xref: /linux/fs/pipe.c (revision 2241f81c91f211b512bd2c3a26a4a74258d0e008)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29 
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32 
33 #include "internal.h"
34 
35 /*
36  * New pipe buffers will be restricted to this size while the user is exceeding
37  * their pipe buffer quota. The general pipe use case needs at least two
38  * buffers: one for data yet to be read, and one for new data. If this is less
39  * than two, then a write to a non-empty pipe may block even if the pipe is not
40  * full. This can occur with GNU make jobserver or similar uses of pipes as
41  * semaphores: multiple processes may be waiting to write tokens back to the
42  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43  *
44  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46  * emptied.
47  */
48 #define PIPE_MIN_DEF_BUFFERS 2
49 
50 /*
51  * The max size that a non-root user is allowed to grow the pipe. Can
52  * be set by root in /proc/sys/fs/pipe-max-size
53  */
54 static unsigned int pipe_max_size = 1048576;
55 
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57  * matches default values.
58  */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61 
62 /*
63  * We use head and tail indices that aren't masked off, except at the point of
64  * dereference, but rather they're allowed to wrap naturally.  This means there
65  * isn't a dead spot in the buffer, but the ring has to be a power of two and
66  * <= 2^31.
67  * -- David Howells 2019-09-23.
68  *
69  * Reads with count = 0 should always return 0.
70  * -- Julian Bradfield 1999-06-07.
71  *
72  * FIFOs and Pipes now generate SIGIO for both readers and writers.
73  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74  *
75  * pipe_read & write cleanup
76  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77  */
78 
79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80 {
81 	if (pipe->files)
82 		mutex_lock_nested(&pipe->mutex, subclass);
83 }
84 
85 void pipe_lock(struct pipe_inode_info *pipe)
86 {
87 	/*
88 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
89 	 */
90 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
91 }
92 EXPORT_SYMBOL(pipe_lock);
93 
94 void pipe_unlock(struct pipe_inode_info *pipe)
95 {
96 	if (pipe->files)
97 		mutex_unlock(&pipe->mutex);
98 }
99 EXPORT_SYMBOL(pipe_unlock);
100 
101 static inline void __pipe_lock(struct pipe_inode_info *pipe)
102 {
103 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104 }
105 
106 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107 {
108 	mutex_unlock(&pipe->mutex);
109 }
110 
111 void pipe_double_lock(struct pipe_inode_info *pipe1,
112 		      struct pipe_inode_info *pipe2)
113 {
114 	BUG_ON(pipe1 == pipe2);
115 
116 	if (pipe1 < pipe2) {
117 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119 	} else {
120 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122 	}
123 }
124 
125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126 				  struct pipe_buffer *buf)
127 {
128 	struct page *page = buf->page;
129 
130 	/*
131 	 * If nobody else uses this page, and we don't already have a
132 	 * temporary page, let's keep track of it as a one-deep
133 	 * allocation cache. (Otherwise just release our reference to it)
134 	 */
135 	if (page_count(page) == 1 && !pipe->tmp_page)
136 		pipe->tmp_page = page;
137 	else
138 		put_page(page);
139 }
140 
141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142 		struct pipe_buffer *buf)
143 {
144 	struct page *page = buf->page;
145 
146 	if (page_count(page) != 1)
147 		return false;
148 	memcg_kmem_uncharge_page(page, 0);
149 	__SetPageLocked(page);
150 	return true;
151 }
152 
153 /**
154  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155  * @pipe:	the pipe that the buffer belongs to
156  * @buf:	the buffer to attempt to steal
157  *
158  * Description:
159  *	This function attempts to steal the &struct page attached to
160  *	@buf. If successful, this function returns 0 and returns with
161  *	the page locked. The caller may then reuse the page for whatever
162  *	he wishes; the typical use is insertion into a different file
163  *	page cache.
164  */
165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 		struct pipe_buffer *buf)
167 {
168 	struct page *page = buf->page;
169 
170 	/*
171 	 * A reference of one is golden, that means that the owner of this
172 	 * page is the only one holding a reference to it. lock the page
173 	 * and return OK.
174 	 */
175 	if (page_count(page) == 1) {
176 		lock_page(page);
177 		return true;
178 	}
179 	return false;
180 }
181 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182 
183 /**
184  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185  * @pipe:	the pipe that the buffer belongs to
186  * @buf:	the buffer to get a reference to
187  *
188  * Description:
189  *	This function grabs an extra reference to @buf. It's used in
190  *	the tee() system call, when we duplicate the buffers in one
191  *	pipe into another.
192  */
193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194 {
195 	return try_get_page(buf->page);
196 }
197 EXPORT_SYMBOL(generic_pipe_buf_get);
198 
199 /**
200  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201  * @pipe:	the pipe that the buffer belongs to
202  * @buf:	the buffer to put a reference to
203  *
204  * Description:
205  *	This function releases a reference to @buf.
206  */
207 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208 			      struct pipe_buffer *buf)
209 {
210 	put_page(buf->page);
211 }
212 EXPORT_SYMBOL(generic_pipe_buf_release);
213 
214 static const struct pipe_buf_operations anon_pipe_buf_ops = {
215 	.release	= anon_pipe_buf_release,
216 	.try_steal	= anon_pipe_buf_try_steal,
217 	.get		= generic_pipe_buf_get,
218 };
219 
220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
221 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222 {
223 	unsigned int head = READ_ONCE(pipe->head);
224 	unsigned int tail = READ_ONCE(pipe->tail);
225 	unsigned int writers = READ_ONCE(pipe->writers);
226 
227 	return !pipe_empty(head, tail) || !writers;
228 }
229 
230 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe,
231 					    struct pipe_buffer *buf,
232 					    unsigned int tail)
233 {
234 	pipe_buf_release(pipe, buf);
235 
236 	/*
237 	 * If the pipe has a watch_queue, we need additional protection
238 	 * by the spinlock because notifications get posted with only
239 	 * this spinlock, no mutex
240 	 */
241 	if (pipe_has_watch_queue(pipe)) {
242 		spin_lock_irq(&pipe->rd_wait.lock);
243 #ifdef CONFIG_WATCH_QUEUE
244 		if (buf->flags & PIPE_BUF_FLAG_LOSS)
245 			pipe->note_loss = true;
246 #endif
247 		pipe->tail = ++tail;
248 		spin_unlock_irq(&pipe->rd_wait.lock);
249 		return tail;
250 	}
251 
252 	/*
253 	 * Without a watch_queue, we can simply increment the tail
254 	 * without the spinlock - the mutex is enough.
