xref: /linux/fs/pipe.c (revision 7fe03f8ff55d33fe6398637f78a8620dd2a78b38)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29 
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32 
33 #include "internal.h"
34 
35 /*
36  * New pipe buffers will be restricted to this size while the user is exceeding
37  * their pipe buffer quota. The general pipe use case needs at least two
38  * buffers: one for data yet to be read, and one for new data. If this is less
39  * than two, then a write to a non-empty pipe may block even if the pipe is not
40  * full. This can occur with GNU make jobserver or similar uses of pipes as
41  * semaphores: multiple processes may be waiting to write tokens back to the
42  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43  *
44  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46  * emptied.
47  */
48 #define PIPE_MIN_DEF_BUFFERS 2
49 
50 /*
51  * The max size that a non-root user is allowed to grow the pipe. Can
52  * be set by root in /proc/sys/fs/pipe-max-size
53  */
54 static unsigned int pipe_max_size = 1048576;
55 
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57  * matches default values.
58  */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61 
62 /*
63  * We use head and tail indices that aren't masked off, except at the point of
64  * dereference, but rather they're allowed to wrap naturally.  This means there
65  * isn't a dead spot in the buffer, but the ring has to be a power of two and
66  * <= 2^31.
67  * -- David Howells 2019-09-23.
68  *
69  * Reads with count = 0 should always return 0.
70  * -- Julian Bradfield 1999-06-07.
71  *
72  * FIFOs and Pipes now generate SIGIO for both readers and writers.
73  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74  *
75  * pipe_read & write cleanup
76  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77  */
78 
79 #define cmp_int(l, r)		((l > r) - (l < r))
80 
81 #ifdef CONFIG_PROVE_LOCKING
82 static int pipe_lock_cmp_fn(const struct lockdep_map *a,
83 			    const struct lockdep_map *b)
84 {
85 	return cmp_int((unsigned long) a, (unsigned long) b);
86 }
87 #endif
88 
89 void pipe_lock(struct pipe_inode_info *pipe)
90 {
91 	if (pipe->files)
92 		mutex_lock(&pipe->mutex);
93 }
94 EXPORT_SYMBOL(pipe_lock);
95 
96 void pipe_unlock(struct pipe_inode_info *pipe)
97 {
98 	if (pipe->files)
99 		mutex_unlock(&pipe->mutex);
100 }
101 EXPORT_SYMBOL(pipe_unlock);
102 
103 void pipe_double_lock(struct pipe_inode_info *pipe1,
104 		      struct pipe_inode_info *pipe2)
105 {
106 	BUG_ON(pipe1 == pipe2);
107 
108 	if (pipe1 > pipe2)
109 		swap(pipe1, pipe2);
110 
111 	pipe_lock(pipe1);
112 	pipe_lock(pipe2);
113 }
114 
115 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
116 				  struct pipe_buffer *buf)
117 {
118 	struct page *page = buf->page;
119 
120 	/*
121 	 * If nobody else uses this page, and we don't already have a
122 	 * temporary page, let's keep track of it as a one-deep
123 	 * allocation cache. (Otherwise just release our reference to it)
124 	 */
125 	if (page_count(page) == 1 && !pipe->tmp_page)
126 		pipe->tmp_page = page;
127 	else
128 		put_page(page);
129 }
130 
131 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
132 		struct pipe_buffer *buf)
133 {
134 	struct page *page = buf->page;
135 
136 	if (page_count(page) != 1)
137 		return false;
138 	memcg_kmem_uncharge_page(page, 0);
139 	__SetPageLocked(page);
140 	return true;
141 }
142 
143 /**
144  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
145  * @pipe:	the pipe that the buffer belongs to
146  * @buf:	the buffer to attempt to steal
147  *
148  * Description:
149  *	This function attempts to steal the &struct page attached to
150  *	@buf. If successful, this function returns 0 and returns with
151  *	the page locked. The caller may then reuse the page for whatever
152  *	he wishes; the typical use is insertion into a different file
153  *	page cache.
154  */
155 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
156 		struct pipe_buffer *buf)
157 {
158 	struct page *page = buf->page;
159 
160 	/*
161 	 * A reference of one is golden, that means that the owner of this
162 	 * page is the only one holding a reference to it. lock the page
163 	 * and return OK.
164 	 */
165 	if (page_count(page) == 1) {
166 		lock_page(page);
167 		return true;
168 	}
169 	return false;
170 }
171 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
172 
173 /**
174  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
175  * @pipe:	the pipe that the buffer belongs to
176  * @buf:	the buffer to get a reference to
177  *
178  * Description:
179  *	This function grabs an extra reference to @buf. It's used in
180  *	the tee() system call, when we duplicate the buffers in one
181  *	pipe into another.
182  */
183 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
184 {
185 	return try_get_page(buf->page);
186 }
187 EXPORT_SYMBOL(generic_pipe_buf_get);
188 
189 /**
190  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
191  * @pipe:	the pipe that the buffer belongs to
192  * @buf:	the buffer to put a reference to
193  *
194  * Description:
195  *	This function releases a reference to @buf.
196  */
197 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
198 			      struct pipe_buffer *buf)
199 {
200 	put_page(buf->page);
201 }
202 EXPORT_SYMBOL(generic_pipe_buf_release);
203 
204 static const struct pipe_buf_operations anon_pipe_buf_ops = {
205 	.release	= anon_pipe_buf_release,
206 	.try_steal	= anon_pipe_buf_try_steal,
207 	.get		= generic_pipe_buf_get,
208 };
209 
210 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
211 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
212 {
213 	unsigned int head = READ_ONCE(pipe->head);
214 	unsigned int tail = READ_ONCE(pipe->tail);
215 	unsigned int writers = READ_ONCE(pipe->writers);
216 
217 	return !pipe_empty(head, tail) || !writers;
218 }
219 
220 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe,
221 					    struct pipe_buffer *buf,
222 					    unsigned int tail)
223 {
224 	pipe_buf_release(pipe, buf);
225 
226 	/*
227 	 * If the pipe has a watch_queue, we need additional protection
228 	 * by the spinlock because notifications get posted with only
229 	 * this spinlock, no mutex
230 	 */
231 	if (pipe_has_watch_queue(pipe)) {
232 		spin_lock_irq(&pipe->rd_wait.lock);
233 #ifdef CONFIG_WATCH_QUEUE
234 		if (buf->flags & PIPE_BUF_FLAG_LOSS)
235 			pipe->note_loss = true;
236 #endif
237 		pipe->tail = ++tail;
238 		spin_unlock_irq(&pipe->rd_wait.lock);
239 		return tail;
240 	}
241 
242 	/*
243 	 * Without a watch_queue, we can simply increment the tail
244 	 * without the spinlock - the mutex is enough.
