1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 #include <linux/watch_queue.h> 28 #include <linux/sysctl.h> 29 30 #include <linux/uaccess.h> 31 #include <asm/ioctls.h> 32 33 #include "internal.h" 34 35 /* 36 * New pipe buffers will be restricted to this size while the user is exceeding 37 * their pipe buffer quota. The general pipe use case needs at least two 38 * buffers: one for data yet to be read, and one for new data. If this is less 39 * than two, then a write to a non-empty pipe may block even if the pipe is not 40 * full. This can occur with GNU make jobserver or similar uses of pipes as 41 * semaphores: multiple processes may be waiting to write tokens back to the 42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/. 43 * 44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their 45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is 46 * emptied. 47 */ 48 #define PIPE_MIN_DEF_BUFFERS 2 49 50 /* 51 * The max size that a non-root user is allowed to grow the pipe. Can 52 * be set by root in /proc/sys/fs/pipe-max-size 53 */ 54 static unsigned int pipe_max_size = 1048576; 55 56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 57 * matches default values. 58 */ 59 static unsigned long pipe_user_pages_hard; 60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 61 62 /* 63 * We use head and tail indices that aren't masked off, except at the point of 64 * dereference, but rather they're allowed to wrap naturally. This means there 65 * isn't a dead spot in the buffer, but the ring has to be a power of two and 66 * <= 2^31. 67 * -- David Howells 2019-09-23. 68 * 69 * Reads with count = 0 should always return 0. 70 * -- Julian Bradfield 1999-06-07. 71 * 72 * FIFOs and Pipes now generate SIGIO for both readers and writers. 73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 74 * 75 * pipe_read & write cleanup 76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 77 */ 78 79 #define cmp_int(l, r) ((l > r) - (l < r)) 80 81 #ifdef CONFIG_PROVE_LOCKING 82 static int pipe_lock_cmp_fn(const struct lockdep_map *a, 83 const struct lockdep_map *b) 84 { 85 return cmp_int((unsigned long) a, (unsigned long) b); 86 } 87 #endif 88 89 void pipe_lock(struct pipe_inode_info *pipe) 90 { 91 if (pipe->files) 92 mutex_lock(&pipe->mutex); 93 } 94 EXPORT_SYMBOL(pipe_lock); 95 96 void pipe_unlock(struct pipe_inode_info *pipe) 97 { 98 if (pipe->files) 99 mutex_unlock(&pipe->mutex); 100 } 101 EXPORT_SYMBOL(pipe_unlock); 102 103 void pipe_double_lock(struct pipe_inode_info *pipe1, 104 struct pipe_inode_info *pipe2) 105 { 106 BUG_ON(pipe1 == pipe2); 107 108 if (pipe1 > pipe2) 109 swap(pipe1, pipe2); 110 111 pipe_lock(pipe1); 112 pipe_lock(pipe2); 113 } 114 115 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 116 struct pipe_buffer *buf) 117 { 118 struct page *page = buf->page; 119 120 /* 121 * If nobody else uses this page, and we don't already have a 122 * temporary page, let's keep track of it as a one-deep 123 * allocation cache. (Otherwise just release our reference to it) 124 */ 125 if (page_count(page) == 1 && !pipe->tmp_page) 126 pipe->tmp_page = page; 127 else 128 put_page(page); 129 } 130 131 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, 132 struct pipe_buffer *buf) 133 { 134 struct page *page = buf->page; 135 136 if (page_count(page) != 1) 137 return false; 138 memcg_kmem_uncharge_page(page, 0); 139 __SetPageLocked(page); 140 return true; 141 } 142 143 /** 144 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer 145 * @pipe: the pipe that the buffer belongs to 146 * @buf: the buffer to attempt to steal 147 * 148 * Description: 149 * This function attempts to steal the &struct page attached to 150 * @buf. If successful, this function returns 0 and returns with 151 * the page locked. The caller may then reuse the page for whatever 152 * he wishes; the typical use is insertion into a different file 153 * page cache. 154 */ 155 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, 156 struct pipe_buffer *buf) 157 { 158 struct page *page = buf->page; 159 160 /* 161 * A reference of one is golden, that means that the owner of this 162 * page is the only one holding a reference to it. lock the page 163 * and return OK. 164 */ 165 if (page_count(page) == 1) { 166 lock_page(page); 167 return true; 168 } 169 return false; 170 } 171 EXPORT_SYMBOL(generic_pipe_buf_try_steal); 172 173 /** 174 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 175 * @pipe: the pipe that the buffer belongs to 176 * @buf: the buffer to get a reference to 177 * 178 * Description: 179 * This function grabs an extra reference to @buf. It's used in 180 * the tee() system call, when we duplicate the buffers in one 181 * pipe into another. 