1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 28 #include <linux/uaccess.h> 29 #include <asm/ioctls.h> 30 31 #include "internal.h" 32 33 /* 34 * The max size that a non-root user is allowed to grow the pipe. Can 35 * be set by root in /proc/sys/fs/pipe-max-size 36 */ 37 unsigned int pipe_max_size = 1048576; 38 39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 40 * matches default values. 41 */ 42 unsigned long pipe_user_pages_hard; 43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 44 45 /* 46 * We use head and tail indices that aren't masked off, except at the point of 47 * dereference, but rather they're allowed to wrap naturally. This means there 48 * isn't a dead spot in the buffer, but the ring has to be a power of two and 49 * <= 2^31. 50 * -- David Howells 2019-09-23. 51 * 52 * Reads with count = 0 should always return 0. 53 * -- Julian Bradfield 1999-06-07. 54 * 55 * FIFOs and Pipes now generate SIGIO for both readers and writers. 56 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 57 * 58 * pipe_read & write cleanup 59 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 60 */ 61 62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) 63 { 64 if (pipe->files) 65 mutex_lock_nested(&pipe->mutex, subclass); 66 } 67 68 void pipe_lock(struct pipe_inode_info *pipe) 69 { 70 /* 71 * pipe_lock() nests non-pipe inode locks (for writing to a file) 72 */ 73 pipe_lock_nested(pipe, I_MUTEX_PARENT); 74 } 75 EXPORT_SYMBOL(pipe_lock); 76 77 void pipe_unlock(struct pipe_inode_info *pipe) 78 { 79 if (pipe->files) 80 mutex_unlock(&pipe->mutex); 81 } 82 EXPORT_SYMBOL(pipe_unlock); 83 84 static inline void __pipe_lock(struct pipe_inode_info *pipe) 85 { 86 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT); 87 } 88 89 static inline void __pipe_unlock(struct pipe_inode_info *pipe) 90 { 91 mutex_unlock(&pipe->mutex); 92 } 93 94 void pipe_double_lock(struct pipe_inode_info *pipe1, 95 struct pipe_inode_info *pipe2) 96 { 97 BUG_ON(pipe1 == pipe2); 98 99 if (pipe1 < pipe2) { 100 pipe_lock_nested(pipe1, I_MUTEX_PARENT); 101 pipe_lock_nested(pipe2, I_MUTEX_CHILD); 102 } else { 103 pipe_lock_nested(pipe2, I_MUTEX_PARENT); 104 pipe_lock_nested(pipe1, I_MUTEX_CHILD); 105 } 106 } 107 108 /* Drop the inode semaphore and wait for a pipe event, atomically */ 109 void pipe_wait(struct pipe_inode_info *pipe) 110 { 111 DEFINE_WAIT(wait); 112 113 /* 114 * Pipes are system-local resources, so sleeping on them 115 * is considered a noninteractive wait: 116 */ 117 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE); 118 pipe_unlock(pipe); 119 schedule(); 120 finish_wait(&pipe->wait, &wait); 121 pipe_lock(pipe); 122 } 123 124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 125 struct pipe_buffer *buf) 126 { 127 struct page *page = buf->page; 128 129 /* 130 * If nobody else uses this page, and we don't already have a 131 * temporary page, let's keep track of it as a one-deep 132 * allocation cache. (Otherwise just release our reference to it) 133 */ 134 if (page_count(page) == 1 && !pipe->tmp_page) 135 pipe->tmp_page = page; 136 else 137 put_page(page); 138 } 139 140 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe, 141 struct pipe_buffer *buf) 142 { 143 struct page *page = buf->page; 144 145 if (page_count(page) == 1) { 146 memcg_kmem_uncharge(page, 0); 147 __SetPageLocked(page); 148 return 0; 149 } 150 return 1; 151 } 152 153 /** 154 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer 155 * @pipe: the pipe that the buffer belongs to 156 * @buf: the buffer to attempt to steal 157 * 158 * Description: 159 * This function attempts to steal the &struct page attached to 160 * @buf. If successful, this function returns 0 and returns with 161 * the page locked. The caller may then reuse the page for whatever 162 * he wishes; the typical use is insertion into a different file 163 * page cache. 164 */ 165 int generic_pipe_buf_steal(struct pipe_inode_info *pipe, 166 struct pipe_buffer *buf) 167 { 168 struct page *page = buf->page; 169 170 /* 171 * A reference of one is golden, that means that the owner of this 172 * page is the only one holding a reference to it. lock the page 173 * and return OK. 174 */ 175 if (page_count(page) == 1) { 176 lock_page(page); 177 return 0; 178 } 179 180 return 1; 181 } 182 EXPORT_SYMBOL(generic_pipe_buf_steal); 183 184 /** 185 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 186 * @pipe: the pipe that the buffer belongs to 187 * @buf: the buffer to get a reference to 188 * 189 * Description: 190 * This function grabs an extra reference to @buf. It's used in 191 * in the tee() system call, when we duplicate the buffers in one 192 * pipe into another. 