1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 #include <linux/watch_queue.h> 28 #include <linux/sysctl.h> 29 30 #include <linux/uaccess.h> 31 #include <asm/ioctls.h> 32 33 #include "internal.h" 34 35 /* 36 * New pipe buffers will be restricted to this size while the user is exceeding 37 * their pipe buffer quota. The general pipe use case needs at least two 38 * buffers: one for data yet to be read, and one for new data. If this is less 39 * than two, then a write to a non-empty pipe may block even if the pipe is not 40 * full. This can occur with GNU make jobserver or similar uses of pipes as 41 * semaphores: multiple processes may be waiting to write tokens back to the 42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/. 43 * 44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their 45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is 46 * emptied. 47 */ 48 #define PIPE_MIN_DEF_BUFFERS 2 49 50 /* 51 * The max size that a non-root user is allowed to grow the pipe. Can 52 * be set by root in /proc/sys/fs/pipe-max-size 53 */ 54 static unsigned int pipe_max_size = 1048576; 55 56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 57 * matches default values. 58 */ 59 static unsigned long pipe_user_pages_hard; 60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 61 62 /* 63 * We use head and tail indices that aren't masked off, except at the point of 64 * dereference, but rather they're allowed to wrap naturally. This means there 65 * isn't a dead spot in the buffer, but the ring has to be a power of two and 66 * <= 2^31. 67 * -- David Howells 2019-09-23. 68 * 69 * Reads with count = 0 should always return 0. 70 * -- Julian Bradfield 1999-06-07. 71 * 72 * FIFOs and Pipes now generate SIGIO for both readers and writers. 73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 74 * 75 * pipe_read & write cleanup 76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 77 */ 78 79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) 80 { 81 if (pipe->files) 82 mutex_lock_nested(&pipe->mutex, subclass); 83 } 84 85 void pipe_lock(struct pipe_inode_info *pipe) 86 { 87 /* 88 * pipe_lock() nests non-pipe inode locks (for writing to a file) 89 */ 90 pipe_lock_nested(pipe, I_MUTEX_PARENT); 91 } 92 EXPORT_SYMBOL(pipe_lock); 93 94 void pipe_unlock(struct pipe_inode_info *pipe) 95 { 96 if (pipe->files) 97 mutex_unlock(&pipe->mutex); 98 } 99 EXPORT_SYMBOL(pipe_unlock); 100 101 static inline void __pipe_lock(struct pipe_inode_info *pipe) 102 { 103 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT); 104 } 105 106 static inline void __pipe_unlock(struct pipe_inode_info *pipe) 107 { 108 mutex_unlock(&pipe->mutex); 109 } 110 111 void pipe_double_lock(struct pipe_inode_info *pipe1, 112 struct pipe_inode_info *pipe2) 113 { 114 BUG_ON(pipe1 == pipe2); 115 116 if (pipe1 < pipe2) { 117 pipe_lock_nested(pipe1, I_MUTEX_PARENT); 118 pipe_lock_nested(pipe2, I_MUTEX_CHILD); 119 } else { 120 pipe_lock_nested(pipe2, I_MUTEX_PARENT); 121 pipe_lock_nested(pipe1, I_MUTEX_CHILD); 122 } 123 } 124 125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 126 struct pipe_buffer *buf) 127 { 128 struct page *page = buf->page; 129 130 /* 131 * If nobody else uses this page, and we don't already have a 132 * temporary page, let's keep track of it as a one-deep 133 * allocation cache. (Otherwise just release our reference to it) 134 */ 135 if (page_count(page) == 1 && !pipe->tmp_page) 136 pipe->tmp_page = page; 137 else 138 put_page(page); 139 } 140 141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, 142 struct pipe_buffer *buf) 143 { 144 struct page *page = buf->page; 145 146 if (page_count(page) != 1) 147 return false; 148 memcg_kmem_uncharge_page(page, 0); 149 __SetPageLocked(page); 150 return true; 151 } 152 153 /** 154 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer 155 * @pipe: the pipe that the buffer belongs to 156 * @buf: the buffer to attempt to steal 157 * 158 * Description: 159 * This function attempts to steal the &struct page attached to 160 * @buf. If successful, this function returns 0 and returns with 161 * the page locked. The caller may then reuse the page for whatever 162 * he wishes; the typical use is insertion into a different file 163 * page cache. 164 */ 165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, 166 struct pipe_buffer *buf) 167 { 168 struct page *page = buf->page; 169 170 /* 171 * A reference of one is golden, that means that the owner of this 172 * page is the only one holding a reference to it. lock the page 173 * and return OK. 174 */ 175 if (page_count(page) == 1) { 176 lock_page(page); 177 return true; 178 } 179 return false; 180 } 181 EXPORT_SYMBOL(generic_pipe_buf_try_steal); 182 183 /** 184 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 185 * @pipe: the pipe that the buffer belongs to 186 * @buf: the buffer to get a reference to 187 * 188 * Description: 189 * This function grabs an extra reference to @buf. It's used in 190 * the tee() system call, when we duplicate the buffers in one 191 * pipe into another. 