182 */ 183 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 184 { 185 return try_get_page(buf->page); 186 } 187 EXPORT_SYMBOL(generic_pipe_buf_get); 188 189 /** 190 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 191 * @pipe: the pipe that the buffer belongs to 192 * @buf: the buffer to put a reference to 193 * 194 * Description: 195 * This function releases a reference to @buf. 196 */ 197 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 198 struct pipe_buffer *buf) 199 { 200 put_page(buf->page); 201 } 202 EXPORT_SYMBOL(generic_pipe_buf_release); 203 204 static const struct pipe_buf_operations anon_pipe_buf_ops = { 205 .release = anon_pipe_buf_release, 206 .try_steal = anon_pipe_buf_try_steal, 207 .get = generic_pipe_buf_get, 208 }; 209 210 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 211 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 212 { 213 union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) }; 214 unsigned int writers = READ_ONCE(pipe->writers); 215 216 return !pipe_empty(idx.head, idx.tail) || !writers; 217 } 218 219 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe, 220 struct pipe_buffer *buf, 221 unsigned int tail) 222 { 223 pipe_buf_release(pipe, buf); 224 225 /* 226 * If the pipe has a watch_queue, we need additional protection 227 * by the spinlock because notifications get posted with only 228 * this spinlock, no mutex 229 */ 230 if (pipe_has_watch_queue(pipe)) { 231 spin_lock_irq(&pipe->rd_wait.lock); 232 #ifdef CONFIG_WATCH_QUEUE 233 if (buf->flags & PIPE_BUF_FLAG_LOSS) 234 pipe->note_loss = true; 235 #endif 236 pipe->tail = ++tail; 237 spin_unlock_irq(&pipe->rd_wait.lock); 238 return tail; 239 } 240 241 /* 242 * Without a watch_queue, we can simply increment the tail 243 * without the spinlock - the mutex is enough. 244 */ 245 pipe->tail = ++tail; 246 return tail; 247 } 248 249 static ssize_t 250 pipe_read(struct kiocb *iocb, struct iov_iter *to) 251 { 252 size_t total_len = iov_iter_count(to); 253 struct file *filp = iocb->ki_filp; 254 struct pipe_inode_info *pipe = filp->private_data; 255 bool wake_writer = false, wake_next_reader = false; 256 ssize_t ret; 257 258 /* Null read succeeds. */ 259 if (unlikely(total_len == 0)) 260 return 0; 261 262 ret = 0; 263 mutex_lock(&pipe->mutex); 264 265 /* 266 * We only wake up writers if the pipe was full when we started reading 267 * and it is no longer full after reading to avoid unnecessary wakeups. 268 * 269 * But when we do wake up writers, we do so using a sync wakeup 270 * (WF_SYNC), because we want them to get going and generate more 271 * data for us. 272 */ 273 for (;;) { 274 /* Read ->head with a barrier vs post_one_notification() */ 275 unsigned int head = smp_load_acquire(&pipe->head); 276 unsigned int tail = pipe->tail; 277 unsigned int mask = pipe->ring_size - 1; 278 279 #ifdef CONFIG_WATCH_QUEUE 280 if (pipe->note_loss) { 281 struct watch_notification n; 282 283 if (total_len < 8) { 284 if (ret == 0) 285 ret = -ENOBUFS; 286 break; 287 } 288 289 n.type = WATCH_TYPE_META; 290 n.subtype = WATCH_META_LOSS_NOTIFICATION; 291 n.info = watch_sizeof(n); 292 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) { 293 if (ret == 0) 294 ret = -EFAULT; 295 break; 296 } 297 ret += sizeof(n); 298 total_len -= sizeof(n); 299 pipe->note_loss = false; 300 } 301 #endif 302 303 if (!pipe_empty(head, tail)) { 304 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 305 size_t chars = buf->len; 306 size_t written; 307 int error; 308 309 if (chars > total_len) { 310 if (buf->flags & PIPE_BUF_FLAG_WHOLE) { 311 if (ret == 0) 312 ret = -ENOBUFS; 313 break; 314 } 315 chars = total_len; 316 } 317 318 error = pipe_buf_confirm(pipe, buf); 319 if (error) { 320 if (!ret) 321 ret = error; 322 break; 323 } 324 325 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 326 if (unlikely(written < chars)) { 327 if (!ret) 328 ret = -EFAULT; 329 break; 330 } 331 ret += chars; 332 buf->offset += chars; 333 buf->len -= chars; 334 335 /* Was it a packet buffer? Clean up and exit */ 336 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 337 total_len = chars; 338 buf->len = 0; 339 } 340 341 if (!buf->len) { 342 wake_writer |= pipe_full(head, tail, pipe->max_usage); 343 tail = pipe_update_tail(pipe, buf, tail); 344 } 345 total_len -= chars; 346 if (!total_len) 347 break; /* common path: read succeeded */ 348 if (!pipe_empty(head, tail)) /* More to do? */ 349 continue; 350 } 351 352 if (!pipe->writers) 353 break; 354 if (ret) 355 break; 356 if ((filp->f_flags & O_NONBLOCK) || 357 (iocb->ki_flags & IOCB_NOWAIT)) { 358 ret = -EAGAIN; 359 break; 360 } 361 mutex_unlock(&pipe->mutex); 362 363 /* 364 * We only get here if we didn't actually read anything. 365 * 366 * However, we could have seen (and removed) a zero-sized 367 * pipe buffer, and might have made space in the buffers 368 * that way. 369 * 370 * You can't make zero-sized pipe buffers by doing an empty 371 * write (not even in packet mode), but they can happen if 372 * the writer gets an EFAULT when trying to fill a buffer 373 * that already got allocated and inserted in the buffer 374 * array. 