245 	 */
246 	pipe->tail = ++tail;
247 	return tail;
248 }
249 
250 static ssize_t
251 pipe_read(struct kiocb *iocb, struct iov_iter *to)
252 {
253 	size_t total_len = iov_iter_count(to);
254 	struct file *filp = iocb->ki_filp;
255 	struct pipe_inode_info *pipe = filp->private_data;
256 	bool wake_writer = false, wake_next_reader = false;
257 	ssize_t ret;
258 
259 	/* Null read succeeds. */
260 	if (unlikely(total_len == 0))
261 		return 0;
262 
263 	ret = 0;
264 	mutex_lock(&pipe->mutex);
265 
266 	/*
267 	 * We only wake up writers if the pipe was full when we started reading
268 	 * and it is no longer full after reading to avoid unnecessary wakeups.
269 	 *
270 	 * But when we do wake up writers, we do so using a sync wakeup
271 	 * (WF_SYNC), because we want them to get going and generate more
272 	 * data for us.
273 	 */
274 	for (;;) {
275 		/* Read ->head with a barrier vs post_one_notification() */
276 		unsigned int head = smp_load_acquire(&pipe->head);
277 		unsigned int tail = pipe->tail;
278 		unsigned int mask = pipe->ring_size - 1;
279 
280 #ifdef CONFIG_WATCH_QUEUE
281 		if (pipe->note_loss) {
282 			struct watch_notification n;
283 
284 			if (total_len < 8) {
285 				if (ret == 0)
286 					ret = -ENOBUFS;
287 				break;
288 			}
289 
290 			n.type = WATCH_TYPE_META;
291 			n.subtype = WATCH_META_LOSS_NOTIFICATION;
292 			n.info = watch_sizeof(n);
293 			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
294 				if (ret == 0)
295 					ret = -EFAULT;
296 				break;
297 			}
298 			ret += sizeof(n);
299 			total_len -= sizeof(n);
300 			pipe->note_loss = false;
301 		}
302 #endif
303 
304 		if (!pipe_empty(head, tail)) {
305 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
306 			size_t chars = buf->len;
307 			size_t written;
308 			int error;
309 
310 			if (chars > total_len) {
311 				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
312 					if (ret == 0)
313 						ret = -ENOBUFS;
314 					break;
315 				}
316 				chars = total_len;
317 			}
318 
319 			error = pipe_buf_confirm(pipe, buf);
320 			if (error) {
321 				if (!ret)
322 					ret = error;
323 				break;
324 			}
325 
326 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
327 			if (unlikely(written < chars)) {
328 				if (!ret)
329 					ret = -EFAULT;
330 				break;
331 			}
332 			ret += chars;
333 			buf->offset += chars;
334 			buf->len -= chars;
335 
336 			/* Was it a packet buffer? Clean up and exit */
337 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
338 				total_len = chars;
339 				buf->len = 0;
340 			}
341 
342 			if (!buf->len) {
343 				wake_writer |= pipe_full(head, tail, pipe->max_usage);
344 				tail = pipe_update_tail(pipe, buf, tail);
345 			}
346 			total_len -= chars;
347 			if (!total_len)
348 				break;	/* common path: read succeeded */
349 			if (!pipe_empty(head, tail))	/* More to do? */
350 				continue;
351 		}
352 
353 		if (!pipe->writers)
354 			break;
355 		if (ret)
356 			break;
357 		if ((filp->f_flags & O_NONBLOCK) ||
358 		    (iocb->ki_flags & IOCB_NOWAIT)) {
359 			ret = -EAGAIN;
360 			break;
361 		}
362 		mutex_unlock(&pipe->mutex);
363 
364 		/*
365 		 * We only get here if we didn't actually read anything.
366 		 *
367 		 * However, we could have seen (and removed) a zero-sized
368 		 * pipe buffer, and might have made space in the buffers
369 		 * that way.
370 		 *
371 		 * You can't make zero-sized pipe buffers by doing an empty
372 		 * write (not even in packet mode), but they can happen if
373 		 * the writer gets an EFAULT when trying to fill a buffer
374 		 * that already got allocated and inserted in the buffer
375 		 * array.
376 		 *
377 		 * So we still need to wake up any pending writers in the
378 		 * _very_ unlikely case that the pipe was full, but we got
379 		 * no data.
380 		 */
381 		if (unlikely(wake_writer))
382 			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
383 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
384 
385 		/*
386 		 * But because we didn't read anything, at this point we can
387 		 * just return directly with -ERESTARTSYS if we're interrupted,
388 		 * since we've done any required wakeups and there's no need
389 		 * to mark anything accessed. And we've dropped the lock.