192 */ 193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 194 { 195 return try_get_page(buf->page); 196 } 197 EXPORT_SYMBOL(generic_pipe_buf_get); 198 199 /** 200 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 201 * @pipe: the pipe that the buffer belongs to 202 * @buf: the buffer to put a reference to 203 * 204 * Description: 205 * This function releases a reference to @buf. 206 */ 207 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 208 struct pipe_buffer *buf) 209 { 210 put_page(buf->page); 211 } 212 EXPORT_SYMBOL(generic_pipe_buf_release); 213 214 static const struct pipe_buf_operations anon_pipe_buf_ops = { 215 .release = anon_pipe_buf_release, 216 .try_steal = anon_pipe_buf_try_steal, 217 .get = generic_pipe_buf_get, 218 }; 219 220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 221 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 222 { 223 unsigned int head = READ_ONCE(pipe->head); 224 unsigned int tail = READ_ONCE(pipe->tail); 225 unsigned int writers = READ_ONCE(pipe->writers); 226 227 return !pipe_empty(head, tail) || !writers; 228 } 229 230 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe, 231 struct pipe_buffer *buf, 232 unsigned int tail) 233 { 234 pipe_buf_release(pipe, buf); 235 236 /* 237 * If the pipe has a watch_queue, we need additional protection 238 * by the spinlock because notifications get posted with only 239 * this spinlock, no mutex 240 */ 241 if (pipe_has_watch_queue(pipe)) { 242 spin_lock_irq(&pipe->rd_wait.lock); 243 #ifdef CONFIG_WATCH_QUEUE 244 if (buf->flags & PIPE_BUF_FLAG_LOSS) 245 pipe->note_loss = true; 246 #endif 247 pipe->tail = ++tail; 248 spin_unlock_irq(&pipe->rd_wait.lock); 249 return tail; 250 } 251 252 /* 253 * Without a watch_queue, we can simply increment the tail 254 * without the spinlock - the mutex is enough. 255 */ 256 pipe->tail = ++tail; 257 return tail; 258 } 259 260 static ssize_t 261 pipe_read(struct kiocb *iocb, struct iov_iter *to) 262 { 263 size_t total_len = iov_iter_count(to); 264 struct file *filp = iocb->ki_filp; 265 struct pipe_inode_info *pipe = filp->private_data; 266 bool was_full, wake_next_reader = false; 267 ssize_t ret; 268 269 /* Null read succeeds. */ 270 if (unlikely(total_len == 0)) 271 return 0; 272 273 ret = 0; 274 __pipe_lock(pipe); 275 276 /* 277 * We only wake up writers if the pipe was full when we started 278 * reading in order to avoid unnecessary wakeups. 279 * 280 * But when we do wake up writers, we do so using a sync wakeup 281 * (WF_SYNC), because we want them to get going and generate more 282 * data for us. 283 */ 284 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 285 for (;;) { 286 /* Read ->head with a barrier vs post_one_notification() */ 287 unsigned int head = smp_load_acquire(&pipe->head); 288 unsigned int tail = pipe->tail; 289 unsigned int mask = pipe->ring_size - 1; 290 291 #ifdef CONFIG_WATCH_QUEUE 292 if (pipe->note_loss) { 293 struct watch_notification n; 294 295 if (total_len < 8) { 296 if (ret == 0) 297 ret = -ENOBUFS; 298 break; 299 } 300 301 n.type = WATCH_TYPE_META; 302 n.subtype = WATCH_META_LOSS_NOTIFICATION; 303 n.info = watch_sizeof(n); 304 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) { 305 if (ret == 0) 306 ret = -EFAULT; 307 break; 308 } 309 ret += sizeof(n); 310 total_len -= sizeof(n); 311 pipe->note_loss = false; 312 } 313 #endif 314 315 if (!pipe_empty(head, tail)) { 316 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 317 size_t chars = buf->len; 318 size_t written; 319 int error; 320 321 if (chars > total_len) { 322 if (buf->flags & PIPE_BUF_FLAG_WHOLE) { 323 if (ret == 0) 324 ret = -ENOBUFS; 325 break; 326 } 327 chars = total_len; 328 } 329 330 error = pipe_buf_confirm(pipe, buf); 331 if (error) { 332 if (!ret) 333 ret = error; 334 break; 335 } 336 337 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 338 if (unlikely(written < chars)) { 339 if (!ret) 340 ret = -EFAULT; 341 break; 342 } 343 ret += chars; 344 buf->offset += chars; 345 buf->len -= chars; 346 347 /* Was it a packet buffer? Clean up and exit */ 348 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 349 total_len = chars; 350 buf->len = 0; 351 } 352 353 if (!buf->len) 354 tail = pipe_update_tail(pipe, buf, tail); 355 total_len -= chars; 356 if (!total_len) 357 break; /* common path: read succeeded */ 358 if (!pipe_empty(head, tail)) /* More to do? */ 359 continue; 360 } 361 362 if (!pipe->writers) 363 break; 364 if (ret) 365 break; 366 if ((filp->f_flags & O_NONBLOCK) || 367 (iocb->ki_flags & IOCB_NOWAIT)) { 368 ret = -EAGAIN; 369 break; 370 } 371 __pipe_unlock(pipe); 372 373 /* 374 * We only get here if we didn't actually read anything. 375 * 376 * However, we could have seen (and removed) a zero-sized 377 * pipe buffer, and might have made space in the buffers 378 * that way. 379 * 380 * You can't make zero-sized pipe buffers by doing an empty 381 * write (not even in packet mode), but they can happen if 382 * the writer gets an EFAULT when trying to fill a buffer 383 * that already got allocated and inserted in the buffer 384 * array. 