255 	 */
256 	pipe->tail = ++tail;
257 	return tail;
258 }
259 
260 static ssize_t
261 pipe_read(struct kiocb *iocb, struct iov_iter *to)
262 {
263 	size_t total_len = iov_iter_count(to);
264 	struct file *filp = iocb->ki_filp;
265 	struct pipe_inode_info *pipe = filp->private_data;
266 	bool was_full, wake_next_reader = false;
267 	ssize_t ret;
268 
269 	/* Null read succeeds. */
270 	if (unlikely(total_len == 0))
271 		return 0;
272 
273 	ret = 0;
274 	__pipe_lock(pipe);
275 
276 	/*
277 	 * We only wake up writers if the pipe was full when we started
278 	 * reading in order to avoid unnecessary wakeups.
279 	 *
280 	 * But when we do wake up writers, we do so using a sync wakeup
281 	 * (WF_SYNC), because we want them to get going and generate more
282 	 * data for us.
283 	 */
284 	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
285 	for (;;) {
286 		/* Read ->head with a barrier vs post_one_notification() */
287 		unsigned int head = smp_load_acquire(&pipe->head);
288 		unsigned int tail = pipe->tail;
289 		unsigned int mask = pipe->ring_size - 1;
290 
291 #ifdef CONFIG_WATCH_QUEUE
292 		if (pipe->note_loss) {
293 			struct watch_notification n;
294 
295 			if (total_len < 8) {
296 				if (ret == 0)
297 					ret = -ENOBUFS;
298 				break;
299 			}
300 
301 			n.type = WATCH_TYPE_META;
302 			n.subtype = WATCH_META_LOSS_NOTIFICATION;
303 			n.info = watch_sizeof(n);
304 			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
305 				if (ret == 0)
306 					ret = -EFAULT;
307 				break;
308 			}
309 			ret += sizeof(n);
310 			total_len -= sizeof(n);
311 			pipe->note_loss = false;
312 		}
313 #endif
314 
315 		if (!pipe_empty(head, tail)) {
316 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
317 			size_t chars = buf->len;
318 			size_t written;
319 			int error;
320 
321 			if (chars > total_len) {
322 				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
323 					if (ret == 0)
324 						ret = -ENOBUFS;
325 					break;
326 				}
327 				chars = total_len;
328 			}
329 
330 			error = pipe_buf_confirm(pipe, buf);
331 			if (error) {
332 				if (!ret)
333 					ret = error;
334 				break;
335 			}
336 
337 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
338 			if (unlikely(written < chars)) {
339 				if (!ret)
340 					ret = -EFAULT;
341 				break;
342 			}
343 			ret += chars;
344 			buf->offset += chars;
345 			buf->len -= chars;
346 
347 			/* Was it a packet buffer? Clean up and exit */
348 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
349 				total_len = chars;
350 				buf->len = 0;
351 			}
352 
353 			if (!buf->len)
354 				tail = pipe_update_tail(pipe, buf, tail);
355 			total_len -= chars;
356 			if (!total_len)
357 				break;	/* common path: read succeeded */
358 			if (!pipe_empty(head, tail))	/* More to do? */
359 				continue;
360 		}
361 
362 		if (!pipe->writers)
363 			break;
364 		if (ret)
365 			break;
366 		if ((filp->f_flags & O_NONBLOCK) ||
367 		    (iocb->ki_flags & IOCB_NOWAIT)) {
368 			ret = -EAGAIN;
369 			break;
370 		}
371 		__pipe_unlock(pipe);
372 
373 		/*
374 		 * We only get here if we didn't actually read anything.
375 		 *
376 		 * However, we could have seen (and removed) a zero-sized
377 		 * pipe buffer, and might have made space in the buffers
378 		 * that way.
379 		 *
380 		 * You can't make zero-sized pipe buffers by doing an empty
381 		 * write (not even in packet mode), but they can happen if
382 		 * the writer gets an EFAULT when trying to fill a buffer
383 		 * that already got allocated and inserted in the buffer
384 		 * array.
385 		 *
386 		 * So we still need to wake up any pending writers in the
387 		 * _very_ unlikely case that the pipe was full, but we got
388 		 * no data.
389 		 */
390 		if (unlikely(was_full))
391 			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
392 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
393 
394 		/*
395 		 * But because we didn't read anything, at this point we can
396 		 * just return directly with -ERESTARTSYS if we're interrupted,
397 		 * since we've done any required wakeups and there's no need
398 		 * to mark anything accessed. And we've dropped the lock.
