xref: /linux/fs/pipe.c (revision 3ebacc96f8862eb26f8a6568d91bda8ecff19879)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/fs/pipe.c
4   *
5   *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6   */
7  
8  #include <linux/mm.h>
9  #include <linux/file.h>
10  #include <linux/poll.h>
11  #include <linux/slab.h>
12  #include <linux/module.h>
13  #include <linux/init.h>
14  #include <linux/fs.h>
15  #include <linux/log2.h>
16  #include <linux/mount.h>
17  #include <linux/pseudo_fs.h>
18  #include <linux/magic.h>
19  #include <linux/pipe_fs_i.h>
20  #include <linux/uio.h>
21  #include <linux/highmem.h>
22  #include <linux/pagemap.h>
23  #include <linux/audit.h>
24  #include <linux/syscalls.h>
25  #include <linux/fcntl.h>
26  #include <linux/memcontrol.h>
27  #include <linux/watch_queue.h>
28  #include <linux/sysctl.h>
29  
30  #include <linux/uaccess.h>
31  #include <asm/ioctls.h>
32  
33  #include "internal.h"
34  
35  /*
36   * New pipe buffers will be restricted to this size while the user is exceeding
37   * their pipe buffer quota. The general pipe use case needs at least two
38   * buffers: one for data yet to be read, and one for new data. If this is less
39   * than two, then a write to a non-empty pipe may block even if the pipe is not
40   * full. This can occur with GNU make jobserver or similar uses of pipes as
41   * semaphores: multiple processes may be waiting to write tokens back to the
42   * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43   *
44   * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45   * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46   * emptied.
47   */
48  #define PIPE_MIN_DEF_BUFFERS 2
49  
50  /*
51   * The max size that a non-root user is allowed to grow the pipe. Can
52   * be set by root in /proc/sys/fs/pipe-max-size
53   */
54  static unsigned int pipe_max_size = 1048576;
55  
56  /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57   * matches default values.
58   */
59  static unsigned long pipe_user_pages_hard;
60  static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61  
62  /*
63   * We use head and tail indices that aren't masked off, except at the point of
64   * dereference, but rather they're allowed to wrap naturally.  This means there
65   * isn't a dead spot in the buffer, but the ring has to be a power of two and
66   * <= 2^31.
67   * -- David Howells 2019-09-23.
68   *
69   * Reads with count = 0 should always return 0.
70   * -- Julian Bradfield 1999-06-07.
71   *
72   * FIFOs and Pipes now generate SIGIO for both readers and writers.
73   * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74   *
75   * pipe_read & write cleanup
76   * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77   */
78  
79  static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80  {
81  	if (pipe->files)
82  		mutex_lock_nested(&pipe->mutex, subclass);
83  }
84  
85  void pipe_lock(struct pipe_inode_info *pipe)
86  {
87  	/*
88  	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
89  	 */
90  	pipe_lock_nested(pipe, I_MUTEX_PARENT);
91  }
92  EXPORT_SYMBOL(pipe_lock);
93  
94  void pipe_unlock(struct pipe_inode_info *pipe)
95  {
96  	if (pipe->files)
97  		mutex_unlock(&pipe->mutex);
98  }
99  EXPORT_SYMBOL(pipe_unlock);
100  
101  static inline void __pipe_lock(struct pipe_inode_info *pipe)
102  {
103  	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104  }
105  
106  static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107  {
108  	mutex_unlock(&pipe->mutex);
109  }
110  
111  void pipe_double_lock(struct pipe_inode_info *pipe1,
112  		      struct pipe_inode_info *pipe2)
113  {
114  	BUG_ON(pipe1 == pipe2);
115  
116  	if (pipe1 < pipe2) {
117  		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118  		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119  	} else {
120  		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121  		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122  	}
123  }
124  
125  static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126  				  struct pipe_buffer *buf)
127  {
128  	struct page *page = buf->page;
129  
130  	/*
131  	 * If nobody else uses this page, and we don't already have a
132  	 * temporary page, let's keep track of it as a one-deep
133  	 * allocation cache. (Otherwise just release our reference to it)
134  	 */
135  	if (page_count(page) == 1 && !pipe->tmp_page)
136  		pipe->tmp_page = page;
137  	else
138  		put_page(page);
139  }
140  
141  static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142  		struct pipe_buffer *buf)
143  {
144  	struct page *page = buf->page;
145  
146  	if (page_count(page) != 1)
147  		return false;
148  	memcg_kmem_uncharge_page(page, 0);
149  	__SetPageLocked(page);
150  	return true;
151  }
152  
153  /**
154   * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155   * @pipe:	the pipe that the buffer belongs to
156   * @buf:	the buffer to attempt to steal
157   *
158   * Description:
159   *	This function attempts to steal the &struct page attached to
160   *	@buf. If successful, this function returns 0 and returns with
161   *	the page locked. The caller may then reuse the page for whatever
162   *	he wishes; the typical use is insertion into a different file
163   *	page cache.
164   */
165  bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166  		struct pipe_buffer *buf)
167  {
168  	struct page *page = buf->page;
169  
170  	/*
171  	 * A reference of one is golden, that means that the owner of this
172  	 * page is the only one holding a reference to it. lock the page
173  	 * and return OK.
174  	 */
175  	if (page_count(page) == 1) {
176  		lock_page(page);
177  		return true;
178  	}
179  	return false;
180  }
181  EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182  
183  /**
184   * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185   * @pipe:	the pipe that the buffer belongs to
186   * @buf:	the buffer to get a reference to
187   *
188   * Description:
189   *	This function grabs an extra reference to @buf. It's used in
190   *	the tee() system call, when we duplicate the buffers in one
191   *	pipe into another.
192   */
193  bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194  {
195  	return try_get_page(buf->page);
196  }
197  EXPORT_SYMBOL(generic_pipe_buf_get);
198  
199  /**
200   * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201   * @pipe:	the pipe that the buffer belongs to
202   * @buf:	the buffer to put a reference to
203   *
204   * Description:
205   *	This function releases a reference to @buf.