385 * 386 * So we still need to wake up any pending writers in the 387 * _very_ unlikely case that the pipe was full, but we got 388 * no data. 389 */ 390 if (unlikely(was_full)) 391 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 392 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 393 394 /* 395 * But because we didn't read anything, at this point we can 396 * just return directly with -ERESTARTSYS if we're interrupted, 397 * since we've done any required wakeups and there's no need 398 * to mark anything accessed. And we've dropped the lock. 399 */ 400 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) 401 return -ERESTARTSYS; 402 403 __pipe_lock(pipe); 404 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 405 wake_next_reader = true; 406 } 407 if (pipe_empty(pipe->head, pipe->tail)) 408 wake_next_reader = false; 409 __pipe_unlock(pipe); 410 411 if (was_full) 412 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 413 if (wake_next_reader) 414 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 415 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 416 if (ret > 0) 417 file_accessed(filp); 418 return ret; 419 } 420 421 static inline int is_packetized(struct file *file) 422 { 423 return (file->f_flags & O_DIRECT) != 0; 424 } 425 426 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 427 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 428 { 429 unsigned int head = READ_ONCE(pipe->head); 430 unsigned int tail = READ_ONCE(pipe->tail); 431 unsigned int max_usage = READ_ONCE(pipe->max_usage); 432 433 return !pipe_full(head, tail, max_usage) || 434 !READ_ONCE(pipe->readers); 435 } 436 437 static ssize_t 438 pipe_write(struct kiocb *iocb, struct iov_iter *from) 439 { 440 struct file *filp = iocb->ki_filp; 441 struct pipe_inode_info *pipe = filp->private_data; 442 unsigned int head; 443 ssize_t ret = 0; 444 size_t total_len = iov_iter_count(from); 445 ssize_t chars; 446 bool was_empty = false; 447 bool wake_next_writer = false; 448 449 /* Null write succeeds. */ 450 if (unlikely(total_len == 0)) 451 return 0; 452 453 __pipe_lock(pipe); 454 455 if (!pipe->readers) { 456 send_sig(SIGPIPE, current, 0); 457 ret = -EPIPE; 458 goto out; 459 } 460 461 if (pipe_has_watch_queue(pipe)) { 462 ret = -EXDEV; 463 goto out; 464 } 465 466 /* 467 * If it wasn't empty we try to merge new data into 468 * the last buffer. 469 * 470 * That naturally merges small writes, but it also 471 * page-aligns the rest of the writes for large writes 472 * spanning multiple pages. 473 */ 474 head = pipe->head; 475 was_empty = pipe_empty(head, pipe->tail); 476 chars = total_len & (PAGE_SIZE-1); 477 if (chars && !was_empty) { 478 unsigned int mask = pipe->ring_size - 1; 479 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask]; 480 int offset = buf->offset + buf->len; 481 482 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && 483 offset + chars <= PAGE_SIZE) { 484 ret = pipe_buf_confirm(pipe, buf); 485 if (ret) 486 goto out; 487 488 ret = copy_page_from_iter(buf->page, offset, chars, from); 489 if (unlikely(ret < chars)) { 490 ret = -EFAULT; 491 goto out; 492 } 493 494 buf->len += ret; 495 if (!iov_iter_count(from)) 496 goto out; 497 } 498 } 499 500 for (;;) { 501 if (!pipe->readers) { 502 send_sig(SIGPIPE, current, 0); 503 if (!ret) 504 ret = -EPIPE; 505 break; 506 } 507 508 head = pipe->head; 509 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 510 unsigned int mask = pipe->ring_size - 1; 511 struct pipe_buffer *buf; 512 struct page *page = pipe->tmp_page; 513 int copied; 514 515 if (!page) { 516 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 517 if (unlikely(!page)) { 518 ret = ret ? : -ENOMEM; 519 break; 520 } 521 pipe->tmp_page = page; 522 } 523 524 /* Allocate a slot in the ring in advance and attach an 525 * empty buffer. If we fault or otherwise fail to use 526 * it, either the reader will consume it or it'll still 527 * be there for the next write. 528 */ 529 pipe->head = head + 1; 530 531 /* Insert it into the buffer array */ 532 buf = &pipe->bufs[head & mask]; 533 buf->page = page; 534 buf->ops = &anon_pipe_buf_ops; 535 buf->offset = 0; 536 buf->len = 0; 537 if (is_packetized(filp)) 538 buf->flags = PIPE_BUF_FLAG_PACKET; 539 else 540 buf->flags = PIPE_BUF_FLAG_CAN_MERGE; 541 pipe->tmp_page = NULL; 542 543 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 544 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 545 if (!ret) 546 ret = -EFAULT; 547 break; 548 } 549 ret += copied; 550 buf->len = copied; 551 552 if (!iov_iter_count(from)) 553 break; 554 } 555 556 if (!pipe_full(head, pipe->tail, pipe->max_usage)) 557 continue; 558 559 /* Wait for buffer space to become available. */ 560 if ((filp->f_flags & O_NONBLOCK) || 561 (iocb->ki_flags & IOCB_NOWAIT)) { 562 if (!ret) 563 ret = -EAGAIN; 564 break; 565 } 566 if (signal_pending(current)) { 567 if (!ret) 568 ret = -ERESTARTSYS; 569 break; 570 } 571 572 /* 573 * We're going to release the pipe lock and wait for more 574 * space. We wake up any readers if necessary, and then 575 * after waiting we need to re-check whether the pipe 576 * become empty while we dropped the lock. 577 */ 578 __pipe_unlock(pipe); 579 if (was_empty) 580 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 581 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 582 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); 583 __pipe_lock(pipe); 584 was_empty = pipe_empty(pipe->head, pipe->tail); 585 wake_next_writer = true; 586 } 587 out: 588 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 589 wake_next_writer = false; 590 __pipe_unlock(pipe); 591 592 /* 593 * If we do do a wakeup event, we do a 'sync' wakeup, because we 594 * want the reader to start processing things asap, rather than 595 * leave the data pending. 596 * 597 * This is particularly important for small writes, because of 598 * how (for example) the GNU make jobserver uses small writes to 599 * wake up pending jobs 600 * 601 * Epoll nonsensically wants a wakeup whether the pipe 602 * was already empty or not. 603 */ 604 if (was_empty || pipe->poll_usage) 605 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 606 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 607 if (wake_next_writer) 608 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 609 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 610 int err = file_update_time(filp); 611 if (err) 612 ret = err; 613 sb_end_write(file_inode(filp)->i_sb); 614 } 615 return ret; 616 } 617 618 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 619 { 620 struct pipe_inode_info *pipe = filp->private_data; 621 unsigned int count, head, tail, mask; 622 623 switch (cmd) { 624 case FIONREAD: 625 __pipe_lock(pipe); 626 count = 0; 627 head = pipe->head; 628 tail = pipe->tail; 629 mask = pipe->ring_size - 1; 630 631 while (tail != head) { 632 count += pipe->bufs[tail & mask].len; 633 tail++; 634 } 635 __pipe_unlock(pipe); 636 637 return put_user(count, (int __user *)arg); 638 639 #ifdef CONFIG_WATCH_QUEUE 640 case IOC_WATCH_QUEUE_SET_SIZE: { 641 int ret; 642 __pipe_lock(pipe); 643 ret = watch_queue_set_size(pipe, arg); 644 __pipe_unlock(pipe); 645 return ret; 646 } 647 648 case IOC_WATCH_QUEUE_SET_FILTER: 649 return watch_queue_set_filter( 650 pipe, (struct watch_notification_filter __user *)arg); 651 #endif 652 653 default: 654 return -ENOIOCTLCMD; 655 } 656 } 657 658 /* No kernel lock held - fine */ 659 static __poll_t 660 pipe_poll(struct file *filp, poll_table *wait) 661 { 662 __poll_t mask; 663 struct pipe_inode_info *pipe = filp->private_data; 664 unsigned int head, tail; 665 666 /* Epoll has some historical nasty semantics, this enables them */ 667 WRITE_ONCE(pipe->poll_usage, true); 668 669 /* 670 * Reading pipe state only -- no need for acquiring the semaphore. 671 * 672 * But because this is racy, the code has to add the 673 * entry to the poll table _first_ .. 674 */ 675 if (filp->f_mode & FMODE_READ) 676 poll_wait(filp, &pipe->rd_wait, wait); 677 if (filp->f_mode & FMODE_WRITE) 678 poll_wait(filp, &pipe->wr_wait, wait); 679 680 /* 681 * .. and only then can you do the racy tests. That way, 682 * if something changes and you got it wrong, the poll 683 * table entry will wake you up and fix it. 684 */ 685 head = READ_ONCE(pipe->head); 686 tail = READ_ONCE(pipe->tail); 687 688 mask = 0; 689 if (filp->f_mode & FMODE_READ) { 690 if (!pipe_empty(head, tail)) 691 mask |= EPOLLIN | EPOLLRDNORM; 692 if (!pipe->writers && filp->f_version != pipe->w_counter) 693 mask |= EPOLLHUP; 694 } 695 696 if (filp->f_mode & FMODE_WRITE) { 697 if (!pipe_full(head, tail, pipe->max_usage)) 698 mask |= EPOLLOUT | EPOLLWRNORM; 699 /* 700 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 701 * behave exactly like pipes for poll(). 702 */ 703 if (!pipe->readers) 704 mask |= EPOLLERR; 705 } 706 707 return mask; 708 } 709 710 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 711 { 712 int kill = 0; 713 714 spin_lock(&inode->i_lock); 715 if (!--pipe->files) { 716 inode->i_pipe = NULL; 717 kill = 1; 718 } 719 spin_unlock(&inode->i_lock); 720 721 if (kill) 722 free_pipe_info(pipe); 723 } 724 725 static int 726 pipe_release(struct inode *inode, struct file *file) 727 { 728 struct pipe_inode_info *pipe = file->private_data; 729 730 __pipe_lock(pipe); 731 if (file->f_mode & FMODE_READ) 732 pipe->readers--; 733 if (file->f_mode & FMODE_WRITE) 734 pipe->writers--; 735 736 /* Was that the last reader or writer, but not the other side? */ 737 if (!pipe->readers != !pipe->writers) { 738 wake_up_interruptible_all(&pipe->rd_wait); 739 wake_up_interruptible_all(&pipe->wr_wait); 740 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 741 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 742 } 743 __pipe_unlock(pipe); 744 745 put_pipe_info(inode, pipe); 746 return 0; 747 } 748 749 static int 750 