xref: /linux/fs/pipe.c (revision 110d3047a3ec033de00322b1a8068b1215efa97a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29 
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32 
33 #include "internal.h"
34 
35 /*
36  * New pipe buffers will be restricted to this size while the user is exceeding
37  * their pipe buffer quota. The general pipe use case needs at least two
38  * buffers: one for data yet to be read, and one for new data. If this is less
39  * than two, then a write to a non-empty pipe may block even if the pipe is not
40  * full. This can occur with GNU make jobserver or similar uses of pipes as
41  * semaphores: multiple processes may be waiting to write tokens back to the
42  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43  *
44  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46  * emptied.
47  */
48 #define PIPE_MIN_DEF_BUFFERS 2
49 
50 /*
51  * The max size that a non-root user is allowed to grow the pipe. Can
52  * be set by root in /proc/sys/fs/pipe-max-size
53  */
54 static unsigned int pipe_max_size = 1048576;
55 
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57  * matches default values.
58  */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61 
62 /*
63  * We use head and tail indices that aren't masked off, except at the point of
64  * dereference, but rather they're allowed to wrap naturally.  This means there
65  * isn't a dead spot in the buffer, but the ring has to be a power of two and
66  * <= 2^31.
67  * -- David Howells 2019-09-23.
68  *
69  * Reads with count = 0 should always return 0.
70  * -- Julian Bradfield 1999-06-07.
71  *
72  * FIFOs and Pipes now generate SIGIO for both readers and writers.
73  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74  *
75  * pipe_read & write cleanup
76  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77  */
78 
79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80 {
81 	if (pipe->files)
82 		mutex_lock_nested(&pipe->mutex, subclass);
83 }
84 
85 void pipe_lock(struct pipe_inode_info *pipe)
86 {
87 	/*
88 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
89 	 */
90 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
91 }
92 EXPORT_SYMBOL(pipe_lock);
93 
94 void pipe_unlock(struct pipe_inode_info *pipe)
95 {
96 	if (pipe->files)
97 		mutex_unlock(&pipe->mutex);
98 }
99 EXPORT_SYMBOL(pipe_unlock);
100 
101 static inline void __pipe_lock(struct pipe_inode_info *pipe)
102 {
103 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104 }
105 
106 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107 {
108 	mutex_unlock(&pipe->mutex);
109 }
110 
111 void pipe_double_lock(struct pipe_inode_info *pipe1,
112 		      struct pipe_inode_info *pipe2)
113 {
114 	BUG_ON(pipe1 == pipe2);
115 
116 	if (pipe1 < pipe2) {
117 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119 	} else {
120 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122 	}
123 }
124 
125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126 				  struct pipe_buffer *buf)
127 {
128 	struct page *page = buf->page;
129 
130 	/*
131 	 * If nobody else uses this page, and we don't already have a
132 	 * temporary page, let's keep track of it as a one-deep
133 	 * allocation cache. (Otherwise just release our reference to it)
134 	 */
135 	if (page_count(page) == 1 && !pipe->tmp_page)
136 		pipe->tmp_page = page;
137 	else
138 		put_page(page);
139 }
140 
141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142 		struct pipe_buffer *buf)
143 {
144 	struct page *page = buf->page;
145 
146 	if (page_count(page) != 1)
147 		return false;
148 	memcg_kmem_uncharge_page(page, 0);
149 	__SetPageLocked(page);
150 	return true;
151 }
152 
153 /**
154  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155  * @pipe:	the pipe that the buffer belongs to
156  * @buf:	the buffer to attempt to steal
157  *
158  * Description:
159  *	This function attempts to steal the &struct page attached to
160  *	@buf. If successful, this function returns 0 and returns with
161  *	the page locked. The caller may then reuse the page for whatever
162  *	he wishes; the typical use is insertion into a different file
163  *	page cache.
164  */
165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 		struct pipe_buffer *buf)
167 {
168 	struct page *page = buf->page;
169 
170 	/*
171 	 * A reference of one is golden, that means that the owner of this
172 	 * page is the only one holding a reference to it. lock the page
173 	 * and return OK.
174 	 */
175 	if (page_count(page) == 1) {
176 		lock_page(page);
177 		return true;
178 	}
179 	return false;
180 }
181 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182 
183 /**
184  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185  * @pipe:	the pipe that the buffer belongs to
186  * @buf:	the buffer to get a reference to
187  *
188  * Description:
189  *	This function grabs an extra reference to @buf. It's used in
190  *	the tee() system call, when we duplicate the buffers in one
191  *	pipe into another.
192  */
193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194 {
195 	return try_get_page(buf->page);
196 }
197 EXPORT_SYMBOL(generic_pipe_buf_get);
198 
199 /**
200  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201  * @pipe:	the pipe that the buffer belongs to
202  * @buf:	the buffer to put a reference to
203  *
204  * Description:
205  *	This function releases a reference to @buf.
206  */
207 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208 			      struct pipe_buffer *buf)
209 {
210 	put_page(buf->page);
211 }
212 EXPORT_SYMBOL(generic_pipe_buf_release);
213 
214 static const struct pipe_buf_operations anon_pipe_buf_ops = {
215 	.release	= anon_pipe_buf_release,
216 	.try_steal	= anon_pipe_buf_try_steal,
217 	.get		= generic_pipe_buf_get,
218 };
219 
220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
221 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222 {
223 	unsigned int head = READ_ONCE(pipe->head);
224 	unsigned int tail = READ_ONCE(pipe->tail);
225 	unsigned int writers = READ_ONCE(pipe->writers);
226 
227 	return !pipe_empty(head, tail) || !writers;
228 }
229 
230 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe,
231 					    struct pipe_buffer *buf,
232 					    unsigned int tail)
233 {
234 	pipe_buf_release(pipe, buf);
235 
236 	/*
237 	 * If the pipe has a watch_queue, we need additional protection
238 	 * by the spinlock because notifications get posted with only
239 	 * this spinlock, no mutex
240 	 */
241 	if (pipe_has_watch_queue(pipe)) {
242 		spin_lock_irq(&pipe->rd_wait.lock);
243 #ifdef CONFIG_WATCH_QUEUE
244 		if (buf->flags & PIPE_BUF_FLAG_LOSS)
245 			pipe->note_loss = true;
246 #endif
247 		pipe->tail = ++tail;
248 		spin_unlock_irq(&pipe->rd_wait.lock);
249 		return tail;
250 	}
251 
252 	/*
253 	 * Without a watch_queue, we can simply increment the tail
254 	 * without the spinlock - the mutex is enough.