390 		 */
391 		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
392 			return -ERESTARTSYS;
393 
394 		wake_writer = false;
395 		wake_next_reader = true;
396 		mutex_lock(&pipe->mutex);
397 	}
398 	if (pipe_empty(pipe->head, pipe->tail))
399 		wake_next_reader = false;
400 	mutex_unlock(&pipe->mutex);
401 
402 	if (wake_writer)
403 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
404 	if (wake_next_reader)
405 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
406 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
407 	if (ret > 0)
408 		file_accessed(filp);
409 	return ret;
410 }
411 
412 static inline int is_packetized(struct file *file)
413 {
414 	return (file->f_flags & O_DIRECT) != 0;
415 }
416 
417 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
418 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
419 {
420 	unsigned int head = READ_ONCE(pipe->head);
421 	unsigned int tail = READ_ONCE(pipe->tail);
422 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
423 
424 	return !pipe_full(head, tail, max_usage) ||
425 		!READ_ONCE(pipe->readers);
426 }
427 
428 static ssize_t
429 pipe_write(struct kiocb *iocb, struct iov_iter *from)
430 {
431 	struct file *filp = iocb->ki_filp;
432 	struct pipe_inode_info *pipe = filp->private_data;
433 	unsigned int head;
434 	ssize_t ret = 0;
435 	size_t total_len = iov_iter_count(from);
436 	ssize_t chars;
437 	bool was_empty = false;
438 	bool wake_next_writer = false;
439 
440 	/*
441 	 * Reject writing to watch queue pipes before the point where we lock
442 	 * the pipe.
443 	 * Otherwise, lockdep would be unhappy if the caller already has another
444 	 * pipe locked.
445 	 * If we had to support locking a normal pipe and a notification pipe at
446 	 * the same time, we could set up lockdep annotations for that, but
447 	 * since we don't actually need that, it's simpler to just bail here.
448 	 */
449 	if (pipe_has_watch_queue(pipe))
450 		return -EXDEV;
451 
452 	/* Null write succeeds. */
453 	if (unlikely(total_len == 0))
454 		return 0;
455 
456 	mutex_lock(&pipe->mutex);
457 
458 	if (!pipe->readers) {
459 		send_sig(SIGPIPE, current, 0);
460 		ret = -EPIPE;
461 		goto out;
462 	}
463 
464 	/*
465 	 * If it wasn't empty we try to merge new data into
466 	 * the last buffer.
467 	 *
468 	 * That naturally merges small writes, but it also
469 	 * page-aligns the rest of the writes for large writes
470 	 * spanning multiple pages.
471 	 */
472 	head = pipe->head;
473 	was_empty = pipe_empty(head, pipe->tail);
474 	chars = total_len & (PAGE_SIZE-1);
475 	if (chars && !was_empty) {
476 		unsigned int mask = pipe->ring_size - 1;
477 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
478 		int offset = buf->offset + buf->len;
479 
480 		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
481 		    offset + chars <= PAGE_SIZE) {
482 			ret = pipe_buf_confirm(pipe, buf);
483 			if (ret)
484 				goto out;
485 
486 			ret = copy_page_from_iter(buf->page, offset, chars, from);
487 			if (unlikely(ret < chars)) {
488 				ret = -EFAULT;
489 				goto out;
490 			}
491 
492 			buf->len += ret;
493 			if (!iov_iter_count(from))
494 				goto out;
495 		}
496 	}
497 
498 	for (;;) {
499 		if (!pipe->readers) {
500 			send_sig(SIGPIPE, current, 0);
501 			if (!ret)
502 				ret = -EPIPE;
503 			break;
504 		}
505 
506 		head = pipe->head;
507 		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
508 			unsigned int mask = pipe->ring_size - 1;
509 			struct pipe_buffer *buf;
510 			struct page *page = pipe->tmp_page;
511 			int copied;
512 
513 			if (!page) {
514 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
515 				if (unlikely(!page)) {
516 					ret = ret ? : -ENOMEM;
517 					break;
518 				}
519 				pipe->tmp_page = page;
520 			}
521 
522 			/* Allocate a slot in the ring in advance and attach an
523 			 * empty buffer.  If we fault or otherwise fail to use
524 			 * it, either the reader will consume it or it'll still
525 			 * be there for the next write.
526 			 */
527 			pipe->head = head + 1;
528 
529 			/* Insert it into the buffer array */
530 			buf = &pipe->bufs[head & mask];
531 			buf->page = page;
532 			buf->ops = &anon_pipe_buf_ops;
533 			buf->offset = 0;
534 			buf->len = 0;
535 			if (is_packetized(filp))
536 				buf->flags = PIPE_BUF_FLAG_PACKET;
537 			else
538 				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
539 			pipe->tmp_page = NULL;
540 
541 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
542 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
543 				if (!ret)
544 					ret = -EFAULT;
545 				break;
546 			}
547 			ret += copied;
548 			buf->len = copied;
549 
550 			if (!iov_iter_count(from))
551 				break;
552 		}
553 
554 		if (!pipe_full(head, pipe->tail, pipe->max_usage))
555 			continue;
556 
557 		/* Wait for buffer space to become available. */
558 		if ((filp->f_flags & O_NONBLOCK) ||
559 		    (iocb->ki_flags & IOCB_NOWAIT)) {
560 			if (!ret)
561 				ret = -EAGAIN;
562 			break;
563 		}
564 		if (signal_pending(current)) {
565 			if (!ret)
566 				ret = -ERESTARTSYS;
567 			break;
568 		}
569 
570 		/*
571 		 * We're going to release the pipe lock and wait for more
572 		 * space. We wake up any readers if necessary, and then
573 		 * after waiting we need to re-check whether the pipe
574 		 * become empty while we dropped the lock.
575 		 */
576 		mutex_unlock(&pipe->mutex);
577 		if (was_empty)
578 			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
579 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
580 		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
581 		mutex_lock(&pipe->mutex);
582 		was_empty = pipe_empty(pipe->head, pipe->tail);
583 		wake_next_writer = true;
584 	}
585 out:
586 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
587 		wake_next_writer = false;
588 	mutex_unlock(&pipe->mutex);
589 
590 	/*
591 	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
592 	 * want the reader to start processing things asap, rather than
593 	 * leave the data pending.
