1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 #include <linux/watch_queue.h> 28 #include <linux/sysctl.h> 29 #include <linux/sort.h> 30 31 #include <linux/uaccess.h> 32 #include <asm/ioctls.h> 33 34 #include "internal.h" 35 36 /* 37 * New pipe buffers will be restricted to this size while the user is exceeding 38 * their pipe buffer quota. The general pipe use case needs at least two 39 * buffers: one for data yet to be read, and one for new data. If this is less 40 * than two, then a write to a non-empty pipe may block even if the pipe is not 41 * full. This can occur with GNU make jobserver or similar uses of pipes as 42 * semaphores: multiple processes may be waiting to write tokens back to the 43 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/. 44 * 45 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their 46 * own risk, namely: pipe writes to non-full pipes may block until the pipe is 47 * emptied. 48 */ 49 #define PIPE_MIN_DEF_BUFFERS 2 50 51 /* 52 * The max size that a non-root user is allowed to grow the pipe. Can 53 * be set by root in /proc/sys/fs/pipe-max-size 54 */ 55 static unsigned int pipe_max_size = 1048576; 56 57 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 58 * matches default values. 59 */ 60 static unsigned long pipe_user_pages_hard; 61 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 62 63 /* 64 * We use head and tail indices that aren't masked off, except at the point of 65 * dereference, but rather they're allowed to wrap naturally. This means there 66 * isn't a dead spot in the buffer, but the ring has to be a power of two and 67 * <= 2^31. 68 * -- David Howells 2019-09-23. 69 * 70 * Reads with count = 0 should always return 0. 71 * -- Julian Bradfield 1999-06-07. 72 * 73 * FIFOs and Pipes now generate SIGIO for both readers and writers. 74 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 75 * 76 * pipe_read & write cleanup 77 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 78 */ 79 80 #ifdef CONFIG_PROVE_LOCKING 81 static int pipe_lock_cmp_fn(const struct lockdep_map *a, 82 const struct lockdep_map *b) 83 { 84 return cmp_int((unsigned long) a, (unsigned long) b); 85 } 86 #endif 87 88 void pipe_lock(struct pipe_inode_info *pipe) 89 { 90 if (pipe->files) 91 mutex_lock(&pipe->mutex); 92 } 93 EXPORT_SYMBOL(pipe_lock); 94 95 void pipe_unlock(struct pipe_inode_info *pipe) 96 { 97 if (pipe->files) 98 mutex_unlock(&pipe->mutex); 99 } 100 EXPORT_SYMBOL(pipe_unlock); 101 102 void pipe_double_lock(struct pipe_inode_info *pipe1, 103 struct pipe_inode_info *pipe2) 104 { 105 BUG_ON(pipe1 == pipe2); 106 107 if (pipe1 > pipe2) 108 swap(pipe1, pipe2); 109 110 pipe_lock(pipe1); 111 pipe_lock(pipe2); 112 } 113 114 static struct page *anon_pipe_get_page(struct pipe_inode_info *pipe) 115 { 116 for (int i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) { 117 if (pipe->tmp_page[i]) { 118 struct page *page = pipe->tmp_page[i]; 119 pipe->tmp_page[i] = NULL; 120 return page; 121 } 122 } 123 124 return alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 125 } 126 127 static void anon_pipe_put_page(struct pipe_inode_info *pipe, 128 struct page *page) 129 { 130 if (page_count(page) == 1) { 131 for (int i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) { 132 if (!pipe->tmp_page[i]) { 133 pipe->tmp_page[i] = page; 134 return; 135 } 136 } 137 } 138 139 put_page(page); 140 } 141 142 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 143 struct pipe_buffer *buf) 144 { 145 struct page *page = buf->page; 146 147 anon_pipe_put_page(pipe, page); 148 } 149 150 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, 151 struct pipe_buffer *buf) 152 { 153 struct page *page = buf->page; 154 155 if (page_count(page) != 1) 156 return false; 157 memcg_kmem_uncharge_page(page, 0); 158 __SetPageLocked(page); 159 return true; 160 } 161 162 /** 163 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer 164 * @pipe: the pipe that the buffer belongs to 165 * @buf: the buffer to attempt to steal 166 * 167 * Description: 168 * This function attempts to steal the &struct page attached to 169 * @buf. If successful, this function returns 0 and returns with 170 * the page locked. The caller may then reuse the page for whatever 171 * he wishes; the typical use is insertion into a different file 172 * page cache. 173 */ 174 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, 175 struct pipe_buffer *buf) 176 { 177 struct page *page = buf->page; 178 179 /* 180 * A reference of one is golden, that means that the owner of this 181 * page is the only one holding a reference to it. lock the page 182 * and return OK. 183 */ 184 if (page_count(page) == 1) { 185 lock_page(page); 186 return true; 187 } 188 return false; 189 } 190 EXPORT_SYMBOL(generic_pipe_buf_try_steal); 191 192 /** 193 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 194 * @pipe: the pipe that the buffer belongs to 195 * @buf: the buffer to get a reference to 196 * 197 * Description: 198 * This function grabs an extra reference to @buf. It's used in 199 * the tee() system call, when we duplicate the buffers in one 200 * pipe into another. 