pipe_fasync(int fd, struct file *filp, int on) 751 { 752 struct pipe_inode_info *pipe = filp->private_data; 753 int retval = 0; 754 755 __pipe_lock(pipe); 756 if (filp->f_mode & FMODE_READ) 757 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 758 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 759 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 760 if (retval < 0 && (filp->f_mode & FMODE_READ)) 761 /* this can happen only if on == T */ 762 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 763 } 764 __pipe_unlock(pipe); 765 return retval; 766 } 767 768 unsigned long account_pipe_buffers(struct user_struct *user, 769 unsigned long old, unsigned long new) 770 { 771 return atomic_long_add_return(new - old, &user->pipe_bufs); 772 } 773 774 bool too_many_pipe_buffers_soft(unsigned long user_bufs) 775 { 776 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 777 778 return soft_limit && user_bufs > soft_limit; 779 } 780 781 bool too_many_pipe_buffers_hard(unsigned long user_bufs) 782 { 783 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 784 785 return hard_limit && user_bufs > hard_limit; 786 } 787 788 bool pipe_is_unprivileged_user(void) 789 { 790 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 791 } 792 793 struct pipe_inode_info *alloc_pipe_info(void) 794 { 795 struct pipe_inode_info *pipe; 796 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 797 struct user_struct *user = get_current_user(); 798 unsigned long user_bufs; 799 unsigned int max_size = READ_ONCE(pipe_max_size); 800 801 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 802 if (pipe == NULL) 803 goto out_free_uid; 804 805 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 806 pipe_bufs = max_size >> PAGE_SHIFT; 807 808 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 809 810 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { 811 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS); 812 pipe_bufs = PIPE_MIN_DEF_BUFFERS; 813 } 814 815 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) 816 goto out_revert_acct; 817 818 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 819 GFP_KERNEL_ACCOUNT); 820 821 if (pipe->bufs) { 822 init_waitqueue_head(&pipe->rd_wait); 823 init_waitqueue_head(&pipe->wr_wait); 824 pipe->r_counter = pipe->w_counter = 1; 825 pipe->max_usage = pipe_bufs; 826 pipe->ring_size = pipe_bufs; 827 pipe->nr_accounted = pipe_bufs; 828 pipe->user = user; 829 mutex_init(&pipe->mutex); 830 return pipe; 831 } 832 833 out_revert_acct: 834 (void) account_pipe_buffers(user, pipe_bufs, 0); 835 kfree(pipe); 836 out_free_uid: 837 free_uid(user); 838 return NULL; 839 } 840 841 void free_pipe_info(struct pipe_inode_info *pipe) 842 { 843 unsigned int i; 844 845 #ifdef CONFIG_WATCH_QUEUE 846 if (pipe->watch_queue) 847 watch_queue_clear(pipe->watch_queue); 848 #endif 849 850 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0); 851 free_uid(pipe->user); 852 for (i = 0; i < pipe->ring_size; i++) { 853 struct pipe_buffer *buf = pipe->bufs + i; 854 if (buf->ops) 855 pipe_buf_release(pipe, buf); 856 } 857 #ifdef CONFIG_WATCH_QUEUE 858 if (pipe->watch_queue) 859 put_watch_queue(pipe->watch_queue); 860 #endif 861 if (pipe->tmp_page) 862 __free_page(pipe->tmp_page); 863 kfree(pipe->bufs); 864 kfree(pipe); 865 } 866 867 static struct vfsmount *pipe_mnt __ro_after_init; 868 869 /* 870 * pipefs_dname() is called from d_path(). 871 */ 872 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 873 { 874 return dynamic_dname(buffer, buflen, "pipe:[%lu]", 875 d_inode(dentry)->i_ino); 876 } 877 878 static const struct dentry_operations pipefs_dentry_operations = { 879 .d_dname = pipefs_dname, 880 }; 881 882 static struct inode * get_pipe_inode(void) 883 { 884 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 885 struct pipe_inode_info *pipe; 886 887 if (!inode) 888 goto fail_inode; 889 890 inode->i_ino = get_next_ino(); 891 892 pipe = alloc_pipe_info(); 893 if (!pipe) 894 goto fail_iput; 895 896 inode->i_pipe = pipe; 897 pipe->files = 2; 898 pipe->readers = pipe->writers = 1; 899 inode->i_fop = &pipefifo_fops; 900 901 /* 902 * Mark the inode dirty from the very beginning, 903 * that way it will never be moved to the dirty 904 * list because "mark_inode_dirty()" will think 905 * that it already _is_ on the dirty list. 906 */ 907 inode->i_state = I_DIRTY; 908 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 909 inode->i_uid = current_fsuid(); 910 inode->i_gid = current_fsgid(); 911 simple_inode_init_ts(inode); 912 913 return inode; 914 915 fail_iput: 916 iput(inode); 917 918 fail_inode: 919 return NULL; 920 } 921 922 int create_pipe_files(struct file **res, int flags) 923 { 924 struct inode *inode = get_pipe_inode(); 925 struct file *f; 926 int error; 927 928 if (!inode) 929 return -ENFILE; 930 931 if (flags & O_NOTIFICATION_PIPE) { 932 error = watch_queue_init(inode->i_pipe); 933 if (error) { 934 free_pipe_info(inode->i_pipe); 935 iput(inode); 936 return error; 937 } 938 } 939 940 f = alloc_file_pseudo(inode, pipe_mnt, "", 941 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 942 &pipefifo_fops); 943 if (IS_ERR(f)) { 944 free_pipe_info(inode->i_pipe); 945 iput(inode); 946 return PTR_ERR(f); 947 } 948 949 f->private_data = inode->i_pipe; 950 951 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 952 &pipefifo_fops); 953 if (IS_ERR(res[0])) { 954 put_pipe_info(inode, inode->i_pipe); 955 fput(f); 956 return PTR_ERR(res[0]); 957 } 958 res[0]->private_data = inode->i_pipe; 959 res[1] = f; 960 stream_open(inode, res[0]); 961 stream_open(inode, res[1]); 962 return 0; 963 } 964 965 static int __do_pipe_flags(int *fd, struct file **files, int flags) 966 { 967 int error; 968 int fdw, fdr; 969 970 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) 971 return -EINVAL; 972 973 error = create_pipe_files(files, flags); 974 if (error) 975 return error; 976 977 error = get_unused_fd_flags(flags); 978 if (error < 0) 979 goto err_read_pipe; 980 fdr = error; 981 982 error = get_unused_fd_flags(flags); 983 if (error < 0) 984 goto err_fdr; 985 fdw = error; 986 987 audit_fd_pair(fdr, fdw); 988 fd[0] = fdr; 989 fd[1] = fdw; 990 /* pipe groks IOCB_NOWAIT */ 991 files[0]->f_mode |= FMODE_NOWAIT; 992 files[1]->f_mode |= FMODE_NOWAIT; 993 return 0; 994 995 err_fdr: 996 put_unused_fd(fdr); 997 err_read_pipe: 998 fput(files[0]); 999 fput(files[1]); 1000 return error; 1001 } 1002 1003 int do_pipe_flags(int *fd, int flags) 1004 { 1005 struct file *files[2]; 1006 int error = __do_pipe_flags(fd, files, flags); 1007 if (!error) { 1008 fd_install(fd[0], files[0]); 1009 fd_install(fd[1], files[1]); 1010 } 1011 return error; 1012 } 1013 1014 /* 1015 * sys_pipe() is the normal C calling standard for creating 1016 * a pipe. It's not the way Unix traditionally does this, though. 1017 */ 1018 static int do_pipe2(int __user *fildes, int flags) 1019 { 1020 struct file *files[2]; 1021 int fd[2]; 1022 int error; 1023 1024 error = __do_pipe_flags(fd, files, flags); 1025 if (!error) { 1026 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 1027 fput(files[0]); 1028 fput(files[1]); 1029 put_unused_fd(fd[0]); 1030 put_unused_fd(fd[1]); 1031 error = -EFAULT; 1032 } else { 1033 fd_install(fd[0], files[0]); 1034 fd_install(fd[1], files[1]); 1035 } 1036 } 1037 return error; 1038 } 1039 1040 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 1041 { 1042 return do_pipe2(fildes, flags); 1043 } 1044 1045 SYSCALL_DEFINE1(pipe, int __user *, fildes) 1046 { 1047 return do_pipe2(fildes, 0); 1048 } 1049 1050 /* 1051 * This is the stupid "wait for pipe to be readable or writable" 1052 * model. 1053 * 1054 * See pipe_read/write() for the proper kind of exclusive wait, 1055 * but that requires that we wake up any other readers/writers 1056 * if we then do not end up reading everything (ie the whole 1057 * "wake_next_reader/writer" logic in pipe_read/write()). 1058 */ 1059 void pipe_wait_readable(struct pipe_inode_info *pipe) 1060 { 1061 pipe_unlock(pipe); 1062 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe)); 1063 pipe_lock(pipe); 1064 } 1065 1066 void pipe_wait_writable(struct pipe_inode_info *pipe) 1067 { 1068 pipe_unlock(pipe); 1069 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe)); 1070 pipe_lock(pipe); 1071 } 1072 1073 /* 1074 * This depends on both the wait (here) and the wakeup (wake_up_partner) 1075 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot 1076 * race with the count check and waitqueue prep. 1077 * 1078 * Normally in order to avoid races, you'd do the prepare_to_wait() first, 1079 * then check the condition you're waiting for, and only then sleep. But 1080 * because of the pipe lock, we can check the condition before being on 1081 * the wait queue. 1082 * 1083 * We use the 'rd_wait' waitqueue for pipe partner waiting. 1084 */ 1085 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 1086 { 1087 DEFINE_WAIT(rdwait); 1088 int cur = *cnt; 1089 1090 while (cur == *cnt) { 1091 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); 1092 pipe_unlock(pipe); 1093 schedule(); 1094 finish_wait(&pipe->rd_wait, &rdwait); 1095 pipe_lock(pipe); 1096 if (signal_pending(current)) 1097 break; 1098 } 1099 return cur == *cnt ? -ERESTARTSYS : 0; 1100 } 1101 1102 static void wake_up_partner(struct pipe_inode_info *pipe) 1103 { 1104 wake_up_interruptible_all(&pipe->rd_wait); 1105 } 1106 1107 static int fifo_open(struct inode *inode, struct file *filp) 1108 { 1109 struct pipe_inode_info *pipe; 1110 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 1111 int ret; 1112 1113 filp->f_version = 0; 1114 1115 spin_lock(&inode->i_lock); 1116 if (inode->i_pipe) { 1117 pipe = inode->i_pipe; 1118 pipe->files++; 1119 spin_unlock(&inode->i_lock); 1120 } else { 1121 spin_unlock(&inode->i_lock); 1122 pipe = alloc_pipe_info(); 1123 if (!pipe) 1124 return -ENOMEM; 1125 pipe->files = 1; 1126 spin_lock(&inode->i_lock); 1127 if (unlikely(inode->i_pipe)) { 1128 inode->i_pipe->files++; 1129 spin_unlock(&inode->i_lock); 1130 