193 */ 194 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 195 { 196 return try_get_page(buf->page); 197 } 198 EXPORT_SYMBOL(generic_pipe_buf_get); 199 200 /** 201 * generic_pipe_buf_confirm - verify contents of the pipe buffer 202 * @info: the pipe that the buffer belongs to 203 * @buf: the buffer to confirm 204 * 205 * Description: 206 * This function does nothing, because the generic pipe code uses 207 * pages that are always good when inserted into the pipe. 208 */ 209 int generic_pipe_buf_confirm(struct pipe_inode_info *info, 210 struct pipe_buffer *buf) 211 { 212 return 0; 213 } 214 EXPORT_SYMBOL(generic_pipe_buf_confirm); 215 216 /** 217 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 218 * @pipe: the pipe that the buffer belongs to 219 * @buf: the buffer to put a reference to 220 * 221 * Description: 222 * This function releases a reference to @buf. 223 */ 224 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 225 struct pipe_buffer *buf) 226 { 227 put_page(buf->page); 228 } 229 EXPORT_SYMBOL(generic_pipe_buf_release); 230 231 /* New data written to a pipe may be appended to a buffer with this type. */ 232 static const struct pipe_buf_operations anon_pipe_buf_ops = { 233 .confirm = generic_pipe_buf_confirm, 234 .release = anon_pipe_buf_release, 235 .steal = anon_pipe_buf_steal, 236 .get = generic_pipe_buf_get, 237 }; 238 239 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = { 240 .confirm = generic_pipe_buf_confirm, 241 .release = anon_pipe_buf_release, 242 .steal = anon_pipe_buf_steal, 243 .get = generic_pipe_buf_get, 244 }; 245 246 static const struct pipe_buf_operations packet_pipe_buf_ops = { 247 .confirm = generic_pipe_buf_confirm, 248 .release = anon_pipe_buf_release, 249 .steal = anon_pipe_buf_steal, 250 .get = generic_pipe_buf_get, 251 }; 252 253 /** 254 * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable 255 * @buf: the buffer to mark 256 * 257 * Description: 258 * This function ensures that no future writes will be merged into the 259 * given &struct pipe_buffer. This is necessary when multiple pipe buffers 260 * share the same backing page. 261 */ 262 void pipe_buf_mark_unmergeable(struct pipe_buffer *buf) 263 { 264 if (buf->ops == &anon_pipe_buf_ops) 265 buf->ops = &anon_pipe_buf_nomerge_ops; 266 } 267 268 static bool pipe_buf_can_merge(struct pipe_buffer *buf) 269 { 270 return buf->ops == &anon_pipe_buf_ops; 271 } 272 273 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 274 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 275 { 276 unsigned int head = READ_ONCE(pipe->head); 277 unsigned int tail = READ_ONCE(pipe->tail); 278 unsigned int writers = READ_ONCE(pipe->writers); 279 280 return !pipe_empty(head, tail) || !writers; 281 } 282 283 static ssize_t 284 pipe_read(struct kiocb *iocb, struct iov_iter *to) 285 { 286 size_t total_len = iov_iter_count(to); 287 struct file *filp = iocb->ki_filp; 288 struct pipe_inode_info *pipe = filp->private_data; 289 bool was_full; 290 ssize_t ret; 291 292 /* Null read succeeds. */ 293 if (unlikely(total_len == 0)) 294 return 0; 295 296 ret = 0; 297 __pipe_lock(pipe); 298 299 /* 300 * We only wake up writers if the pipe was full when we started 301 * reading in order to avoid unnecessary wakeups. 302 * 303 * But when we do wake up writers, we do so using a sync wakeup 304 * (WF_SYNC), because we want them to get going and generate more 305 * data for us. 306 */ 307 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 308 for (;;) { 309 unsigned int head = pipe->head; 310 unsigned int tail = pipe->tail; 311 unsigned int mask = pipe->ring_size - 1; 312 313 if (!pipe_empty(head, tail)) { 314 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 315 size_t chars = buf->len; 316 size_t written; 317 int error; 318 319 if (chars > total_len) 320 chars = total_len; 321 322 error = pipe_buf_confirm(pipe, buf); 323 if (error) { 324 if (!ret) 325 ret = error; 326 break; 327 } 328 329 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 330 