399 		 */
400 		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
401 			return -ERESTARTSYS;
402 
403 		__pipe_lock(pipe);
404 		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
405 		wake_next_reader = true;
406 	}
407 	if (pipe_empty(pipe->head, pipe->tail))
408 		wake_next_reader = false;
409 	__pipe_unlock(pipe);
410 
411 	if (was_full)
412 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
413 	if (wake_next_reader)
414 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
415 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
416 	if (ret > 0)
417 		file_accessed(filp);
418 	return ret;
419 }
420 
421 static inline int is_packetized(struct file *file)
422 {
423 	return (file->f_flags & O_DIRECT) != 0;
424 }
425 
426 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
427 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
428 {
429 	unsigned int head = READ_ONCE(pipe->head);
430 	unsigned int tail = READ_ONCE(pipe->tail);
431 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
432 
433 	return !pipe_full(head, tail, max_usage) ||
434 		!READ_ONCE(pipe->readers);
435 }
436 
437 static ssize_t
438 pipe_write(struct kiocb *iocb, struct iov_iter *from)
439 {
440 	struct file *filp = iocb->ki_filp;
441 	struct pipe_inode_info *pipe = filp->private_data;
442 	unsigned int head;
443 	ssize_t ret = 0;
444 	size_t total_len = iov_iter_count(from);
445 	ssize_t chars;
446 	bool was_empty = false;
447 	bool wake_next_writer = false;
448 
449 	/* Null write succeeds. */
450 	if (unlikely(total_len == 0))
451 		return 0;
452 
453 	__pipe_lock(pipe);
454 
455 	if (!pipe->readers) {
456 		send_sig(SIGPIPE, current, 0);
457 		ret = -EPIPE;
458 		goto out;
459 	}
460 
461 	if (pipe_has_watch_queue(pipe)) {
462 		ret = -EXDEV;
463 		goto out;
464 	}
465 
466 	/*
467 	 * If it wasn't empty we try to merge new data into
468 	 * the last buffer.
469 	 *
470 	 * That naturally merges small writes, but it also
471 	 * page-aligns the rest of the writes for large writes
472 	 * spanning multiple pages.
473 	 */
474 	head = pipe->head;
475 	was_empty = pipe_empty(head, pipe->tail);
476 	chars = total_len & (PAGE_SIZE-1);
477 	if (chars && !was_empty) {
478 		unsigned int mask = pipe->ring_size - 1;
479 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
480 		int offset = buf->offset + buf->len;
481 
482 		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
483 		    offset + chars <= PAGE_SIZE) {
484 			ret = pipe_buf_confirm(pipe, buf);
485 			if (ret)
486 				goto out;
487 
488 			ret = copy_page_from_iter(buf->page, offset, chars, from);
489 			if (unlikely(ret < chars)) {
490 				ret = -EFAULT;
491 				goto out;
492 			}
493 
494 			buf->len += ret;
495 			if (!iov_iter_count(from))
496 				goto out;
497 		}
498 	}
499 
500 	for (;;) {
501 		if (!pipe->readers) {
502 			send_sig(SIGPIPE, current, 0);
503 			if (!ret)
504 				ret = -EPIPE;
505 			break;
506 		}
507 
508 		head = pipe->head;
509 		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
510 			unsigned int mask = pipe->ring_size - 1;
511 			struct pipe_buffer *buf;
512 			struct page *page = pipe->tmp_page;
513 			int copied;
514 
515 			if (!page) {
516 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
517 				if (unlikely(!page)) {
518 					ret = ret ? : -ENOMEM;
519 					break;
520 				}
521 				pipe->tmp_page = page;
522 			}
523 
524 			/* Allocate a slot in the ring in advance and attach an
525 			 * empty buffer.  If we fault or otherwise fail to use
526 			 * it, either the reader will consume it or it'll still
527 			 * be there for the next write.
528 			 */
529 			pipe->head = head + 1;
530 
531 			/* Insert it into the buffer array */
532 			buf = &pipe->bufs[head & mask];
533 			buf->page = page;
534 			buf->ops = &anon_pipe_buf_ops;
535 			buf->offset = 0;
536 			buf->len = 0;
537 			if (is_packetized(filp))
538 				buf->flags = PIPE_BUF_FLAG_PACKET;
539 			else
540 				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
541 			pipe->tmp_page = NULL;
542 
543 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
544 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
545 				if (!ret)
546 					ret = -EFAULT;
547 				break;
548 			}
549 			ret += copied;
550 			buf->len = copied;
551 
552 			if (!iov_iter_count(from))
553 				break;
554 		}
555 
556 		if (!pipe_full(head, pipe->tail, pipe->max_usage))
557 			continue;
558 
559 		/* Wait for buffer space to become available. */
560 		if ((filp->f_flags & O_NONBLOCK) ||
561 		    (iocb->ki_flags & IOCB_NOWAIT)) {
562 			if (!ret)
563 				ret = -EAGAIN;
564 			break;
565 		}
566 		if (signal_pending(current)) {
567 			if (!ret)
568 				ret = -ERESTARTSYS;
569 			break;
570 		}
571 
572 		/*
573 		 * We're going to release the pipe lock and wait for more
574 		 * space. We wake up any readers if necessary, and then
575 		 * after waiting we need to re-check whether the pipe
576 		 * become empty while we dropped the lock.
577 		 */
578 		__pipe_unlock(pipe);
579 		if (was_empty)
580 			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
581 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
582 		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
583 		__pipe_lock(pipe);
584 		was_empty = pipe_empty(pipe->head, pipe->tail);
585 		wake_next_writer = true;
586 	}
587 out:
588 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
589 		wake_next_writer = false;
590 	__pipe_unlock(pipe);
591 
592 	/*
593 	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
594 	 * want the reader to start processing things asap, rather than
595 	 * leave the data pending.
596 	 *
597 	 * This is particularly important for small writes, because of
598 	 * how (for example) the GNU make jobserver uses small writes to
599 	 * wake up pending jobs
600 	 *
601 	 * Epoll nonsensically wants a wakeup whether the pipe
602 	 * was already empty or not.