375 * 376 * So we still need to wake up any pending writers in the 377 * _very_ unlikely case that the pipe was full, but we got 378 * no data. 379 */ 380 if (unlikely(wake_writer)) 381 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 382 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 383 384 /* 385 * But because we didn't read anything, at this point we can 386 * just return directly with -ERESTARTSYS if we're interrupted, 387 * since we've done any required wakeups and there's no need 388 * to mark anything accessed. And we've dropped the lock. 389 */ 390 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) 391 return -ERESTARTSYS; 392 393 wake_writer = false; 394 wake_next_reader = true; 395 mutex_lock(&pipe->mutex); 396 } 397 if (pipe_is_empty(pipe)) 398 wake_next_reader = false; 399 mutex_unlock(&pipe->mutex); 400 401 if (wake_writer) 402 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 403 if (wake_next_reader) 404 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 405 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 406 if (ret > 0) 407 file_accessed(filp); 408 return ret; 409 } 410 411 static inline int is_packetized(struct file *file) 412 { 413 return (file->f_flags & O_DIRECT) != 0; 414 } 415 416 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 417 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 418 { 419 union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) }; 420 unsigned int max_usage = READ_ONCE(pipe->max_usage); 421 422 return !pipe_full(idx.head, idx.tail, max_usage) || 423 !READ_ONCE(pipe->readers); 424 } 425 426 static ssize_t 427 pipe_write(struct kiocb *iocb, struct iov_iter *from) 428 { 429 struct file *filp = iocb->ki_filp; 430 struct pipe_inode_info *pipe = filp->private_data; 431 unsigned int head; 432 ssize_t ret = 0; 433 size_t total_len = iov_iter_count(from); 434 ssize_t chars; 435 bool was_empty = false; 436 bool wake_next_writer = false; 437 438 /* 439 * Reject writing to watch queue pipes before the point where we lock 440 * the pipe. 441 * Otherwise, lockdep would be unhappy if the caller already has another 442 * pipe locked. 443 * If we had to support locking a normal pipe and a notification pipe at 444 * the same time, we could set up lockdep annotations for that, but 445 * since we don't actually need that, it's simpler to just bail here. 446 */ 447 if (pipe_has_watch_queue(pipe)) 448 return -EXDEV; 449 450 /* Null write succeeds. */ 451 if (unlikely(total_len == 0)) 452 return 0; 453 454 mutex_lock(&pipe->mutex); 455 456 if (!pipe->readers) { 457 send_sig(SIGPIPE, current, 0); 458 ret = -EPIPE; 459 goto out; 460 } 461 462 /* 463 * If it wasn't empty we try to merge new data into 464 * the last buffer. 465 * 466 * That naturally merges small writes, but it also 467 * page-aligns the rest of the writes for large writes 468 * spanning multiple pages. 469 */ 470 head = pipe->head; 471 was_empty = pipe_empty(head, pipe->tail); 472 chars = total_len & (PAGE_SIZE-1); 473 if (chars && !was_empty) { 474 unsigned int mask = pipe->ring_size - 1; 475 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask]; 476 int offset = buf->offset + buf->len; 477 478 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && 479 offset + chars <= PAGE_SIZE) { 480 ret = pipe_buf_confirm(pipe, buf); 481 if (ret) 482 goto out; 483 484 ret = copy_page_from_iter(buf->page, offset, chars, from); 485 if (unlikely(ret < chars)) { 486 ret = -EFAULT; 487 goto out; 488 } 489 490 buf->len += ret; 491 if (!iov_iter_count(from)) 492 goto out; 493 } 494 } 495 496 for (;;) { 497 if (!pipe->readers) { 498 send_sig(SIGPIPE, current, 0); 499 if (!ret) 500 ret = -EPIPE; 501 break; 502 } 503 504 head = pipe->head; 505 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 506 unsigned int mask = pipe->ring_size - 1; 507 struct pipe_buffer *buf; 508 struct page *page = pipe->tmp_page; 509 int copied; 510 511 if (!page) { 512 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 513 if (unlikely(!page)) { 514 ret = ret ? : -ENOMEM; 515 break; 516 } 517 pipe->tmp_page = page; 518 } 519 520 /* Allocate a slot in the ring in advance and attach an 521 * empty buffer. If we fault or otherwise fail to use 522 * it, either the reader will consume it or it'll still 523 * be there for the next write. 524 */ 525 pipe->head = head + 1; 526 527 /* Insert it into the buffer array */ 528 buf = &pipe->bufs[head & mask]; 529 buf->page = page; 530 buf->ops = &anon_pipe_buf_ops; 531 buf->offset = 0; 532 buf->len = 0; 533 if (is_packetized(filp)) 534 buf->flags = PIPE_BUF_FLAG_PACKET; 535 else 536 buf->flags = PIPE_BUF_FLAG_CAN_MERGE; 537 pipe->tmp_page = NULL; 538 539 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 540 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 541 if (!ret) 542 ret = -EFAULT; 543 break; 544 } 545 ret += copied; 546 buf->len = copied; 547 548 if (!iov_iter_count(from)) 549 break; 550 } 551 552 if (!pipe_full(head, pipe->tail, pipe->max_usage)) 553 continue; 554 555 /* Wait for buffer space to become available. */ 556 if ((filp->f_flags & O_NONBLOCK) || 557 (iocb->ki_flags & IOCB_NOWAIT)) { 558 if (!ret) 559 ret = -EAGAIN; 560 break; 561 } 562 if (signal_pending(current)) { 563 if (!ret) 564 ret = -ERESTARTSYS; 565 break; 566 } 567 568 /* 569 * We're going to release