201 */ 202 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 203 { 204 return try_get_page(buf->page); 205 } 206 EXPORT_SYMBOL(generic_pipe_buf_get); 207 208 /** 209 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 210 * @pipe: the pipe that the buffer belongs to 211 * @buf: the buffer to put a reference to 212 * 213 * Description: 214 * This function releases a reference to @buf. 215 */ 216 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 217 struct pipe_buffer *buf) 218 { 219 put_page(buf->page); 220 } 221 EXPORT_SYMBOL(generic_pipe_buf_release); 222 223 static const struct pipe_buf_operations anon_pipe_buf_ops = { 224 .release = anon_pipe_buf_release, 225 .try_steal = anon_pipe_buf_try_steal, 226 .get = generic_pipe_buf_get, 227 }; 228 229 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 230 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 231 { 232 union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) }; 233 unsigned int writers = READ_ONCE(pipe->writers); 234 235 return !pipe_empty(idx.head, idx.tail) || !writers; 236 } 237 238 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe, 239 struct pipe_buffer *buf, 240 unsigned int tail) 241 { 242 pipe_buf_release(pipe, buf); 243 244 /* 245 * If the pipe has a watch_queue, we need additional protection 246 * by the spinlock because notifications get posted with only 247 * this spinlock, no mutex 248 */ 249 if (pipe_has_watch_queue(pipe)) { 250 spin_lock_irq(&pipe->rd_wait.lock); 251 #ifdef CONFIG_WATCH_QUEUE 252 if (buf->flags & PIPE_BUF_FLAG_LOSS) 253 pipe->note_loss = true; 254 #endif 255 pipe->tail = ++tail; 256 spin_unlock_irq(&pipe->rd_wait.lock); 257 return tail; 258 } 259 260 /* 261 * Without a watch_queue, we can simply increment the tail 262 * without the spinlock - the mutex is enough. 263 */ 264 pipe->tail = ++tail; 265 return tail; 266 } 267 268 static ssize_t 269 anon_pipe_read(struct kiocb *iocb, struct iov_iter *to) 270 { 271 size_t total_len = iov_iter_count(to); 272 struct file *filp = iocb->ki_filp; 273 struct pipe_inode_info *pipe = filp->private_data; 274 bool wake_writer = false, wake_next_reader = false; 275 ssize_t ret; 276 277 /* Null read succeeds. */ 278 if (unlikely(total_len == 0)) 279 return 0; 280 281 ret = 0; 282 mutex_lock(&pipe->mutex); 283 284 /* 285 * We only wake up writers if the pipe was full when we started reading 286 * and it is no longer full after reading to avoid unnecessary wakeups. 287 * 288 * But when we do wake up writers, we do so using a sync wakeup 289 * (WF_SYNC), because we want them to get going and generate more 290 * data for us. 291 */ 292 for (;;) { 293 /* Read ->head with a barrier vs post_one_notification() */ 294 unsigned int head = smp_load_acquire(&pipe->head); 295 unsigned int tail = pipe->tail; 296 297 #ifdef CONFIG_WATCH_QUEUE 298 if (pipe->note_loss) { 299 struct watch_notification n; 300 301 if (total_len < 8) { 302 if (ret == 0) 303 ret = -ENOBUFS; 304 break; 305 } 306 307 n.type = WATCH_TYPE_META; 308 n.subtype = WATCH_META_LOSS_NOTIFICATION; 309 n.info = watch_sizeof(n); 310 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) { 311 if (ret == 0) 312 ret = -EFAULT; 313 break; 314 } 315 ret += sizeof(n); 316 total_len -= sizeof(n); 317 pipe->note_loss = false; 318 } 319 #endif 320 321 if (!pipe_empty(head, tail)) { 322 struct pipe_buffer *buf = pipe_buf(pipe, tail); 323 size_t chars = buf->len; 324 size_t written; 325 int error; 326 327 if (chars > total_len) { 328 if (buf->flags & PIPE_BUF_FLAG_WHOLE) { 329 if (ret == 0) 330 ret = -ENOBUFS; 331 break; 332 } 333 chars = total_len; 334 } 335 336 error = pipe_buf_confirm(pipe, buf); 337 if (error) { 338 if (!ret) 339 ret = error; 340 break; 341 } 342 343 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 344 if (unlikely(written < chars)) { 345 if (!ret) 346 ret = -EFAULT; 347 break; 348 } 349 ret += chars; 350 buf->offset += chars; 351 buf->len -= chars; 352 353 /* Was it a packet buffer? Clean up and exit */ 354 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 355 total_len = chars; 356 buf->len = 0; 357 } 358 359 if (!buf->len) { 360 wake_writer |= pipe_full(head, tail, pipe->max_usage); 361 tail = pipe_update_tail(pipe, buf, tail); 362 } 363 total_len -= chars; 364 if (!total_len) 365 break; /* common path: read succeeded */ 366 if (!pipe_empty(head, tail)) /* More to do? */ 367 continue; 368 } 369 370 if (!pipe->writers) 371 break; 372 if (ret) 373 break; 374 if ((filp->f_flags & O_NONBLOCK) || 375 (iocb->ki_flags & IOCB_NOWAIT)) { 376 ret = -EAGAIN; 377 break; 378 } 379 mutex_unlock(&pipe->mutex); 380 /* 381 * We only get here if we didn't actually read anything. 