603 	 */
604 	if (was_empty || pipe->poll_usage)
605 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
606 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
607 	if (wake_next_writer)
608 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
609 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
610 		int err = file_update_time(filp);
611 		if (err)
612 			ret = err;
613 		sb_end_write(file_inode(filp)->i_sb);
614 	}
615 	return ret;
616 }
617 
618 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
619 {
620 	struct pipe_inode_info *pipe = filp->private_data;
621 	unsigned int count, head, tail, mask;
622 
623 	switch (cmd) {
624 	case FIONREAD:
625 		__pipe_lock(pipe);
626 		count = 0;
627 		head = pipe->head;
628 		tail = pipe->tail;
629 		mask = pipe->ring_size - 1;
630 
631 		while (tail != head) {
632 			count += pipe->bufs[tail & mask].len;
633 			tail++;
634 		}
635 		__pipe_unlock(pipe);
636 
637 		return put_user(count, (int __user *)arg);
638 
639 #ifdef CONFIG_WATCH_QUEUE
640 	case IOC_WATCH_QUEUE_SET_SIZE: {
641 		int ret;
642 		__pipe_lock(pipe);
643 		ret = watch_queue_set_size(pipe, arg);
644 		__pipe_unlock(pipe);
645 		return ret;
646 	}
647 
648 	case IOC_WATCH_QUEUE_SET_FILTER:
649 		return watch_queue_set_filter(
650 			pipe, (struct watch_notification_filter __user *)arg);
651 #endif
652 
653 	default:
654 		return -ENOIOCTLCMD;
655 	}
656 }
657 
658 /* No kernel lock held - fine */
659 static __poll_t
660 pipe_poll(struct file *filp, poll_table *wait)
661 {
662 	__poll_t mask;
663 	struct pipe_inode_info *pipe = filp->private_data;
664 	unsigned int head, tail;
665 
666 	/* Epoll has some historical nasty semantics, this enables them */
667 	WRITE_ONCE(pipe->poll_usage, true);
668 
669 	/*
670 	 * Reading pipe state only -- no need for acquiring the semaphore.
671 	 *
672 	 * But because this is racy, the code has to add the
673 	 * entry to the poll table _first_ ..
674 	 */
675 	if (filp->f_mode & FMODE_READ)
676 		poll_wait(filp, &pipe->rd_wait, wait);
677 	if (filp->f_mode & FMODE_WRITE)
678 		poll_wait(filp, &pipe->wr_wait, wait);
679 
680 	/*
681 	 * .. and only then can you do the racy tests. That way,
682 	 * if something changes and you got it wrong, the poll
683 	 * table entry will wake you up and fix it.
684 	 */
685 	head = READ_ONCE(pipe->head);
686 	tail = READ_ONCE(pipe->tail);
687 
688 	mask = 0;
689 	if (filp->f_mode & FMODE_READ) {
690 		if (!pipe_empty(head, tail))
691 			mask |= EPOLLIN | EPOLLRDNORM;
692 		if (!pipe->writers && filp->f_version != pipe->w_counter)
693 			mask |= EPOLLHUP;
694 	}
695 
696 	if (filp->f_mode & FMODE_WRITE) {
697 		if (!pipe_full(head, tail, pipe->max_usage))
698 			mask |= EPOLLOUT | EPOLLWRNORM;
699 		/*
700 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
701 		 * behave exactly like pipes for poll().
702 		 */
703 		if (!pipe->readers)
704 			mask |= EPOLLERR;
705 	}
706 
707 	return mask;
708 }
709 
710 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
711 {
712 	int kill = 0;
713 
714 	spin_lock(&inode->i_lock);
715 	if (!--pipe->files) {
716 		inode->i_pipe = NULL;
717 		kill = 1;
718 	}
719 	spin_unlock(&inode->i_lock);
720 
721 	if (kill)
722 		free_pipe_info(pipe);
723 }
724 
725 static int
726 pipe_release(struct inode *inode, struct file *file)
727 {
728 	struct pipe_inode_info *pipe = file->private_data;
729 
730 	__pipe_lock(pipe);
731 	if (file->f_mode & FMODE_READ)
732 		pipe->readers--;
733 	if (file->f_mode & FMODE_WRITE)
734 		pipe->writers--;
735 
736 	/* Was that the last reader or writer, but not the other side? */
737 	if (!pipe->readers != !pipe->writers) {
738 		wake_up_interruptible_all(&pipe->rd_wait);
739 		wake_up_interruptible_all(&pipe->wr_wait);
740 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
741 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
742 	}
743 	__pipe_unlock(pipe);
744 
745 	put_pipe_info(inode, pipe);
746 	return 0;
747 }
748 
749 static int
750 pipe_fasync(int fd, struct file *filp, int on)
751 {
752 	struct pipe_inode_info *pipe = filp->private_data;
753 	int retval = 0;
754 
755 	__pipe_lock(pipe);
756 	if (filp->f_mode & FMODE_READ)
757 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
758 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
759 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
760 		if (retval < 0 && (filp->f_mode & FMODE_READ))
761 			/* this can happen only if on == T */
762 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
763 	}
764 	__pipe_unlock(pipe);
765 	return retval;
766 }
767 
768 unsigned long account_pipe_buffers(struct user_struct *user,
769 				   unsigned long old, unsigned long new)
770 {
771 	return atomic_long_add_return(new - old, &user->pipe_bufs);
772 }
773 
774 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
775 {
776 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
777 
778 	return soft_limit && user_bufs > soft_limit;
779 }
780 
781 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
782 {
783 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
784 
785 	return hard_limit && user_bufs > hard_limit;
786 }
787 
788 bool pipe_is_unprivileged_user(void)
789 {
790 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
791 }
792 
793 struct pipe_inode_info *alloc_pipe_info(void)
794 {
795 	struct pipe_inode_info *pipe;
796 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
797 	struct user_struct *user = get_current_user();
798 	unsigned long user_bufs;
799 	unsigned int max_size = READ_ONCE(pipe_max_size);