if (unlikely(written < chars)) { 331 if (!ret) 332 ret = -EFAULT; 333 break; 334 } 335 ret += chars; 336 buf->offset += chars; 337 buf->len -= chars; 338 339 /* Was it a packet buffer? Clean up and exit */ 340 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 341 total_len = chars; 342 buf->len = 0; 343 } 344 345 if (!buf->len) { 346 pipe_buf_release(pipe, buf); 347 spin_lock_irq(&pipe->wait.lock); 348 tail++; 349 pipe->tail = tail; 350 spin_unlock_irq(&pipe->wait.lock); 351 } 352 total_len -= chars; 353 if (!total_len) 354 break; /* common path: read succeeded */ 355 if (!pipe_empty(head, tail)) /* More to do? */ 356 continue; 357 } 358 359 if (!pipe->writers) 360 break; 361 if (ret) 362 break; 363 if (filp->f_flags & O_NONBLOCK) { 364 ret = -EAGAIN; 365 break; 366 } 367 __pipe_unlock(pipe); 368 369 /* 370 * We only get here if we didn't actually read anything. 371 * 372 * However, we could have seen (and removed) a zero-sized 373 * pipe buffer, and might have made space in the buffers 374 * that way. 375 * 376 * You can't make zero-sized pipe buffers by doing an empty 377 * write (not even in packet mode), but they can happen if 378 * the writer gets an EFAULT when trying to fill a buffer 379 * that already got allocated and inserted in the buffer 380 * array. 381 * 382 * So we still need to wake up any pending writers in the 383 * _very_ unlikely case that the pipe was full, but we got 384 * no data. 385 */ 386 if (unlikely(was_full)) { 387 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM); 388 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 389 } 390 391 /* 392 * But because we didn't read anything, at this point we can 393 * just return directly with -ERESTARTSYS if we're interrupted, 394 * since we've done any required wakeups and there's no need 395 * to mark anything accessed. And we've dropped the lock. 396 */ 397 if (wait_event_interruptible(pipe->wait, pipe_readable(pipe)) < 0) 398 return -ERESTARTSYS; 399 400 __pipe_lock(pipe); 401 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 402 } 403 __pipe_unlock(pipe); 404 405 if (was_full) { 406 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM); 407 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 408 } 409 if (ret > 0) 410 file_accessed(filp); 411 return ret; 412 } 413 414 static inline int is_packetized(struct file *file) 415 { 416 return (file->f_flags & O_DIRECT) != 0; 417 } 418 419 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 420 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 421 { 422 unsigned int head = READ_ONCE(pipe->head); 423 unsigned int tail = READ_ONCE(pipe->tail); 424 unsigned int max_usage = READ_ONCE(pipe->max_usage); 425 426 return !pipe_full(head, tail, max_usage) || 427 !READ_ONCE(pipe->readers); 428 } 429 430 static ssize_t 431 pipe_write(struct kiocb *iocb, struct iov_iter *from) 432 { 433 struct file *filp = iocb->ki_filp; 434 struct pipe_inode_info *pipe = filp->private_data; 435 unsigned int head; 436 ssize_t ret = 0; 437 size_t total_len = iov_iter_count(from); 438 ssize_t chars; 439 bool was_empty = false; 440 441 /* Null write succeeds. */ 442 if (unlikely(total_len == 0)) 443 return 0; 444 445 __pipe_lock(pipe); 446 447 if (!pipe->readers) { 448 send_sig(SIGPIPE, current, 0); 449 ret = -EPIPE; 450 goto out; 451 } 452 453 /* 454 * Only wake up if the pipe started out empty, since 455 * otherwise there should be no readers waiting. 456 * 457 * If it wasn't empty we try to merge new data into 458 * the last buffer. 459 * 460 * That naturally merges small writes, but it also 461 * page-aligs the rest of the writes for large writes 462 * spanning multiple pages. 463 */ 464 head = pipe->head; 465 was_empty = pipe_empty(head, pipe->tail); 466 chars = total_len & (PAGE_SIZE-1); 467 if (chars && !was_empty) { 468 unsigned int mask = pipe->ring_size - 1; 469 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask]; 470 int offset = buf->offset + buf->len; 471 472 if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) { 473 ret = pipe_buf_confirm(pipe, buf); 474 if (ret) 475 goto out; 476 477 ret = copy_page_from_iter(buf->page, offset, chars, from); 478 if (unlikely(ret < chars)) { 479 ret = -EFAULT; 480 goto out; 481 } 482 483 buf->len += ret; 484 if (!iov_iter_count(from)) 485 goto out; 486 } 487 } 488 489 for (;;) { 490 if (!pipe->readers) { 491 send_sig(SIGPIPE, current, 0); 492 if (!ret) 493 ret = -EPIPE; 494 break; 495 } 496 497 head = pipe->head; 498 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 499 unsigned int mask = pipe->ring_size - 1; 500 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 501 struct page *page = pipe->tmp_page; 502 int copied; 503 504 if (!page) { 505 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 506 if (unlikely(!page)) { 507 ret = ret ? : -ENOMEM; 508 break; 509 } 510 pipe->tmp_page = page; 511 } 512 513 /* Allocate a slot in the ring in advance and attach an 514 * empty buffer. If we fault or otherwise fail to use 515 * it, either the reader will consume it or it'll still 516 * be there for the next write. 517 */ 518 spin_lock_irq(&pipe->wait.lock); 519 520 head = pipe->head; 521 if (pipe_full(head, pipe->tail, pipe->max_usage)) { 522 spin_unlock_irq(&pipe->wait.lock); 523 continue; 524 } 525 526 pipe->head = head + 1; 527 spin_unlock_irq(&pipe->wait.lock); 528 529 /* Insert it into the buffer array */ 530 buf = &pipe->bufs[head & mask]; 531 buf->page = page; 532 buf->ops = &anon_pipe_buf_ops; 533 buf->offset = 0; 534 buf->len = 0; 535 buf->flags = 0; 536 if (is_packetized(filp)) { 537 buf->ops = &packet_pipe_buf_ops; 538 buf->flags = PIPE_BUF_FLAG_PACKET; 539 } 540 pipe->tmp_page = NULL; 541 542 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 543 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 544 if (!ret) 545 ret = -EFAULT; 546 break; 547 } 548 ret += copied; 549 buf->offset = 0; 550 buf->len = copied; 551 552 if (!iov_iter_count(from)) 553 break; 554 } 555 556 if (!pipe_full(head, pipe->tail, pipe->max_usage)) 557 continue; 558 559 /* Wait for buffer space to become available. */ 560 if (filp->f_flags & O_NONBLOCK) { 561 if (!ret) 562 ret = -EAGAIN; 563 break; 564 } 565 if (signal_pending(current)) { 566 if (!ret) 567 ret = -ERESTARTSYS; 568 break; 569 } 570 571 /* 572 * We're going to release the pipe lock and wait for more 573 * space. We wake up any readers if necessary, and then 574 * after waiting we need to re-check whether the pipe 575 * become empty while we dropped the lock. 576 */ 577 __pipe_unlock(pipe); 578 if (was_empty) { 579 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM); 580 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 581 } 582 wait_event_interruptible(pipe->wait, pipe_writable(pipe)); 583 __pipe_lock(pipe); 584 was_empty = pipe_empty(head, pipe->tail); 585 } 586 out: 587 __pipe_unlock(pipe); 588 589 /* 590 * If we do do a wakeup event, we do a 'sync' wakeup, because we 591 * want the reader to start processing things asap, rather than 592 * leave the data pending. 593 * 594 * This is particularly important for small writes, because of 595 * how (for example) the GNU make jobserver uses small writes to 596 * wake up pending jobs 597 */ 598 if (was_empty) { 599 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM); 600 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 601 } 602 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 603 int err = file_update_time(filp); 604 if (err) 605 ret = err; 606 sb_end_write(file_inode(filp)->i_sb); 607 } 608 return ret; 609 } 610 611 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 612 { 613 struct pipe_inode_info *pipe = filp->private_data; 614 int count, head, tail, mask; 615 616 switch (cmd) { 617 case FIONREAD: 618 __pipe_lock(pipe); 619 count = 0; 620 head = pipe->head; 621 tail = pipe->tail; 622 mask = pipe->ring_size - 1; 623 624 while (tail != head) { 625 count += pipe->bufs[tail & mask].len; 626 tail++; 627 } 628 __pipe_unlock(pipe); 629 630 return put_user(count, (int __user *)arg); 631 default: 632 return -ENOIOCTLCMD; 633 } 634 } 635 636 /* No kernel lock held - fine */ 637 static __poll_t 638 pipe_poll(struct file *filp, poll_table *wait) 639 { 640 __poll_t mask; 641 struct pipe_inode_info *pipe = filp->private_data; 642 unsigned int head, tail; 643 644 /* 645 * Reading only -- no need for acquiring the semaphore. 646 * 647 * But because this is racy, the code has to add the 648 * entry to the poll table _first_ .. 