206   */
207  void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208  			      struct pipe_buffer *buf)
209  {
210  	put_page(buf->page);
211  }
212  EXPORT_SYMBOL(generic_pipe_buf_release);
213  
214  static const struct pipe_buf_operations anon_pipe_buf_ops = {
215  	.release	= anon_pipe_buf_release,
216  	.try_steal	= anon_pipe_buf_try_steal,
217  	.get		= generic_pipe_buf_get,
218  };
219  
220  /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
221  static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222  {
223  	unsigned int head = READ_ONCE(pipe->head);
224  	unsigned int tail = READ_ONCE(pipe->tail);
225  	unsigned int writers = READ_ONCE(pipe->writers);
226  
227  	return !pipe_empty(head, tail) || !writers;
228  }
229  
230  static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe,
231  					    struct pipe_buffer *buf,
232  					    unsigned int tail)
233  {
234  	pipe_buf_release(pipe, buf);
235  
236  	/*
237  	 * If the pipe has a watch_queue, we need additional protection
238  	 * by the spinlock because notifications get posted with only
239  	 * this spinlock, no mutex
240  	 */
241  	if (pipe_has_watch_queue(pipe)) {
242  		spin_lock_irq(&pipe->rd_wait.lock);
243  #ifdef CONFIG_WATCH_QUEUE
244  		if (buf->flags & PIPE_BUF_FLAG_LOSS)
245  			pipe->note_loss = true;
246  #endif
247  		pipe->tail = ++tail;
248  		spin_unlock_irq(&pipe->rd_wait.lock);
249  		return tail;
250  	}
251  
252  	/*
253  	 * Without a watch_queue, we can simply increment the tail
254  	 * without the spinlock - the mutex is enough.
255  	 */
256  	pipe->tail = ++tail;
257  	return tail;
258  }
259  
260  static ssize_t
261  pipe_read(struct kiocb *iocb, struct iov_iter *to)
262  {
263  	size_t total_len = iov_iter_count(to);
264  	struct file *filp = iocb->ki_filp;
265  	struct pipe_inode_info *pipe = filp->private_data;
266  	bool was_full, wake_next_reader = false;
267  	ssize_t ret;
268  
269  	/* Null read succeeds. */
270  	if (unlikely(total_len == 0))
271  		return 0;
272  
273  	ret = 0;
274  	__pipe_lock(pipe);
275  
276  	/*
277  	 * We only wake up writers if the pipe was full when we started
278  	 * reading in order to avoid unnecessary wakeups.
279  	 *
280  	 * But when we do wake up writers, we do so using a sync wakeup
281  	 * (WF_SYNC), because we want them to get going and generate more
282  	 * data for us.
283  	 */
284  	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
285  	for (;;) {
286  		/* Read ->head with a barrier vs post_one_notification() */
287  		unsigned int head = smp_load_acquire(&pipe->head);
288  		unsigned int tail = pipe->tail;
289  		unsigned int mask = pipe->ring_size - 1;
290  
291  #ifdef CONFIG_WATCH_QUEUE
292  		if (pipe->note_loss) {
293  			struct watch_notification n;
294  
295  			if (total_len < 8) {
296  				if (ret == 0)
297  					ret = -ENOBUFS;
298  				break;
299  			}
300  
301  			n.type = WATCH_TYPE_META;
302  			n.subtype = WATCH_META_LOSS_NOTIFICATION;
303  			n.info = watch_sizeof(n);
304  			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
305  				if (ret == 0)
306  					ret = -EFAULT;
307  				break;
308  			}
309  			ret += sizeof(n);
310  			total_len -= sizeof(n);
311  			pipe->note_loss = false;
312  		}
313  #endif
314  
315  		if (!pipe_empty(head, tail)) {
316  			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
317  			size_t chars = buf->len;
318  			size_t written;
319  			int error;
320  
321  			if (chars > total_len) {
322  				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
323  					if (ret == 0)
324  						ret = -ENOBUFS;
325  					break;
326  				}
327  				chars = total_len;
328  			}
329  
330  			error = pipe_buf_confirm(pipe, buf);
331  			if (error) {
332  				if (!ret)
333  					ret = error;
334  				break;
335  			}
336  
337  			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
338  			if (unlikely(written < chars)) {
339  				if (!ret)
340  					ret = -EFAULT;
341  				break;
342  			}
343  			ret += chars;
344  			buf->offset += chars;
345  			buf->len -= chars;
346  
347  			/* Was it a packet buffer? Clean up and exit */
348  			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
349  				total_len = chars;
350  				buf->len = 0;
351  			}
352  
353  			if (!buf->len)
354  				tail = pipe_update_tail(pipe, buf, tail);
355  			total_len -= chars;
356  			if (!total_len)
357  				break;	/* common path: read succeeded */
358  			if (!pipe_empty(head, tail))	/* More to do? */
359  				continue;
360  		}
361  
362  		if (!pipe->writers)
363  			break;
364  		if (ret)
365  			break;
366  		if ((filp->f_flags & O_NONBLOCK) ||
367  		    (iocb->ki_flags & IOCB_NOWAIT)) {
368  			ret = -EAGAIN;
369  			break;
370  		}
371  		__pipe_unlock(pipe);
372  
373  		/*
374  		 * We only get here if we didn't actually read anything.
375  		 *
376  		 * However, we could have seen (and removed) a zero-sized
377  		 * pipe buffer, and might have made space in the buffers
378  		 * that way.
379  		 *
380  		 * You can't make zero-sized pipe buffers by doing an empty
381  		 * write (not even in packet mode), but they can happen if
382  		 * the writer gets an EFAULT when trying to fill a buffer
383  		 * that already got allocated and inserted in the buffer
384  		 * array.
385  		 *
386  		 * So we still need to wake up any pending writers in the
387  		 * _very_ unlikely case that the pipe was full, but we got
388  		 * no data.
389  		 */
390  		if (unlikely(was_full))
391  			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
392  		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
393  
394  		/*
395  		 * But because we didn't read anything, at this point we can
396  		 * just return directly with -ERESTARTSYS if we're interrupted,
397  		 * since we've done any required wakeups and there's no need
398  		 * to mark anything accessed. And we've dropped the lock.