255 	 */
256 	pipe->tail = ++tail;
257 	return tail;
258 }
259 
260 static ssize_t
261 pipe_read(struct kiocb *iocb, struct iov_iter *to)
262 {
263 	size_t total_len = iov_iter_count(to);
264 	struct file *filp = iocb->ki_filp;
265 	struct pipe_inode_info *pipe = filp->private_data;
266 	bool was_full, wake_next_reader = false;
267 	ssize_t ret;
268 
269 	/* Null read succeeds. */
270 	if (unlikely(total_len == 0))
271 		return 0;
272 
273 	ret = 0;
274 	__pipe_lock(pipe);
275 
276 	/*
277 	 * We only wake up writers if the pipe was full when we started
278 	 * reading in order to avoid unnecessary wakeups.
279 	 *
280 	 * But when we do wake up writers, we do so using a sync wakeup
281 	 * (WF_SYNC), because we want them to get going and generate more
282 	 * data for us.
283 	 */
284 	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
285 	for (;;) {
286 		/* Read ->head with a barrier vs post_one_notification() */
287 		unsigned int head = smp_load_acquire(&pipe->head);
288 		unsigned int tail = pipe->tail;
289 		unsigned int mask = pipe->ring_size - 1;
290 
291 #ifdef CONFIG_WATCH_QUEUE
292 		if (pipe->note_loss) {
293 			struct watch_notification n;
294 
295 			if (total_len < 8) {
296 				if (ret == 0)
297 					ret = -ENOBUFS;
298 				break;
299 			}
300 
301 			n.type = WATCH_TYPE_META;
302 			n.subtype = WATCH_META_LOSS_NOTIFICATION;
303 			n.info = watch_sizeof(n);
304 			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
305 				if (ret == 0)
306 					ret = -EFAULT;
307 				break;
308 			}
309 			ret += sizeof(n);
310 			total_len -= sizeof(n);
311 			pipe->note_loss = false;
312 		}
313 #endif
314 
315 		if (!pipe_empty(head, tail)) {
316 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
317 			size_t chars = buf->len;
318 			size_t written;
319 			int error;
320 
321 			if (chars > total_len) {
322 				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
323 					if (ret == 0)
324 						ret = -ENOBUFS;
325 					break;
326 				}
327 				chars = total_len;
328 			}
329 
330 			error = pipe_buf_confirm(pipe, buf);
331 			if (error) {
332 				if (!ret)
333 					ret = error;
334 				break;
335 			}
336 
337 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
338 			if (unlikely(written < chars)) {
339 				if (!ret)
340 					ret = -EFAULT;
341 				break;
342 			}
343 			ret += chars;
344 			buf->offset += chars;
345 			buf->len -= chars;
346 
347 			/* Was it a packet buffer? Clean up and exit */
348 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
349 				total_len = chars;
350 				buf->len = 0;
351 			}
352 
353 			if (!buf->len)
354 				tail = pipe_update_tail(pipe, buf, tail);
355 			total_len -= chars;
356 			if (!total_len)
357 				break;	/* common path: read succeeded */
358 			if (!pipe_empty(head, tail))	/* More to do? */
359 				continue;
360 		}
361 
362 		if (!pipe->writers)
363 			break;
364 		if (ret)
365 			break;
366 		if ((filp->f_flags & O_NONBLOCK) ||
367 		    (iocb->ki_flags & IOCB_NOWAIT)) {
368 			ret = -EAGAIN;
369 			break;
370 		}
371 		__pipe_unlock(pipe);
372 
373 		/*
374 		 * We only get here if we didn't actually read anything.
375 		 *
376 		 * However, we could have seen (and removed) a zero-sized
377 		 * pipe buffer, and might have made space in the buffers
378 		 * that way.
379 		 *
380 		 * You can't make zero-sized pipe buffers by doing an empty
381 		 * write (not even in packet mode), but they can happen if
382 		 * the writer gets an EFAULT when trying to fill a buffer
383 		 * that already got allocated and inserted in the buffer
384 		 * array.
385 		 *
386 		 * So we still need to wake up any pending writers in the
387 		 * _very_ unlikely case that the pipe was full, but we got
388 		 * no data.
389 		 */
390 		if (unlikely(was_full))
391 			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
392 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
393 
394 		/*
395 		 * But because we didn't read anything, at this point we can
396 		 * just return directly with -ERESTARTSYS if we're interrupted,
397 		 * since we've done any required wakeups and there's no need
398 		 * to mark anything accessed. And we've dropped the lock.