594 	 *
595 	 * This is particularly important for small writes, because of
596 	 * how (for example) the GNU make jobserver uses small writes to
597 	 * wake up pending jobs
598 	 *
599 	 * Epoll nonsensically wants a wakeup whether the pipe
600 	 * was already empty or not.
601 	 */
602 	if (was_empty || pipe->poll_usage)
603 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
604 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
605 	if (wake_next_writer)
606 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
607 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
608 		int err = file_update_time(filp);
609 		if (err)
610 			ret = err;
611 		sb_end_write(file_inode(filp)->i_sb);
612 	}
613 	return ret;
614 }
615 
616 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
617 {
618 	struct pipe_inode_info *pipe = filp->private_data;
619 	unsigned int count, head, tail, mask;
620 
621 	switch (cmd) {
622 	case FIONREAD:
623 		mutex_lock(&pipe->mutex);
624 		count = 0;
625 		head = pipe->head;
626 		tail = pipe->tail;
627 		mask = pipe->ring_size - 1;
628 
629 		while (tail != head) {
630 			count += pipe->bufs[tail & mask].len;
631 			tail++;
632 		}
633 		mutex_unlock(&pipe->mutex);
634 
635 		return put_user(count, (int __user *)arg);
636 
637 #ifdef CONFIG_WATCH_QUEUE
638 	case IOC_WATCH_QUEUE_SET_SIZE: {
639 		int ret;
640 		mutex_lock(&pipe->mutex);
641 		ret = watch_queue_set_size(pipe, arg);
642 		mutex_unlock(&pipe->mutex);
643 		return ret;
644 	}
645 
646 	case IOC_WATCH_QUEUE_SET_FILTER:
647 		return watch_queue_set_filter(
648 			pipe, (struct watch_notification_filter __user *)arg);
649 #endif
650 
651 	default:
652 		return -ENOIOCTLCMD;
653 	}
654 }
655 
656 /* No kernel lock held - fine */
657 static __poll_t
658 pipe_poll(struct file *filp, poll_table *wait)
659 {
660 	__poll_t mask;
661 	struct pipe_inode_info *pipe = filp->private_data;
662 	unsigned int head, tail;
663 
664 	/* Epoll has some historical nasty semantics, this enables them */
665 	WRITE_ONCE(pipe->poll_usage, true);
666 
667 	/*
668 	 * Reading pipe state only -- no need for acquiring the semaphore.
669 	 *
670 	 * But because this is racy, the code has to add the
671 	 * entry to the poll table _first_ ..
672 	 */
673 	if (filp->f_mode & FMODE_READ)
674 		poll_wait(filp, &pipe->rd_wait, wait);
675 	if (filp->f_mode & FMODE_WRITE)
676 		poll_wait(filp, &pipe->wr_wait, wait);
677 
678 	/*
679 	 * .. and only then can you do the racy tests. That way,
680 	 * if something changes and you got it wrong, the poll
681 	 * table entry will wake you up and fix it.
682 	 */
683 	head = READ_ONCE(pipe->head);
684 	tail = READ_ONCE(pipe->tail);
685 
686 	mask = 0;
687 	if (filp->f_mode & FMODE_READ) {
688 		if (!pipe_empty(head, tail))
689 			mask |= EPOLLIN | EPOLLRDNORM;
690 		if (!pipe->writers && filp->f_pipe != pipe->w_counter)
691 			mask |= EPOLLHUP;
692 	}
693 
694 	if (filp->f_mode & FMODE_WRITE) {
695 		if (!pipe_full(head, tail, pipe->max_usage))
696 			mask |= EPOLLOUT | EPOLLWRNORM;
697 		/*
698 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
699 		 * behave exactly like pipes for poll().
700 		 */
701 		if (!pipe->readers)
702 			mask |= EPOLLERR;
703 	}
704 
705 	return mask;
706 }
707 
708 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
709 {
710 	int kill = 0;
711 
712 	spin_lock(&inode->i_lock);
713 	if (!--pipe->files) {
714 		inode->i_pipe = NULL;
715 		kill = 1;
716 	}
717 	spin_unlock(&inode->i_lock);
718 
719 	if (kill)
720 		free_pipe_info(pipe);
721 }
722 
723 static int
724 pipe_release(struct inode *inode, struct file *file)
725 {
726 	struct pipe_inode_info *pipe = file->private_data;
727 
728 	mutex_lock(&pipe->mutex);
729 	if (file->f_mode & FMODE_READ)
730 		pipe->readers--;
731 	if (file->f_mode & FMODE_WRITE)
732 		pipe->writers--;
733 
734 	/* Was that the last reader or writer, but not the other side? */
735 	if (!pipe->readers != !pipe->writers) {
736 		wake_up_interruptible_all(&pipe->rd_wait);
737 		wake_up_interruptible_all(&pipe->wr_wait);
738 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
739 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
740 	}
741 	mutex_unlock(&pipe->mutex);
742 
743 	put_pipe_info(inode, pipe);
744 	return 0;
745 }
746 
747 static int
748 pipe_fasync(int fd, struct file *filp, int on)
749 {
750 	struct pipe_inode_info *pipe = filp->private_data;
751 	int retval = 0;
752 
753 	mutex_lock(&pipe->mutex);
754 	if (filp->f_mode & FMODE_READ)
755 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
756 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
757 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
758 		if (retval < 0 && (filp->f_mode & FMODE_READ))
759 			/* this can happen only if on == T */
760 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
761 	}
762 	mutex_unlock(&pipe->mutex);
763 	return retval;
764 }
765 
766 unsigned long account_pipe_buffers(struct user_struct *user,
767 				   unsigned long old, unsigned long new)
768 {
769 	return atomic_long_add_return(new - old, &user->pipe_bufs);
770 }
771 
772 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
773 {
774 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
775 
776 	return soft_limit && user_bufs > soft_limit;
777 }
778 
779 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
780 {
781 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
782 
783 	return hard_limit && user_bufs > hard_limit;
784 }
785 
786 bool pipe_is_unprivileged_user(void)
787 {
788 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
789 }
790 
791 struct pipe_inode_info *alloc_pipe_info(void)
792 {
793 	struct pipe_inode_info *pipe;
794 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