399  		 */
400  		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
401  			return -ERESTARTSYS;
402  
403  		__pipe_lock(pipe);
404  		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
405  		wake_next_reader = true;
406  	}
407  	if (pipe_empty(pipe->head, pipe->tail))
408  		wake_next_reader = false;
409  	__pipe_unlock(pipe);
410  
411  	if (was_full)
412  		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
413  	if (wake_next_reader)
414  		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
415  	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
416  	if (ret > 0)
417  		file_accessed(filp);
418  	return ret;
419  }
420  
421  static inline int is_packetized(struct file *file)
422  {
423  	return (file->f_flags & O_DIRECT) != 0;
424  }
425  
426  /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
427  static inline bool pipe_writable(const struct pipe_inode_info *pipe)
428  {
429  	unsigned int head = READ_ONCE(pipe->head);
430  	unsigned int tail = READ_ONCE(pipe->tail);
431  	unsigned int max_usage = READ_ONCE(pipe->max_usage);
432  
433  	return !pipe_full(head, tail, max_usage) ||
434  		!READ_ONCE(pipe->readers);
435  }
436  
437  static ssize_t
438  pipe_write(struct kiocb *iocb, struct iov_iter *from)
439  {
440  	struct file *filp = iocb->ki_filp;
441  	struct pipe_inode_info *pipe = filp->private_data;
442  	unsigned int head;
443  	ssize_t ret = 0;
444  	size_t total_len = iov_iter_count(from);
445  	ssize_t chars;
446  	bool was_empty = false;
447  	bool wake_next_writer = false;
448  
449  	/*
450  	 * Reject writing to watch queue pipes before the point where we lock
451  	 * the pipe.
452  	 * Otherwise, lockdep would be unhappy if the caller already has another
453  	 * pipe locked.
454  	 * If we had to support locking a normal pipe and a notification pipe at
455  	 * the same time, we could set up lockdep annotations for that, but
456  	 * since we don't actually need that, it's simpler to just bail here.
457  	 */
458  	if (pipe_has_watch_queue(pipe))
459  		return -EXDEV;
460  
461  	/* Null write succeeds. */
462  	if (unlikely(total_len == 0))
463  		return 0;
464  
465  	__pipe_lock(pipe);
466  
467  	if (!pipe->readers) {
468  		send_sig(SIGPIPE, current, 0);
469  		ret = -EPIPE;
470  		goto out;
471  	}
472  
473  	/*
474  	 * If it wasn't empty we try to merge new data into
475  	 * the last buffer.
476  	 *
477  	 * That naturally merges small writes, but it also
478  	 * page-aligns the rest of the writes for large writes
479  	 * spanning multiple pages.
480  	 */
481  	head = pipe->head;
482  	was_empty = pipe_empty(head, pipe->tail);
483  	chars = total_len & (PAGE_SIZE-1);
484  	if (chars && !was_empty) {
485  		unsigned int mask = pipe->ring_size - 1;
486  		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
487  		int offset = buf->offset + buf->len;
488  
489  		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
490  		    offset + chars <= PAGE_SIZE) {
491  			ret = pipe_buf_confirm(pipe, buf);
492  			if (ret)
493  				goto out;
494  
495  			ret = copy_page_from_iter(buf->page, offset, chars, from);
496  			if (unlikely(ret < chars)) {
497  				ret = -EFAULT;
498  				goto out;
499  			}
500  
501  			buf->len += ret;
502  			if (!iov_iter_count(from))
503  				goto out;
504  		}
505  	}
506  
507  	for (;;) {
508  		if (!pipe->readers) {
509  			send_sig(SIGPIPE, current, 0);
510  			if (!ret)
511  				ret = -EPIPE;
512  			break;
513  		}
514  
515  		head = pipe->head;
516  		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
517  			unsigned int mask = pipe->ring_size - 1;
518  			struct pipe_buffer *buf;
519  			struct page *page = pipe->tmp_page;
520  			int copied;
521  
522  			if (!page) {
523  				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
524  				if (unlikely(!page)) {
525  					ret = ret ? : -ENOMEM;
526  					break;
527  				}
528  				pipe->tmp_page = page;
529  			}
530  
531  			/* Allocate a slot in the ring in advance and attach an
532  			 * empty buffer.  If we fault or otherwise fail to use
533  			 * it, either the reader will consume it or it'll still
534  			 * be there for the next write.
535  			 */
536  			pipe->head = head + 1;
537  
538  			/* Insert it into the buffer array */
539  			buf = &pipe->bufs[head & mask];
540  			buf->page = page;
541  			buf->ops = &anon_pipe_buf_ops;
542  			buf->offset = 0;
543  			buf->len = 0;
544  			if (is_packetized(filp))
545  				buf->flags = PIPE_BUF_FLAG_PACKET;
546  			else
547  				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
548  			pipe->tmp_page = NULL;
549  
550  			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
551  			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
552  				if (!ret)
553  					ret = -EFAULT;
554  				break;
555  			}
556  			ret += copied;
557  			buf->len = copied;
558  
559  			if (!iov_iter_count(from))
560  				break;
561  		}
562  
563  		if (!pipe_full(head, pipe->tail, pipe->max_usage))
564  			continue;
565  
566  		/* Wait for buffer space to become available. */
567  		if ((filp->f_flags & O_NONBLOCK) ||
568  		    (iocb->ki_flags & IOCB_NOWAIT)) {
569  			if (!ret)
570  				ret = -EAGAIN;
571  			break;
572  		}
573  		if (signal_pending(current)) {
574  			if (!ret)
575  				ret = -ERESTARTSYS;
576  			break;
577  		}
578  
579  		/*
580  		 * We're going to release the pipe lock and wait for more
581  		 * space. We wake up any readers if necessary, and then
582  		 * after waiting we need to re-check whether the pipe
583  		 * become empty while we dropped the lock.