399 		 */
400 		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
401 			return -ERESTARTSYS;
402 
403 		__pipe_lock(pipe);
404 		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
405 		wake_next_reader = true;
406 	}
407 	if (pipe_empty(pipe->head, pipe->tail))
408 		wake_next_reader = false;
409 	__pipe_unlock(pipe);
410 
411 	if (was_full)
412 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
413 	if (wake_next_reader)
414 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
415 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
416 	if (ret > 0)
417 		file_accessed(filp);
418 	return ret;
419 }
420 
421 static inline int is_packetized(struct file *file)
422 {
423 	return (file->f_flags & O_DIRECT) != 0;
424 }
425 
426 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
427 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
428 {
429 	unsigned int head = READ_ONCE(pipe->head);
430 	unsigned int tail = READ_ONCE(pipe->tail);
431 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
432 
433 	return !pipe_full(head, tail, max_usage) ||
434 		!READ_ONCE(pipe->readers);
435 }
436 
437 static ssize_t
438 pipe_write(struct kiocb *iocb, struct iov_iter *from)
439 {
440 	struct file *filp = iocb->ki_filp;
441 	struct pipe_inode_info *pipe = filp->private_data;
442 	unsigned int head;
443 	ssize_t ret = 0;
444 	size_t total_len = iov_iter_count(from);
445 	ssize_t chars;
446 	bool was_empty = false;
447 	bool wake_next_writer = false;
448 
449 	/*
450 	 * Reject writing to watch queue pipes before the point where we lock
451 	 * the pipe.
452 	 * Otherwise, lockdep would be unhappy if the caller already has another
453 	 * pipe locked.
454 	 * If we had to support locking a normal pipe and a notification pipe at
455 	 * the same time, we could set up lockdep annotations for that, but
456 	 * since we don't actually need that, it's simpler to just bail here.
457 	 */
458 	if (pipe_has_watch_queue(pipe))
459 		return -EXDEV;
460 
461 	/* Null write succeeds. */
462 	if (unlikely(total_len == 0))
463 		return 0;
464 
465 	__pipe_lock(pipe);
466 
467 	if (!pipe->readers) {
468 		send_sig(SIGPIPE, current, 0);
469 		ret = -EPIPE;
470 		goto out;
471 	}
472 
473 	/*
474 	 * If it wasn't empty we try to merge new data into
475 	 * the last buffer.
476 	 *
477 	 * That naturally merges small writes, but it also
478 	 * page-aligns the rest of the writes for large writes
479 	 * spanning multiple pages.
480 	 */
481 	head = pipe->head;
482 	was_empty = pipe_empty(head, pipe->tail);
483 	chars = total_len & (PAGE_SIZE-1);
484 	if (chars && !was_empty) {
485 		unsigned int mask = pipe->ring_size - 1;
486 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
487 		int offset = buf->offset + buf->len;
488 
489 		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
490 		    offset + chars <= PAGE_SIZE) {
491 			ret = pipe_buf_confirm(pipe, buf);
492 			if (ret)
493 				goto out;
494 
495 			ret = copy_page_from_iter(buf->page, offset, chars, from);
496 			if (unlikely(ret < chars)) {
497 				ret = -EFAULT;
498 				goto out;
499 			}
500 
501 			buf->len += ret;
502 			if (!iov_iter_count(from))
503 				goto out;
504 		}
505 	}
506 
507 	for (;;) {
508 		if (!pipe->readers) {
509 			send_sig(SIGPIPE, current, 0);
510 			if (!ret)
511 				ret = -EPIPE;
512 			break;
513 		}
514 
515 		head = pipe->head;
516 		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
517 			unsigned int mask = pipe->ring_size - 1;
518 			struct pipe_buffer *buf;
519 			struct page *page = pipe->tmp_page;
520 			int copied;
521 
522 			if (!page) {
523 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
524 				if (unlikely(!page)) {
525 					ret = ret ? : -ENOMEM;
526 					break;
527 				}
528 				pipe->tmp_page = page;
529 			}
530 
531 			/* Allocate a slot in the ring in advance and attach an
532 			 * empty buffer.  If we fault or otherwise fail to use
533 			 * it, either the reader will consume it or it'll still
534 			 * be there for the next write.
535 			 */
536 			pipe->head = head + 1;
537 
538 			/* Insert it into the buffer array */
539 			buf = &pipe->bufs[head & mask];
540 			buf->page = page;
541 			buf->ops = &anon_pipe_buf_ops;
542 			buf->offset = 0;
543 			buf->len = 0;
544 			if (is_packetized(filp))
545 				buf->flags = PIPE_BUF_FLAG_PACKET;
546 			else
547 				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
548 			pipe->tmp_page = NULL;
549 
550 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
551 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
552 				if (!ret)
553 					ret = -EFAULT;
554 				break;
555 			}
556 			ret += copied;
557 			buf->len = copied;
558 
559 			if (!iov_iter_count(from))
560 				break;
561 		}
562 
563 		if (!pipe_full(head, pipe->tail, pipe->max_usage))
564 			continue;
565 
566 		/* Wait for buffer space to become available. */
567 		if ((filp->f_flags & O_NONBLOCK) ||
568 		    (iocb->ki_flags & IOCB_NOWAIT)) {
569 			if (!ret)
570 				ret = -EAGAIN;
571 			break;
572 		}
573 		if (signal_pending(current)) {
574 			if (!ret)
575 				ret = -ERESTARTSYS;
576 			break;
577 		}
578 
579 		/*
580 		 * We're going to release the pipe lock and wait for more
581 		 * space. We wake up any readers if necessary, and then
582 		 * after waiting we need to re-check whether the pipe
583 		 * become empty while we dropped the lock.
584 		 */
585 		__pipe_unlock(pipe);
586 		if (was_empty)
587 			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
588 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
589 		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
590 		__pipe_lock(pipe);
591 		was_empty = pipe_empty(pipe->head, pipe->tail);
592 		wake_next_writer = true;
593 	}
594 out:
595 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
596 		wake_next_writer = false;
597 	__pipe_unlock(pipe);
598 
599 	/*
600 	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
601 	 * want the reader to start processing things asap, rather than
602 	 * leave the data pending.
603 	 *
604 	 * This is particularly important for small writes, because of
605 	 * how (for example) the GNU make jobserver uses small writes to
606 	 * wake up pending jobs
607 	 *
608 	 * Epoll nonsensically wants a wakeup whether the pipe
609 	 * was already empty or not.