795 	struct user_struct *user = get_current_user();
796 	unsigned long user_bufs;
797 	unsigned int max_size = READ_ONCE(pipe_max_size);
798 
799 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
800 	if (pipe == NULL)
801 		goto out_free_uid;
802 
803 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
804 		pipe_bufs = max_size >> PAGE_SHIFT;
805 
806 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
807 
808 	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
809 		user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
810 		pipe_bufs = PIPE_MIN_DEF_BUFFERS;
811 	}
812 
813 	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
814 		goto out_revert_acct;
815 
816 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
817 			     GFP_KERNEL_ACCOUNT);
818 
819 	if (pipe->bufs) {
820 		init_waitqueue_head(&pipe->rd_wait);
821 		init_waitqueue_head(&pipe->wr_wait);
822 		pipe->r_counter = pipe->w_counter = 1;
823 		pipe->max_usage = pipe_bufs;
824 		pipe->ring_size = pipe_bufs;
825 		pipe->nr_accounted = pipe_bufs;
826 		pipe->user = user;
827 		mutex_init(&pipe->mutex);
828 		lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL);
829 		return pipe;
830 	}
831 
832 out_revert_acct:
833 	(void) account_pipe_buffers(user, pipe_bufs, 0);
834 	kfree(pipe);
835 out_free_uid:
836 	free_uid(user);
837 	return NULL;
838 }
839 
840 void free_pipe_info(struct pipe_inode_info *pipe)
841 {
842 	unsigned int i;
843 
844 #ifdef CONFIG_WATCH_QUEUE
845 	if (pipe->watch_queue)
846 		watch_queue_clear(pipe->watch_queue);
847 #endif
848 
849 	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
850 	free_uid(pipe->user);
851 	for (i = 0; i < pipe->ring_size; i++) {
852 		struct pipe_buffer *buf = pipe->bufs + i;
853 		if (buf->ops)
854 			pipe_buf_release(pipe, buf);
855 	}
856 #ifdef CONFIG_WATCH_QUEUE
857 	if (pipe->watch_queue)
858 		put_watch_queue(pipe->watch_queue);
859 #endif
860 	if (pipe->tmp_page)
861 		__free_page(pipe->tmp_page);
862 	kfree(pipe->bufs);
863 	kfree(pipe);
864 }
865 
866 static struct vfsmount *pipe_mnt __ro_after_init;
867 
868 /*
869  * pipefs_dname() is called from d_path().
870  */
871 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
872 {
873 	return dynamic_dname(buffer, buflen, "pipe:[%lu]",
874 				d_inode(dentry)->i_ino);
875 }
876 
877 static const struct dentry_operations pipefs_dentry_operations = {
878 	.d_dname	= pipefs_dname,
879 };
880 
881 static struct inode * get_pipe_inode(void)
882 {
883 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
884 	struct pipe_inode_info *pipe;
885 
886 	if (!inode)
887 		goto fail_inode;
888 
889 	inode->i_ino = get_next_ino();
890 
891 	pipe = alloc_pipe_info();
892 	if (!pipe)
893 		goto fail_iput;
894 
895 	inode->i_pipe = pipe;
896 	pipe->files = 2;
897 	pipe->readers = pipe->writers = 1;
898 	inode->i_fop = &pipefifo_fops;
899 
900 	/*
901 	 * Mark the inode dirty from the very beginning,
902 	 * that way it will never be moved to the dirty
903 	 * list because "mark_inode_dirty()" will think
904 	 * that it already _is_ on the dirty list.
905 	 */
906 	inode->i_state = I_DIRTY;
907 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
908 	inode->i_uid = current_fsuid();
909 	inode->i_gid = current_fsgid();
910 	simple_inode_init_ts(inode);
911 
912 	return inode;
913 
914 fail_iput:
915 	iput(inode);
916 
917 fail_inode:
918 	return NULL;
919 }
920 
921 int create_pipe_files(struct file **res, int flags)
922 {
923 	struct inode *inode = get_pipe_inode();
924 	struct file *f;
925 	int error;
926 
927 	if (!inode)
928 		return -ENFILE;
929 
930 	if (flags & O_NOTIFICATION_PIPE) {
931 		error = watch_queue_init(inode->i_pipe);
932 		if (error) {
933 			free_pipe_info(inode->i_pipe);
934 			iput(inode);
935 			return error;
936 		}
937 	}
938 
939 	f = alloc_file_pseudo(inode, pipe_mnt, "",
940 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
941 				&pipefifo_fops);
942 	if (IS_ERR(f)) {
943 		free_pipe_info(inode->i_pipe);
944 		iput(inode);
945 		return PTR_ERR(f);
946 	}
947 
948 	f->private_data = inode->i_pipe;
949 	f->f_pipe = 0;
950 
951 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
952 				  &pipefifo_fops);
953 	if (IS_ERR(res[0])) {
954 		put_pipe_info(inode, inode->i_pipe);
955 		fput(f);
956 		return PTR_ERR(res[0]);
957 	}
958 	res[0]->private_data = inode->i_pipe;
959 	res[0]->f_pipe = 0;
960 	res[1] = f;
961 	stream_open(inode, res[0]);
962 	stream_open(inode, res[1]);
963 	return 0;
964 }
965 
966 static int __do_pipe_flags(int *fd, struct file **files, int flags)
967 {
968 	int error;
969 	int fdw, fdr;
970 
971 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
972 		return -EINVAL;
973 
974 	error = create_pipe_files(files, flags);
975 	if (error)
976 		return error;
977 
978 	error = get_unused_fd_flags(flags);
979 	if (error < 0)
980 		goto err_read_pipe;
981 	fdr = error;
982 
983 	error = get_unused_fd_flags(flags);
984 	if (error < 0)
985 		goto err_fdr;
986 	fdw = error;
987 
988 	audit_fd_pair(fdr, fdw);
989 	fd[0] = fdr;
990 	fd[1] = fdw;
991 	/* pipe groks IOCB_NOWAIT */
992 	files[0]->f_mode |= FMODE_NOWAIT;
993 	files[1]->f_mode |= FMODE_NOWAIT;
994 	return 0;
995 
996  err_fdr:
997 	put_unused_fd(fdr);
998  err_read_pipe:
999 	fput(files[0]);
1000 	fput(files[1]);
1001 	return error;
1002 }
1003 
1004 int do_pipe_flags(int *fd, int flags)
1005 {
1006 	struct file *files[2];
1007 	int error = __do_pipe_flags(fd, files, flags);
1008 	if (!error) {
1009 		fd_install(fd[0], files[0]);
1010 		fd_install(fd[1], files[1]);
1011 	}
1012 	return error;
1013 }
1014 
1015 /*
1016  * sys_pipe() is the normal C calling standard for creating
1017  * a pipe. It's not the way Unix traditionally does this, though.