382 * 383 * But because we didn't read anything, at this point we can 384 * just return directly with -ERESTARTSYS if we're interrupted, 385 * since we've done any required wakeups and there's no need 386 * to mark anything accessed. And we've dropped the lock. 387 */ 388 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) 389 return -ERESTARTSYS; 390 391 wake_next_reader = true; 392 mutex_lock(&pipe->mutex); 393 } 394 if (pipe_is_empty(pipe)) 395 wake_next_reader = false; 396 mutex_unlock(&pipe->mutex); 397 398 if (wake_writer) 399 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 400 if (wake_next_reader) 401 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 402 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 403 return ret; 404 } 405 406 static ssize_t 407 fifo_pipe_read(struct kiocb *iocb, struct iov_iter *to) 408 { 409 int ret = anon_pipe_read(iocb, to); 410 if (ret > 0) 411 file_accessed(iocb->ki_filp); 412 return ret; 413 } 414 415 static inline int is_packetized(struct file *file) 416 { 417 return (file->f_flags & O_DIRECT) != 0; 418 } 419 420 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 421 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 422 { 423 union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) }; 424 unsigned int max_usage = READ_ONCE(pipe->max_usage); 425 426 return !pipe_full(idx.head, idx.tail, max_usage) || 427 !READ_ONCE(pipe->readers); 428 } 429 430 static ssize_t 431 anon_pipe_write(struct kiocb *iocb, struct iov_iter *from) 432 { 433 struct file *filp = iocb->ki_filp; 434 struct pipe_inode_info *pipe = filp->private_data; 435 unsigned int head; 436 ssize_t ret = 0; 437 size_t total_len = iov_iter_count(from); 438 ssize_t chars; 439 bool was_empty = false; 440 bool wake_next_writer = false; 441 442 /* 443 * Reject writing to watch queue pipes before the point where we lock 444 * the pipe. 445 * Otherwise, lockdep would be unhappy if the caller already has another 446 * pipe locked. 447 * If we had to support locking a normal pipe and a notification pipe at 448 * the same time, we could set up lockdep annotations for that, but 449 * since we don't actually need that, it's simpler to just bail here. 450 */ 451 if (pipe_has_watch_queue(pipe)) 452 return -EXDEV; 453 454 /* Null write succeeds. */ 455 if (unlikely(total_len == 0)) 456 return 0; 457 458 mutex_lock(&pipe->mutex); 459 460 if (!pipe->readers) { 461 send_sig(SIGPIPE, current, 0); 462 ret = -EPIPE; 463 goto out; 464 } 465 466 /* 467 * If it wasn't empty we try to merge new data into 468 * the last buffer. 469 * 470 * That naturally merges small writes, but it also 471 * page-aligns the rest of the writes for large writes 472 * spanning multiple pages. 473 */ 474 head = pipe->head; 475 was_empty = pipe_empty(head, pipe->tail); 476 chars = total_len & (PAGE_SIZE-1); 477 if (chars && !was_empty) { 478 struct pipe_buffer *buf = pipe_buf(pipe, head - 1); 479 int offset = buf->offset + buf->len; 480 481 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && 482 offset + chars <= PAGE_SIZE) { 483 ret = pipe_buf_confirm(pipe, buf); 484 if (ret) 485 goto out; 486 487 ret = copy_page_from_iter(buf->page, offset, chars, from); 488 if (unlikely(ret < chars)) { 489 ret = -EFAULT; 490 goto out; 491 } 492 493 buf->len += ret; 494 if (!iov_iter_count(from)) 495 goto out; 496 } 497 } 498 499 for (;;) { 500 if (!pipe->readers) { 501 send_sig(SIGPIPE, current, 0); 502 if (!ret) 503 ret = -EPIPE; 504 break; 505 } 506 507 head = pipe->head; 508 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 509 struct pipe_buffer *buf; 510 struct page *page; 511 int copied; 512 513 page = anon_pipe_get_page(pipe); 514 if (unlikely(!page)) { 515 if (!ret) 516 ret = -ENOMEM; 517 break; 518 } 519 520 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 521 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 522 anon_pipe_put_page(pipe, page); 523 if (!ret) 524 ret = -EFAULT; 525 break; 526 } 527 528 pipe->head = head + 1; 529 /* Insert it into the buffer array */ 530 buf = pipe_buf(pipe, head); 531 buf->page = page; 532 buf->ops = &anon_pipe_buf_ops; 533 buf->offset = 0; 534 if (is_packetized(filp)) 535 buf->flags = PIPE_BUF_FLAG_PACKET; 536 else 537 buf->flags = PIPE_BUF_FLAG_CAN_MERGE; 538 539 buf->len = copied; 540 ret += copied; 541 542 if (!iov_iter_count(from)) 543 break; 544 545 continue; 546 } 547 548 /* Wait for buffer space to become available. */ 549 if ((filp->f_flags & O_NONBLOCK) || 550 (iocb->ki_flags & IOCB_NOWAIT)) { 551 if (!ret) 552 ret = -EAGAIN; 553 break; 554 } 555 if (signal_pending(current)) { 556 if (!ret) 557 ret = -ERESTARTSYS; 558 break; 559 } 560 561 /* 562 * We're going to release the pipe lock and wait for more 563 * space. We wake up any readers if necessary, and then 564 * after waiting we need to re-check whether the pipe 565 * become empty while we dropped the lock. 566 */ 567 mutex_unlock(&pipe->mutex); 568 if (was_empty) 569 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 570 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 571 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); 572 mutex_lock(&pipe->mutex); 573 was_empty = pipe_is_empty(pipe); 574 wake_next_writer = true; 575 } 576 out: 577 if (pipe_is_full(pipe)) 578 wake_next_writer = false; 579 mutex_unlock(&pipe->mutex); 580 581 /* 582 * If we do do a wakeup event, we do a 'sync' wakeup, because we 583 * want the reader to start processing things asap, rather than 584 * leave the data pending. 