610 	 */
611 	if (was_empty || pipe->poll_usage)
612 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
613 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
614 	if (wake_next_writer)
615 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
616 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
617 		int err = file_update_time(filp);
618 		if (err)
619 			ret = err;
620 		sb_end_write(file_inode(filp)->i_sb);
621 	}
622 	return ret;
623 }
624 
625 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
626 {
627 	struct pipe_inode_info *pipe = filp->private_data;
628 	unsigned int count, head, tail, mask;
629 
630 	switch (cmd) {
631 	case FIONREAD:
632 		__pipe_lock(pipe);
633 		count = 0;
634 		head = pipe->head;
635 		tail = pipe->tail;
636 		mask = pipe->ring_size - 1;
637 
638 		while (tail != head) {
639 			count += pipe->bufs[tail & mask].len;
640 			tail++;
641 		}
642 		__pipe_unlock(pipe);
643 
644 		return put_user(count, (int __user *)arg);
645 
646 #ifdef CONFIG_WATCH_QUEUE
647 	case IOC_WATCH_QUEUE_SET_SIZE: {
648 		int ret;
649 		__pipe_lock(pipe);
650 		ret = watch_queue_set_size(pipe, arg);
651 		__pipe_unlock(pipe);
652 		return ret;
653 	}
654 
655 	case IOC_WATCH_QUEUE_SET_FILTER:
656 		return watch_queue_set_filter(
657 			pipe, (struct watch_notification_filter __user *)arg);
658 #endif
659 
660 	default:
661 		return -ENOIOCTLCMD;
662 	}
663 }
664 
665 /* No kernel lock held - fine */
666 static __poll_t
667 pipe_poll(struct file *filp, poll_table *wait)
668 {
669 	__poll_t mask;
670 	struct pipe_inode_info *pipe = filp->private_data;
671 	unsigned int head, tail;
672 
673 	/* Epoll has some historical nasty semantics, this enables them */
674 	WRITE_ONCE(pipe->poll_usage, true);
675 
676 	/*
677 	 * Reading pipe state only -- no need for acquiring the semaphore.
678 	 *
679 	 * But because this is racy, the code has to add the
680 	 * entry to the poll table _first_ ..
681 	 */
682 	if (filp->f_mode & FMODE_READ)
683 		poll_wait(filp, &pipe->rd_wait, wait);
684 	if (filp->f_mode & FMODE_WRITE)
685 		poll_wait(filp, &pipe->wr_wait, wait);
686 
687 	/*
688 	 * .. and only then can you do the racy tests. That way,
689 	 * if something changes and you got it wrong, the poll
690 	 * table entry will wake you up and fix it.
691 	 */
692 	head = READ_ONCE(pipe->head);
693 	tail = READ_ONCE(pipe->tail);
694 
695 	mask = 0;
696 	if (filp->f_mode & FMODE_READ) {
697 		if (!pipe_empty(head, tail))
698 			mask |= EPOLLIN | EPOLLRDNORM;
699 		if (!pipe->writers && filp->f_version != pipe->w_counter)
700 			mask |= EPOLLHUP;
701 	}
702 
703 	if (filp->f_mode & FMODE_WRITE) {
704 		if (!pipe_full(head, tail, pipe->max_usage))
705 			mask |= EPOLLOUT | EPOLLWRNORM;
706 		/*
707 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
708 		 * behave exactly like pipes for poll().
709 		 */
710 		if (!pipe->readers)
711 			mask |= EPOLLERR;
712 	}
713 
714 	return mask;
715 }
716 
717 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
718 {
719 	int kill = 0;
720 
721 	spin_lock(&inode->i_lock);
722 	if (!--pipe->files) {
723 		inode->i_pipe = NULL;
724 		kill = 1;
725 	}
726 	spin_unlock(&inode->i_lock);
727 
728 	if (kill)
729 		free_pipe_info(pipe);
730 }
731 
732 static int
733 pipe_release(struct inode *inode, struct file *file)
734 {
735 	struct pipe_inode_info *pipe = file->private_data;
736 
737 	__pipe_lock(pipe);
738 	if (file->f_mode & FMODE_READ)
739 		pipe->readers--;
740 	if (file->f_mode & FMODE_WRITE)
741 		pipe->writers--;
742 
743 	/* Was that the last reader or writer, but not the other side? */
744 	if (!pipe->readers != !pipe->writers) {
745 		wake_up_interruptible_all(&pipe->rd_wait);
746 		wake_up_interruptible_all(&pipe->wr_wait);
747 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
748 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
749 	}
750 	__pipe_unlock(pipe);
751 
752 	put_pipe_info(inode, pipe);
753 	return 0;
754 }
755 
756 static int
757 pipe_fasync(int fd, struct file *filp, int on)
758 {
759 	struct pipe_inode_info *pipe = filp->private_data;
760 	int retval = 0;
761 
762 	__pipe_lock(pipe);
763 	if (filp->f_mode & FMODE_READ)
764 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
765 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
766 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
767 		if (retval < 0 && (filp->f_mode & FMODE_READ))
768 			/* this can happen only if on == T */
769 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
770 	}
771 	__pipe_unlock(pipe);
772 	return retval;
773 }
774 
775 unsigned long account_pipe_buffers(struct user_struct *user,
776 				   unsigned long old, unsigned long new)
777 {
778 	return atomic_long_add_return(new - old, &user->pipe_bufs);
779 }
780 
781 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
782 {
783 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
784 
785 	return soft_limit && user_bufs > soft_limit;
786 }
787 
788 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
789 {
790 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
791 
792 	return hard_limit && user_bufs > hard_limit;
793 }
794 
795 bool pipe_is_unprivileged_user(void)
796 {
797 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
798 }
799 
800 struct pipe_inode_info *alloc_pipe_info(void)
801 {
802 	struct pipe_inode_info *pipe;
803 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
804 	struct user_struct *user = get_current_user();
805 	unsigned long user_bufs;
806 	unsigned int max_size = READ_ONCE(pipe_max_size);