1018  */
1019 static int do_pipe2(int __user *fildes, int flags)
1020 {
1021 	struct file *files[2];
1022 	int fd[2];
1023 	int error;
1024 
1025 	error = __do_pipe_flags(fd, files, flags);
1026 	if (!error) {
1027 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1028 			fput(files[0]);
1029 			fput(files[1]);
1030 			put_unused_fd(fd[0]);
1031 			put_unused_fd(fd[1]);
1032 			error = -EFAULT;
1033 		} else {
1034 			fd_install(fd[0], files[0]);
1035 			fd_install(fd[1], files[1]);
1036 		}
1037 	}
1038 	return error;
1039 }
1040 
1041 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1042 {
1043 	return do_pipe2(fildes, flags);
1044 }
1045 
1046 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1047 {
1048 	return do_pipe2(fildes, 0);
1049 }
1050 
1051 /*
1052  * This is the stupid "wait for pipe to be readable or writable"
1053  * model.
1054  *
1055  * See pipe_read/write() for the proper kind of exclusive wait,
1056  * but that requires that we wake up any other readers/writers
1057  * if we then do not end up reading everything (ie the whole
1058  * "wake_next_reader/writer" logic in pipe_read/write()).
1059  */
1060 void pipe_wait_readable(struct pipe_inode_info *pipe)
1061 {
1062 	pipe_unlock(pipe);
1063 	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1064 	pipe_lock(pipe);
1065 }
1066 
1067 void pipe_wait_writable(struct pipe_inode_info *pipe)
1068 {
1069 	pipe_unlock(pipe);
1070 	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1071 	pipe_lock(pipe);
1072 }
1073 
1074 /*
1075  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1076  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1077  * race with the count check and waitqueue prep.
1078  *
1079  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1080  * then check the condition you're waiting for, and only then sleep. But
1081  * because of the pipe lock, we can check the condition before being on
1082  * the wait queue.
1083  *
1084  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1085  */
1086 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1087 {
1088 	DEFINE_WAIT(rdwait);
1089 	int cur = *cnt;
1090 
1091 	while (cur == *cnt) {
1092 		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1093 		pipe_unlock(pipe);
1094 		schedule();
1095 		finish_wait(&pipe->rd_wait, &rdwait);
1096 		pipe_lock(pipe);
1097 		if (signal_pending(current))
1098 			break;
1099 	}
1100 	return cur == *cnt ? -ERESTARTSYS : 0;
1101 }
1102 
1103 static void wake_up_partner(struct pipe_inode_info *pipe)
1104 {
1105 	wake_up_interruptible_all(&pipe->rd_wait);
1106 }
1107 
1108 static int fifo_open(struct inode *inode, struct file *filp)
1109 {
1110 	struct pipe_inode_info *pipe;
1111 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1112 	int ret;
1113 
1114 	filp->f_pipe = 0;
1115 
1116 	spin_lock(&inode->i_lock);
1117 	if (inode->i_pipe) {
1118 		pipe = inode->i_pipe;
1119 		pipe->files++;
1120 		spin_unlock(&inode->i_lock);
1121 	} else {
1122 		spin_unlock(&inode->i_lock);
1123 		pipe = alloc_pipe_info();
1124 		if (!pipe)
1125 			return -ENOMEM;
1126 		pipe->files = 1;
1127 		spin_lock(&inode->i_lock);
1128 		if (unlikely(inode->i_pipe)) {
1129 			inode->i_pipe->files++;
1130 			spin_unlock(&inode->i_lock);
1131 			free_pipe_info(pipe);
1132 			pipe = inode->i_pipe;
1133 		} else {
1134 			inode->i_pipe = pipe;
1135 			spin_unlock(&inode->i_lock);
1136 		}
1137 	}
1138 	filp->private_data = pipe;
1139 	/* OK, we have a pipe and it's pinned down */
1140 
1141 	mutex_lock(&pipe->mutex);
1142 
1143 	/* We can only do regular read/write on fifos */
1144 	stream_open(inode, filp);
1145 
1146 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1147 	case FMODE_READ:
1148 	/*
1149 	 *  O_RDONLY
1150 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1151 	 *  opened, even when there is no process writing the FIFO.
1152 	 */
1153 		pipe->r_counter++;
1154 		if (pipe->readers++ == 0)
1155 			wake_up_partner(pipe);
1156 
1157 		if (!is_pipe && !pipe->writers) {
1158 			if ((filp->f_flags & O_NONBLOCK)) {
1159 				/* suppress EPOLLHUP until we have
1160 				 * seen a writer */
1161 				filp->f_pipe = pipe->w_counter;
1162 			} else {
1163 				if (wait_for_partner(pipe, &pipe->w_counter))
1164 					goto err_rd;
1165 			}
1166 		}
1167 		break;
1168 
1169 	case FMODE_WRITE:
1170 	/*
1171 	 *  O_WRONLY
1172 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1173 	 *  errno=ENXIO when there is no process reading the FIFO.