800 
801 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
802 	if (pipe == NULL)
803 		goto out_free_uid;
804 
805 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
806 		pipe_bufs = max_size >> PAGE_SHIFT;
807 
808 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
809 
810 	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
811 		user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
812 		pipe_bufs = PIPE_MIN_DEF_BUFFERS;
813 	}
814 
815 	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
816 		goto out_revert_acct;
817 
818 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
819 			     GFP_KERNEL_ACCOUNT);
820 
821 	if (pipe->bufs) {
822 		init_waitqueue_head(&pipe->rd_wait);
823 		init_waitqueue_head(&pipe->wr_wait);
824 		pipe->r_counter = pipe->w_counter = 1;
825 		pipe->max_usage = pipe_bufs;
826 		pipe->ring_size = pipe_bufs;
827 		pipe->nr_accounted = pipe_bufs;
828 		pipe->user = user;
829 		mutex_init(&pipe->mutex);
830 		return pipe;
831 	}
832 
833 out_revert_acct:
834 	(void) account_pipe_buffers(user, pipe_bufs, 0);
835 	kfree(pipe);
836 out_free_uid:
837 	free_uid(user);
838 	return NULL;
839 }
840 
841 void free_pipe_info(struct pipe_inode_info *pipe)
842 {
843 	unsigned int i;
844 
845 #ifdef CONFIG_WATCH_QUEUE
846 	if (pipe->watch_queue)
847 		watch_queue_clear(pipe->watch_queue);
848 #endif
849 
850 	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
851 	free_uid(pipe->user);
852 	for (i = 0; i < pipe->ring_size; i++) {
853 		struct pipe_buffer *buf = pipe->bufs + i;
854 		if (buf->ops)
855 			pipe_buf_release(pipe, buf);
856 	}
857 #ifdef CONFIG_WATCH_QUEUE
858 	if (pipe->watch_queue)
859 		put_watch_queue(pipe->watch_queue);
860 #endif
861 	if (pipe->tmp_page)
862 		__free_page(pipe->tmp_page);
863 	kfree(pipe->bufs);
864 	kfree(pipe);
865 }
866 
867 static struct vfsmount *pipe_mnt __ro_after_init;
868 
869 /*
870  * pipefs_dname() is called from d_path().
871  */
872 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
873 {
874 	return dynamic_dname(buffer, buflen, "pipe:[%lu]",
875 				d_inode(dentry)->i_ino);
876 }
877 
878 static const struct dentry_operations pipefs_dentry_operations = {
879 	.d_dname	= pipefs_dname,
880 };
881 
882 static struct inode * get_pipe_inode(void)
883 {
884 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
885 	struct pipe_inode_info *pipe;
886 
887 	if (!inode)
888 		goto fail_inode;
889 
890 	inode->i_ino = get_next_ino();
891 
892 	pipe = alloc_pipe_info();
893 	if (!pipe)
894 		goto fail_iput;
895 
896 	inode->i_pipe = pipe;
897 	pipe->files = 2;
898 	pipe->readers = pipe->writers = 1;
899 	inode->i_fop = &pipefifo_fops;
900 
901 	/*
902 	 * Mark the inode dirty from the very beginning,
903 	 * that way it will never be moved to the dirty
904 	 * list because "mark_inode_dirty()" will think
905 	 * that it already _is_ on the dirty list.
906 	 */
907 	inode->i_state = I_DIRTY;
908 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
909 	inode->i_uid = current_fsuid();
910 	inode->i_gid = current_fsgid();
911 	simple_inode_init_ts(inode);
912 
913 	return inode;
914 
915 fail_iput:
916 	iput(inode);
917 
918 fail_inode:
919 	return NULL;
920 }
921 
922 int create_pipe_files(struct file **res, int flags)
923 {
924 	struct inode *inode = get_pipe_inode();
925 	struct file *f;
926 	int error;
927 
928 	if (!inode)
929 		return -ENFILE;
930 
931 	if (flags & O_NOTIFICATION_PIPE) {
932 		error = watch_queue_init(inode->i_pipe);
933 		if (error) {
934 			free_pipe_info(inode->i_pipe);
935 			iput(inode);
936 			return error;
937 		}
938 	}
939 
940 	f = alloc_file_pseudo(inode, pipe_mnt, "",
941 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
942 				&pipefifo_fops);
943 	if (IS_ERR(f)) {
944 		free_pipe_info(inode->i_pipe);
945 		iput(inode);
946 		return PTR_ERR(f);
947 	}
948 
949 	f->private_data = inode->i_pipe;
950 
951 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
952 				  &pipefifo_fops);
953 	if (IS_ERR(res[0])) {
954 		put_pipe_info(inode, inode->i_pipe);
955 		fput(f);
956 		return PTR_ERR(res[0]);
957 	}
958 	res[0]->private_data = inode->i_pipe;
959 	res[1] = f;
960 	stream_open(inode, res[0]);
961 	stream_open(inode, res[1]);
962 	return 0;
963 }
964 
965 static int __do_pipe_flags(int *fd, struct file **files, int flags)
966 {
967 	int error;
968 	int fdw, fdr;
969 
970 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
971 		return -EINVAL;
972 
973 	error = create_pipe_files(files, flags);
974 	if (error)
975 		return error;
976 
977 	error = get_unused_fd_flags(flags);
978 	if (error < 0)
979 		goto err_read_pipe;
980 	fdr = error;
981 
982 	error = get_unused_fd_flags(flags);
983 	if (error < 0)
984 		goto err_fdr;
985 	fdw = error;
986 
987 	audit_fd_pair(fdr, fdw);
988 	fd[0] = fdr;
989 	fd[1] = fdw;
990 	/* pipe groks IOCB_NOWAIT */
991 	files[0]->f_mode |= FMODE_NOWAIT;
992 	files[1]->f_mode |= FMODE_NOWAIT;
993 	return 0;
994 
995  err_fdr:
996 	put_unused_fd(fdr);
997  err_read_pipe:
998 	fput(files[0]);
999 	fput(files[1]);
1000 	return error;
1001 }
1002 
1003 int do_pipe_flags(int *fd, int flags)
1004 {
1005 	struct file *files[2];
1006 	int error = __do_pipe_flags(fd, files, flags);
1007 	if (!error) {
1008 		fd_install(fd[0], files[0]);
1009 		fd_install(fd[1], files[1]);
1010 	}
1011 	return error;
1012 }
1013 
1014 /*
1015  * sys_pipe() is the normal C calling standard for creating
1016  * a pipe. It's not the way Unix traditionally does this, though.