649 */ 650 poll_wait(filp, &pipe->wait, wait); 651 652 /* 653 * .. and only then can you do the racy tests. That way, 654 * if something changes and you got it wrong, the poll 655 * table entry will wake you up and fix it. 656 */ 657 head = READ_ONCE(pipe->head); 658 tail = READ_ONCE(pipe->tail); 659 660 mask = 0; 661 if (filp->f_mode & FMODE_READ) { 662 if (!pipe_empty(head, tail)) 663 mask |= EPOLLIN | EPOLLRDNORM; 664 if (!pipe->writers && filp->f_version != pipe->w_counter) 665 mask |= EPOLLHUP; 666 } 667 668 if (filp->f_mode & FMODE_WRITE) { 669 if (!pipe_full(head, tail, pipe->max_usage)) 670 mask |= EPOLLOUT | EPOLLWRNORM; 671 /* 672 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 673 * behave exactly like pipes for poll(). 674 */ 675 if (!pipe->readers) 676 mask |= EPOLLERR; 677 } 678 679 return mask; 680 } 681 682 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 683 { 684 int kill = 0; 685 686 spin_lock(&inode->i_lock); 687 if (!--pipe->files) { 688 inode->i_pipe = NULL; 689 kill = 1; 690 } 691 spin_unlock(&inode->i_lock); 692 693 if (kill) 694 free_pipe_info(pipe); 695 } 696 697 static int 698 pipe_release(struct inode *inode, struct file *file) 699 { 700 struct pipe_inode_info *pipe = file->private_data; 701 702 __pipe_lock(pipe); 703 if (file->f_mode & FMODE_READ) 704 pipe->readers--; 705 if (file->f_mode & FMODE_WRITE) 706 pipe->writers--; 707 708 if (pipe->readers || pipe->writers) { 709 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP); 710 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 711 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 712 } 713 __pipe_unlock(pipe); 714 715 put_pipe_info(inode, pipe); 716 return 0; 717 } 718 719 static int 720 pipe_fasync(int fd, struct file *filp, int on) 721 { 722 struct pipe_inode_info *pipe = filp->private_data; 723 int retval = 0; 724 725 __pipe_lock(pipe); 726 if (filp->f_mode & FMODE_READ) 727 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 728 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 729 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 730 if (retval < 0 && (filp->f_mode & FMODE_READ)) 731 /* this can happen only if on == T */ 732 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 733 } 734 __pipe_unlock(pipe); 735 return retval; 736 } 737 738 static unsigned long account_pipe_buffers(struct user_struct *user, 739 unsigned long old, unsigned long new) 740 { 741 return atomic_long_add_return(new - old, &user->pipe_bufs); 742 } 743 744 static bool too_many_pipe_buffers_soft(unsigned long user_bufs) 745 { 746 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 747 748 return soft_limit && user_bufs > soft_limit; 749 } 750 751 static bool too_many_pipe_buffers_hard(unsigned long user_bufs) 752 { 753 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 754 755 return hard_limit && user_bufs > hard_limit; 756 } 757 758 static bool is_unprivileged_user(void) 759 { 760 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 761 } 762 763 struct pipe_inode_info *alloc_pipe_info(void) 764 { 765 struct pipe_inode_info *pipe; 766 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 767 struct user_struct *user = get_current_user(); 768 unsigned long user_bufs; 769 unsigned int max_size = READ_ONCE(pipe_max_size); 770 771 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 772 if (pipe == NULL) 773 goto out_free_uid; 774 775 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 776 pipe_bufs = max_size >> PAGE_SHIFT; 777 778 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 779 780 if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) { 781 user_bufs = account_pipe_buffers(user, pipe_bufs, 1); 782 pipe_bufs = 1; 783 } 784 785 if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user()) 786 goto out_revert_acct; 787 788 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 789 GFP_KERNEL_ACCOUNT); 790 791 if (pipe->bufs) { 792 init_waitqueue_head(&pipe->wait); 793 pipe->r_counter = pipe->w_counter = 1; 794 pipe->max_usage = pipe_bufs; 795 pipe->ring_size = pipe_bufs; 796 pipe->user = user; 797 mutex_init(&pipe->mutex); 798 return pipe; 799 } 800 801 out_revert_acct: 802 (void) account_pipe_buffers(user, pipe_bufs, 0); 803 kfree(pipe); 804 out_free_uid: 805 free_uid(user); 806 return NULL; 807 } 808 809 void free_pipe_info(struct pipe_inode_info *pipe) 810 { 811 int i; 812 813 (void) account_pipe_buffers(pipe->user, pipe->ring_size, 0); 814 free_uid(pipe->user); 815 for (i = 0; i < pipe->ring_size; i++) { 816 struct pipe_buffer *buf = pipe->bufs + i; 817 if (buf->ops) 818 pipe_buf_release(pipe, buf); 819 } 820 if (pipe->tmp_page) 821 __free_page(pipe->tmp_page); 822 kfree(pipe->bufs); 823 kfree(pipe); 824 } 825 826 static struct vfsmount *pipe_mnt __read_mostly; 827 828 /* 829 * pipefs_dname() is called from d_path(). 