807 
808 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
809 	if (pipe == NULL)
810 		goto out_free_uid;
811 
812 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
813 		pipe_bufs = max_size >> PAGE_SHIFT;
814 
815 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
816 
817 	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
818 		user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
819 		pipe_bufs = PIPE_MIN_DEF_BUFFERS;
820 	}
821 
822 	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
823 		goto out_revert_acct;
824 
825 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
826 			     GFP_KERNEL_ACCOUNT);
827 
828 	if (pipe->bufs) {
829 		init_waitqueue_head(&pipe->rd_wait);
830 		init_waitqueue_head(&pipe->wr_wait);
831 		pipe->r_counter = pipe->w_counter = 1;
832 		pipe->max_usage = pipe_bufs;
833 		pipe->ring_size = pipe_bufs;
834 		pipe->nr_accounted = pipe_bufs;
835 		pipe->user = user;
836 		mutex_init(&pipe->mutex);
837 		return pipe;
838 	}
839 
840 out_revert_acct:
841 	(void) account_pipe_buffers(user, pipe_bufs, 0);
842 	kfree(pipe);
843 out_free_uid:
844 	free_uid(user);
845 	return NULL;
846 }
847 
848 void free_pipe_info(struct pipe_inode_info *pipe)
849 {
850 	unsigned int i;
851 
852 #ifdef CONFIG_WATCH_QUEUE
853 	if (pipe->watch_queue)
854 		watch_queue_clear(pipe->watch_queue);
855 #endif
856 
857 	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
858 	free_uid(pipe->user);
859 	for (i = 0; i < pipe->ring_size; i++) {
860 		struct pipe_buffer *buf = pipe->bufs + i;
861 		if (buf->ops)
862 			pipe_buf_release(pipe, buf);
863 	}
864 #ifdef CONFIG_WATCH_QUEUE
865 	if (pipe->watch_queue)
866 		put_watch_queue(pipe->watch_queue);
867 #endif
868 	if (pipe->tmp_page)
869 		__free_page(pipe->tmp_page);
870 	kfree(pipe->bufs);
871 	kfree(pipe);
872 }
873 
874 static struct vfsmount *pipe_mnt __ro_after_init;
875 
876 /*
877  * pipefs_dname() is called from d_path().
878  */
879 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
880 {
881 	return dynamic_dname(buffer, buflen, "pipe:[%lu]",
882 				d_inode(dentry)->i_ino);
883 }
884 
885 static const struct dentry_operations pipefs_dentry_operations = {
886 	.d_dname	= pipefs_dname,
887 };
888 
889 static struct inode * get_pipe_inode(void)
890 {
891 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
892 	struct pipe_inode_info *pipe;
893 
894 	if (!inode)
895 		goto fail_inode;
896 
897 	inode->i_ino = get_next_ino();
898 
899 	pipe = alloc_pipe_info();
900 	if (!pipe)
901 		goto fail_iput;
902 
903 	inode->i_pipe = pipe;
904 	pipe->files = 2;
905 	pipe->readers = pipe->writers = 1;
906 	inode->i_fop = &pipefifo_fops;
907 
908 	/*
909 	 * Mark the inode dirty from the very beginning,
910 	 * that way it will never be moved to the dirty
911 	 * list because "mark_inode_dirty()" will think
912 	 * that it already _is_ on the dirty list.
913 	 */
914 	inode->i_state = I_DIRTY;
915 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
916 	inode->i_uid = current_fsuid();
917 	inode->i_gid = current_fsgid();
918 	simple_inode_init_ts(inode);
919 
920 	return inode;
921 
922 fail_iput:
923 	iput(inode);
924 
925 fail_inode:
926 	return NULL;
927 }
928 
929 int create_pipe_files(struct file **res, int flags)
930 {
931 	struct inode *inode = get_pipe_inode();
932 	struct file *f;
933 	int error;
934 
935 	if (!inode)
936 		return -ENFILE;
937 
938 	if (flags & O_NOTIFICATION_PIPE) {
939 		error = watch_queue_init(inode->i_pipe);
940 		if (error) {
941 			free_pipe_info(inode->i_pipe);
942 			iput(inode);
943 			return error;
944 		}
945 	}
946 
947 	f = alloc_file_pseudo(inode, pipe_mnt, "",
948 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
949 				&pipefifo_fops);
950 	if (IS_ERR(f)) {
951 		free_pipe_info(inode->i_pipe);
952 		iput(inode);
953 		return PTR_ERR(f);
954 	}
955 
956 	f->private_data = inode->i_pipe;
957 
958 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
959 				  &pipefifo_fops);
960 	if (IS_ERR(res[0])) {
961 		put_pipe_info(inode, inode->i_pipe);
962 		fput(f);
963 		return PTR_ERR(res[0]);
964 	}
965 	res[0]->private_data = inode->i_pipe;
966 	res[1] = f;
967 	stream_open(inode, res[0]);
968 	stream_open(inode, res[1]);
969 	return 0;
970 }
971 
972 static int __do_pipe_flags(int *fd, struct file **files, int flags)
973 {
974 	int error;
975 	int fdw, fdr;
976 
977 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
978 		return -EINVAL;
979 
980 	error = create_pipe_files(files, flags);
981 	if (error)
982 		return error;
983 
984 	error = get_unused_fd_flags(flags);
985 	if (error < 0)
986 		goto err_read_pipe;
987 	fdr = error;
988 
989 	error = get_unused_fd_flags(flags);
990 	if (error < 0)
991 		goto err_fdr;
992 	fdw = error;
993 
994 	audit_fd_pair(fdr, fdw);
995 	fd[0] = fdr;
996 	fd[1] = fdw;
997 	/* pipe groks IOCB_NOWAIT */
998 	files[0]->f_mode |= FMODE_NOWAIT;
999 	files[1]->f_mode |= FMODE_NOWAIT;
1000 	return 0;
1001 
1002  err_fdr:
1003 	put_unused_fd(fdr);
1004  err_read_pipe:
1005 	fput(files[0]);
1006 	fput(files[1]);
1007 	return error;
1008 }
1009 
1010 int do_pipe_flags(int *fd, int flags)
1011 {
1012 	struct file *files[2];
1013 	int error = __do_pipe_flags(fd, files, flags);
1014 	if (!error) {
1015 		fd_install(fd[0], files[0]);
1016 		fd_install(fd[1], files[1]);
1017 	}
1018 	return error;
1019 }
1020 
1021 /*
1022  * sys_pipe() is the normal C calling standard for creating
1023  * a pipe. It's not the way Unix traditionally does this, though.