free_pipe_info(pipe); 1131 pipe = inode->i_pipe; 1132 } else { 1133 inode->i_pipe = pipe; 1134 spin_unlock(&inode->i_lock); 1135 } 1136 } 1137 filp->private_data = pipe; 1138 /* OK, we have a pipe and it's pinned down */ 1139 1140 __pipe_lock(pipe); 1141 1142 /* We can only do regular read/write on fifos */ 1143 stream_open(inode, filp); 1144 1145 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1146 case FMODE_READ: 1147 /* 1148 * O_RDONLY 1149 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1150 * opened, even when there is no process writing the FIFO. 1151 */ 1152 pipe->r_counter++; 1153 if (pipe->readers++ == 0) 1154 wake_up_partner(pipe); 1155 1156 if (!is_pipe && !pipe->writers) { 1157 if ((filp->f_flags & O_NONBLOCK)) { 1158 /* suppress EPOLLHUP until we have 1159 * seen a writer */ 1160 filp->f_version = pipe->w_counter; 1161 } else { 1162 if (wait_for_partner(pipe, &pipe->w_counter)) 1163 goto err_rd; 1164 } 1165 } 1166 break; 1167 1168 case FMODE_WRITE: 1169 /* 1170 * O_WRONLY 1171 * POSIX.1 says that O_NONBLOCK means return -1 with 1172 * errno=ENXIO when there is no process reading the FIFO. 1173 */ 1174 ret = -ENXIO; 1175 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1176 goto err; 1177 1178 pipe->w_counter++; 1179 if (!pipe->writers++) 1180 wake_up_partner(pipe); 1181 1182 if (!is_pipe && !pipe->readers) { 1183 if (wait_for_partner(pipe, &pipe->r_counter)) 1184 goto err_wr; 1185 } 1186 break; 1187 1188 case FMODE_READ | FMODE_WRITE: 1189 /* 1190 * O_RDWR 1191 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1192 * This implementation will NEVER block on a O_RDWR open, since 1193 * the process can at least talk to itself. 1194 */ 1195 1196 pipe->readers++; 1197 pipe->writers++; 1198 pipe->r_counter++; 1199 pipe->w_counter++; 1200 if (pipe->readers == 1 || pipe->writers == 1) 1201 wake_up_partner(pipe); 1202 break; 1203 1204 default: 1205 ret = -EINVAL; 1206 goto err; 1207 } 1208 1209 /* Ok! */ 1210 __pipe_unlock(pipe); 1211 return 0; 1212 1213 err_rd: 1214 if (!--pipe->readers) 1215 wake_up_interruptible(&pipe->wr_wait); 1216 ret = -ERESTARTSYS; 1217 goto err; 1218 1219 err_wr: 1220 if (!--pipe->writers) 1221 wake_up_interruptible_all(&pipe->rd_wait); 1222 ret = -ERESTARTSYS; 1223 goto err; 1224 1225 err: 1226 __pipe_unlock(pipe); 1227 1228 put_pipe_info(inode, pipe); 1229 return ret; 1230 } 1231 1232 const struct file_operations pipefifo_fops = { 1233 .open = fifo_open, 1234 .llseek = no_llseek, 1235 .read_iter = pipe_read, 1236 .write_iter = pipe_write, 1237 .poll = pipe_poll, 1238 .unlocked_ioctl = pipe_ioctl, 1239 .release = pipe_release, 1240 .fasync = pipe_fasync, 1241 .splice_write = iter_file_splice_write, 1242 }; 1243 1244 /* 1245 * Currently we rely on the pipe array holding a power-of-2 number 1246 * of pages. Returns 0 on error. 1247 */ 1248 unsigned int round_pipe_size(unsigned int size) 1249 { 1250 if (size > (1U << 31)) 1251 return 0; 1252 1253 /* Minimum pipe size, as required by POSIX */ 1254 if (size < PAGE_SIZE) 1255 return PAGE_SIZE; 1256 1257 return roundup_pow_of_two(size); 1258 } 1259 1260 /* 1261 * Resize the pipe ring to a number of slots. 1262 * 1263 * Note the pipe can be reduced in capacity, but only if the current 1264 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be 1265 * returned instead. 1266 */ 1267 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots) 1268 { 1269 struct pipe_buffer *bufs; 1270 unsigned int head, tail, mask, n; 1271 1272 bufs = kcalloc(nr_slots, sizeof(*bufs), 1273 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1274 if (unlikely(!bufs)) 1275 return -ENOMEM; 1276 1277 spin_lock_irq(&pipe->rd_wait.lock); 1278 mask = pipe->ring_size - 1; 1279 head = pipe->head; 1280 tail = pipe->tail; 1281 1282 n = pipe_occupancy(head, tail); 1283 if (nr_slots < n) { 1284 spin_unlock_irq(&pipe->rd_wait.lock); 1285 kfree(bufs); 1286 return -EBUSY; 1287 } 1288 1289 /* 1290 * The pipe array wraps around, so just start the new one at zero 1291 * and adjust the indices. 1292 */ 1293 if (n > 0) { 1294 unsigned int h = head & mask; 1295 unsigned int t = tail & mask; 1296 if (h > t) { 1297 memcpy(bufs, pipe->bufs + t, 1298 n * sizeof(struct pipe_buffer)); 1299 } else { 1300 unsigned int tsize = pipe->ring_size - t; 1301 if (h > 0) 1302 memcpy(bufs + tsize, pipe->bufs, 1303 h * sizeof(struct pipe_buffer)); 1304 memcpy(bufs, pipe->bufs + t, 1305 tsize * sizeof(struct pipe_buffer)); 1306 } 1307 } 1308 1309 head = n; 1310 tail = 0; 1311 1312 kfree(pipe->bufs); 1313 pipe->bufs = bufs; 1314 pipe->ring_size = nr_slots; 1315 if (pipe->max_usage > nr_slots) 1316 pipe->max_usage = nr_slots; 1317 pipe->tail = tail; 1318 pipe->head = head; 1319 1320 spin_unlock_irq(&pipe->rd_wait.lock); 1321 1322 /* This might have made more room for writers */ 1323 wake_up_interruptible(&pipe->wr_wait); 1324 return 0; 1325 } 1326 1327 /* 1328 * Allocate a new array of pipe buffers and copy the info over. Returns the 1329 * pipe size if successful, or return -ERROR on error. 