585 * 586 * This is particularly important for small writes, because of 587 * how (for example) the GNU make jobserver uses small writes to 588 * wake up pending jobs 589 * 590 * Epoll nonsensically wants a wakeup whether the pipe 591 * was already empty or not. 592 */ 593 if (was_empty || pipe->poll_usage) 594 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 595 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 596 if (wake_next_writer) 597 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 598 return ret; 599 } 600 601 static ssize_t 602 fifo_pipe_write(struct kiocb *iocb, struct iov_iter *from) 603 { 604 int ret = anon_pipe_write(iocb, from); 605 if (ret > 0) { 606 struct file *filp = iocb->ki_filp; 607 if (sb_start_write_trylock(file_inode(filp)->i_sb)) { 608 int err = file_update_time(filp); 609 if (err) 610 ret = err; 611 sb_end_write(file_inode(filp)->i_sb); 612 } 613 } 614 return ret; 615 } 616 617 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 618 { 619 struct pipe_inode_info *pipe = filp->private_data; 620 unsigned int count, head, tail; 621 622 switch (cmd) { 623 case FIONREAD: 624 mutex_lock(&pipe->mutex); 625 count = 0; 626 head = pipe->head; 627 tail = pipe->tail; 628 629 while (!pipe_empty(head, tail)) { 630 count += pipe_buf(pipe, tail)->len; 631 tail++; 632 } 633 mutex_unlock(&pipe->mutex); 634 635 return put_user(count, (int __user *)arg); 636 637 #ifdef CONFIG_WATCH_QUEUE 638 case IOC_WATCH_QUEUE_SET_SIZE: { 639 int ret; 640 mutex_lock(&pipe->mutex); 641 ret = watch_queue_set_size(pipe, arg); 642 mutex_unlock(&pipe->mutex); 643 return ret; 644 } 645 646 case IOC_WATCH_QUEUE_SET_FILTER: 647 return watch_queue_set_filter( 648 pipe, (struct watch_notification_filter __user *)arg); 649 #endif 650 651 default: 652 return -ENOIOCTLCMD; 653 } 654 } 655 656 /* No kernel lock held - fine */ 657 static __poll_t 658 pipe_poll(struct file *filp, poll_table *wait) 659 { 660 __poll_t mask; 661 struct pipe_inode_info *pipe = filp->private_data; 662 union pipe_index idx; 663 664 /* Epoll has some historical nasty semantics, this enables them */ 665 WRITE_ONCE(pipe->poll_usage, true); 666 667 /* 668 * Reading pipe state only -- no need for acquiring the semaphore. 669 * 670 * But because this is racy, the code has to add the 671 * entry to the poll table _first_ .. 672 */ 673 if (filp->f_mode & FMODE_READ) 674 poll_wait(filp, &pipe->rd_wait, wait); 675 if (filp->f_mode & FMODE_WRITE) 676 poll_wait(filp, &pipe->wr_wait, wait); 677 678 /* 679 * .. and only then can you do the racy tests. That way, 680 * if something changes and you got it wrong, the poll 681 * table entry will wake you up and fix it. 682 */ 683 idx.head_tail = READ_ONCE(pipe->head_tail); 684 685 mask = 0; 686 if (filp->f_mode & FMODE_READ) { 687 if (!pipe_empty(idx.head, idx.tail)) 688 mask |= EPOLLIN | EPOLLRDNORM; 689 if (!pipe->writers && filp->f_pipe != pipe->w_counter) 690 mask |= EPOLLHUP; 691 } 692 693 if (filp->f_mode & FMODE_WRITE) { 694 if (!pipe_full(idx.head, idx.tail, pipe->max_usage)) 695 mask |= EPOLLOUT | EPOLLWRNORM; 696 /* 697 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 698 * behave exactly like pipes for poll(). 699 */ 700 if (!pipe->readers) 701 mask |= EPOLLERR; 702 } 703 704 return mask; 705 } 706 707 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 708 { 709 int kill = 0; 710 711 spin_lock(&inode->i_lock); 712 if (!--pipe->files) { 713 inode->i_pipe = NULL; 714 kill = 1; 715 } 716 spin_unlock(&inode->i_lock); 717 718 if (kill) 719 free_pipe_info(pipe); 720 } 721 722 static int 723 pipe_release(struct inode *inode, struct file *file) 724 { 725 struct pipe_inode_info *pipe = file->private_data; 726 727 mutex_lock(&pipe->mutex); 728 if (file->f_mode & FMODE_READ) 729 pipe->readers--; 730 if (file->f_mode & FMODE_WRITE) 731 pipe->writers--; 732 733 /* Was that the last reader or writer, but not the other side? */ 734 if (!pipe->readers != !pipe->writers) { 735 wake_up_interruptible_all(&pipe->rd_wait); 736 wake_up_interruptible_all(&pipe->wr_wait); 737 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 738 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 739 } 740 mutex_unlock(&pipe->mutex); 741 742 put_pipe_info(inode, pipe); 743 return 0; 744 } 745 746 static int 747 pipe_fasync(int fd, struct file *filp, int on) 748 { 749 struct pipe_inode_info *pipe = filp->private_data; 750 int retval = 0; 751 752 mutex_lock(&pipe->mutex); 753 if (filp->f_mode & FMODE_READ) 754 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 755 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 756 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 757 if (retval < 0 && (filp->f_mode & FMODE_READ)) 758 /* this can happen only if on == T */ 759 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 760 } 761 mutex_unlock(&pipe->mutex); 762 return retval; 763 } 764 765 unsigned long account_pipe_buffers(struct user_struct *user, 766 unsigned long old, unsigned long new) 767 { 768 return atomic_long_add_return(new - old, &user->pipe_bufs); 769 } 770 771 bool too_many_pipe_buffers_soft(unsigned long user_bufs) 772 { 773 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 774 775 return soft_limit && user_bufs > soft_limit; 776 } 777 778 bool too_many_pipe_buffers_hard(unsigned long user_bufs) 779 { 780 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 781 782 return hard_limit && user_bufs > hard_limit; 783 } 784 785 bool pipe_is_unprivileged_user(void) 786 { 787 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 788 } 789 790 struct pipe_inode_info *alloc_pipe_info(void) 791 { 792 struct pipe_inode_info *pipe; 793 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 794 struct user_struct *user = get_current_user(); 795 unsigned long user_bufs; 796 unsigned int max_size = READ_ONCE(pipe_max_size); 797 798 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 799 if (pipe == NULL) 800 goto out_free_uid; 801 802 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 803 pipe_bufs = max_size >> PAGE_SHIFT; 804 805 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 806 807 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { 808 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS); 809 pipe_bufs = PIPE_MIN_DEF_BUFFERS; 810 } 811 812 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) 813 goto out_revert_acct; 814 815 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 816 GFP_KERNEL_ACCOUNT); 817 818 if (pipe->bufs) { 819 init_waitqueue_head(&pipe->rd_wait); 820 init_waitqueue_head(&pipe->wr_wait); 821 pipe->r_counter = pipe->w_counter = 1; 822 pipe->max_usage = pipe_bufs; 823 pipe->ring_size = pipe_bufs; 824 pipe->nr_accounted = pipe_bufs; 825 pipe->user = user; 826 mutex_init(&pipe->mutex); 827 lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL); 828 return pipe; 829 } 830 831 out_revert_acct: 832 (void) account_pipe_buffers(user, pipe_bufs, 0); 833 kfree(pipe); 834 out_free_uid: 835 free_uid(user); 836 return NULL; 837 } 838 839 void free_pipe_info(struct pipe_inode_info *pipe) 840 { 841 unsigned int i; 842 843 #ifdef CONFIG_WATCH_QUEUE 844 if (pipe->watch_queue) 845 watch_queue_clear(pipe->watch_queue); 846 #endif 847 848 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0); 849 free_uid(pipe->user); 850 for (i = 0; i < pipe->ring_size; i++) { 851 struct pipe_buffer *buf = pipe->bufs + i; 852 if (buf->ops) 853 pipe_buf_release(pipe, buf); 854 } 855 #ifdef CONFIG_WATCH_QUEUE 856 if (pipe->watch_queue) 857 put_watch_queue(pipe->watch_queue); 858 #endif 859 for (i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) { 860 if (pipe->tmp_page[i]) 861 __free_page(pipe->tmp_page[i]); 862 } 863 kfree(pipe->bufs); 864 kfree(pipe); 865 } 866 867 static struct vfsmount *pipe_mnt __ro_after_init; 868 869 /* 870 * pipefs_dname() is called from d_path(). 871 */ 872 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 873 { 874 return dynamic_dname(buffer, buflen, "pipe:[%lu]", 875 d_inode(dentry)->i_ino); 876 } 877 878 static const struct dentry_operations pipefs_dentry_operations = { 879 .d_dname = pipefs_dname, 880 }; 881 882 static const struct file_operations pipeanon_fops; 883 884 static struct inode * get_pipe_inode(void) 885 { 886 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 887 struct pipe_inode_info *pipe; 888 889 if (!inode) 890 goto fail_inode; 891 892 inode->i_ino = get_next_ino(); 893 894 pipe = alloc_pipe_info(); 895 if (!pipe) 896 goto fail_iput; 897 898 inode->i_pipe = pipe; 899 pipe->files = 2; 900 pipe->readers = pipe->writers = 1; 901 inode->i_fop = &pipeanon_fops; 902 903 /* 904 * Mark the inode dirty from the very beginning, 905 * that way it will never be moved to the dirty 906 * list because "mark_inode_dirty()" will think 907 * that it already _is_ on the dirty list. 908 */ 909 inode->i_state = I_DIRTY; 910 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 911 inode->i_uid = current_fsuid(); 912 inode->i_gid = current_fsgid(); 913 simple_inode_init_ts(inode); 914 915 return inode; 916 917 fail_iput: 918 iput(inode); 919 920 fail_inode: 921 return NULL; 922 } 923 924 int create_pipe_files(struct file **res, int flags) 925 { 926 struct inode *inode = get_pipe_inode(); 927 struct file *f; 928 int error; 929 930 if (!inode) 931 return -ENFILE; 932 933 if (flags & O_NOTIFICATION_PIPE) { 934 error = watch_queue_init(inode->i_pipe); 935 if (error) { 936 free_pipe_info(inode->i_pipe); 937 iput(inode); 938 return error; 939 } 940 } 941 942 f = alloc_file_pseudo(inode, pipe_mnt, "", 943 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 944 &pipeanon_fops); 945 if (IS_ERR(f)) { 946 free_pipe_info(inode->i_pipe); 947 iput(inode); 948 return PTR_ERR(f); 949 } 950 951 f->private_data = inode->i_pipe; 952 f->f_pipe = 0; 953 954 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 955 &pipeanon_fops); 956 if (IS_ERR(res[0])) { 957 put_pipe_info(inode, inode->i_pipe); 958 fput(f); 959 return PTR_ERR(res[0]); 960 } 961 res[0]->private_data = inode->i_pipe; 962 res[0]->f_pipe = 0; 963 res[1] = f; 964 stream_open(inode, res[0]); 965 stream_open(inode, res[1]); 966 967 /* pipe groks IOCB_NOWAIT */ 968 res[0]->f_mode |= FMODE_NOWAIT; 969 res[1]->f_mode |= FMODE_NOWAIT; 970 971 /* 972 * Disable permission and pre-content events, but enable legacy 973 * inotify events for legacy users. 