830 */ 831 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 832 { 833 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]", 834 d_inode(dentry)->i_ino); 835 } 836 837 static const struct dentry_operations pipefs_dentry_operations = { 838 .d_dname = pipefs_dname, 839 }; 840 841 static struct inode * get_pipe_inode(void) 842 { 843 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 844 struct pipe_inode_info *pipe; 845 846 if (!inode) 847 goto fail_inode; 848 849 inode->i_ino = get_next_ino(); 850 851 pipe = alloc_pipe_info(); 852 if (!pipe) 853 goto fail_iput; 854 855 inode->i_pipe = pipe; 856 pipe->files = 2; 857 pipe->readers = pipe->writers = 1; 858 inode->i_fop = &pipefifo_fops; 859 860 /* 861 * Mark the inode dirty from the very beginning, 862 * that way it will never be moved to the dirty 863 * list because "mark_inode_dirty()" will think 864 * that it already _is_ on the dirty list. 865 */ 866 inode->i_state = I_DIRTY; 867 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 868 inode->i_uid = current_fsuid(); 869 inode->i_gid = current_fsgid(); 870 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 871 872 return inode; 873 874 fail_iput: 875 iput(inode); 876 877 fail_inode: 878 return NULL; 879 } 880 881 int create_pipe_files(struct file **res, int flags) 882 { 883 struct inode *inode = get_pipe_inode(); 884 struct file *f; 885 886 if (!inode) 887 return -ENFILE; 888 889 f = alloc_file_pseudo(inode, pipe_mnt, "", 890 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 891 &pipefifo_fops); 892 if (IS_ERR(f)) { 893 free_pipe_info(inode->i_pipe); 894 iput(inode); 895 return PTR_ERR(f); 896 } 897 898 f->private_data = inode->i_pipe; 899 900 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 901 &pipefifo_fops); 902 if (IS_ERR(res[0])) { 903 put_pipe_info(inode, inode->i_pipe); 904 fput(f); 905 return PTR_ERR(res[0]); 906 } 907 res[0]->private_data = inode->i_pipe; 908 res[1] = f; 909 stream_open(inode, res[0]); 910 stream_open(inode, res[1]); 911 return 0; 912 } 913 914 static int __do_pipe_flags(int *fd, struct file **files, int flags) 915 { 916 int error; 917 int fdw, fdr; 918 919 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT)) 920 return -EINVAL; 921 922 error = create_pipe_files(files, flags); 923 if (error) 924 return error; 925 926 error = get_unused_fd_flags(flags); 927 if (error < 0) 928 goto err_read_pipe; 929 fdr = error; 930 931 error = get_unused_fd_flags(flags); 932 if (error < 0) 933 goto err_fdr; 934 fdw = error; 935 936 audit_fd_pair(fdr, fdw); 937 fd[0] = fdr; 938 fd[1] = fdw; 939 return 0; 940 941 err_fdr: 942 put_unused_fd(fdr); 943 err_read_pipe: 944 fput(files[0]); 945 fput(files[1]); 946 return error; 947 } 948 949 int do_pipe_flags(int *fd, int flags) 950 { 951 struct file *files[2]; 952 int error = __do_pipe_flags(fd, files, flags); 953 if (!error) { 954 fd_install(fd[0], files[0]); 955 fd_install(fd[1], files[1]); 956 } 957 return error; 958 } 959 960 /* 961 * sys_pipe() is the normal C calling standard for creating 962 * a pipe. It's not the way Unix traditionally does this, though. 963 */ 964 static int do_pipe2(int __user *fildes, int flags) 965 { 966 struct file *files[2]; 967 int fd[2]; 968 int error; 969 970 error = __do_pipe_flags(fd, files, flags); 971 if (!error) { 972 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 973 fput(files[0]); 974 fput(files[1]); 975 put_unused_fd(fd[0]); 976 put_unused_fd(fd[1]); 977 error = -EFAULT; 978 } else { 979 fd_install(fd[0], files[0]); 980 fd_install(fd[1], files[1]); 981 } 982 } 983 return error; 984 } 985 986 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 987 { 988 return do_pipe2(fildes, flags); 989 } 990 991 SYSCALL_DEFINE1(pipe, int __user *, fildes) 992 { 993 return do_pipe2(fildes, 0); 994 } 995 996 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 997 { 998 int cur = *cnt; 999 1000 while (cur == *cnt) { 1001 pipe_wait(pipe); 1002 if (signal_pending(current)) 1003 break; 1004 } 1005 return cur == *cnt ? -ERESTARTSYS : 0; 1006 } 1007 1008 static void wake_up_partner(struct