1017  */
1018 static int do_pipe2(int __user *fildes, int flags)
1019 {
1020 	struct file *files[2];
1021 	int fd[2];
1022 	int error;
1023 
1024 	error = __do_pipe_flags(fd, files, flags);
1025 	if (!error) {
1026 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1027 			fput(files[0]);
1028 			fput(files[1]);
1029 			put_unused_fd(fd[0]);
1030 			put_unused_fd(fd[1]);
1031 			error = -EFAULT;
1032 		} else {
1033 			fd_install(fd[0], files[0]);
1034 			fd_install(fd[1], files[1]);
1035 		}
1036 	}
1037 	return error;
1038 }
1039 
1040 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1041 {
1042 	return do_pipe2(fildes, flags);
1043 }
1044 
1045 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1046 {
1047 	return do_pipe2(fildes, 0);
1048 }
1049 
1050 /*
1051  * This is the stupid "wait for pipe to be readable or writable"
1052  * model.
1053  *
1054  * See pipe_read/write() for the proper kind of exclusive wait,
1055  * but that requires that we wake up any other readers/writers
1056  * if we then do not end up reading everything (ie the whole
1057  * "wake_next_reader/writer" logic in pipe_read/write()).
1058  */
1059 void pipe_wait_readable(struct pipe_inode_info *pipe)
1060 {
1061 	pipe_unlock(pipe);
1062 	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1063 	pipe_lock(pipe);
1064 }
1065 
1066 void pipe_wait_writable(struct pipe_inode_info *pipe)
1067 {
1068 	pipe_unlock(pipe);
1069 	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1070 	pipe_lock(pipe);
1071 }
1072 
1073 /*
1074  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1075  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1076  * race with the count check and waitqueue prep.
1077  *
1078  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1079  * then check the condition you're waiting for, and only then sleep. But
1080  * because of the pipe lock, we can check the condition before being on
1081  * the wait queue.
1082  *
1083  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1084  */
1085 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1086 {
1087 	DEFINE_WAIT(rdwait);
1088 	int cur = *cnt;
1089 
1090 	while (cur == *cnt) {
1091 		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1092 		pipe_unlock(pipe);
1093 		schedule();
1094 		finish_wait(&pipe->rd_wait, &rdwait);
1095 		pipe_lock(pipe);
1096 		if (signal_pending(current))
1097 			break;
1098 	}
1099 	return cur == *cnt ? -ERESTARTSYS : 0;
1100 }
1101 
1102 static void wake_up_partner(struct pipe_inode_info *pipe)
1103 {
1104 	wake_up_interruptible_all(&pipe->rd_wait);
1105 }
1106 
1107 static int fifo_open(struct inode *inode, struct file *filp)
1108 {
1109 	struct pipe_inode_info *pipe;
1110 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1111 	int ret;
1112 
1113 	filp->f_version = 0;
1114 
1115 	spin_lock(&inode->i_lock);
1116 	if (inode->i_pipe) {
1117 		pipe = inode->i_pipe;
1118 		pipe->files++;
1119 		spin_unlock(&inode->i_lock);
1120 	} else {
1121 		spin_unlock(&inode->i_lock);
1122 		pipe = alloc_pipe_info();
1123 		if (!pipe)
1124 			return -ENOMEM;
1125 		pipe->files = 1;
1126 		spin_lock(&inode->i_lock);
1127 		if (unlikely(inode->i_pipe)) {
1128 			inode->i_pipe->files++;
1129 			spin_unlock(&inode->i_lock);
1130 			free_pipe_info(pipe);
1131 			pipe = inode->i_pipe;
1132 		} else {
1133 			inode->i_pipe = pipe;
1134 			spin_unlock(&inode->i_lock);
1135 		}
1136 	}
1137 	filp->private_data = pipe;
1138 	/* OK, we have a pipe and it's pinned down */
1139 
1140 	__pipe_lock(pipe);
1141 
1142 	/* We can only do regular read/write on fifos */
1143 	stream_open(inode, filp);
1144 
1145 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1146 	case FMODE_READ:
1147 	/*
1148 	 *  O_RDONLY
1149 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1150 	 *  opened, even when there is no process writing the FIFO.
1151 	 */
1152 		pipe->r_counter++;
1153 		if (pipe->readers++ == 0)
1154 			wake_up_partner(pipe);
1155 
1156 		if (!is_pipe && !pipe->writers) {
1157 			if ((filp->f_flags & O_NONBLOCK)) {
1158 				/* suppress EPOLLHUP until we have
1159 				 * seen a writer */
1160 				filp->f_version = pipe->w_counter;
1161 			} else {
1162 				if (wait_for_partner(pipe, &pipe->w_counter))
1163 					goto err_rd;
1164 			}
1165 		}
1166 		break;
1167 
1168 	case FMODE_WRITE:
1169 	/*
1170 	 *  O_WRONLY
1171 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1172 	 *  errno=ENXIO when there is no process reading the FIFO.