584  		 */
585  		__pipe_unlock(pipe);
586  		if (was_empty)
587  			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
588  		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
589  		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
590  		__pipe_lock(pipe);
591  		was_empty = pipe_empty(pipe->head, pipe->tail);
592  		wake_next_writer = true;
593  	}
594  out:
595  	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
596  		wake_next_writer = false;
597  	__pipe_unlock(pipe);
598  
599  	/*
600  	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
601  	 * want the reader to start processing things asap, rather than
602  	 * leave the data pending.
603  	 *
604  	 * This is particularly important for small writes, because of
605  	 * how (for example) the GNU make jobserver uses small writes to
606  	 * wake up pending jobs
607  	 *
608  	 * Epoll nonsensically wants a wakeup whether the pipe
609  	 * was already empty or not.
610  	 */
611  	if (was_empty || pipe->poll_usage)
612  		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
613  	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
614  	if (wake_next_writer)
615  		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
616  	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
617  		int err = file_update_time(filp);
618  		if (err)
619  			ret = err;
620  		sb_end_write(file_inode(filp)->i_sb);
621  	}
622  	return ret;
623  }
624  
625  static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
626  {
627  	struct pipe_inode_info *pipe = filp->private_data;
628  	unsigned int count, head, tail, mask;
629  
630  	switch (cmd) {
631  	case FIONREAD:
632  		__pipe_lock(pipe);
633  		count = 0;
634  		head = pipe->head;
635  		tail = pipe->tail;
636  		mask = pipe->ring_size - 1;
637  
638  		while (tail != head) {
639  			count += pipe->bufs[tail & mask].len;
640  			tail++;
641  		}
642  		__pipe_unlock(pipe);
643  
644  		return put_user(count, (int __user *)arg);
645  
646  #ifdef CONFIG_WATCH_QUEUE
647  	case IOC_WATCH_QUEUE_SET_SIZE: {
648  		int ret;
649  		__pipe_lock(pipe);
650  		ret = watch_queue_set_size(pipe, arg);
651  		__pipe_unlock(pipe);
652  		return ret;
653  	}
654  
655  	case IOC_WATCH_QUEUE_SET_FILTER:
656  		return watch_queue_set_filter(
657  			pipe, (struct watch_notification_filter __user *)arg);
658  #endif
659  
660  	default:
661  		return -ENOIOCTLCMD;
662  	}
663  }
664  
665  /* No kernel lock held - fine */
666  static __poll_t
667  pipe_poll(struct file *filp, poll_table *wait)
668  {
669  	__poll_t mask;
670  	struct pipe_inode_info *pipe = filp->private_data;
671  	unsigned int head, tail;
672  
673  	/* Epoll has some historical nasty semantics, this enables them */
674  	WRITE_ONCE(pipe->poll_usage, true);
675  
676  	/*
677  	 * Reading pipe state only -- no need for acquiring the semaphore.
678  	 *
679  	 * But because this is racy, the code has to add the
680  	 * entry to the poll table _first_ ..
681  	 */
682  	if (filp->f_mode & FMODE_READ)
683  		poll_wait(filp, &pipe->rd_wait, wait);
684  	if (filp->f_mode & FMODE_WRITE)
685  		poll_wait(filp, &pipe->wr_wait, wait);
686  
687  	/*
688  	 * .. and only then can you do the racy tests. That way,
689  	 * if something changes and you got it wrong, the poll
690  	 * table entry will wake you up and fix it.
691  	 */
692  	head = READ_ONCE(pipe->head);
693  	tail = READ_ONCE(pipe->tail);
694  
695  	mask = 0;
696  	if (filp->f_mode & FMODE_READ) {
697  		if (!pipe_empty(head, tail))
698  			mask |= EPOLLIN | EPOLLRDNORM;
699  		if (!pipe->writers && filp->f_version != pipe->w_counter)
700  			mask |= EPOLLHUP;
701  	}
702  
703  	if (filp->f_mode & FMODE_WRITE) {
704  		if (!pipe_full(head, tail, pipe->max_usage))
705  			mask |= EPOLLOUT | EPOLLWRNORM;
706  		/*
707  		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
708  		 * behave exactly like pipes for poll().
709  		 */
710  		if (!pipe->readers)
711  			mask |= EPOLLERR;
712  	}
713  
714  	return mask;
715  }
716  
717  static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
718  {
719  	int kill = 0;
720  
721  	spin_lock(&inode->i_lock);
722  	if (!--pipe->files) {
723  		inode->i_pipe = NULL;
724  		kill = 1;
725  	}
726  	spin_unlock(&inode->i_lock);
727  
728  	if (kill)
729  		free_pipe_info(pipe);
730  }
731  
732  static int
733  pipe_release(struct inode *inode, struct file *file)
734  {
735  	struct pipe_inode_info *pipe = file->private_data;
736  
737  	__pipe_lock(pipe);
738  	if (file->f_mode & FMODE_READ)
739  		pipe->readers--;
740  	if (file->f_mode & FMODE_WRITE)
741  		pipe->writers--;
742  
743  	/* Was that the last reader or writer, but not the other side? */
744  	if (!pipe->readers != !pipe->writers) {
745  		wake_up_interruptible_all(&pipe->rd_wait);
746  		wake_up_interruptible_all(&pipe->wr_wait);
747  		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
748  		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
749  	}
750  	__pipe_unlock(pipe);
751  
752  	put_pipe_info(inode, pipe);
753  	return 0;
754  }
755  
756  static int
757  pipe_fasync(int fd, struct file *filp, int on)
758  {
759  	struct pipe_inode_info *pipe = filp->private_data;
760  	int retval = 0;
761  
762  	__pipe_lock(pipe);
763  	if (filp->f_mode & FMODE_READ)
764  		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
765  	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
766  		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
767  		if (retval < 0 && (filp->f_mode & FMODE_READ))
768  			/* this can happen only if on == T */
769  			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
770  	}
771  	__pipe_unlock(pipe);
772  	return retval;
773  }
774  
775  unsigned long account_pipe_buffers(struct user_struct *user,
776  				   unsigned long old, unsigned long new)
777  {
778  	return atomic_long_add_return(new - old, &user->pipe_bufs);
779  }
780  
781  bool too_many_pipe_buffers_soft(unsigned long user_bufs)
782  {
783  	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
784  
785  	return soft_limit && user_bufs > soft_limit;
786  }
787  
788  bool too_many_pipe_buffers_hard(unsigned long user_bufs)
789  {
790  	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