pipe_inode_info *pipe) 1009 { 1010 wake_up_interruptible(&pipe->wait); 1011 } 1012 1013 static int fifo_open(struct inode *inode, struct file *filp) 1014 { 1015 struct pipe_inode_info *pipe; 1016 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 1017 int ret; 1018 1019 filp->f_version = 0; 1020 1021 spin_lock(&inode->i_lock); 1022 if (inode->i_pipe) { 1023 pipe = inode->i_pipe; 1024 pipe->files++; 1025 spin_unlock(&inode->i_lock); 1026 } else { 1027 spin_unlock(&inode->i_lock); 1028 pipe = alloc_pipe_info(); 1029 if (!pipe) 1030 return -ENOMEM; 1031 pipe->files = 1; 1032 spin_lock(&inode->i_lock); 1033 if (unlikely(inode->i_pipe)) { 1034 inode->i_pipe->files++; 1035 spin_unlock(&inode->i_lock); 1036 free_pipe_info(pipe); 1037 pipe = inode->i_pipe; 1038 } else { 1039 inode->i_pipe = pipe; 1040 spin_unlock(&inode->i_lock); 1041 } 1042 } 1043 filp->private_data = pipe; 1044 /* OK, we have a pipe and it's pinned down */ 1045 1046 __pipe_lock(pipe); 1047 1048 /* We can only do regular read/write on fifos */ 1049 stream_open(inode, filp); 1050 1051 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1052 case FMODE_READ: 1053 /* 1054 * O_RDONLY 1055 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1056 * opened, even when there is no process writing the FIFO. 1057 */ 1058 pipe->r_counter++; 1059 if (pipe->readers++ == 0) 1060 wake_up_partner(pipe); 1061 1062 if (!is_pipe && !pipe->writers) { 1063 if ((filp->f_flags & O_NONBLOCK)) { 1064 /* suppress EPOLLHUP until we have 1065 * seen a writer */ 1066 filp->f_version = pipe->w_counter; 1067 } else { 1068 if (wait_for_partner(pipe, &pipe->w_counter)) 1069 goto err_rd; 1070 } 1071 } 1072 break; 1073 1074 case FMODE_WRITE: 1075 /* 1076 * O_WRONLY 1077 * POSIX.1 says that O_NONBLOCK means return -1 with 1078 * errno=ENXIO when there is no process reading the FIFO. 1079 */ 1080 ret = -ENXIO; 1081 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1082 goto err; 1083 1084 pipe->w_counter++; 1085 if (!pipe->writers++) 1086 wake_up_partner(pipe); 1087 1088 if (!is_pipe && !pipe->readers) { 1089 if (wait_for_partner(pipe, &pipe->r_counter)) 1090 goto err_wr; 1091 } 1092 break; 1093 1094 case FMODE_READ | FMODE_WRITE: 1095 /* 1096 * O_RDWR 1097 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1098 * This implementation will NEVER block on a O_RDWR open, since 1099 * the process can at least talk to itself. 1100 */ 1101 1102 pipe->readers++; 1103 pipe->writers++; 1104 pipe->r_counter++; 1105 pipe->w_counter++; 1106 if (pipe->readers == 1 || pipe->writers == 1) 1107 wake_up_partner(pipe); 1108 break; 1109 1110 default: 1111 ret = -EINVAL; 1112 goto err; 1113 } 1114 1115 /* Ok! */ 1116 __pipe_unlock(pipe); 1117 return 0; 1118 1119 err_rd: 1120 if (!--pipe->readers) 1121 wake_up_interruptible(&pipe->wait); 1122 ret = -ERESTARTSYS; 1123 goto err; 1124 1125 err_wr: 1126 if (!--pipe->writers) 1127 wake_up_interruptible(&pipe->wait); 1128 ret = -ERESTARTSYS; 1129 goto err; 1130 1131 err: 1132 __pipe_unlock(pipe); 1133 1134 put_pipe_info(inode, pipe); 1135 return ret; 1136 } 1137 1138 const struct file_operations pipefifo_fops = { 1139 .open = fifo_open, 1140 .llseek = no_llseek, 1141 .read_iter = pipe_read, 1142 .write_iter = pipe_write, 1143 .poll = pipe_poll, 1144 .unlocked_ioctl = pipe_ioctl, 1145 .release = pipe_release, 1146 .fasync = pipe_fasync, 1147 }; 1148 1149 /* 1150 * Currently we rely on the pipe array holding a power-of-2 number 1151 * of pages. Returns 0 on error. 1152 */ 1153 unsigned int round_pipe_size(unsigned long size) 1154 { 1155 if (size > (1U << 31)) 1156 return 0; 1157 1158 /* Minimum pipe size, as required by POSIX */ 1159 if (size < PAGE_SIZE) 1160 return PAGE_SIZE; 1161 1162 return roundup_pow_of_two(size); 1163 } 1164 1165 /* 1166 * Allocate a new array of pipe buffers and copy the info over. Returns the 1167 * pipe size if successful, or return -ERROR on error. 1168 */ 1169 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) 1170 { 1171 struct pipe_buffer *bufs; 1172 unsigned int size, nr_slots, head, tail, mask, n; 1173 unsigned long user_bufs; 1174 long ret = 0; 1175 1176 size = round_pipe_size(arg); 1177 nr_slots = size >> PAGE_SHIFT; 1178 1179 if (!nr_slots) 1180 return -EINVAL; 1181 1182 /* 1183 * If trying to increase the pipe capacity, check that an 1184 * unprivileged user is not trying to exceed various limits 1185 * (soft limit check here, hard limit check just below). 