1024  */
1025 static int do_pipe2(int __user *fildes, int flags)
1026 {
1027 	struct file *files[2];
1028 	int fd[2];
1029 	int error;
1030 
1031 	error = __do_pipe_flags(fd, files, flags);
1032 	if (!error) {
1033 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1034 			fput(files[0]);
1035 			fput(files[1]);
1036 			put_unused_fd(fd[0]);
1037 			put_unused_fd(fd[1]);
1038 			error = -EFAULT;
1039 		} else {
1040 			fd_install(fd[0], files[0]);
1041 			fd_install(fd[1], files[1]);
1042 		}
1043 	}
1044 	return error;
1045 }
1046 
1047 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1048 {
1049 	return do_pipe2(fildes, flags);
1050 }
1051 
1052 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1053 {
1054 	return do_pipe2(fildes, 0);
1055 }
1056 
1057 /*
1058  * This is the stupid "wait for pipe to be readable or writable"
1059  * model.
1060  *
1061  * See pipe_read/write() for the proper kind of exclusive wait,
1062  * but that requires that we wake up any other readers/writers
1063  * if we then do not end up reading everything (ie the whole
1064  * "wake_next_reader/writer" logic in pipe_read/write()).
1065  */
1066 void pipe_wait_readable(struct pipe_inode_info *pipe)
1067 {
1068 	pipe_unlock(pipe);
1069 	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1070 	pipe_lock(pipe);
1071 }
1072 
1073 void pipe_wait_writable(struct pipe_inode_info *pipe)
1074 {
1075 	pipe_unlock(pipe);
1076 	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1077 	pipe_lock(pipe);
1078 }
1079 
1080 /*
1081  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1082  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1083  * race with the count check and waitqueue prep.
1084  *
1085  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1086  * then check the condition you're waiting for, and only then sleep. But
1087  * because of the pipe lock, we can check the condition before being on
1088  * the wait queue.
1089  *
1090  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1091  */
1092 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1093 {
1094 	DEFINE_WAIT(rdwait);
1095 	int cur = *cnt;
1096 
1097 	while (cur == *cnt) {
1098 		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1099 		pipe_unlock(pipe);
1100 		schedule();
1101 		finish_wait(&pipe->rd_wait, &rdwait);
1102 		pipe_lock(pipe);
1103 		if (signal_pending(current))
1104 			break;
1105 	}
1106 	return cur == *cnt ? -ERESTARTSYS : 0;
1107 }
1108 
1109 static void wake_up_partner(struct pipe_inode_info *pipe)
1110 {
1111 	wake_up_interruptible_all(&pipe->rd_wait);
1112 }
1113 
1114 static int fifo_open(struct inode *inode, struct file *filp)
1115 {
1116 	struct pipe_inode_info *pipe;
1117 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1118 	int ret;
1119 
1120 	filp->f_version = 0;
1121 
1122 	spin_lock(&inode->i_lock);
1123 	if (inode->i_pipe) {
1124 		pipe = inode->i_pipe;
1125 		pipe->files++;
1126 		spin_unlock(&inode->i_lock);
1127 	} else {
1128 		spin_unlock(&inode->i_lock);
1129 		pipe = alloc_pipe_info();
1130 		if (!pipe)
1131 			return -ENOMEM;
1132 		pipe->files = 1;
1133 		spin_lock(&inode->i_lock);
1134 		if (unlikely(inode->i_pipe)) {
1135 			inode->i_pipe->files++;
1136 			spin_unlock(&inode->i_lock);
1137 			free_pipe_info(pipe);
1138 			pipe = inode->i_pipe;
1139 		} else {
1140 			inode->i_pipe = pipe;
1141 			spin_unlock(&inode->i_lock);
1142 		}
1143 	}
1144 	filp->private_data = pipe;
1145 	/* OK, we have a pipe and it's pinned down */
1146 
1147 	__pipe_lock(pipe);
1148 
1149 	/* We can only do regular read/write on fifos */
1150 	stream_open(inode, filp);
1151 
1152 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1153 	case FMODE_READ:
1154 	/*
1155 	 *  O_RDONLY
1156 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1157 	 *  opened, even when there is no process writing the FIFO.
1158 	 */
1159 		pipe->r_counter++;
1160 		if (pipe->readers++ == 0)
1161 			wake_up_partner(pipe);
1162 
1163 		if (!is_pipe && !pipe->writers) {
1164 			if ((filp->f_flags & O_NONBLOCK)) {
1165 				/* suppress EPOLLHUP until we have
1166 				 * seen a writer */
1167 				filp->f_version = pipe->w_counter;
1168 			} else {
1169 				if (wait_for_partner(pipe, &pipe->w_counter))
1170 					goto err_rd;
1171 			}
1172 		}
1173 		break;
1174 
1175 	case FMODE_WRITE:
1176 	/*
1177 	 *  O_WRONLY
1178 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1179 	 *  errno=ENXIO when there is no process reading the FIFO.