791  
792  	return hard_limit && user_bufs > hard_limit;
793  }
794  
795  bool pipe_is_unprivileged_user(void)
796  {
797  	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
798  }
799  
800  struct pipe_inode_info *alloc_pipe_info(void)
801  {
802  	struct pipe_inode_info *pipe;
803  	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
804  	struct user_struct *user = get_current_user();
805  	unsigned long user_bufs;
806  	unsigned int max_size = READ_ONCE(pipe_max_size);
807  
808  	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
809  	if (pipe == NULL)
810  		goto out_free_uid;
811  
812  	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
813  		pipe_bufs = max_size >> PAGE_SHIFT;
814  
815  	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
816  
817  	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
818  		user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
819  		pipe_bufs = PIPE_MIN_DEF_BUFFERS;
820  	}
821  
822  	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
823  		goto out_revert_acct;
824  
825  	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
826  			     GFP_KERNEL_ACCOUNT);
827  
828  	if (pipe->bufs) {
829  		init_waitqueue_head(&pipe->rd_wait);
830  		init_waitqueue_head(&pipe->wr_wait);
831  		pipe->r_counter = pipe->w_counter = 1;
832  		pipe->max_usage = pipe_bufs;
833  		pipe->ring_size = pipe_bufs;
834  		pipe->nr_accounted = pipe_bufs;
835  		pipe->user = user;
836  		mutex_init(&pipe->mutex);
837  		return pipe;
838  	}
839  
840  out_revert_acct:
841  	(void) account_pipe_buffers(user, pipe_bufs, 0);
842  	kfree(pipe);
843  out_free_uid:
844  	free_uid(user);
845  	return NULL;
846  }
847  
848  void free_pipe_info(struct pipe_inode_info *pipe)
849  {
850  	unsigned int i;
851  
852  #ifdef CONFIG_WATCH_QUEUE
853  	if (pipe->watch_queue)
854  		watch_queue_clear(pipe->watch_queue);
855  #endif
856  
857  	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
858  	free_uid(pipe->user);
859  	for (i = 0; i < pipe->ring_size; i++) {
860  		struct pipe_buffer *buf = pipe->bufs + i;
861  		if (buf->ops)
862  			pipe_buf_release(pipe, buf);
863  	}
864  #ifdef CONFIG_WATCH_QUEUE
865  	if (pipe->watch_queue)
866  		put_watch_queue(pipe->watch_queue);
867  #endif
868  	if (pipe->tmp_page)
869  		__free_page(pipe->tmp_page);
870  	kfree(pipe->bufs);
871  	kfree(pipe);
872  }
873  
874  static struct vfsmount *pipe_mnt __ro_after_init;
875  
876  /*
877   * pipefs_dname() is called from d_path().
878   */
879  static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
880  {
881  	return dynamic_dname(buffer, buflen, "pipe:[%lu]",
882  				d_inode(dentry)->i_ino);
883  }
884  
885  static const struct dentry_operations pipefs_dentry_operations = {
886  	.d_dname	= pipefs_dname,
887  };
888  
889  static struct inode * get_pipe_inode(void)
890  {
891  	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
892  	struct pipe_inode_info *pipe;
893  
894  	if (!inode)
895  		goto fail_inode;
896  
897  	inode->i_ino = get_next_ino();
898  
899  	pipe = alloc_pipe_info();
900  	if (!pipe)
901  		goto fail_iput;
902  
903  	inode->i_pipe = pipe;
904  	pipe->files = 2;
905  	pipe->readers = pipe->writers = 1;
906  	inode->i_fop = &pipefifo_fops;
907  
908  	/*
909  	 * Mark the inode dirty from the very beginning,
910  	 * that way it will never be moved to the dirty
911  	 * list because "mark_inode_dirty()" will think
912  	 * that it already _is_ on the dirty list.
913  	 */
914  	inode->i_state = I_DIRTY;
915  	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
916  	inode->i_uid = current_fsuid();
917  	inode->i_gid = current_fsgid();
918  	simple_inode_init_ts(inode);
919  
920  	return inode;
921  
922  fail_iput:
923  	iput(inode);
924  
925  fail_inode:
926  	return NULL;
927  }
928  
929  int create_pipe_files(struct file **res, int flags)
930  {
931  	struct inode *inode = get_pipe_inode();
932  	struct file *f;
933  	int error;
934  
935  	if (!inode)
936  		return -ENFILE;
937  
938  	if (flags & O_NOTIFICATION_PIPE) {
939  		error = watch_queue_init(inode->i_pipe);
940  		if (error) {
941  			free_pipe_info(inode->i_pipe);
942  			iput(inode);
943  			return error;
944  		}
945  	}
946  
947  	f = alloc_file_pseudo(inode, pipe_mnt, "",
948  				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
949  				&pipefifo_fops);
950  	if (IS_ERR(f)) {
951  		free_pipe_info(inode->i_pipe);
952  		iput(inode);
953  		return PTR_ERR(f);
954  	}
955  
956  	f->private_data = inode->i_pipe;
957  
958  	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
959  				  &pipefifo_fops);
960  	if (IS_ERR(res[0])) {
961  		put_pipe_info(inode, inode->i_pipe);
962  		fput(f);
963  		return PTR_ERR(res[0]);
964  	}
965  	res[0]->private_data = inode->i_pipe;
966  	res[1] = f;
967  	stream_open(inode, res[0]);
968  	stream_open(inode, res[1]);
969  	return 0;
970  }
971  
972  static int __do_pipe_flags(int *fd, struct file **files, int flags)
973  {
974  	int error;
975  	int fdw, fdr;
976  
977  	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
978  		return -EINVAL;
979  
980  	error = create_pipe_files(files, flags);
981  	if (error)
982  		return error;
983  
984  	error = get_unused_fd_flags(flags);
985  	if (error < 0)
986  		goto err_read_pipe;
987  	fdr = error;
988  
989  	error = get_unused_fd_flags(flags);
990  	if (error < 0)
991  		goto err_fdr;
992  	fdw = error;
993  
994  	audit_fd_pair(fdr, fdw);
995  	fd[0] = fdr;
996  	fd[1] = fdw;
997  	/* pipe groks IOCB_NOWAIT */
998  	files[0]->f_mode |= FMODE_NOWAIT;
999  	files[1]->f_mode |= FMODE_NOWAIT;
1000  	return 0;
1001  
1002   err_fdr:
1003  	put_unused_fd(fdr);
1004   err_read_pipe:
1005  	fput(files[0]);
1006  	fput(files[1]);
1007  	return error;
1008  }
1009  
1010  int do_pipe_flags(int *fd, int flags)
1011  {
1012  	struct file *files[2];
1013  	int error = __do_pipe_flags(fd, files, flags);
1014  	if (!error) {
1015  		fd_install(fd[0], files[0]);
1016  		fd_install(fd[1], files[1]);
1017  	}
1018  	return error;
1019  }
1020  
1021  /*
1022   * sys_pipe() is the normal C calling standard for creating
1023   * a pipe. It's not the way Unix traditionally does this, though.