the pipe lock and wait for more 570 * space. We wake up any readers if necessary, and then 571 * after waiting we need to re-check whether the pipe 572 * become empty while we dropped the lock. 573 */ 574 mutex_unlock(&pipe->mutex); 575 if (was_empty) 576 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 577 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 578 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); 579 mutex_lock(&pipe->mutex); 580 was_empty = pipe_is_empty(pipe); 581 wake_next_writer = true; 582 } 583 out: 584 if (pipe_is_full(pipe)) 585 wake_next_writer = false; 586 mutex_unlock(&pipe->mutex); 587 588 /* 589 * If we do do a wakeup event, we do a 'sync' wakeup, because we 590 * want the reader to start processing things asap, rather than 591 * leave the data pending. 592 * 593 * This is particularly important for small writes, because of 594 * how (for example) the GNU make jobserver uses small writes to 595 * wake up pending jobs 596 * 597 * Epoll nonsensically wants a wakeup whether the pipe 598 * was already empty or not. 599 */ 600 if (was_empty || pipe->poll_usage) 601 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 602 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 603 if (wake_next_writer) 604 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 605 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 606 int err = file_update_time(filp); 607 if (err) 608 ret = err; 609 sb_end_write(file_inode(filp)->i_sb); 610 } 611 return ret; 612 } 613 614 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 615 { 616 struct pipe_inode_info *pipe = filp->private_data; 617 unsigned int count, head, tail; 618 619 switch (cmd) { 620 case FIONREAD: 621 mutex_lock(&pipe->mutex); 622 count = 0; 623 head = pipe->head; 624 tail = pipe->tail; 625 626 while (!pipe_empty(head, tail)) { 627 count += pipe_buf(pipe, tail)->len; 628 tail++; 629 } 630 mutex_unlock(&pipe->mutex); 631 632 return put_user(count, (int __user *)arg); 633 634 #ifdef CONFIG_WATCH_QUEUE 635 case IOC_WATCH_QUEUE_SET_SIZE: { 636 int ret; 637 mutex_lock(&pipe->mutex); 638 ret = watch_queue_set_size(pipe, arg); 639 mutex_unlock(&pipe->mutex); 640 return ret; 641 } 642 643 case IOC_WATCH_QUEUE_SET_FILTER: 644 return watch_queue_set_filter( 645 pipe, (struct watch_notification_filter __user *)arg); 646 #endif 647 648 default: 649 return -ENOIOCTLCMD; 650 } 651 } 652 653 /* No kernel lock held - fine */ 654 static __poll_t 655 pipe_poll(struct file *filp, poll_table *wait) 656 { 657 __poll_t mask; 658 struct pipe_inode_info *pipe = filp->private_data; 659 union pipe_index idx; 660 661 /* Epoll has some historical nasty semantics, this enables them */ 662 WRITE_ONCE(pipe->poll_usage, true); 663 664 /* 665 * Reading pipe state only -- no need for acquiring the semaphore. 666 * 667 * But because this is racy, the code has to add the 668 * entry to the poll table _first_ .. 669 */ 670 if (filp->f_mode & FMODE_READ) 671 poll_wait(filp, &pipe->rd_wait, wait); 672 if (filp->f_mode & FMODE_WRITE) 673 poll_wait(filp, &pipe->wr_wait, wait); 674 675 /* 676 * .. and only then can you do the racy tests. That way, 677 * if something changes and you got it wrong, the poll 678 * table entry will wake you up and fix it. 679 */ 680 idx.head_tail = READ_ONCE(pipe->head_tail); 681 682 mask = 0; 683 if (filp->f_mode & FMODE_READ) { 684 if (!pipe_empty(idx.head, idx.tail)) 685 mask |= EPOLLIN | EPOLLRDNORM; 686 if (!pipe->writers && filp->f_pipe != pipe->w_counter) 687 mask |= EPOLLHUP; 688 } 689 690 if (filp->f_mode & FMODE_WRITE) { 691 if (!pipe_full(idx.head, idx.tail, pipe->max_usage)) 692 mask |= EPOLLOUT | EPOLLWRNORM; 693 /* 694 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 695 * behave exactly like pipes for poll(). 696 */ 697 if (!pipe->readers) 698 mask |= EPOLLERR; 699 } 700 701 return mask; 702 } 703 704 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 705 { 706 int kill = 0; 707 708 spin_lock(&inode->i_lock); 709 if (!--pipe->files) { 710 inode->i_pipe = NULL; 711 kill = 1; 712 } 713 spin_unlock(&inode->i_lock); 714 715 if (kill) 716 free_pipe_info(pipe); 717 } 718 719 static int 720 pipe_release(struct inode *inode, struct file *file) 721 { 722 struct pipe_inode_info *pipe = file->private_data; 723 724 mutex_lock(&pipe->mutex); 725 if (file->f_mode & FMODE_READ) 726 pipe->readers--; 727 if (file->f_mode & FMODE_WRITE) 728 pipe->writers--; 729 730 /* Was that the last reader or writer, but not the other side? */ 731 if (!pipe->readers != !pipe->writers) { 732 wake_up_interruptible_all(&pipe->rd_wait); 733 wake_up_interruptible_all(&pipe->wr_wait); 734 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 735 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 736 } 737 mutex_unlock(&pipe->mutex); 738 739 put_pipe_info(inode, pipe); 740 return 0; 741 } 742 743 static int 744 pipe_fasync(int fd, struct file *filp, int on) 745 { 746 struct pipe_inode_info *pipe = filp->private_data; 747 int retval = 0; 748 749 mutex_lock(&pipe->mutex); 750 if (filp->f_mode & FMODE_READ) 751 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 752 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 753 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 754 if (retval < 0 && (filp->f_mode & FMODE_READ)) 755 /* this can happen only if on == T */ 756 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 757 } 758 mutex_unlock(&pipe->mutex); 759 return retval; 760 } 761 762 unsigned long account_pipe_buffers(struct user_struct *user, 763 unsigned long old, unsigned long new) 764 { 765 return atomic_long_add_return(new - old, &user->pipe_bufs); 766 } 767 768 bool too_many_pipe_buffers_soft(unsigned long user_bufs) 769 { 770 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 771 772 return soft_limit && user_bufs > soft_limit; 773 } 774 775 bool too_many_pipe_buffers_hard(unsigned long user_bufs) 776 { 777 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 778 779 return hard_limit && user_bufs > hard_limit; 780 } 781 782 bool pipe_is_unprivileged_user(void) 783 { 784 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 785 } 786 787 struct pipe_inode_info *alloc_pipe_info(void) 788 { 789 struct pipe_inode_info *pipe; 790 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 791 struct user_struct *user = get_current_user(); 792 unsigned long user_bufs; 793 unsigned int max_size = READ_ONCE(pipe_max_size); 794 795 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 796 if (pipe == NULL) 797 goto out_free_uid; 798 799 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 800 pipe_bufs = max_size >> PAGE_SHIFT; 801 802 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 803 804 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { 805 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS); 806 pipe_bufs = PIPE_MIN_DEF_BUFFERS; 807 } 808 809 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) 810 goto out_revert_acct; 811 812 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 813 GFP_KERNEL_ACCOUNT); 814 815 if (pipe->bufs) { 816 init_waitqueue_head(&pipe->rd_wait); 817 init_waitqueue_head(&pipe->wr_wait); 818 pipe->r_counter = pipe->w_counter = 1; 819 pipe->max_usage = pipe_bufs; 820 pipe->ring_size = pipe_bufs; 821 pipe->nr_accounted = pipe_bufs; 822 pipe->user = user; 823 mutex_init(&pipe->mutex); 824 lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL); 825 return pipe; 826 } 827 828 out_revert_acct: 829 (void) account_pipe_buffers(user, pipe_bufs, 0); 830 kfree(pipe); 831 out_free_uid: 832 free_uid(user); 833 return NULL; 834 } 835 836 void free_pipe_info(struct pipe_inode_info *pipe) 837 { 838 unsigned int i; 839 840 #ifdef CONFIG_WATCH_QUEUE 841 if (pipe->watch_queue) 842 watch_queue_clear(pipe->watch_queue); 843 #endif 844 845 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0); 846 free_uid(pipe->user); 847 for (i = 0; i < pipe->ring_size; i++) { 848 struct pipe_buffer *buf = pipe->bufs + i; 849 if (buf->ops) 850 pipe_buf_release(pipe, buf); 851 } 852 #ifdef CONFIG_WATCH_QUEUE 853 if (pipe->watch_queue) 854 put_watch_queue(pipe->watch_queue); 855 #endif 856 if (pipe->tmp_page) 857 __free_page(pipe->tmp_page); 858 kfree(pipe->bufs); 859 kfree(pipe); 860 } 861 862 static struct vfsmount *pipe_mnt __ro_after_init; 863 864 /* 865 * pipefs_dname() is called from d_path(). 866 */ 867 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 868 { 869 return dynamic_dname(buffer, buflen, "pipe:[%lu]", 870 d_inode(dentry)->i_ino); 871 } 872 873 static const struct dentry_operations pipefs_dentry_operations = { 874 .d_dname = pipefs_dname, 875 }; 876 877 static struct inode * get_pipe_inode(void) 878 { 879 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 880 struct pipe_inode_info *pipe; 881 882 if (!inode) 883 goto fail_inode; 884 885 inode->i_ino = get_next_ino(); 886 887 pipe = alloc_pipe_info(); 888 if (!pipe) 889 goto fail_iput; 890 891 inode->i_pipe = pipe; 892 pipe->files = 2; 893 pipe->readers = pipe->writers = 1; 894 inode->i_fop = &pipefifo_fops; 895 896 /* 897 * Mark the inode dirty from the very beginning, 898 * that way it will never be moved to the dirty 899 * list because "mark_inode_dirty()" will think 900 * that it already _is_ on the dirty list. 901 */ 902 inode->i_state = I_DIRTY; 903 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 904 inode->i_uid = current_fsuid(); 905 inode->i_gid = current_fsgid(); 906 simple_inode_init_ts(inode); 907 908 return inode; 909 910 fail_iput: 911 iput(inode); 912 913 fail_inode: 914 return NULL; 915 } 916 917 int create_pipe_files(struct file **res, int flags) 918 { 919 struct inode *inode = get_pipe_inode(); 920 struct file *f; 921 int error; 922 923 if (!inode) 924 return -ENFILE; 925 926 if (flags & O_NOTIFICATION_PIPE) { 927 error = watch_queue_init(inode->i_pipe); 928 if (error) { 929 free_pipe_info(inode->i_pipe); 930 iput(inode); 931 return error; 932 } 933 } 934 935 f = alloc_file_pseudo(inode, pipe_mnt, "", 936 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 937 &pipefifo_fops); 938 if (IS_ERR(f)) { 939 free_pipe_info(inode->i_pipe); 940 iput(inode); 941 return PTR_ERR(f); 942 } 943 944 f->private_data = inode->i_pipe; 945 f->f_pipe = 0; 946 947 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 948 &pipefifo_fops); 949 if (IS_ERR(res[0])) { 950 put_pipe_info(inode, inode->i_pipe); 951 fput(f); 952 return PTR_ERR(res[0]); 953 } 954 res[0]->private_data = inode->i_pipe; 955 res[0]->f_pipe = 0; 956 res[1] = f; 957 stream_open(inode, res[0]); 958 stream_open(inode, res[1]); 959 /* 960 * Disable permission and pre-content events, but enable legacy 961 * inotify events for legacy users. 