1180 	 */
1181 		ret = -ENXIO;
1182 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1183 			goto err;
1184 
1185 		pipe->w_counter++;
1186 		if (!pipe->writers++)
1187 			wake_up_partner(pipe);
1188 
1189 		if (!is_pipe && !pipe->readers) {
1190 			if (wait_for_partner(pipe, &pipe->r_counter))
1191 				goto err_wr;
1192 		}
1193 		break;
1194 
1195 	case FMODE_READ | FMODE_WRITE:
1196 	/*
1197 	 *  O_RDWR
1198 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1199 	 *  This implementation will NEVER block on a O_RDWR open, since
1200 	 *  the process can at least talk to itself.
1201 	 */
1202 
1203 		pipe->readers++;
1204 		pipe->writers++;
1205 		pipe->r_counter++;
1206 		pipe->w_counter++;
1207 		if (pipe->readers == 1 || pipe->writers == 1)
1208 			wake_up_partner(pipe);
1209 		break;
1210 
1211 	default:
1212 		ret = -EINVAL;
1213 		goto err;
1214 	}
1215 
1216 	/* Ok! */
1217 	__pipe_unlock(pipe);
1218 	return 0;
1219 
1220 err_rd:
1221 	if (!--pipe->readers)
1222 		wake_up_interruptible(&pipe->wr_wait);
1223 	ret = -ERESTARTSYS;
1224 	goto err;
1225 
1226 err_wr:
1227 	if (!--pipe->writers)
1228 		wake_up_interruptible_all(&pipe->rd_wait);
1229 	ret = -ERESTARTSYS;
1230 	goto err;
1231 
1232 err:
1233 	__pipe_unlock(pipe);
1234 
1235 	put_pipe_info(inode, pipe);
1236 	return ret;
1237 }
1238 
1239 const struct file_operations pipefifo_fops = {
1240 	.open		= fifo_open,
1241 	.llseek		= no_llseek,
1242 	.read_iter	= pipe_read,
1243 	.write_iter	= pipe_write,
1244 	.poll		= pipe_poll,
1245 	.unlocked_ioctl	= pipe_ioctl,
1246 	.release	= pipe_release,
1247 	.fasync		= pipe_fasync,
1248 	.splice_write	= iter_file_splice_write,
1249 };
1250 
1251 /*
1252  * Currently we rely on the pipe array holding a power-of-2 number
1253  * of pages. Returns 0 on error.
1254  */
1255 unsigned int round_pipe_size(unsigned int size)
1256 {
1257 	if (size > (1U << 31))
1258 		return 0;
1259 
1260 	/* Minimum pipe size, as required by POSIX */
1261 	if (size < PAGE_SIZE)
1262 		return PAGE_SIZE;
1263 
1264 	return roundup_pow_of_two(size);
1265 }
1266 
1267 /*
1268  * Resize the pipe ring to a number of slots.
1269  *
1270  * Note the pipe can be reduced in capacity, but only if the current
1271  * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1272  * returned instead.
1273  */
1274 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1275 {
1276 	struct pipe_buffer *bufs;
1277 	unsigned int head, tail, mask, n;
1278 
1279 	bufs = kcalloc(nr_slots, sizeof(*bufs),
1280 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1281 	if (unlikely(!bufs))
1282 		return -ENOMEM;
1283 
1284 	spin_lock_irq(&pipe->rd_wait.lock);
1285 	mask = pipe->ring_size - 1;
1286 	head = pipe->head;
1287 	tail = pipe->tail;
1288 
1289 	n = pipe_occupancy(head, tail);
1290 	if (nr_slots < n) {
1291 		spin_unlock_irq(&pipe->rd_wait.lock);
1292 		kfree(bufs);
1293 		return -EBUSY;
1294 	}
1295 
1296 	/*
1297 	 * The pipe array wraps around, so just start the new one at zero
1298 	 * and adjust the indices.
1299 	 */
1300 	if (n > 0) {
1301 		unsigned int h = head & mask;
1302 		unsigned int t = tail & mask;
1303 		if (h > t) {
1304 			memcpy(bufs, pipe->bufs + t,
1305 			       n * sizeof(struct pipe_buffer));
1306 		} else {
1307 			unsigned int tsize = pipe->ring_size - t;
1308 			if (h > 0)
1309 				memcpy(bufs + tsize, pipe->bufs,
1310 				       h * sizeof(struct pipe_buffer));
1311 			memcpy(bufs, pipe->bufs + t,
1312 			       tsize * sizeof(struct pipe_buffer));
1313 		}
1314 	}
1315 
1316 	head = n;
1317 	tail = 0;
1318 
1319 	kfree(pipe->bufs);
1320 	pipe->bufs = bufs;
1321 	pipe->ring_size = nr_slots;
1322 	if (pipe->max_usage > nr_slots)
1323 		pipe->max_usage = nr_slots;
1324 	pipe->tail = tail;
1325 	pipe->head = head;
1326 
1327 	if (!pipe_has_watch_queue(pipe)) {
1328 		pipe->max_usage = nr_slots;
1329 		pipe->nr_accounted = nr_slots;
1330 	}
1331 
1332 	spin_unlock_irq(&pipe->rd_wait.lock);
1333 
1334 	/* This might have made more room for writers */
1335 	wake_up_interruptible(&pipe->wr_wait);
1336 	return 0;
1337 }
1338 
1339 /*
1340  * Allocate a new array of pipe buffers and copy the info over. Returns the
1341  * pipe size if successful, or return -ERROR on error.
1342  */
1343 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1344 {
1345 	unsigned long user_bufs;
1346 	unsigned int nr_slots, size;
1347 	long ret = 0;
1348 
1349 	if (pipe_has_watch_queue(pipe))
1350 		return -EBUSY;
1351 
1352 	size = round_pipe_size(arg);
1353 	nr_slots = size >> PAGE_SHIFT;
1354 
1355 	if (!nr_slots)
1356 		return -EINVAL;
1357 
1358 	/*
1359 	 * If trying to increase the pipe capacity, check that an
1360 	 * unprivileged user is not trying to exceed various limits
1361 	 * (soft limit check here, hard limit check just below).