1024   */
1025  static int do_pipe2(int __user *fildes, int flags)
1026  {
1027  	struct file *files[2];
1028  	int fd[2];
1029  	int error;
1030  
1031  	error = __do_pipe_flags(fd, files, flags);
1032  	if (!error) {
1033  		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1034  			fput(files[0]);
1035  			fput(files[1]);
1036  			put_unused_fd(fd[0]);
1037  			put_unused_fd(fd[1]);
1038  			error = -EFAULT;
1039  		} else {
1040  			fd_install(fd[0], files[0]);
1041  			fd_install(fd[1], files[1]);
1042  		}
1043  	}
1044  	return error;
1045  }
1046  
1047  SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1048  {
1049  	return do_pipe2(fildes, flags);
1050  }
1051  
1052  SYSCALL_DEFINE1(pipe, int __user *, fildes)
1053  {
1054  	return do_pipe2(fildes, 0);
1055  }
1056  
1057  /*
1058   * This is the stupid "wait for pipe to be readable or writable"
1059   * model.
1060   *
1061   * See pipe_read/write() for the proper kind of exclusive wait,
1062   * but that requires that we wake up any other readers/writers
1063   * if we then do not end up reading everything (ie the whole
1064   * "wake_next_reader/writer" logic in pipe_read/write()).
1065   */
1066  void pipe_wait_readable(struct pipe_inode_info *pipe)
1067  {
1068  	pipe_unlock(pipe);
1069  	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1070  	pipe_lock(pipe);
1071  }
1072  
1073  void pipe_wait_writable(struct pipe_inode_info *pipe)
1074  {
1075  	pipe_unlock(pipe);
1076  	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1077  	pipe_lock(pipe);
1078  }
1079  
1080  /*
1081   * This depends on both the wait (here) and the wakeup (wake_up_partner)
1082   * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1083   * race with the count check and waitqueue prep.
1084   *
1085   * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1086   * then check the condition you're waiting for, and only then sleep. But
1087   * because of the pipe lock, we can check the condition before being on
1088   * the wait queue.
1089   *
1090   * We use the 'rd_wait' waitqueue for pipe partner waiting.
1091   */
1092  static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1093  {
1094  	DEFINE_WAIT(rdwait);
1095  	int cur = *cnt;
1096  
1097  	while (cur == *cnt) {
1098  		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1099  		pipe_unlock(pipe);
1100  		schedule();
1101  		finish_wait(&pipe->rd_wait, &rdwait);
1102  		pipe_lock(pipe);
1103  		if (signal_pending(current))
1104  			break;
1105  	}
1106  	return cur == *cnt ? -ERESTARTSYS : 0;
1107  }
1108  
1109  static void wake_up_partner(struct pipe_inode_info *pipe)
1110  {
1111  	wake_up_interruptible_all(&pipe->rd_wait);
1112  }
1113  
1114  static int fifo_open(struct inode *inode, struct file *filp)
1115  {
1116  	struct pipe_inode_info *pipe;
1117  	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1118  	int ret;
1119  
1120  	filp->f_version = 0;
1121  
1122  	spin_lock(&inode->i_lock);
1123  	if (inode->i_pipe) {
1124  		pipe = inode->i_pipe;
1125  		pipe->files++;
1126  		spin_unlock(&inode->i_lock);
1127  	} else {
1128  		spin_unlock(&inode->i_lock);
1129  		pipe = alloc_pipe_info();
1130  		if (!pipe)
1131  			return -ENOMEM;
1132  		pipe->files = 1;
1133  		spin_lock(&inode->i_lock);
1134  		if (unlikely(inode->i_pipe)) {
1135  			inode->i_pipe->files++;
1136  			spin_unlock(&inode->i_lock);
1137  			free_pipe_info(pipe);
1138  			pipe = inode->i_pipe;
1139  		} else {
1140  			inode->i_pipe = pipe;
1141  			spin_unlock(&inode->i_lock);
1142  		}
1143  	}
1144  	filp->private_data = pipe;
1145  	/* OK, we have a pipe and it's pinned down */
1146  
1147  	__pipe_lock(pipe);
1148  
1149  	/* We can only do regular read/write on fifos */
1150  	stream_open(inode, filp);
1151  
1152  	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1153  	case FMODE_READ:
1154  	/*
1155  	 *  O_RDONLY
1156  	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1157  	 *  opened, even when there is no process writing the FIFO.
1158  	 */
1159  		pipe->r_counter++;
1160  		if (pipe->readers++ == 0)
1161  			wake_up_partner(pipe);
1162  
1163  		if (!is_pipe && !pipe->writers) {
1164  			if ((filp->f_flags & O_NONBLOCK)) {
1165  				/* suppress EPOLLHUP until we have
1166  				 * seen a writer */
1167  				filp->f_version = pipe->w_counter;
1168  			} else {
1169  				if (wait_for_partner(pipe, &pipe->w_counter))
1170  					goto err_rd;
1171  			}
1172  		}
1173  		break;
1174  
1175  	case FMODE_WRITE:
1176  	/*
1177  	 *  O_WRONLY
1178  	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1179  	 *  errno=ENXIO when there is no process reading the FIFO.