962 */ 963 file_set_fsnotify_mode(res[0], FMODE_NONOTIFY_PERM); 964 file_set_fsnotify_mode(res[1], FMODE_NONOTIFY_PERM); 965 return 0; 966 } 967 968 static int __do_pipe_flags(int *fd, struct file **files, int flags) 969 { 970 int error; 971 int fdw, fdr; 972 973 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) 974 return -EINVAL; 975 976 error = create_pipe_files(files, flags); 977 if (error) 978 return error; 979 980 error = get_unused_fd_flags(flags); 981 if (error < 0) 982 goto err_read_pipe; 983 fdr = error; 984 985 error = get_unused_fd_flags(flags); 986 if (error < 0) 987 goto err_fdr; 988 fdw = error; 989 990 audit_fd_pair(fdr, fdw); 991 fd[0] = fdr; 992 fd[1] = fdw; 993 /* pipe groks IOCB_NOWAIT */ 994 files[0]->f_mode |= FMODE_NOWAIT; 995 files[1]->f_mode |= FMODE_NOWAIT; 996 return 0; 997 998 err_fdr: 999 put_unused_fd(fdr); 1000 err_read_pipe: 1001 fput(files[0]); 1002 fput(files[1]); 1003 return error; 1004 } 1005 1006 int do_pipe_flags(int *fd, int flags) 1007 { 1008 struct file *files[2]; 1009 int error = __do_pipe_flags(fd, files, flags); 1010 if (!error) { 1011 fd_install(fd[0], files[0]); 1012 fd_install(fd[1], files[1]); 1013 } 1014 return error; 1015 } 1016 1017 /* 1018 * sys_pipe() is the normal C calling standard for creating 1019 * a pipe. It's not the way Unix traditionally does this, though. 1020 */ 1021 static int do_pipe2(int __user *fildes, int flags) 1022 { 1023 struct file *files[2]; 1024 int fd[2]; 1025 int error; 1026 1027 error = __do_pipe_flags(fd, files, flags); 1028 if (!error) { 1029 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 1030 fput(files[0]); 1031 fput(files[1]); 1032 put_unused_fd(fd[0]); 1033 put_unused_fd(fd[1]); 1034 error = -EFAULT; 1035 } else { 1036 fd_install(fd[0], files[0]); 1037 fd_install(fd[1], files[1]); 1038 } 1039 } 1040 return error; 1041 } 1042 1043 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 1044 { 1045 return do_pipe2(fildes, flags); 1046 } 1047 1048 SYSCALL_DEFINE1(pipe, int __user *, fildes) 1049 { 1050 return do_pipe2(fildes, 0); 1051 } 1052 1053 /* 1054 * This is the stupid "wait for pipe to be readable or writable" 1055 * model. 1056 * 1057 * See pipe_read/write() for the proper kind of exclusive wait, 1058 * but that requires that we wake up any other readers/writers 1059 * if we then do not end up reading everything (ie the whole 1060 * "wake_next_reader/writer" logic in pipe_read/write()). 1061 */ 1062 void pipe_wait_readable(struct pipe_inode_info *pipe) 1063 { 1064 pipe_unlock(pipe); 1065 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe)); 1066 pipe_lock(pipe); 1067 } 1068 1069 void pipe_wait_writable(struct pipe_inode_info *pipe) 1070 { 1071 pipe_unlock(pipe); 1072 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe)); 1073 pipe_lock(pipe); 1074 } 1075 1076 /* 1077 * This depends on both the wait (here) and the wakeup (wake_up_partner) 1078 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot 1079 * race with the count check and waitqueue prep. 1080 * 1081 * Normally in order to avoid races, you'd do the prepare_to_wait() first, 1082 * then check the condition you're waiting for, and only then sleep. But 1083 * because of the pipe lock, we can check the condition before being on 1084 * the wait queue. 1085 * 1086 * We use the 'rd_wait' waitqueue for pipe partner waiting. 1087 */ 1088 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 1089 { 1090 DEFINE_WAIT(rdwait); 1091 int cur = *cnt; 1092 1093 while (cur == *cnt) { 1094 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); 1095 pipe_unlock(pipe); 1096 schedule(); 1097 finish_wait(&pipe->rd_wait, &rdwait); 1098 pipe_lock(pipe); 1099 if (signal_pending(current)) 1100 break; 1101 } 1102 return cur == *cnt ? -ERESTARTSYS : 0; 1103 } 1104 1105 static void wake_up_partner(struct pipe_inode_info *pipe) 1106 { 1107 wake_up_interruptible_all(&pipe->rd_wait); 1108 } 1109 1110 static int fifo_open(struct inode *inode, struct file *filp) 1111 { 1112 struct pipe_inode_info *pipe; 1113 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 1114 int ret; 1115 1116 filp->f_pipe = 0; 1117 1118 spin_lock(&inode->i_lock); 1119 if (inode->i_pipe) { 1120 pipe = inode->i_pipe; 1121 pipe->files++; 1122 spin_unlock(&inode->i_lock); 1123 } else { 1124 spin_unlock(&inode->i_lock); 1125 pipe = alloc_pipe_info(); 1126 if (!pipe) 1127 return -ENOMEM; 1128 pipe->files = 1; 1129 spin_lock(&inode->i_lock); 1130 if (unlikely(inode->i_pipe)) { 1131 inode->i_pipe->files++; 