974 */ 975 file_set_fsnotify_mode(res[0], FMODE_NONOTIFY_PERM); 976 file_set_fsnotify_mode(res[1], FMODE_NONOTIFY_PERM); 977 return 0; 978 } 979 980 static int __do_pipe_flags(int *fd, struct file **files, int flags) 981 { 982 int error; 983 int fdw, fdr; 984 985 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) 986 return -EINVAL; 987 988 error = create_pipe_files(files, flags); 989 if (error) 990 return error; 991 992 error = get_unused_fd_flags(flags); 993 if (error < 0) 994 goto err_read_pipe; 995 fdr = error; 996 997 error = get_unused_fd_flags(flags); 998 if (error < 0) 999 goto err_fdr; 1000 fdw = error; 1001 1002 audit_fd_pair(fdr, fdw); 1003 fd[0] = fdr; 1004 fd[1] = fdw; 1005 return 0; 1006 1007 err_fdr: 1008 put_unused_fd(fdr); 1009 err_read_pipe: 1010 fput(files[0]); 1011 fput(files[1]); 1012 return error; 1013 } 1014 1015 int do_pipe_flags(int *fd, int flags) 1016 { 1017 struct file *files[2]; 1018 int error = __do_pipe_flags(fd, files, flags); 1019 if (!error) { 1020 fd_install(fd[0], files[0]); 1021 fd_install(fd[1], files[1]); 1022 } 1023 return error; 1024 } 1025 1026 /* 1027 * sys_pipe() is the normal C calling standard for creating 1028 * a pipe. It's not the way Unix traditionally does this, though. 1029 */ 1030 static int do_pipe2(int __user *fildes, int flags) 1031 { 1032 struct file *files[2]; 1033 int fd[2]; 1034 int error; 1035 1036 error = __do_pipe_flags(fd, files, flags); 1037 if (!error) { 1038 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 1039 fput(files[0]); 1040 fput(files[1]); 1041 put_unused_fd(fd[0]); 1042 put_unused_fd(fd[1]); 1043 error = -EFAULT; 1044 } else { 1045 fd_install(fd[0], files[0]); 1046 fd_install(fd[1], files[1]); 1047 } 1048 } 1049 return error; 1050 } 1051 1052 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 1053 { 1054 return do_pipe2(fildes, flags); 1055 } 1056 1057 SYSCALL_DEFINE1(pipe, int __user *, fildes) 1058 { 1059 return do_pipe2(fildes, 0); 1060 } 1061 1062 /* 1063 * This is the stupid "wait for pipe to be readable or writable" 1064 * model. 1065 * 1066 * See pipe_read/write() for the proper kind of exclusive wait, 1067 * but that requires that we wake up any other readers/writers 1068 * if we then do not end up reading everything (ie the whole 1069 * "wake_next_reader/writer" logic in pipe_read/write()). 1070 */ 1071 void pipe_wait_readable(struct pipe_inode_info *pipe) 1072 { 1073 pipe_unlock(pipe); 1074 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe)); 1075 pipe_lock(pipe); 1076 } 1077 1078 void pipe_wait_writable(struct pipe_inode_info *pipe) 1079 { 1080 pipe_unlock(pipe); 1081 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe)); 1082 pipe_lock(pipe); 1083 } 1084 1085 /* 1086 * This depends on both the wait (here) and the wakeup (wake_up_partner) 1087 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot 1088 * race with the count check and waitqueue prep. 1089 * 1090 * Normally in order to avoid races, you'd do the prepare_to_wait() first, 1091 * then check the condition you're waiting for, and only then sleep. But 1092 * because of the pipe lock, we can check the condition before being on 1093 * the wait queue. 1094 * 1095 * We use the 'rd_wait' waitqueue for pipe partner waiting. 1096 */ 1097 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 1098 { 1099 DEFINE_WAIT(rdwait); 1100 int cur = *cnt; 1101 1102 while (cur == *cnt) { 1103 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); 1104 pipe_unlock(pipe); 1105 schedule(); 1106 finish_wait(&pipe->rd_wait, &rdwait); 1107 pipe_lock(pipe); 1108 if (signal_pending(current)) 1109 break; 1110 } 1111 return cur == *cnt ? -ERESTARTSYS : 0; 1112 } 1113 1114 static void wake_up_partner(struct pipe_inode_info *pipe) 1115 { 1116 wake_up_interruptible_all(&pipe->rd_wait); 1117 } 1118 1119 static int fifo_open(struct inode *inode, struct file *filp) 1120 { 1121 bool is_pipe = inode->i_fop == &pipeanon_fops; 1122 struct pipe_inode_info *pipe; 1123 int ret; 1124 1125 filp->f_pipe = 0; 1126 1127 spin_lock(&inode->i_lock); 1128 if (inode->i_pipe) { 1129 pipe = inode->i_pipe; 1130 pipe->files++; 1131 spin_unlock(&inode->i_lock); 1132 } else { 1133 spin_unlock(&inode->i_lock); 1134 pipe = alloc_pipe_info(); 1135 if (!pipe) 1136 return -ENOMEM; 1137 pipe->files = 1; 1138 spin_lock(&inode->i_lock); 1139 if (unlikely(inode->i_pipe)) { 1140 inode->i_pipe->files++; 1141 spin_unlock(&inode->i_lock); 1142 free_pipe_info(pipe); 1143 pipe = inode->i_pipe; 1144 } else { 1145 inode->i_pipe = pipe; 1146 spin_unlock(&inode->i_lock); 1147 } 1148 } 1149 filp->private_data = pipe; 1150 /* OK, we have a pipe and it's pinned down */ 1151 1152 mutex_lock(&pipe->mutex); 1153 1154 /* We can only do regular read/write on fifos */ 1155 stream_open(inode, filp); 1156 1157 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1158 case FMODE_READ: 