino(); 894 895 pipe = alloc_pipe_info(); 896 if (!pipe) 897 goto fail_iput; 898 899 inode->i_pipe = pipe; 900 pipe->files = 2; 901 pipe->readers = pipe->writers = 1; 902 inode->i_fop = &pipeanon_fops; 903 904 /* 905 * Mark the inode dirty from the very beginning, 906 * that way it will never be moved to the dirty 907 * list because "mark_inode_dirty()" will think 908 * that it already _is_ on the dirty list. 909 */ 910 inode->i_state = I_DIRTY; 911 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 912 inode->i_uid = current_fsuid(); 913 inode->i_gid = current_fsgid(); 914 simple_inode_init_ts(inode); 915 916 return inode; 917 918 fail_iput: 919 iput(inode); 920 921 fail_inode: 922 return NULL; 923 } 924 925 int create_pipe_files(struct file **res, int flags) 926 { 927 struct inode *inode = get_pipe_inode(); 928 struct file *f; 929 int error; 930 931 if (!inode) 932 return -ENFILE; 933 934 if (flags & O_NOTIFICATION_PIPE) { 935 error = watch_queue_init(inode->i_pipe); 936 if (error) { 937 free_pipe_info(inode->i_pipe); 938 iput(inode); 939 return error; 940 } 941 } 942 943 f = alloc_file_pseudo(inode, pipe_mnt, "", 944 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 945 &pipeanon_fops); 946 if (IS_ERR(f)) { 947 free_pipe_info(inode->i_pipe); 948 iput(inode); 949 return PTR_ERR(f); 950 } 951 952 f->private_data = inode->i_pipe; 953 f->f_pipe = 0; 954 955 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 956 &pipeanon_fops); 957 if (IS_ERR(res[0])) { 958 put_pipe_info(inode, inode->i_pipe); 959 fput(f); 960 return PTR_ERR(res[0]); 961 } 962 res[0]->private_data = inode->i_pipe; 963 res[0]->f_pipe = 0; 964 res[1] = f; 965 stream_open(inode, res[0]); 966 stream_open(inode, res[1]); 967 /* 968 * Disable permission and pre-content events, but enable legacy 969 * inotify events for legacy users. 970 */ 971 file_set_fsnotify_mode(res[0], FMODE_NONOTIFY_PERM); 972 file_set_fsnotify_mode(res[1], FMODE_NONOTIFY_PERM); 973 return 0; 974 } 975 976 static int __do_pipe_flags(int *fd, struct file **files, int flags) 977 { 978 int error; 979 int fdw, fdr; 980 981 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) 982 return -EINVAL; 983 984 error = create_pipe_files(files, flags); 985 if (error) 986 return error; 987 988 error = get_unused_fd_flags(flags); 989 if (error < 0) 990 goto err_read_pipe; 991 fdr = error; 992 993 error = get_unused_fd_flags(flags); 994 if (error < 0) 995 goto err_fdr; 996 fdw = error; 997 998 audit_fd_pair(fdr, fdw); 999 fd[0] = fdr; 1000 fd[1] = fdw; 1001 /* pipe groks IOCB_NOWAIT */ 1002 files[0]->f_mode |= FMODE_NOWAIT; 1003 files[1]->f_mode |= FMODE_NOWAIT; 1004 return 0; 1005 1006 err_fdr: 1007 put_unused_fd(fdr); 1008 err_read_pipe: 1009 fput(files[0]); 1010 fput(files[1]); 1011 return error; 1012 } 1013 1014 int do_pipe_flags(int *fd, int flags) 1015 { 1016 struct file *files[2]; 1017 int error = __do_pipe_flags(fd, files, flags); 1018 if (!error) { 1019 fd_install(fd[0], files[0]); 1020 fd_install(fd[1], files[1]); 1021 } 1022 return error; 1023 } 1024 1025 /* 1026 * sys_pipe() is the normal C calling standard for creating 1027 * a pipe. It's not the way Unix traditionally does this, though. 