1132 spin_unlock(&inode->i_lock); 1133 free_pipe_info(pipe); 1134 pipe = inode->i_pipe; 1135 } else { 1136 inode->i_pipe = pipe; 1137 spin_unlock(&inode->i_lock); 1138 } 1139 } 1140 filp->private_data = pipe; 1141 /* OK, we have a pipe and it's pinned down */ 1142 1143 mutex_lock(&pipe->mutex); 1144 1145 /* We can only do regular read/write on fifos */ 1146 stream_open(inode, filp); 1147 1148 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1149 case FMODE_READ: 1150 /* 1151 * O_RDONLY 1152 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1153 * opened, even when there is no process writing the FIFO. 1154 */ 1155 pipe->r_counter++; 1156 if (pipe->readers++ == 0) 1157 wake_up_partner(pipe); 1158 1159 if (!is_pipe && !pipe->writers) { 1160 if ((filp->f_flags & O_NONBLOCK)) { 1161 /* suppress EPOLLHUP until we have 1162 * seen a writer */ 1163 filp->f_pipe = pipe->w_counter; 1164 } else { 1165 if (wait_for_partner(pipe, &pipe->w_counter)) 1166 goto err_rd; 1167 } 1168 } 1169 break; 1170 1171 case FMODE_WRITE: 1172 /* 1173 * O_WRONLY 1174 * POSIX.1 says that O_NONBLOCK means return -1 with 1175 * errno=ENXIO when there is no process reading the FIFO. 1176 */ 1177 ret = -ENXIO; 1178 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1179 goto err; 1180 1181 pipe->w_counter++; 1182 if (!pipe->writers++) 1183 wake_up_partner(pipe); 1184 1185 if (!is_pipe && !pipe->readers) { 1186 if (wait_for_partner(pipe, &pipe->r_counter)) 1187 goto err_wr; 1188 } 1189 break; 1190 1191 case FMODE_READ | FMODE_WRITE: 1192 /* 1193 * O_RDWR 1194 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1195 * This implementation will NEVER block on a O_RDWR open, since 1196 * the process can at least talk to itself. 1197 */ 1198 1199 pipe->readers++; 1200 pipe->writers++; 1201 pipe->r_counter++; 1202 pipe->w_counter++; 1203 if (pipe->readers == 1 || pipe->writers == 1) 1204 wake_up_partner(pipe); 1205 break; 1206 1207 default: 1208 ret = -EINVAL; 1209 goto err; 1210 } 1211 1212 /* Ok! */ 1213 mutex_unlock(&pipe->mutex); 1214 return 0; 1215 1216 err_rd: 1217 if (!--pipe->readers) 1218 wake_up_interruptible(&pipe->wr_wait); 1219 ret = -ERESTARTSYS; 1220 goto err; 1221 1222 err_wr: 1223 if (!--pipe->writers) 1224 wake_up_interruptible_all(&pipe->rd_wait); 1225 ret = -ERESTARTSYS; 1226 goto err; 1227 1228 err: 1229 mutex_unlock(&pipe->mutex); 1230 1231 put_pipe_info(inode, pipe); 1232 return ret; 1233 } 1234 1235 const struct file_operations pipefifo_fops = { 1236 .open = fifo_open, 1237 .read_iter = pipe_read, 1238 .write_iter = pipe_write, 1239 .poll = pipe_poll, 1240 .unlocked_ioctl = pipe_ioctl, 1241 .release = pipe_release, 1242 .fasync = pipe_fasync, 1243 .splice_write = iter_file_splice_write, 1244 }; 1245 1246 /* 1247 * Currently we rely on the pipe array holding a power-of-2 number 1248 * of pages. Returns 0 on error. 1249 */ 1250 unsigned int round_pipe_size(unsigned int size) 1251 { 1252 if (size > (1U << 31)) 1253 return 0; 1254 1255 /* Minimum pipe size, as required by POSIX */ 1256 if (size < PAGE_SIZE) 1257 return PAGE_SIZE; 1258 1259 return roundup_pow_of_two(size); 1260 } 1261 1262 /* 1263 * Resize the pipe ring to a number of slots. 1264 * 1265 * Note the pipe can be reduced in capacity, but only if the current 1266 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be 1267 * returned instead. 1268 */ 1269 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots) 1270 { 1271 struct pipe_buffer *bufs; 1272 unsigned int head, tail, mask, n; 1273 1274 bufs = kcalloc(nr_slots, sizeof(*bufs), 1275 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1276 if (unlikely(!bufs)) 1277 return -ENOMEM; 1278 1279 spin_lock_irq(&pipe->rd_wait.lock); 1280 mask = pipe->ring_size - 1; 1281 head = pipe->head; 1282 tail = pipe->tail; 1283 1284 n = pipe_occupancy(head, tail); 1285 if (nr_slots < n) { 1286 spin_unlock_irq(&pipe->rd_wait.lock); 1287 kfree(bufs); 1288 return -EBUSY; 1289 } 1290 1291 /* 1292 * The pipe array wraps around, so just start the new one at zero 1293 * and adjust the indices. 1294 */ 1295 if (n > 0) { 1296 unsigned int h = head & mask; 1297 unsigned int t = tail & mask; 1298 if (h > t) { 1299 memcpy(bufs, pipe->bufs + t, 1300 n * sizeof(struct pipe_buffer)); 1301 } else { 1302 unsigned int tsize = pipe->ring_size - t; 1303 if (h > 0) 1304 memcpy(bufs + tsize, pipe->bufs, 1305 h * sizeof(struct pipe_buffer)); 1306 memcpy(bufs, pipe->bufs + t, 1307 tsize * sizeof(struct pipe_buffer)); 1308 } 1309 } 1310 1311 head = n; 1312 tail = 0; 1313 1314 kfree(pipe->bufs); 1315 pipe->bufs = bufs; 1316 pipe->ring_size = nr_slots; 1317 if (pipe->max_usage > nr_slots) 1318 pipe->max_usage = nr_slots; 1319 pipe->tail = tail; 1320 pipe->head = head; 1321 1322 if (!pipe_has_watch_queue(pipe)) { 1323 pipe->max_usage = nr_slots; 1324 pipe->nr_accounted = nr_slots; 1325 } 1326 1327 spin_unlock_irq(&pipe->rd_wait.lock); 1328 1329 /* This might have made more room for writers */ 1330 wake_up_interruptible(&pipe->wr_wait); 1331 return 0; 1332 } 1333 1334 /* 1335 * Allocate a new array of pipe buffers and copy the info over. Returns the 1336 * pipe size if successful, or return -ERROR on error. 