1174 	 */
1175 		ret = -ENXIO;
1176 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1177 			goto err;
1178 
1179 		pipe->w_counter++;
1180 		if (!pipe->writers++)
1181 			wake_up_partner(pipe);
1182 
1183 		if (!is_pipe && !pipe->readers) {
1184 			if (wait_for_partner(pipe, &pipe->r_counter))
1185 				goto err_wr;
1186 		}
1187 		break;
1188 
1189 	case FMODE_READ | FMODE_WRITE:
1190 	/*
1191 	 *  O_RDWR
1192 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1193 	 *  This implementation will NEVER block on a O_RDWR open, since
1194 	 *  the process can at least talk to itself.
1195 	 */
1196 
1197 		pipe->readers++;
1198 		pipe->writers++;
1199 		pipe->r_counter++;
1200 		pipe->w_counter++;
1201 		if (pipe->readers == 1 || pipe->writers == 1)
1202 			wake_up_partner(pipe);
1203 		break;
1204 
1205 	default:
1206 		ret = -EINVAL;
1207 		goto err;
1208 	}
1209 
1210 	/* Ok! */
1211 	mutex_unlock(&pipe->mutex);
1212 	return 0;
1213 
1214 err_rd:
1215 	if (!--pipe->readers)
1216 		wake_up_interruptible(&pipe->wr_wait);
1217 	ret = -ERESTARTSYS;
1218 	goto err;
1219 
1220 err_wr:
1221 	if (!--pipe->writers)
1222 		wake_up_interruptible_all(&pipe->rd_wait);
1223 	ret = -ERESTARTSYS;
1224 	goto err;
1225 
1226 err:
1227 	mutex_unlock(&pipe->mutex);
1228 
1229 	put_pipe_info(inode, pipe);
1230 	return ret;
1231 }
1232 
1233 const struct file_operations pipefifo_fops = {
1234 	.open		= fifo_open,
1235 	.read_iter	= pipe_read,
1236 	.write_iter	= pipe_write,
1237 	.poll		= pipe_poll,
1238 	.unlocked_ioctl	= pipe_ioctl,
1239 	.release	= pipe_release,
1240 	.fasync		= pipe_fasync,
1241 	.splice_write	= iter_file_splice_write,
1242 };
1243 
1244 /*
1245  * Currently we rely on the pipe array holding a power-of-2 number
1246  * of pages. Returns 0 on error.
1247  */
1248 unsigned int round_pipe_size(unsigned int size)
1249 {
1250 	if (size > (1U << 31))
1251 		return 0;
1252 
1253 	/* Minimum pipe size, as required by POSIX */
1254 	if (size < PAGE_SIZE)
1255 		return PAGE_SIZE;
1256 
1257 	return roundup_pow_of_two(size);
1258 }
1259 
1260 /*
1261  * Resize the pipe ring to a number of slots.
1262  *
1263  * Note the pipe can be reduced in capacity, but only if the current
1264  * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1265  * returned instead.
1266  */
1267 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1268 {
1269 	struct pipe_buffer *bufs;
1270 	unsigned int head, tail, mask, n;
1271 
1272 	bufs = kcalloc(nr_slots, sizeof(*bufs),
1273 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1274 	if (unlikely(!bufs))
1275 		return -ENOMEM;
1276 
1277 	spin_lock_irq(&pipe->rd_wait.lock);
1278 	mask = pipe->ring_size - 1;
1279 	head = pipe->head;
1280 	tail = pipe->tail;
1281 
1282 	n = pipe_occupancy(head, tail);
1283 	if (nr_slots < n) {
1284 		spin_unlock_irq(&pipe->rd_wait.lock);
1285 		kfree(bufs);
1286 		return -EBUSY;
1287 	}
1288 
1289 	/*
1290 	 * The pipe array wraps around, so just start the new one at zero
1291 	 * and adjust the indices.
1292 	 */
1293 	if (n > 0) {
1294 		unsigned int h = head & mask;
1295 		unsigned int t = tail & mask;
1296 		if (h > t) {
1297 			memcpy(bufs, pipe->bufs + t,
1298 			       n * sizeof(struct pipe_buffer));
1299 		} else {
1300 			unsigned int tsize = pipe->ring_size - t;
1301 			if (h > 0)
1302 				memcpy(bufs + tsize, pipe->bufs,
1303 				       h * sizeof(struct pipe_buffer));
1304 			memcpy(bufs, pipe->bufs + t,
1305 			       tsize * sizeof(struct pipe_buffer));
1306 		}
1307 	}
1308 
1309 	head = n;
1310 	tail = 0;
1311 
1312 	kfree(pipe->bufs);
1313 	pipe->bufs = bufs;
1314 	pipe->ring_size = nr_slots;
1315 	if (pipe->max_usage > nr_slots)
1316 		pipe->max_usage = nr_slots;
1317 	pipe->tail = tail;
1318 	pipe->head = head;
1319 
1320 	if (!pipe_has_watch_queue(pipe)) {
1321 		pipe->max_usage = nr_slots;
1322 		pipe->nr_accounted = nr_slots;
1323 	}
1324 
1325 	spin_unlock_irq(&pipe->rd_wait.lock);
1326 
1327 	/* This might have made more room for writers */
1328 	wake_up_interruptible(&pipe->wr_wait);
1329 	return 0;
1330 }
1331 
1332 /*
1333  * Allocate a new array of pipe buffers and copy the info over. Returns the
1334  * pipe size if successful, or return -ERROR on error.