1186 * Decreasing the pipe capacity is always permitted, even 1187 * if the user is currently over a limit. 1188 */ 1189 if (nr_slots > pipe->ring_size && 1190 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1191 return -EPERM; 1192 1193 user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots); 1194 1195 if (nr_slots > pipe->ring_size && 1196 (too_many_pipe_buffers_hard(user_bufs) || 1197 too_many_pipe_buffers_soft(user_bufs)) && 1198 is_unprivileged_user()) { 1199 ret = -EPERM; 1200 goto out_revert_acct; 1201 } 1202 1203 /* 1204 * We can shrink the pipe, if arg is greater than the ring occupancy. 1205 * Since we don't expect a lot of shrink+grow operations, just free and 1206 * allocate again like we would do for growing. If the pipe currently 1207 * contains more buffers than arg, then return busy. 1208 */ 1209 mask = pipe->ring_size - 1; 1210 head = pipe->head; 1211 tail = pipe->tail; 1212 n = pipe_occupancy(pipe->head, pipe->tail); 1213 if (nr_slots < n) { 1214 ret = -EBUSY; 1215 goto out_revert_acct; 1216 } 1217 1218 bufs = kcalloc(nr_slots, sizeof(*bufs), 1219 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1220 if (unlikely(!bufs)) { 1221 ret = -ENOMEM; 1222 goto out_revert_acct; 1223 } 1224 1225 /* 1226 * The pipe array wraps around, so just start the new one at zero 1227 * and adjust the indices. 1228 */ 1229 if (n > 0) { 1230 unsigned int h = head & mask; 1231 unsigned int t = tail & mask; 1232 if (h > t) { 1233 memcpy(bufs, pipe->bufs + t, 1234 n * sizeof(struct pipe_buffer)); 1235 } else { 1236 unsigned int tsize = pipe->ring_size - t; 1237 if (h > 0) 1238 memcpy(bufs + tsize, pipe->bufs, 1239 h * sizeof(struct pipe_buffer)); 1240 memcpy(bufs, pipe->bufs + t, 1241 tsize * sizeof(struct pipe_buffer)); 1242 } 1243 } 1244 1245 head = n; 1246 tail = 0; 1247 1248 kfree(pipe->bufs); 1249 pipe->bufs = bufs; 1250 pipe->ring_size = nr_slots; 1251 pipe->max_usage = nr_slots; 1252 pipe->tail = tail; 1253 pipe->head = head; 1254 wake_up_interruptible_all(&pipe->wait); 1255 return pipe->max_usage * PAGE_SIZE; 1256 1257 out_revert_acct: 1258 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size); 1259 return ret; 1260 } 1261 1262 /* 1263 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1264 * location, so checking ->i_pipe is not enough to verify that this is a 1265 * pipe. 1266 */ 1267 struct pipe_inode_info *get_pipe_info(struct file *file) 1268 { 1269 return file->f_op == &pipefifo_fops ? file->private_data : NULL; 1270 } 1271 1272 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1273 { 1274 struct pipe_inode_info *pipe; 1275 long ret; 1276 1277 pipe = get_pipe_info(file); 1278 if (!pipe) 1279 return -EBADF; 1280 1281 __pipe_lock(pipe); 1282 1283 switch (cmd) { 1284 case F_SETPIPE_SZ: 1285 ret = pipe_set_size(pipe, arg); 1286 break; 1287 case F_GETPIPE_SZ: 1288 ret = pipe->max_usage * PAGE_SIZE; 1289 break; 1290 default: 1291 ret = -EINVAL; 1292 break; 1293 } 1294 1295 __pipe_unlock(pipe); 1296 return ret; 1297 } 1298 1299 static const struct super_operations pipefs_ops = { 1300 .destroy_inode = free_inode_nonrcu, 1301 .statfs = simple_statfs, 1302 }; 1303 1304 /* 1305 * pipefs should _never_ be mounted by userland - too much of security hassle, 1306 * no real gain from having the whole whorehouse mounted. So we don't need 1307 * any operations on the root directory. However, we need a non-trivial 1308 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1309 */ 1310 1311 static int pipefs_init_fs_context(struct fs_context *fc) 1312 { 1313 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1314 if (!ctx) 1315 return -ENOMEM; 1316 ctx->ops = &pipefs_ops; 1317 ctx->dops = &pipefs_dentry_operations; 1318 return 0; 1319 } 1320 1321 static struct file_system_type pipe_fs_type = { 1322 .name = "pipefs", 1323 .init_fs_context = pipefs_init_fs_context, 1324 .kill_sb = kill_anon_super, 1325 }; 1326 1327 static int __init init_pipe_fs(void) 1328 { 1329 int err = register_filesystem(&pipe_fs_type); 1330 1331 if (!err) { 1332 pipe_mnt = kern_mount(&pipe_fs_type); 1333 if (IS_ERR(pipe_mnt)) { 1334 err = PTR_ERR(pipe_mnt); 1335 unregister_filesystem(&pipe_fs_type); 1336 } 1337 } 1338 return err; 1339 } 1340 1341 fs_initcall(init_pipe_fs); 1342