1173 	 */
1174 		ret = -ENXIO;
1175 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1176 			goto err;
1177 
1178 		pipe->w_counter++;
1179 		if (!pipe->writers++)
1180 			wake_up_partner(pipe);
1181 
1182 		if (!is_pipe && !pipe->readers) {
1183 			if (wait_for_partner(pipe, &pipe->r_counter))
1184 				goto err_wr;
1185 		}
1186 		break;
1187 
1188 	case FMODE_READ | FMODE_WRITE:
1189 	/*
1190 	 *  O_RDWR
1191 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1192 	 *  This implementation will NEVER block on a O_RDWR open, since
1193 	 *  the process can at least talk to itself.
1194 	 */
1195 
1196 		pipe->readers++;
1197 		pipe->writers++;
1198 		pipe->r_counter++;
1199 		pipe->w_counter++;
1200 		if (pipe->readers == 1 || pipe->writers == 1)
1201 			wake_up_partner(pipe);
1202 		break;
1203 
1204 	default:
1205 		ret = -EINVAL;
1206 		goto err;
1207 	}
1208 
1209 	/* Ok! */
1210 	__pipe_unlock(pipe);
1211 	return 0;
1212 
1213 err_rd:
1214 	if (!--pipe->readers)
1215 		wake_up_interruptible(&pipe->wr_wait);
1216 	ret = -ERESTARTSYS;
1217 	goto err;
1218 
1219 err_wr:
1220 	if (!--pipe->writers)
1221 		wake_up_interruptible_all(&pipe->rd_wait);
1222 	ret = -ERESTARTSYS;
1223 	goto err;
1224 
1225 err:
1226 	__pipe_unlock(pipe);
1227 
1228 	put_pipe_info(inode, pipe);
1229 	return ret;
1230 }
1231 
1232 const struct file_operations pipefifo_fops = {
1233 	.open		= fifo_open,
1234 	.llseek		= no_llseek,
1235 	.read_iter	= pipe_read,
1236 	.write_iter	= pipe_write,
1237 	.poll		= pipe_poll,
1238 	.unlocked_ioctl	= pipe_ioctl,
1239 	.release	= pipe_release,
1240 	.fasync		= pipe_fasync,
1241 	.splice_write	= iter_file_splice_write,
1242 };
1243 
1244 /*
1245  * Currently we rely on the pipe array holding a power-of-2 number
1246  * of pages. Returns 0 on error.
1247  */
1248 unsigned int round_pipe_size(unsigned int size)
1249 {
1250 	if (size > (1U << 31))
1251 		return 0;
1252 
1253 	/* Minimum pipe size, as required by POSIX */
1254 	if (size < PAGE_SIZE)
1255 		return PAGE_SIZE;
1256 
1257 	return roundup_pow_of_two(size);
1258 }
1259 
1260 /*
1261  * Resize the pipe ring to a number of slots.
1262  *
1263  * Note the pipe can be reduced in capacity, but only if the current
1264  * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1265  * returned instead.
1266  */
1267 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1268 {
1269 	struct pipe_buffer *bufs;
1270 	unsigned int head, tail, mask, n;
1271 
1272 	bufs = kcalloc(nr_slots, sizeof(*bufs),
1273 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1274 	if (unlikely(!bufs))
1275 		return -ENOMEM;
1276 
1277 	spin_lock_irq(&pipe->rd_wait.lock);
1278 	mask = pipe->ring_size - 1;
1279 	head = pipe->head;
1280 	tail = pipe->tail;
1281 
1282 	n = pipe_occupancy(head, tail);
1283 	if (nr_slots < n) {
1284 		spin_unlock_irq(&pipe->rd_wait.lock);
1285 		kfree(bufs);
1286 		return -EBUSY;
1287 	}
1288 
1289 	/*
1290 	 * The pipe array wraps around, so just start the new one at zero
1291 	 * and adjust the indices.
1292 	 */
1293 	if (n > 0) {
1294 		unsigned int h = head & mask;
1295 		unsigned int t = tail & mask;
1296 		if (h > t) {
1297 			memcpy(bufs, pipe->bufs + t,
1298 			       n * sizeof(struct pipe_buffer));
1299 		} else {
1300 			unsigned int tsize = pipe->ring_size - t;
1301 			if (h > 0)
1302 				memcpy(bufs + tsize, pipe->bufs,
1303 				       h * sizeof(struct pipe_buffer));
1304 			memcpy(bufs, pipe->bufs + t,
1305 			       tsize * sizeof(struct pipe_buffer));
1306 		}
1307 	}
1308 
1309 	head = n;
1310 	tail = 0;
1311 
1312 	kfree(pipe->bufs);
1313 	pipe->bufs = bufs;
1314 	pipe->ring_size = nr_slots;
1315 	if (pipe->max_usage > nr_slots)
1316 		pipe->max_usage = nr_slots;
1317 	pipe->tail = tail;
1318 	pipe->head = head;
1319 
1320 	spin_unlock_irq(&pipe->rd_wait.lock);
1321 
1322 	/* This might have made more room for writers */
1323 	wake_up_interruptible(&pipe->wr_wait);
1324 	return 0;
1325 }
1326 
1327 /*
1328  * Allocate a new array of pipe buffers and copy the info over. Returns the
1329  * pipe size if successful, or return -ERROR on error.
1330  */
1331 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1332 {
1333 	unsigned long user_bufs;
1334 	unsigned int nr_slots, size;
1335 	long ret = 0;
1336 
1337 	if (pipe_has_watch_queue(pipe))
1338 		return -EBUSY;
1339 
1340 	size = round_pipe_size(arg);
1341 	nr_slots = size >> PAGE_SHIFT;
1342 
1343 	if (!nr_slots)
1344 		return -EINVAL;
1345 
1346 	/*
1347 	 * If trying to increase the pipe capacity, check that an
1348 	 * unprivileged user is not trying to exceed various limits
1349 	 * (soft limit check here, hard limit check just below).