1330 */ 1331 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg) 1332 { 1333 unsigned long user_bufs; 1334 unsigned int nr_slots, size; 1335 long ret = 0; 1336 1337 if (pipe_has_watch_queue(pipe)) 1338 return -EBUSY; 1339 1340 size = round_pipe_size(arg); 1341 nr_slots = size >> PAGE_SHIFT; 1342 1343 if (!nr_slots) 1344 return -EINVAL; 1345 1346 /* 1347 * If trying to increase the pipe capacity, check that an 1348 * unprivileged user is not trying to exceed various limits 1349 * (soft limit check here, hard limit check just below). 1350 * Decreasing the pipe capacity is always permitted, even 1351 * if the user is currently over a limit. 1352 */ 1353 if (nr_slots > pipe->max_usage && 1354 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1355 return -EPERM; 1356 1357 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots); 1358 1359 if (nr_slots > pipe->max_usage && 1360 (too_many_pipe_buffers_hard(user_bufs) || 1361 too_many_pipe_buffers_soft(user_bufs)) && 1362 pipe_is_unprivileged_user()) { 1363 ret = -EPERM; 1364 goto out_revert_acct; 1365 } 1366 1367 ret = pipe_resize_ring(pipe, nr_slots); 1368 if (ret < 0) 1369 goto out_revert_acct; 1370 1371 pipe->max_usage = nr_slots; 1372 pipe->nr_accounted = nr_slots; 1373 return pipe->max_usage * PAGE_SIZE; 1374 1375 out_revert_acct: 1376 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted); 1377 return ret; 1378 } 1379 1380 /* 1381 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is 1382 * not enough to verify that this is a pipe. 1383 */ 1384 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) 1385 { 1386 struct pipe_inode_info *pipe = file->private_data; 1387 1388 if (file->f_op != &pipefifo_fops || !pipe) 1389 return NULL; 1390 if (for_splice && pipe_has_watch_queue(pipe)) 1391 return NULL; 1392 return pipe; 1393 } 1394 1395 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg) 1396 { 1397 struct pipe_inode_info *pipe; 1398 long ret; 1399 1400 pipe = get_pipe_info(file, false); 1401 if (!pipe) 1402 return -EBADF; 1403 1404 __pipe_lock(pipe); 1405 1406 switch (cmd) { 1407 case F_SETPIPE_SZ: 1408 ret = pipe_set_size(pipe, arg); 1409 break; 1410 case F_GETPIPE_SZ: 1411 ret = pipe->max_usage * PAGE_SIZE; 1412 break; 1413 default: 1414 ret = -EINVAL; 1415 break; 1416 } 1417 1418 __pipe_unlock(pipe); 1419 return ret; 1420 } 1421 1422 static const struct super_operations pipefs_ops = { 1423 .destroy_inode = free_inode_nonrcu, 1424 .statfs = simple_statfs, 1425 }; 1426 1427 /* 1428 * pipefs should _never_ be mounted by userland - too much of security hassle, 1429 * no real gain from having the whole whorehouse mounted. So we don't need 1430 * any operations on the root directory. However, we need a non-trivial 1431 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1432 */ 1433 1434 static int pipefs_init_fs_context(struct fs_context *fc) 1435 { 1436 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1437 if (!ctx) 1438 return -ENOMEM; 1439 ctx->ops = &pipefs_ops; 1440 ctx->dops = &pipefs_dentry_operations; 1441 return 0; 1442 } 1443 1444 static struct file_system_type pipe_fs_type = { 1445 .name = "pipefs", 1446 .init_fs_context = pipefs_init_fs_context, 1447 .kill_sb = kill_anon_super, 1448 }; 1449 1450 #ifdef CONFIG_SYSCTL 1451 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp, 1452 unsigned int *valp, 1453 int write, void *data) 1454 { 1455 if (write) { 1456 unsigned int val; 1457 1458 val = round_pipe_size(*lvalp); 1459 if (val == 0) 1460 return -EINVAL; 1461 1462 *valp = val; 1463 } else { 1464 unsigned int val = *valp; 1465 *lvalp = (unsigned long) val; 1466 } 1467 1468 return 0; 1469 } 1470 1471 static int proc_dopipe_max_size(struct ctl_table *table, int write, 1472 void *buffer, size_t *lenp, loff_t *ppos) 1473 { 1474 return do_proc_douintvec(table, write, buffer, lenp, ppos, 1475 do_proc_dopipe_max_size_conv, NULL); 1476 } 1477 1478 static struct ctl_table fs_pipe_sysctls[] = { 1479 { 1480 .procname = "pipe-max-size", 1481 .data = &pipe_max_size, 1482 .maxlen = sizeof(pipe_max_size), 1483 .mode = 0644, 1484 .proc_handler = proc_dopipe_max_size, 1485 }, 1486 { 1487 .procname = "pipe-user-pages-hard", 1488 .data = &pipe_user_pages_hard, 1489 .maxlen = sizeof(pipe_user_pages_hard), 1490 .mode = 0644, 1491 .proc_handler = proc_doulongvec_minmax, 1492 }, 1493 { 1494 .procname = "pipe-user-pages-soft", 1495 .data = &pipe_user_pages_soft, 1496 .maxlen = sizeof(pipe_user_pages_soft), 1497 .mode = 0644, 1498 .proc_handler = proc_doulongvec_minmax, 1499 }, 1500 { } 1501 }; 1502 #endif 1503 1504 static int __init init_pipe_fs(void) 1505 { 1506 int err = register_filesystem(&pipe_fs_type); 1507 1508 if (!err) { 1509 pipe_mnt = kern_mount(&pipe_fs_type); 1510 if (IS_ERR(pipe_mnt)) { 1511 err = PTR_ERR(pipe_mnt); 1512 unregister_filesystem(&pipe_fs_type); 1513 } 1514 } 1515 #ifdef CONFIG_SYSCTL 1516 register_sysctl_init("fs", fs_pipe_sysctls); 1517 #endif 1518 return err; 1519 } 1520 1521 fs_initcall(init_pipe_fs); 1522