1337 */ 1338 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg) 1339 { 1340 unsigned long user_bufs; 1341 unsigned int nr_slots, size; 1342 long ret = 0; 1343 1344 if (pipe_has_watch_queue(pipe)) 1345 return -EBUSY; 1346 1347 size = round_pipe_size(arg); 1348 nr_slots = size >> PAGE_SHIFT; 1349 1350 if (!nr_slots) 1351 return -EINVAL; 1352 1353 /* 1354 * If trying to increase the pipe capacity, check that an 1355 * unprivileged user is not trying to exceed various limits 1356 * (soft limit check here, hard limit check just below). 1357 * Decreasing the pipe capacity is always permitted, even 1358 * if the user is currently over a limit. 1359 */ 1360 if (nr_slots > pipe->max_usage && 1361 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1362 return -EPERM; 1363 1364 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots); 1365 1366 if (nr_slots > pipe->max_usage && 1367 (too_many_pipe_buffers_hard(user_bufs) || 1368 too_many_pipe_buffers_soft(user_bufs)) && 1369 pipe_is_unprivileged_user()) { 1370 ret = -EPERM; 1371 goto out_revert_acct; 1372 } 1373 1374 ret = pipe_resize_ring(pipe, nr_slots); 1375 if (ret < 0) 1376 goto out_revert_acct; 1377 1378 return pipe->max_usage * PAGE_SIZE; 1379 1380 out_revert_acct: 1381 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted); 1382 return ret; 1383 } 1384 1385 /* 1386 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is 1387 * not enough to verify that this is a pipe. 1388 */ 1389 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) 1390 { 1391 struct pipe_inode_info *pipe = file->private_data; 1392 1393 if (file->f_op != &pipefifo_fops || !pipe) 1394 return NULL; 1395 if (for_splice && pipe_has_watch_queue(pipe)) 1396 return NULL; 1397 return pipe; 1398 } 1399 1400 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg) 1401 { 1402 struct pipe_inode_info *pipe; 1403 long ret; 1404 1405 pipe = get_pipe_info(file, false); 1406 if (!pipe) 1407 return -EBADF; 1408 1409 mutex_lock(&pipe->mutex); 1410 1411 switch (cmd) { 1412 case F_SETPIPE_SZ: 1413 ret = pipe_set_size(pipe, arg); 1414 break; 1415 case F_GETPIPE_SZ: 1416 ret = pipe->max_usage * PAGE_SIZE; 1417 break; 1418 default: 1419 ret = -EINVAL; 1420 break; 1421 } 1422 1423 mutex_unlock(&pipe->mutex); 1424 return ret; 1425 } 1426 1427 static const struct super_operations pipefs_ops = { 1428 .destroy_inode = free_inode_nonrcu, 1429 .statfs = simple_statfs, 1430 }; 1431 1432 /* 1433 * pipefs should _never_ be mounted by userland - too much of security hassle, 1434 * no real gain from having the whole file system mounted. So we don't need 1435 * any operations on the root directory. However, we need a non-trivial 1436 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1437 */ 1438 1439 static int pipefs_init_fs_context(struct fs_context *fc) 1440 { 1441 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1442 if (!ctx) 1443 return -ENOMEM; 1444 ctx->ops = &pipefs_ops; 1445 ctx->dops = &pipefs_dentry_operations; 1446 return 0; 1447 } 1448 1449 static struct file_system_type pipe_fs_type = { 1450 .name = "pipefs", 1451 .init_fs_context = pipefs_init_fs_context, 1452 .kill_sb = kill_anon_super, 1453 }; 1454 1455 #ifdef CONFIG_SYSCTL 1456 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp, 1457 unsigned int *valp, 1458 int write, void *data) 1459 { 1460 if (write) { 1461 unsigned int val; 1462 1463 val = round_pipe_size(*lvalp); 1464 if (val == 0) 1465 return -EINVAL; 1466 1467 *valp = val; 1468 } else { 1469 unsigned int val = *valp; 1470 *lvalp = (unsigned long) val; 1471 } 1472 1473 return 0; 1474 } 1475 1476 static int proc_dopipe_max_size(const struct ctl_table *table, int write, 1477 void *buffer, size_t *lenp, loff_t *ppos) 1478 { 1479 return do_proc_douintvec(table, write, buffer, lenp, ppos, 1480 do_proc_dopipe_max_size_conv, NULL); 1481 } 1482 1483 static const struct ctl_table fs_pipe_sysctls[] = { 1484 { 1485 .procname = "pipe-max-size", 1486 .data = &pipe_max_size, 1487 .maxlen = sizeof(pipe_max_size), 1488 .mode = 0644, 1489 .proc_handler = proc_dopipe_max_size, 1490 }, 1491 { 1492 .procname = "pipe-user-pages-hard", 1493 .data = &pipe_user_pages_hard, 1494 .maxlen = sizeof(pipe_user_pages_hard), 1495 .mode = 0644, 1496 .proc_handler = proc_doulongvec_minmax, 1497 }, 1498 { 1499 .procname = "pipe-user-pages-soft", 1500 .data = &pipe_user_pages_soft, 1501 .maxlen = sizeof(pipe_user_pages_soft), 1502 .mode = 0644, 1503 .proc_handler = proc_doulongvec_minmax, 1504 }, 1505 }; 1506 #endif 1507 1508 static int __init init_pipe_fs(void) 1509 { 1510 int err = register_filesystem(&pipe_fs_type); 1511 1512 if (!err) { 1513 pipe_mnt = kern_mount(&pipe_fs_type); 1514 if (IS_ERR(pipe_mnt)) { 1515 err = PTR_ERR(pipe_mnt); 1516 unregister_filesystem(&pipe_fs_type); 1517 } 1518 } 1519 #ifdef CONFIG_SYSCTL 1520 register_sysctl_init("fs", fs_pipe_sysctls); 1521 #endif 1522 return err; 1523 } 1524 1525 fs_initcall(init_pipe_fs); 1526