1350 	 * Decreasing the pipe capacity is always permitted, even
1351 	 * if the user is currently over a limit.
1352 	 */
1353 	if (nr_slots > pipe->max_usage &&
1354 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1355 		return -EPERM;
1356 
1357 	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1358 
1359 	if (nr_slots > pipe->max_usage &&
1360 			(too_many_pipe_buffers_hard(user_bufs) ||
1361 			 too_many_pipe_buffers_soft(user_bufs)) &&
1362 			pipe_is_unprivileged_user()) {
1363 		ret = -EPERM;
1364 		goto out_revert_acct;
1365 	}
1366 
1367 	ret = pipe_resize_ring(pipe, nr_slots);
1368 	if (ret < 0)
1369 		goto out_revert_acct;
1370 
1371 	pipe->max_usage = nr_slots;
1372 	pipe->nr_accounted = nr_slots;
1373 	return pipe->max_usage * PAGE_SIZE;
1374 
1375 out_revert_acct:
1376 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1377 	return ret;
1378 }
1379 
1380 /*
1381  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1382  * not enough to verify that this is a pipe.
1383  */
1384 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1385 {
1386 	struct pipe_inode_info *pipe = file->private_data;
1387 
1388 	if (file->f_op != &pipefifo_fops || !pipe)
1389 		return NULL;
1390 	if (for_splice && pipe_has_watch_queue(pipe))
1391 		return NULL;
1392 	return pipe;
1393 }
1394 
1395 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1396 {
1397 	struct pipe_inode_info *pipe;
1398 	long ret;
1399 
1400 	pipe = get_pipe_info(file, false);
1401 	if (!pipe)
1402 		return -EBADF;
1403 
1404 	__pipe_lock(pipe);
1405 
1406 	switch (cmd) {
1407 	case F_SETPIPE_SZ:
1408 		ret = pipe_set_size(pipe, arg);
1409 		break;
1410 	case F_GETPIPE_SZ:
1411 		ret = pipe->max_usage * PAGE_SIZE;
1412 		break;
1413 	default:
1414 		ret = -EINVAL;
1415 		break;
1416 	}
1417 
1418 	__pipe_unlock(pipe);
1419 	return ret;
1420 }
1421 
1422 static const struct super_operations pipefs_ops = {
1423 	.destroy_inode = free_inode_nonrcu,
1424 	.statfs = simple_statfs,
1425 };
1426 
1427 /*
1428  * pipefs should _never_ be mounted by userland - too much of security hassle,
1429  * no real gain from having the whole whorehouse mounted. So we don't need
1430  * any operations on the root directory. However, we need a non-trivial
1431  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1432  */
1433 
1434 static int pipefs_init_fs_context(struct fs_context *fc)
1435 {
1436 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1437 	if (!ctx)
1438 		return -ENOMEM;
1439 	ctx->ops = &pipefs_ops;
1440 	ctx->dops = &pipefs_dentry_operations;
1441 	return 0;
1442 }
1443 
1444 static struct file_system_type pipe_fs_type = {
1445 	.name		= "pipefs",
1446 	.init_fs_context = pipefs_init_fs_context,
1447 	.kill_sb	= kill_anon_super,
1448 };
1449 
1450 #ifdef CONFIG_SYSCTL
1451 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1452 					unsigned int *valp,
1453 					int write, void *data)
1454 {
1455 	if (write) {
1456 		unsigned int val;
1457 
1458 		val = round_pipe_size(*lvalp);
1459 		if (val == 0)
1460 			return -EINVAL;
1461 
1462 		*valp = val;
1463 	} else {
1464 		unsigned int val = *valp;
1465 		*lvalp = (unsigned long) val;
1466 	}
1467 
1468 	return 0;
1469 }
1470 
1471 static int proc_dopipe_max_size(struct ctl_table *table, int write,
1472 				void *buffer, size_t *lenp, loff_t *ppos)
1473 {
1474 	return do_proc_douintvec(table, write, buffer, lenp, ppos,
1475 				 do_proc_dopipe_max_size_conv, NULL);
1476 }
1477 
1478 static struct ctl_table fs_pipe_sysctls[] = {
1479 	{
1480 		.procname	= "pipe-max-size",
1481 		.data		= &pipe_max_size,
1482 		.maxlen		= sizeof(pipe_max_size),
1483 		.mode		= 0644,
1484 		.proc_handler	= proc_dopipe_max_size,
1485 	},
1486 	{
1487 		.procname	= "pipe-user-pages-hard",
1488 		.data		= &pipe_user_pages_hard,
1489 		.maxlen		= sizeof(pipe_user_pages_hard),
1490 		.mode		= 0644,
1491 		.proc_handler	= proc_doulongvec_minmax,
1492 	},
1493 	{
1494 		.procname	= "pipe-user-pages-soft",
1495 		.data		= &pipe_user_pages_soft,
1496 		.maxlen		= sizeof(pipe_user_pages_soft),
1497 		.mode		= 0644,
1498 		.proc_handler	= proc_doulongvec_minmax,
1499 	},
1500 	{ }
1501 };
1502 #endif
1503 
1504 static int __init init_pipe_fs(void)
1505 {
1506 	int err = register_filesystem(&pipe_fs_type);
1507 
1508 	if (!err) {
1509 		pipe_mnt = kern_mount(&pipe_fs_type);
1510 		if (IS_ERR(pipe_mnt)) {
1511 			err = PTR_ERR(pipe_mnt);
1512 			unregister_filesystem(&pipe_fs_type);
1513 		}
1514 	}
1515 #ifdef CONFIG_SYSCTL
1516 	register_sysctl_init("fs", fs_pipe_sysctls);
1517 #endif
1518 	return err;
1519 }
1520 
1521 fs_initcall(init_pipe_fs);
1522