1335  */
1336 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1337 {
1338 	unsigned long user_bufs;
1339 	unsigned int nr_slots, size;
1340 	long ret = 0;
1341 
1342 	if (pipe_has_watch_queue(pipe))
1343 		return -EBUSY;
1344 
1345 	size = round_pipe_size(arg);
1346 	nr_slots = size >> PAGE_SHIFT;
1347 
1348 	if (!nr_slots)
1349 		return -EINVAL;
1350 
1351 	/*
1352 	 * If trying to increase the pipe capacity, check that an
1353 	 * unprivileged user is not trying to exceed various limits
1354 	 * (soft limit check here, hard limit check just below).
1355 	 * Decreasing the pipe capacity is always permitted, even
1356 	 * if the user is currently over a limit.
1357 	 */
1358 	if (nr_slots > pipe->max_usage &&
1359 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1360 		return -EPERM;
1361 
1362 	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1363 
1364 	if (nr_slots > pipe->max_usage &&
1365 			(too_many_pipe_buffers_hard(user_bufs) ||
1366 			 too_many_pipe_buffers_soft(user_bufs)) &&
1367 			pipe_is_unprivileged_user()) {
1368 		ret = -EPERM;
1369 		goto out_revert_acct;
1370 	}
1371 
1372 	ret = pipe_resize_ring(pipe, nr_slots);
1373 	if (ret < 0)
1374 		goto out_revert_acct;
1375 
1376 	return pipe->max_usage * PAGE_SIZE;
1377 
1378 out_revert_acct:
1379 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1380 	return ret;
1381 }
1382 
1383 /*
1384  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1385  * not enough to verify that this is a pipe.
1386  */
1387 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1388 {
1389 	struct pipe_inode_info *pipe = file->private_data;
1390 
1391 	if (file->f_op != &pipefifo_fops || !pipe)
1392 		return NULL;
1393 	if (for_splice && pipe_has_watch_queue(pipe))
1394 		return NULL;
1395 	return pipe;
1396 }
1397 
1398 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1399 {
1400 	struct pipe_inode_info *pipe;
1401 	long ret;
1402 
1403 	pipe = get_pipe_info(file, false);
1404 	if (!pipe)
1405 		return -EBADF;
1406 
1407 	mutex_lock(&pipe->mutex);
1408 
1409 	switch (cmd) {
1410 	case F_SETPIPE_SZ:
1411 		ret = pipe_set_size(pipe, arg);
1412 		break;
1413 	case F_GETPIPE_SZ:
1414 		ret = pipe->max_usage * PAGE_SIZE;
1415 		break;
1416 	default:
1417 		ret = -EINVAL;
1418 		break;
1419 	}
1420 
1421 	mutex_unlock(&pipe->mutex);
1422 	return ret;
1423 }
1424 
1425 static const struct super_operations pipefs_ops = {
1426 	.destroy_inode = free_inode_nonrcu,
1427 	.statfs = simple_statfs,
1428 };
1429 
1430 /*
1431  * pipefs should _never_ be mounted by userland - too much of security hassle,
1432  * no real gain from having the whole file system mounted. So we don't need
1433  * any operations on the root directory. However, we need a non-trivial
1434  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1435  */
1436 
1437 static int pipefs_init_fs_context(struct fs_context *fc)
1438 {
1439 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1440 	if (!ctx)
1441 		return -ENOMEM;
1442 	ctx->ops = &pipefs_ops;
1443 	ctx->dops = &pipefs_dentry_operations;
1444 	return 0;
1445 }
1446 
1447 static struct file_system_type pipe_fs_type = {
1448 	.name		= "pipefs",
1449 	.init_fs_context = pipefs_init_fs_context,
1450 	.kill_sb	= kill_anon_super,
1451 };
1452 
1453 #ifdef CONFIG_SYSCTL
1454 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1455 					unsigned int *valp,
1456 					int write, void *data)
1457 {
1458 	if (write) {
1459 		unsigned int val;
1460 
1461 		val = round_pipe_size(*lvalp);
1462 		if (val == 0)
1463 			return -EINVAL;
1464 
1465 		*valp = val;
1466 	} else {
1467 		unsigned int val = *valp;
1468 		*lvalp = (unsigned long) val;
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 static int proc_dopipe_max_size(const struct ctl_table *table, int write,
1475 				void *buffer, size_t *lenp, loff_t *ppos)
1476 {
1477 	return do_proc_douintvec(table, write, buffer, lenp, ppos,
1478 				 do_proc_dopipe_max_size_conv, NULL);
1479 }
1480 
1481 static const struct ctl_table fs_pipe_sysctls[] = {
1482 	{
1483 		.procname	= "pipe-max-size",
1484 		.data		= &pipe_max_size,
1485 		.maxlen		= sizeof(pipe_max_size),
1486 		.mode		= 0644,
1487 		.proc_handler	= proc_dopipe_max_size,
1488 	},
1489 	{
1490 		.procname	= "pipe-user-pages-hard",
1491 		.data		= &pipe_user_pages_hard,
1492 		.maxlen		= sizeof(pipe_user_pages_hard),
1493 		.mode		= 0644,
1494 		.proc_handler	= proc_doulongvec_minmax,
1495 	},
1496 	{
1497 		.procname	= "pipe-user-pages-soft",
1498 		.data		= &pipe_user_pages_soft,
1499 		.maxlen		= sizeof(pipe_user_pages_soft),
1500 		.mode		= 0644,
1501 		.proc_handler	= proc_doulongvec_minmax,
1502 	},
1503 };
1504 #endif
1505 
1506 static int __init init_pipe_fs(void)
1507 {
1508 	int err = register_filesystem(&pipe_fs_type);
1509 
1510 	if (!err) {
1511 		pipe_mnt = kern_mount(&pipe_fs_type);
1512 		if (IS_ERR(pipe_mnt)) {
1513 			err = PTR_ERR(pipe_mnt);
1514 			unregister_filesystem(&pipe_fs_type);
1515 		}
1516 	}
1517 #ifdef CONFIG_SYSCTL
1518 	register_sysctl_init("fs", fs_pipe_sysctls);
1519 #endif
1520 	return err;
1521 }
1522 
1523 fs_initcall(init_pipe_fs);
1524