1159 /* 1160 * O_RDONLY 1161 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1162 * opened, even when there is no process writing the FIFO. 1163 */ 1164 pipe->r_counter++; 1165 if (pipe->readers++ == 0) 1166 wake_up_partner(pipe); 1167 1168 if (!is_pipe && !pipe->writers) { 1169 if ((filp->f_flags & O_NONBLOCK)) { 1170 /* suppress EPOLLHUP until we have 1171 * seen a writer */ 1172 filp->f_pipe = pipe->w_counter; 1173 } else { 1174 if (wait_for_partner(pipe, &pipe->w_counter)) 1175 goto err_rd; 1176 } 1177 } 1178 break; 1179 1180 case FMODE_WRITE: 1181 /* 1182 * O_WRONLY 1183 * POSIX.1 says that O_NONBLOCK means return -1 with 1184 * errno=ENXIO when there is no process reading the FIFO. 1185 */ 1186 ret = -ENXIO; 1187 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1188 goto err; 1189 1190 pipe->w_counter++; 1191 if (!pipe->writers++) 1192 wake_up_partner(pipe); 1193 1194 if (!is_pipe && !pipe->readers) { 1195 if (wait_for_partner(pipe, &pipe->r_counter)) 1196 goto err_wr; 1197 } 1198 break; 1199 1200 case FMODE_READ | FMODE_WRITE: 1201 /* 1202 * O_RDWR 1203 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1204 * This implementation will NEVER block on a O_RDWR open, since 1205 * the process can at least talk to itself. 1206 */ 1207 1208 pipe->readers++; 1209 pipe->writers++; 1210 pipe->r_counter++; 1211 pipe->w_counter++; 1212 if (pipe->readers == 1 || pipe->writers == 1) 1213 wake_up_partner(pipe); 1214 break; 1215 1216 default: 1217 ret = -EINVAL; 1218 goto err; 1219 } 1220 1221 /* Ok! */ 1222 mutex_unlock(&pipe->mutex); 1223 return 0; 1224 1225 err_rd: 1226 if (!--pipe->readers) 1227 wake_up_interruptible(&pipe->wr_wait); 1228 ret = -ERESTARTSYS; 1229 goto err; 1230 1231 err_wr: 1232 if (!--pipe->writers) 1233 wake_up_interruptible_all(&pipe->rd_wait); 1234 ret = -ERESTARTSYS; 1235 goto err; 1236 1237 err: 1238 mutex_unlock(&pipe->mutex); 1239 1240 put_pipe_info(inode, pipe); 1241 return ret; 1242 } 1243 1244 const struct file_operations pipefifo_fops = { 1245 .open = fifo_open, 1246 .read_iter = fifo_pipe_read, 1247 .write_iter = fifo_pipe_write, 1248 .poll = pipe_poll, 1249 .unlocked_ioctl = pipe_ioctl, 1250 .release = pipe_release, 1251 .fasync = pipe_fasync, 1252 .splice_write = iter_file_splice_write, 1253 }; 1254 1255 static const struct file_operations pipeanon_fops = { 1256 .open = fifo_open, 1257 .read_iter = anon_pipe_read, 1258 .write_iter = anon_pipe_write, 1259 .poll = pipe_poll, 1260 .unlocked_ioctl = pipe_ioctl, 1261 .release = pipe_release, 1262 .fasync = pipe_fasync, 1263 .splice_write = iter_file_splice_write, 1264 }; 1265 1266 /* 1267 * Currently we rely on the pipe array holding a power-of-2 number 1268 * of pages. Returns 0 on error. 1269 */ 1270 unsigned int round_pipe_size(unsigned int size) 1271 { 1272 if (size > (1U << 31)) 1273 return 0; 1274 1275 /* Minimum pipe size, as required by POSIX */ 1276 if (size < PAGE_SIZE) 1277 return PAGE_SIZE; 1278 1279 return roundup_pow_of_two(size); 1280 } 1281 1282 /* 1283 * Resize the pipe ring to a number of slots. 1284 * 1285 * Note the pipe can be reduced in capacity, but only if the current 1286 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be 1287 * returned instead. 1288 */ 1289 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots) 1290 { 1291 struct pipe_buffer *bufs; 1292 unsigned int head, tail, mask, n; 1293 1294 /* nr_slots larger than limits of pipe->{head,tail} */ 1295 if (unlikely(nr_slots > (pipe_index_t)-1u)) 1296 return -EINVAL; 1297 1298 bufs = kcalloc(nr_slots, sizeof(*bufs), 1299 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1300 if (unlikely(!bufs)) 1301 return -ENOMEM; 1302 1303 spin_lock_irq(&pipe->rd_wait.lock); 1304 mask = pipe->ring_size - 1; 1305 head = pipe->head; 1306 tail = pipe->tail; 1307 1308 n = pipe_occupancy(head, tail); 1309 if (nr_slots < n) { 1310 spin_unlock_irq(&pipe->rd_wait.lock); 1311 kfree(bufs); 1312 return -EBUSY; 1313 } 1314 1315 /* 1316 * The pipe array wraps around, so just start the new one at zero 1317 * and adjust the indices. 1318 */ 1319 if (n > 0) { 1320 unsigned int h = head & mask; 1321 unsigned int t = tail & mask; 1322 if (h > t) { 1323 memcpy(bufs, pipe->bufs + t, 1324 n * sizeof(struct pipe_buffer)); 1325 } else { 1326 unsigned int tsize = pipe->ring_size - t; 1327 if (h > 0) 1328 memcpy(bufs + tsize, pipe->bufs, 1329 h * sizeof(struct pipe_buffer)); 1330 memcpy(bufs, pipe->bufs + t, 1331 tsize * sizeof(struct pipe_buffer)); 1332 } 1333 } 1334 1335 head = n; 1336 tail = 0; 1337 1338 kfree(pipe->bufs); 1339 pipe->bufs = bufs; 1340 pipe->ring_size = nr_slots; 1341 if (pipe->max_usage > nr_slots) 1342 pipe->max_usage = nr_slots; 1343 pipe->tail = tail; 1344 pipe->head = head; 1345 1346 if (!pipe_has_watch_queue(pipe)) { 1347 pipe->max_usage = nr_slots; 1348 pipe->nr_accounted = nr_slots; 1349 } 1350 1351 spin_unlock_irq(&pipe->rd_wait.lock); 1352 1353 /* This might have made more room for writers */ 1354 wake_up_interruptible(&pipe->wr_wait); 1355 return 0; 1356 } 1357 1358 /* 1359 * Allocate a new array of pipe buffers and copy the info over. Returns the 1360 * pipe size if successful, or return -ERROR on error. 