1180  	 */
1181  		ret = -ENXIO;
1182  		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1183  			goto err;
1184  
1185  		pipe->w_counter++;
1186  		if (!pipe->writers++)
1187  			wake_up_partner(pipe);
1188  
1189  		if (!is_pipe && !pipe->readers) {
1190  			if (wait_for_partner(pipe, &pipe->r_counter))
1191  				goto err_wr;
1192  		}
1193  		break;
1194  
1195  	case FMODE_READ | FMODE_WRITE:
1196  	/*
1197  	 *  O_RDWR
1198  	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1199  	 *  This implementation will NEVER block on a O_RDWR open, since
1200  	 *  the process can at least talk to itself.
1201  	 */
1202  
1203  		pipe->readers++;
1204  		pipe->writers++;
1205  		pipe->r_counter++;
1206  		pipe->w_counter++;
1207  		if (pipe->readers == 1 || pipe->writers == 1)
1208  			wake_up_partner(pipe);
1209  		break;
1210  
1211  	default:
1212  		ret = -EINVAL;
1213  		goto err;
1214  	}
1215  
1216  	/* Ok! */
1217  	__pipe_unlock(pipe);
1218  	return 0;
1219  
1220  err_rd:
1221  	if (!--pipe->readers)
1222  		wake_up_interruptible(&pipe->wr_wait);
1223  	ret = -ERESTARTSYS;
1224  	goto err;
1225  
1226  err_wr:
1227  	if (!--pipe->writers)
1228  		wake_up_interruptible_all(&pipe->rd_wait);
1229  	ret = -ERESTARTSYS;
1230  	goto err;
1231  
1232  err:
1233  	__pipe_unlock(pipe);
1234  
1235  	put_pipe_info(inode, pipe);
1236  	return ret;
1237  }
1238  
1239  const struct file_operations pipefifo_fops = {
1240  	.open		= fifo_open,
1241  	.llseek		= no_llseek,
1242  	.read_iter	= pipe_read,
1243  	.write_iter	= pipe_write,
1244  	.poll		= pipe_poll,
1245  	.unlocked_ioctl	= pipe_ioctl,
1246  	.release	= pipe_release,
1247  	.fasync		= pipe_fasync,
1248  	.splice_write	= iter_file_splice_write,
1249  };
1250  
1251  /*
1252   * Currently we rely on the pipe array holding a power-of-2 number
1253   * of pages. Returns 0 on error.
1254   */
1255  unsigned int round_pipe_size(unsigned int size)
1256  {
1257  	if (size > (1U << 31))
1258  		return 0;
1259  
1260  	/* Minimum pipe size, as required by POSIX */
1261  	if (size < PAGE_SIZE)
1262  		return PAGE_SIZE;
1263  
1264  	return roundup_pow_of_two(size);
1265  }
1266  
1267  /*
1268   * Resize the pipe ring to a number of slots.
1269   *
1270   * Note the pipe can be reduced in capacity, but only if the current
1271   * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1272   * returned instead.
1273   */
1274  int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1275  {
1276  	struct pipe_buffer *bufs;
1277  	unsigned int head, tail, mask, n;
1278  
1279  	bufs = kcalloc(nr_slots, sizeof(*bufs),
1280  		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1281  	if (unlikely(!bufs))
1282  		return -ENOMEM;
1283  
1284  	spin_lock_irq(&pipe->rd_wait.lock);
1285  	mask = pipe->ring_size - 1;
1286  	head = pipe->head;
1287  	tail = pipe->tail;
1288  
1289  	n = pipe_occupancy(head, tail);
1290  	if (nr_slots < n) {
1291  		spin_unlock_irq(&pipe->rd_wait.lock);
1292  		kfree(bufs);
1293  		return -EBUSY;
1294  	}
1295  
1296  	/*
1297  	 * The pipe array wraps around, so just start the new one at zero
1298  	 * and adjust the indices.
1299  	 */
1300  	if (n > 0) {
1301  		unsigned int h = head & mask;
1302  		unsigned int t = tail & mask;
1303  		if (h > t) {
1304  			memcpy(bufs, pipe->bufs + t,
1305  			       n * sizeof(struct pipe_buffer));
1306  		} else {
1307  			unsigned int tsize = pipe->ring_size - t;
1308  			if (h > 0)
1309  				memcpy(bufs + tsize, pipe->bufs,
1310  				       h * sizeof(struct pipe_buffer));
1311  			memcpy(bufs, pipe->bufs + t,
1312  			       tsize * sizeof(struct pipe_buffer));
1313  		}
1314  	}
1315  
1316  	head = n;
1317  	tail = 0;
1318  
1319  	kfree(pipe->bufs);
1320  	pipe->bufs = bufs;
1321  	pipe->ring_size = nr_slots;
1322  	if (pipe->max_usage > nr_slots)
1323  		pipe->max_usage = nr_slots;
1324  	pipe->tail = tail;
1325  	pipe->head = head;
1326  
1327  	if (!pipe_has_watch_queue(pipe)) {
1328  		pipe->max_usage = nr_slots;
1329  		pipe->nr_accounted = nr_slots;
1330  	}
1331  
1332  	spin_unlock_irq(&pipe->rd_wait.lock);
1333  
1334  	/* This might have made more room for writers */
1335  	wake_up_interruptible(&pipe->wr_wait);
1336  	return 0;
1337  }
1338  
1339  /*
1340   * Allocate a new array of pipe buffers and copy the info over. Returns the
1341   * pipe size if successful, or return -ERROR on error.