1028 */ 1029 static int do_pipe2(int __user *fildes, int flags) 1030 { 1031 struct file *files[2]; 1032 int fd[2]; 1033 int error; 1034 1035 error = __do_pipe_flags(fd, files, flags); 1036 if (!error) { 1037 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 1038 fput(files[0]); 1039 fput(files[1]); 1040 put_unused_fd(fd[0]); 1041 put_unused_fd(fd[1]); 1042 error = -EFAULT; 1043 } else { 1044 fd_install(fd[0], files[0]); 1045 fd_install(fd[1], files[1]); 1046 } 1047 } 1048 return error; 1049 } 1050 1051 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 1052 { 1053 return do_pipe2(fildes, flags); 1054 } 1055 1056 SYSCALL_DEFINE1(pipe, int __user *, fildes) 1057 { 1058 return do_pipe2(fildes, 0); 1059 } 1060 1061 /* 1062 * This is the stupid "wait for pipe to be readable or writable" 1063 * model. 1064 * 1065 * See pipe_read/write() for the proper kind of exclusive wait, 1066 * but that requires that we wake up any other readers/writers 1067 * if we then do not end up reading everything (ie the whole 1068 * "wake_next_reader/writer" logic in pipe_read/write()). 1069 */ 1070 void pipe_wait_readable(struct pipe_inode_info *pipe) 1071 { 1072 pipe_unlock(pipe); 1073 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe)); 1074 pipe_lock(pipe); 1075 } 1076 1077 void pipe_wait_writable(struct pipe_inode_info *pipe) 1078 { 1079 pipe_unlock(pipe); 1080 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe)); 1081 pipe_lock(pipe); 1082 } 1083 1084 /* 1085 * This depends on both the wait (here) and the wakeup (wake_up_partner) 1086 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot 1087 * race with the count check and waitqueue prep. 1088 * 1089 * Normally in order to avoid races, you'd do the prepare_to_wait() first, 1090 * then check the condition you're waiting for, and only then sleep. But 1091 * because of the pipe lock, we can check the condition before being on 1092 * the wait queue. 1093 * 1094 * We use the 'rd_wait' waitqueue for pipe partner waiting. 1095 */ 1096 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 1097 { 1098 DEFINE_WAIT(rdwait); 1099 int cur = *cnt; 1100 1101 while (cur == *cnt) { 1102 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); 1103 pipe_unlock(pipe); 1104 schedule(); 1105 finish_wait(&pipe->rd_wait, &rdwait); 1106 pipe_lock(pipe); 1107 if (signal_pending(current)) 1108 break; 1109 } 1110 return cur == *cnt ? -ERESTARTSYS : 0; 1111 } 1112 1113 static void wake_up_partner(struct pipe_inode_info *pipe) 1114 { 1115 wake_up_interruptible_all(&pipe->rd_wait); 1116 } 1117 1118 static int fifo_open(struct inode *inode, struct file *filp) 1119 { 1120 bool is_pipe = inode->i_fop == &pipeanon_fops; 1121 struct pipe_inode_info *pipe; 1122 int ret; 1123 1124 filp->f_pipe = 0; 1125 1126 spin_lock(&inode->i_lock); 1127 if (inode->i_pipe) { 1128 pipe = inode->i_pipe; 1129 pipe->files++; 1130 spin_unlock(&inode->i_lock); 1131 } else { 1132 spin_unlock(&inode->i_lock); 1133 pipe = alloc_pipe_info(); 1134 if (!pipe) 1135 return -ENOMEM; 1136 pipe->files = 1; 1137 spin_lock(&inode->i_lock); 1138 if (unlikely(inode->i_pipe)) { 1139 inode->i_pipe->files++; 1140 spin_unlock(&inode->i_lock); 1141 free_pipe_info(pipe); 1142 pipe = inode->i_pipe; 1143 } else { 1144 inode->i_pipe = pipe; 1145 spin_unlock(&inode->i_lock); 1146 } 1147 } 1148 filp->private_data = pipe; 1149 /* OK, we have a pipe and it's pinned down */ 1150 1151 mutex_lock(&pipe->mutex); 1152 1153 /* We can only do regular read/write on fifos */ 1154 stream_open(inode, filp); 1155 1156 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1157 