1362 	 * Decreasing the pipe capacity is always permitted, even
1363 	 * if the user is currently over a limit.
1364 	 */
1365 	if (nr_slots > pipe->max_usage &&
1366 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1367 		return -EPERM;
1368 
1369 	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1370 
1371 	if (nr_slots > pipe->max_usage &&
1372 			(too_many_pipe_buffers_hard(user_bufs) ||
1373 			 too_many_pipe_buffers_soft(user_bufs)) &&
1374 			pipe_is_unprivileged_user()) {
1375 		ret = -EPERM;
1376 		goto out_revert_acct;
1377 	}
1378 
1379 	ret = pipe_resize_ring(pipe, nr_slots);
1380 	if (ret < 0)
1381 		goto out_revert_acct;
1382 
1383 	return pipe->max_usage * PAGE_SIZE;
1384 
1385 out_revert_acct:
1386 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1387 	return ret;
1388 }
1389 
1390 /*
1391  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1392  * not enough to verify that this is a pipe.
1393  */
1394 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1395 {
1396 	struct pipe_inode_info *pipe = file->private_data;
1397 
1398 	if (file->f_op != &pipefifo_fops || !pipe)
1399 		return NULL;
1400 	if (for_splice && pipe_has_watch_queue(pipe))
1401 		return NULL;
1402 	return pipe;
1403 }
1404 
1405 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1406 {
1407 	struct pipe_inode_info *pipe;
1408 	long ret;
1409 
1410 	pipe = get_pipe_info(file, false);
1411 	if (!pipe)
1412 		return -EBADF;
1413 
1414 	__pipe_lock(pipe);
1415 
1416 	switch (cmd) {
1417 	case F_SETPIPE_SZ:
1418 		ret = pipe_set_size(pipe, arg);
1419 		break;
1420 	case F_GETPIPE_SZ:
1421 		ret = pipe->max_usage * PAGE_SIZE;
1422 		break;
1423 	default:
1424 		ret = -EINVAL;
1425 		break;
1426 	}
1427 
1428 	__pipe_unlock(pipe);
1429 	return ret;
1430 }
1431 
1432 static const struct super_operations pipefs_ops = {
1433 	.destroy_inode = free_inode_nonrcu,
1434 	.statfs = simple_statfs,
1435 };
1436 
1437 /*
1438  * pipefs should _never_ be mounted by userland - too much of security hassle,
1439  * no real gain from having the whole whorehouse mounted. So we don't need
1440  * any operations on the root directory. However, we need a non-trivial
1441  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1442  */
1443 
1444 static int pipefs_init_fs_context(struct fs_context *fc)
1445 {
1446 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1447 	if (!ctx)
1448 		return -ENOMEM;
1449 	ctx->ops = &pipefs_ops;
1450 	ctx->dops = &pipefs_dentry_operations;
1451 	return 0;
1452 }
1453 
1454 static struct file_system_type pipe_fs_type = {
1455 	.name		= "pipefs",
1456 	.init_fs_context = pipefs_init_fs_context,
1457 	.kill_sb	= kill_anon_super,
1458 };
1459 
1460 #ifdef CONFIG_SYSCTL
1461 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1462 					unsigned int *valp,
1463 					int write, void *data)
1464 {
1465 	if (write) {
1466 		unsigned int val;
1467 
1468 		val = round_pipe_size(*lvalp);
1469 		if (val == 0)
1470 			return -EINVAL;
1471 
1472 		*valp = val;
1473 	} else {
1474 		unsigned int val = *valp;
1475 		*lvalp = (unsigned long) val;
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 static int proc_dopipe_max_size(struct ctl_table *table, int write,
1482 				void *buffer, size_t *lenp, loff_t *ppos)
1483 {
1484 	return do_proc_douintvec(table, write, buffer, lenp, ppos,
1485 				 do_proc_dopipe_max_size_conv, NULL);
1486 }
1487 
1488 static struct ctl_table fs_pipe_sysctls[] = {
1489 	{
1490 		.procname	= "pipe-max-size",
1491 		.data		= &pipe_max_size,
1492 		.maxlen		= sizeof(pipe_max_size),
1493 		.mode		= 0644,
1494 		.proc_handler	= proc_dopipe_max_size,
1495 	},
1496 	{
1497 		.procname	= "pipe-user-pages-hard",
1498 		.data		= &pipe_user_pages_hard,
1499 		.maxlen		= sizeof(pipe_user_pages_hard),
1500 		.mode		= 0644,
1501 		.proc_handler	= proc_doulongvec_minmax,
1502 	},
1503 	{
1504 		.procname	= "pipe-user-pages-soft",
1505 		.data		= &pipe_user_pages_soft,
1506 		.maxlen		= sizeof(pipe_user_pages_soft),
1507 		.mode		= 0644,
1508 		.proc_handler	= proc_doulongvec_minmax,
1509 	},
1510 };
1511 #endif
1512 
1513 static int __init init_pipe_fs(void)
1514 {
1515 	int err = register_filesystem(&pipe_fs_type);
1516 
1517 	if (!err) {
1518 		pipe_mnt = kern_mount(&pipe_fs_type);
1519 		if (IS_ERR(pipe_mnt)) {
1520 			err = PTR_ERR(pipe_mnt);
1521 			unregister_filesystem(&pipe_fs_type);
1522 		}
1523 	}
1524 #ifdef CONFIG_SYSCTL
1525 	register_sysctl_init("fs", fs_pipe_sysctls);
1526 #endif
1527 	return err;
1528 }
1529 
1530 fs_initcall(init_pipe_fs);
1531