1342   */
1343  static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1344  {
1345  	unsigned long user_bufs;
1346  	unsigned int nr_slots, size;
1347  	long ret = 0;
1348  
1349  	if (pipe_has_watch_queue(pipe))
1350  		return -EBUSY;
1351  
1352  	size = round_pipe_size(arg);
1353  	nr_slots = size >> PAGE_SHIFT;
1354  
1355  	if (!nr_slots)
1356  		return -EINVAL;
1357  
1358  	/*
1359  	 * If trying to increase the pipe capacity, check that an
1360  	 * unprivileged user is not trying to exceed various limits
1361  	 * (soft limit check here, hard limit check just below).
1362  	 * Decreasing the pipe capacity is always permitted, even
1363  	 * if the user is currently over a limit.
1364  	 */
1365  	if (nr_slots > pipe->max_usage &&
1366  			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1367  		return -EPERM;
1368  
1369  	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1370  
1371  	if (nr_slots > pipe->max_usage &&
1372  			(too_many_pipe_buffers_hard(user_bufs) ||
1373  			 too_many_pipe_buffers_soft(user_bufs)) &&
1374  			pipe_is_unprivileged_user()) {
1375  		ret = -EPERM;
1376  		goto out_revert_acct;
1377  	}
1378  
1379  	ret = pipe_resize_ring(pipe, nr_slots);
1380  	if (ret < 0)
1381  		goto out_revert_acct;
1382  
1383  	return pipe->max_usage * PAGE_SIZE;
1384  
1385  out_revert_acct:
1386  	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1387  	return ret;
1388  }
1389  
1390  /*
1391   * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1392   * not enough to verify that this is a pipe.
1393   */
1394  struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1395  {
1396  	struct pipe_inode_info *pipe = file->private_data;
1397  
1398  	if (file->f_op != &pipefifo_fops || !pipe)
1399  		return NULL;
1400  	if (for_splice && pipe_has_watch_queue(pipe))
1401  		return NULL;
1402  	return pipe;
1403  }
1404  
1405  long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1406  {
1407  	struct pipe_inode_info *pipe;
1408  	long ret;
1409  
1410  	pipe = get_pipe_info(file, false);
1411  	if (!pipe)
1412  		return -EBADF;
1413  
1414  	__pipe_lock(pipe);
1415  
1416  	switch (cmd) {
1417  	case F_SETPIPE_SZ:
1418  		ret = pipe_set_size(pipe, arg);
1419  		break;
1420  	case F_GETPIPE_SZ:
1421  		ret = pipe->max_usage * PAGE_SIZE;
1422  		break;
1423  	default:
1424  		ret = -EINVAL;
1425  		break;
1426  	}
1427  
1428  	__pipe_unlock(pipe);
1429  	return ret;
1430  }
1431  
1432  static const struct super_operations pipefs_ops = {
1433  	.destroy_inode = free_inode_nonrcu,
1434  	.statfs = simple_statfs,
1435  };
1436  
1437  /*
1438   * pipefs should _never_ be mounted by userland - too much of security hassle,
1439   * no real gain from having the whole whorehouse mounted. So we don't need
1440   * any operations on the root directory. However, we need a non-trivial
1441   * d_name - pipe: will go nicely and kill the special-casing in procfs.
1442   */
1443  
1444  static int pipefs_init_fs_context(struct fs_context *fc)
1445  {
1446  	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1447  	if (!ctx)
1448  		return -ENOMEM;
1449  	ctx->ops = &pipefs_ops;
1450  	ctx->dops = &pipefs_dentry_operations;
1451  	return 0;
1452  }
1453  
1454  static struct file_system_type pipe_fs_type = {
1455  	.name		= "pipefs",
1456  	.init_fs_context = pipefs_init_fs_context,
1457  	.kill_sb	= kill_anon_super,
1458  };
1459  
1460  #ifdef CONFIG_SYSCTL
1461  static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1462  					unsigned int *valp,
1463  					int write, void *data)
1464  {
1465  	if (write) {
1466  		unsigned int val;
1467  
1468  		val = round_pipe_size(*lvalp);
1469  		if (val == 0)
1470  			return -EINVAL;
1471  
1472  		*valp = val;
1473  	} else {
1474  		unsigned int val = *valp;
1475  		*lvalp = (unsigned long) val;
1476  	}
1477  
1478  	return 0;
1479  }
1480  
1481  static int proc_dopipe_max_size(struct ctl_table *table, int write,
1482  				void *buffer, size_t *lenp, loff_t *ppos)
1483  {
1484  	return do_proc_douintvec(table, write, buffer, lenp, ppos,
1485  				 do_proc_dopipe_max_size_conv, NULL);
1486  }
1487  
1488  static struct ctl_table fs_pipe_sysctls[] = {
1489  	{
1490  		.procname	= "pipe-max-size",
1491  		.data		= &pipe_max_size,
1492  		.maxlen		= sizeof(pipe_max_size),
1493  		.mode		= 0644,
1494  		.proc_handler	= proc_dopipe_max_size,
1495  	},
1496  	{
1497  		.procname	= "pipe-user-pages-hard",
1498  		.data		= &pipe_user_pages_hard,
1499  		.maxlen		= sizeof(pipe_user_pages_hard),
1500  		.mode		= 0644,
1501  		.proc_handler	= proc_doulongvec_minmax,
1502  	},
1503  	{
1504  		.procname	= "pipe-user-pages-soft",
1505  		.data		= &pipe_user_pages_soft,
1506  		.maxlen		= sizeof(pipe_user_pages_soft),
1507  		.mode		= 0644,
1508  		.proc_handler	= proc_doulongvec_minmax,
1509  	},
1510  };
1511  #endif
1512  
1513  static int __init init_pipe_fs(void)
1514  {
1515  	int err = register_filesystem(&pipe_fs_type);
1516  
1517  	if (!err) {
1518  		pipe_mnt = kern_mount(&pipe_fs_type);
1519  		if (IS_ERR(pipe_mnt)) {
1520  			err = PTR_ERR(pipe_mnt);
1521  			unregister_filesystem(&pipe_fs_type);
1522  		}
1523  	}
1524  #ifdef CONFIG_SYSCTL
1525  	register_sysctl_init("fs", fs_pipe_sysctls);
1526  #endif
1527  	return err;
1528  }
1529  
1530  fs_initcall(init_pipe_fs);
1531