case FMODE_READ: 1158 /* 1159 * O_RDONLY 1160 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1161 * opened, even when there is no process writing the FIFO. 1162 */ 1163 pipe->r_counter++; 1164 if (pipe->readers++ == 0) 1165 wake_up_partner(pipe); 1166 1167 if (!is_pipe && !pipe->writers) { 1168 if ((filp->f_flags & O_NONBLOCK)) { 1169 /* suppress EPOLLHUP until we have 1170 * seen a writer */ 1171 filp->f_pipe = pipe->w_counter; 1172 } else { 1173 if (wait_for_partner(pipe, &pipe->w_counter)) 1174 goto err_rd; 1175 } 1176 } 1177 break; 1178 1179 case FMODE_WRITE: 1180 /* 1181 * O_WRONLY 1182 * POSIX.1 says that O_NONBLOCK means return -1 with 1183 * errno=ENXIO when there is no process reading the FIFO. 1184 */ 1185 ret = -ENXIO; 1186 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1187 goto err; 1188 1189 pipe->w_counter++; 1190 if (!pipe->writers++) 1191 wake_up_partner(pipe); 1192 1193 if (!is_pipe && !pipe->readers) { 1194 if (wait_for_partner(pipe, &pipe->r_counter)) 1195 goto err_wr; 1196 } 1197 break; 1198 1199 case FMODE_READ | FMODE_WRITE: 1200 /* 1201 * O_RDWR 1202 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1203 * This implementation will NEVER block on a O_RDWR open, since 1204 * the process can at least talk to itself. 1205 */ 1206 1207 pipe->readers++; 1208 pipe->writers++; 1209 pipe->r_counter++; 1210 pipe->w_counter++; 1211 if (pipe->readers == 1 || pipe->writers == 1) 1212 wake_up_partner(pipe); 1213 break; 1214 1215 default: 1216 ret = -EINVAL; 1217 goto err; 1218 } 1219 1220 /* Ok! */ 1221 mutex_unlock(&pipe->mutex); 1222 return 0; 1223 1224 err_rd: 1225 if (!--pipe->readers) 1226 wake_up_interruptible(&pipe->wr_wait); 1227 ret = -ERESTARTSYS; 1228 goto err; 1229 1230 err_wr: 1231 if (!--pipe->writers) 1232 wake_up_interruptible_all(&pipe->rd_wait); 1233 ret = -ERESTARTSYS; 1234 goto err; 1235 1236 err: 1237 mutex_unlock(&pipe->mutex); 1238 1239 put_pipe_info(inode, pipe); 1240 return ret; 1241 } 1242 1243 const struct file_operations pipefifo_fops = { 1244 .open = fifo_open, 1245 .read_iter = fifo_pipe_read, 1246 .write_iter = fifo_pipe_write, 1247 .poll = pipe_poll, 1248 .unlocked_ioctl = pipe_ioctl, 1249 .release = pipe_release, 1250 .fasync = pipe_fasync, 1251 .splice_write = iter_file_splice_write, 1252 }; 1253 1254 static const struct file_operations pipeanon_fops = { 1255 .open = fifo_open, 1256 .read_iter = anon_pipe_read, 1257 .write_iter = anon_pipe_write, 1258 .poll = pipe_poll, 1259 .unlocked_ioctl = pipe_ioctl, 1260 .release = pipe_release, 1261 .fasync = pipe_fasync, 1262 .splice_write = iter_file_splice_write, 1263 }; 1264 1265 /* 1266 * Currently we rely on the pipe array holding a power-of-2 number 1267 * of pages. Returns 0 on error. 1268 */ 1269 unsigned int round_pipe_size(unsigned int size) 1270 { 1271 if (size > (1U << 31)) 1272 return 0; 1273 1274 /* Minimum pipe size, as required by POSIX */ 1275 if (size < PAGE_SIZE) 1276 return PAGE_SIZE; 1277 1278 return roundup_pow_of_two(size); 1279 } 1280 1281 /* 1282 * Resize the pipe ring to a number of slots. 1283 * 1284 * Note the pipe can be reduced in capacity, but only if the current 1285 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be 1286 * returned instead. 