1361 */ 1362 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg) 1363 { 1364 unsigned long user_bufs; 1365 unsigned int nr_slots, size; 1366 long ret = 0; 1367 1368 if (pipe_has_watch_queue(pipe)) 1369 return -EBUSY; 1370 1371 size = round_pipe_size(arg); 1372 nr_slots = size >> PAGE_SHIFT; 1373 1374 if (!nr_slots) 1375 return -EINVAL; 1376 1377 /* 1378 * If trying to increase the pipe capacity, check that an 1379 * unprivileged user is not trying to exceed various limits 1380 * (soft limit check here, hard limit check just below). 1381 * Decreasing the pipe capacity is always permitted, even 1382 * if the user is currently over a limit. 1383 */ 1384 if (nr_slots > pipe->max_usage && 1385 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1386 return -EPERM; 1387 1388 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots); 1389 1390 if (nr_slots > pipe->max_usage && 1391 (too_many_pipe_buffers_hard(user_bufs) || 1392 too_many_pipe_buffers_soft(user_bufs)) && 1393 pipe_is_unprivileged_user()) { 1394 ret = -EPERM; 1395 goto out_revert_acct; 1396 } 1397 1398 ret = pipe_resize_ring(pipe, nr_slots); 1399 if (ret < 0) 1400 goto out_revert_acct; 1401 1402 return pipe->max_usage * PAGE_SIZE; 1403 1404 out_revert_acct: 1405 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted); 1406 return ret; 1407 } 1408 1409 /* 1410 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is 1411 * not enough to verify that this is a pipe. 1412 */ 1413 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) 1414 { 1415 struct pipe_inode_info *pipe = file->private_data; 1416 1417 if (!pipe) 1418 return NULL; 1419 if (file->f_op != &pipefifo_fops && file->f_op != &pipeanon_fops) 1420 return NULL; 1421 if (for_splice && pipe_has_watch_queue(pipe)) 1422 return NULL; 1423 return pipe; 1424 } 1425 1426 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg) 1427 { 1428 struct pipe_inode_info *pipe; 1429 long ret; 1430 1431 pipe = get_pipe_info(file, false); 1432 if (!pipe) 1433 return -EBADF; 1434 1435 mutex_lock(&pipe->mutex); 1436 1437 switch (cmd) { 1438 case F_SETPIPE_SZ: 1439 ret = pipe_set_size(pipe, arg); 1440 break; 1441 case F_GETPIPE_SZ: 1442 ret = pipe->max_usage * PAGE_SIZE; 1443 break; 1444 default: 1445 ret = -EINVAL; 1446 break; 1447 } 1448 1449 mutex_unlock(&pipe->mutex); 1450 return ret; 1451 } 1452 1453 static const struct super_operations pipefs_ops = { 1454 .destroy_inode = free_inode_nonrcu, 1455 .statfs = simple_statfs, 1456 }; 1457 1458 /* 1459 * pipefs should _never_ be mounted by userland - too much of security hassle, 1460 * no real gain from having the whole file system mounted. So we don't need 1461 * any operations on the root directory. However, we need a non-trivial 1462 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1463 */ 1464 1465 static int pipefs_init_fs_context(struct fs_context *fc) 1466 { 1467 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1468 if (!ctx) 1469 return -ENOMEM; 1470 ctx->ops = &pipefs_ops; 1471 ctx->dops = &pipefs_dentry_operations; 1472 return 0; 1473 } 1474 1475 static struct file_system_type pipe_fs_type = { 1476 .name = "pipefs", 1477 .init_fs_context = pipefs_init_fs_context, 1478 .kill_sb = kill_anon_super, 1479 }; 1480 1481 #ifdef CONFIG_SYSCTL 1482 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp, 1483 unsigned int *valp, 1484 int write, void *data) 1485 { 1486 if (write) { 1487 unsigned int val; 1488 1489 val = round_pipe_size(*lvalp); 1490 if (val == 0) 1491 return -EINVAL; 1492 1493 *valp = val; 1494 } else { 1495 unsigned int val = *valp; 1496 *lvalp = (unsigned long) val; 1497 } 1498 1499 return 0; 1500 } 1501 1502 static int proc_dopipe_max_size(const struct ctl_table *table, int write, 1503 void *buffer, size_t *lenp, loff_t *ppos) 1504 { 1505 return do_proc_douintvec(table, write, buffer, lenp, ppos, 1506 do_proc_dopipe_max_size_conv, NULL); 1507 } 1508 1509 static const struct ctl_table fs_pipe_sysctls[] = { 1510 { 1511 .procname = "pipe-max-size", 1512 .data = &pipe_max_size, 1513 .maxlen = sizeof(pipe_max_size), 1514 .mode = 0644, 1515 .proc_handler = proc_dopipe_max_size, 1516 }, 1517 { 1518 .procname = "pipe-user-pages-hard", 1519 .data = &pipe_user_pages_hard, 1520 .maxlen = sizeof(pipe_user_pages_hard), 1521 .mode = 0644, 1522 .proc_handler = proc_doulongvec_minmax, 1523 }, 1524 { 1525 .procname = "pipe-user-pages-soft", 1526 .data = &pipe_user_pages_soft, 1527 .maxlen = sizeof(pipe_user_pages_soft), 1528 .mode = 0644, 1529 .proc_handler = proc_doulongvec_minmax, 1530 }, 1531 }; 1532 #endif 1533 1534 static int __init init_pipe_fs(void) 1535 { 1536 int err = register_filesystem(&pipe_fs_type); 1537 1538 if (!err) { 1539 pipe_mnt = kern_mount(&pipe_fs_type); 1540 if (IS_ERR(pipe_mnt)) { 1541 err = PTR_ERR(pipe_mnt); 1542 unregister_filesystem(&pipe_fs_type); 1543 } 1544 } 1545 #ifdef CONFIG_SYSCTL 1546 register_sysctl_init("fs", fs_pipe_sysctls); 1547 #endif 1548 return err; 1549 } 1550 1551 fs_initcall(init_pipe_fs); 1552