1287 */ 1288 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots) 1289 { 1290 struct pipe_buffer *bufs; 1291 unsigned int head, tail, mask, n; 1292 1293 /* nr_slots larger than limits of pipe->{head,tail} */ 1294 if (unlikely(nr_slots > (pipe_index_t)-1u)) 1295 return -EINVAL; 1296 1297 bufs = kcalloc(nr_slots, sizeof(*bufs), 1298 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1299 if (unlikely(!bufs)) 1300 return -ENOMEM; 1301 1302 spin_lock_irq(&pipe->rd_wait.lock); 1303 mask = pipe->ring_size - 1; 1304 head = pipe->head; 1305 tail = pipe->tail; 1306 1307 n = pipe_occupancy(head, tail); 1308 if (nr_slots < n) { 1309 spin_unlock_irq(&pipe->rd_wait.lock); 1310 kfree(bufs); 1311 return -EBUSY; 1312 } 1313 1314 /* 1315 * The pipe array wraps around, so just start the new one at zero 1316 * and adjust the indices. 1317 */ 1318 if (n > 0) { 1319 unsigned int h = head & mask; 1320 unsigned int t = tail & mask; 1321 if (h > t) { 1322 memcpy(bufs, pipe->bufs + t, 1323 n * sizeof(struct pipe_buffer)); 1324 } else { 1325 unsigned int tsize = pipe->ring_size - t; 1326 if (h > 0) 1327 memcpy(bufs + tsize, pipe->bufs, 1328 h * sizeof(struct pipe_buffer)); 1329 memcpy(bufs, pipe->bufs + t, 1330 tsize * sizeof(struct pipe_buffer)); 1331 } 1332 } 1333 1334 head = n; 1335 tail = 0; 1336 1337 kfree(pipe->bufs); 1338 pipe->bufs = bufs; 1339 pipe->ring_size = nr_slots; 1340 if (pipe->max_usage > nr_slots) 1341 pipe->max_usage = nr_slots; 1342 pipe->tail = tail; 1343 pipe->head = head; 1344 1345 if (!pipe_has_watch_queue(pipe)) { 1346 pipe->max_usage = nr_slots; 1347 pipe->nr_accounted = nr_slots; 1348 } 1349 1350 spin_unlock_irq(&pipe->rd_wait.lock); 1351 1352 /* This might have made more room for writers */ 1353 wake_up_interruptible(&pipe->wr_wait); 1354 return 0; 1355 } 1356 1357 /* 1358 * Allocate a new array of pipe buffers and copy the info over. Returns the 1359 * pipe size if successful, or return -ERROR on error. 1360 */ 1361 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg) 1362 { 1363 unsigned long user_bufs; 1364 unsigned int nr_slots, size; 1365 long ret = 0; 1366 1367 if (pipe_has_watch_queue(pipe)) 1368 return -EBUSY; 1369 1370 size = round_pipe_size(arg); 1371 nr_slots = size >> PAGE_SHIFT; 1372 1373 if (!nr_slots) 1374 return -EINVAL; 1375 1376 /* 1377 * If trying to increase the pipe capacity, check that an 1378 * unprivileged user is not trying to exceed various limits 1379 * (soft limit check here, hard limit check just below). 1380 * Decreasing the pipe capacity is always permitted, even 1381 * if the user is currently over a limit. 1382 */ 1383 if (nr_slots > pipe->max_usage && 1384 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1385 return -EPERM; 1386 1387 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots); 1388 1389 if (nr_slots > pipe->max_usage && 1390 (too_many_pipe_buffers_hard(user_bufs) || 1391 too_many_pipe_buffers_soft(user_bufs)) && 1392 pipe_is_unprivileged_user()) { 1393 ret = -EPERM; 1394 goto out_revert_acct; 1395 } 1396 1397 ret = pipe_resize_ring(pipe, nr_slots); 1398 if (ret < 0) 1399 goto out_revert_acct; 1400 1401 return pipe->max_usage * PAGE_SIZE; 1402 1403 out_revert_acct: 1404 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted); 1405 return ret; 1406 } 1407 1408 /* 1409 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is 1410 * not enough to verify that this is a pipe. 1411 */ 1412 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) 1413 { 1414 struct pipe_inode_info *pipe = file->private_data; 1415 1416 if (!pipe) 1417 return NULL; 1418 if (file->f_op != &pipefifo_fops && file->f_op != &pipeanon_fops) 1419 return NULL; 1420 if (for_splice && pipe_has_watch_queue(pipe)) 1421 return NULL; 1422 return pipe; 1423 } 1424 1425 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg) 1426 { 1427 struct pipe_inode_info *pipe; 1428 long ret; 1429 1430 pipe = get_pipe_info(file, false); 1431 if (!pipe) 1432 return -EBADF; 1433 1434 mutex_lock(&pipe->mutex); 1435 1436 switch (cmd) { 1437 case F_SETPIPE_SZ: 1438 ret = pipe_set_size(pipe, arg); 1439 break; 1440 case F_GETPIPE_SZ: 1441 ret = pipe->max_usage * PAGE_SIZE; 1442 break; 1443 default: 1444 ret = -EINVAL; 1445 break; 1446 } 1447 1448 mutex_unlock(&pipe->mutex); 1449 return ret; 1450 } 1451 1452 static const struct super_operations pipefs_ops = { 1453 .destroy_inode = free_inode_nonrcu, 1454 .statfs = simple_statfs, 1455 }; 1456 1457 /* 1458 * pipefs should _never_ be mounted by userland - too much of security hassle, 1459 * no real gain from having the whole file system mounted. So we don't need 1460 * any operations on the root directory. However, we need a non-trivial 1461 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1462 */ 1463 1464 static int pipefs_init_fs_context(struct fs_context *fc) 1465 { 1466 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1467 if (!ctx) 1468 return -ENOMEM; 1469 ctx->ops = &pipefs_ops; 1470 ctx->dops = &pipefs_dentry_operations; 1471 return 0; 1472 } 1473 1474 static struct file_system_type pipe_fs_type = { 1475 .name = "pipefs", 1476 .init_fs_context = pipefs_init_fs_context, 1477 .kill_sb = kill_anon_super, 1478 }; 1479 1480 #ifdef CONFIG_SYSCTL 1481 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp, 1482 unsigned int *valp, 1483 int write, void *data) 1484 { 1485 if (write) { 1486 unsigned int val; 1487 1488 val = round_pipe_size(*lvalp); 1489 if (val == 0) 1490 return -EINVAL; 1491 1492 *valp = val; 1493 } else { 1494 unsigned int val = *valp; 1495 *lvalp = (unsigned long) val; 1496 } 1497 1498 return 0; 1499 } 1500 1501 static int proc_dopipe_max_size(const struct ctl_table *table, int write, 1502 void *buffer, size_t *lenp, loff_t *ppos) 1503 { 1504 return do_proc_douintvec(table, write, buffer, lenp, ppos, 1505 do_proc_dopipe_max_size_conv, NULL); 1506 } 1507 1508 static const struct ctl_table fs_pipe_sysctls[] = { 1509 { 1510 .procname = "pipe-max-size", 1511 .data = &pipe_max_size, 1512 .maxlen = sizeof(pipe_max_size), 1513 .mode = 0644, 1514 .proc_handler = proc_dopipe_max_size, 1515 }, 1516 { 1517 .procname = "pipe-user-pages-hard", 1518 .data = &pipe_user_pages_hard, 1519 .maxlen = sizeof(pipe_user_pages_hard), 1520 .mode = 0644, 1521 .proc_handler = proc_doulongvec_minmax, 1522 }, 1523 { 1524 .procname = "pipe-user-pages-soft", 1525 .data = &pipe_user_pages_soft, 1526 .maxlen = sizeof(pipe_user_pages_soft), 1527 .mode = 0644, 1528 .proc_handler = proc_doulongvec_minmax, 1529 }, 1530 }; 1531 #endif 1532 1533 static int __init init_pipe_fs(void) 1534 { 1535 int err = register_filesystem(&pipe_fs_type); 1536 1537 if (!err) { 1538 pipe_mnt = kern_mount(&pipe_fs_type); 1539 if (IS_ERR(pipe_mnt)) { 1540 err = PTR_ERR(pipe_mnt); 1541 unregister_filesystem(&pipe_fs_type); 1542 } 1543 } 1544 #ifdef CONFIG_SYSCTL 1545 register_sysctl_init("fs", fs_pipe_sysctls); 1546 #endif 1547 return err; 1548 } 1549 1550 fs_initcall(init_pipe_fs); 1551