1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 #include <linux/watch_queue.h> 28 #include <linux/sysctl.h> 29 #include <linux/sort.h> 30 31 #include <linux/uaccess.h> 32 #include <asm/ioctls.h> 33 34 #include "internal.h" 35 36 /* 37 * New pipe buffers will be restricted to this size while the user is exceeding 38 * their pipe buffer quota. The general pipe use case needs at least two 39 * buffers: one for data yet to be read, and one for new data. If this is less 40 * than two, then a write to a non-empty pipe may block even if the pipe is not 41 * full. This can occur with GNU make jobserver or similar uses of pipes as 42 * semaphores: multiple processes may be waiting to write tokens back to the 43 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/. 44 * 45 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their 46 * own risk, namely: pipe writes to non-full pipes may block until the pipe is 47 * emptied. 48 */ 49 #define PIPE_MIN_DEF_BUFFERS 2 50 51 /* 52 * The max size that a non-root user is allowed to grow the pipe. Can 53 * be set by root in /proc/sys/fs/pipe-max-size 54 */ 55 static unsigned int pipe_max_size = 1048576; 56 57 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 58 * matches default values. 59 */ 60 static unsigned long pipe_user_pages_hard; 61 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 62 63 /* 64 * We use head and tail indices that aren't masked off, except at the point of 65 * dereference, but rather they're allowed to wrap naturally. This means there 66 * isn't a dead spot in the buffer, but the ring has to be a power of two and 67 * <= 2^31. 68 * -- David Howells 2019-09-23. 69 * 70 * Reads with count = 0 should always return 0. 71 * -- Julian Bradfield 1999-06-07. 72 * 73 * FIFOs and Pipes now generate SIGIO for both readers and writers. 74 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 75 * 76 * pipe_read & write cleanup 77 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 78 */ 79 80 #ifdef CONFIG_PROVE_LOCKING 81 static int pipe_lock_cmp_fn(const struct lockdep_map *a, 82 const struct lockdep_map *b) 83 { 84 return cmp_int((unsigned long) a, (unsigned long) b); 85 } 86 #endif 87 88 void pipe_lock(struct pipe_inode_info *pipe) 89 { 90 if (pipe->files) 91 mutex_lock(&pipe->mutex); 92 } 93 EXPORT_SYMBOL(pipe_lock); 94 95 void pipe_unlock(struct pipe_inode_info *pipe) 96 { 97 if (pipe->files) 98 mutex_unlock(&pipe->mutex); 99 } 100 EXPORT_SYMBOL(pipe_unlock); 101 102 void pipe_double_lock(struct pipe_inode_info *pipe1, 103 struct pipe_inode_info *pipe2) 104 { 105 BUG_ON(pipe1 == pipe2); 106 107 if (pipe1 > pipe2) 108 swap(pipe1, pipe2); 109 110 pipe_lock(pipe1); 111 pipe_lock(pipe2); 112 } 113 114 static struct page *anon_pipe_get_page(struct pipe_inode_info *pipe) 115 { 116 for (int i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) { 117 if (pipe->tmp_page[i]) { 118 struct page *page = pipe->tmp_page[i]; 119 pipe->tmp_page[i] = NULL; 120 return page; 121 } 122 } 123 124 return alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 125 } 126 127 static void anon_pipe_put_page(struct pipe_inode_info *pipe, 128 struct page *page) 129 { 130 if (page_count(page) == 1) { 131 for (int i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) { 132 if (!pipe->tmp_page[i]) { 133 pipe->tmp_page[i] = page; 134 return; 135 } 136 } 137 } 138 139 put_page(page); 140 } 141 142 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 143 struct pipe_buffer *buf) 144 { 145 struct page *page = buf->page; 146 147 anon_pipe_put_page(pipe, page); 148 } 149 150 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, 151 struct pipe_buffer *buf) 152 { 153 struct page *page = buf->page; 154 155 if (page_count(page) != 1) 156 return false; 157 memcg_kmem_uncharge_page(page, 0); 158 __SetPageLocked(page); 159 return true; 160 } 161 162 /** 163 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer 164 * @pipe: the pipe that the buffer belongs to 165 * @buf: the buffer to attempt to steal 166 * 167 * Description: 168 * This function attempts to steal the &struct page attached to 169 * @buf. If successful, this function returns 0 and returns with 170 * the page locked. The caller may then reuse the page for whatever 171 * he wishes; the typical use is insertion into a different file 172 * page cache. 173 */ 174 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, 175 struct pipe_buffer *buf) 176 { 177 struct page *page = buf->page; 178 179 /* 180 * A reference of one is golden, that means that the owner of this 181 * page is the only one holding a reference to it. lock the page 182 * and return OK. 183 */ 184 if (page_count(page) == 1) { 185 lock_page(page); 186 return true; 187 } 188 return false; 189 } 190 EXPORT_SYMBOL(generic_pipe_buf_try_steal); 191 192 /** 193 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 194 * @pipe: the pipe that the buffer belongs to 195 * @buf: the buffer to get a reference to 196 * 197 * Description: 198 * This function grabs an extra reference to @buf. It's used in 199 * the tee() system call, when we duplicate the buffers in one 200 * pipe into another. 201 */ 202 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 203 { 204 return try_get_page(buf->page); 205 } 206 EXPORT_SYMBOL(generic_pipe_buf_get); 207 208 /** 209 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 210 * @pipe: the pipe that the buffer belongs to 211 * @buf: the buffer to put a reference to 212 * 213 * Description: 214 * This function releases a reference to @buf. 215 */ 216 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 217 struct pipe_buffer *buf) 218 { 219 put_page(buf->page); 220 } 221 EXPORT_SYMBOL(generic_pipe_buf_release); 222 223 static const struct pipe_buf_operations anon_pipe_buf_ops = { 224 .release = anon_pipe_buf_release, 225 .try_steal = anon_pipe_buf_try_steal, 226 .get = generic_pipe_buf_get, 227 }; 228 229 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 230 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 231 { 232 union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) }; 233 unsigned int writers = READ_ONCE(pipe->writers); 234 235 return !pipe_empty(idx.head, idx.tail) || !writers; 236 } 237 238 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe, 239 struct pipe_buffer *buf, 240 unsigned int tail) 241 { 242 pipe_buf_release(pipe, buf); 243 244 /* 245 * If the pipe has a watch_queue, we need additional protection 246 * by the spinlock because notifications get posted with only 247 * this spinlock, no mutex 248 */ 249 if (pipe_has_watch_queue(pipe)) { 250 spin_lock_irq(&pipe->rd_wait.lock); 251 #ifdef CONFIG_WATCH_QUEUE 252 if (buf->flags & PIPE_BUF_FLAG_LOSS) 253 pipe->note_loss = true; 254 #endif 255 pipe->tail = ++tail; 256 spin_unlock_irq(&pipe->rd_wait.lock); 257 return tail; 258 } 259 260 /* 261 * Without a watch_queue, we can simply increment the tail 262 * without the spinlock - the mutex is enough. 263 */ 264 pipe->tail = ++tail; 265 return tail; 266 } 267 268 static ssize_t 269 anon_pipe_read(struct kiocb *iocb, struct iov_iter *to) 270 { 271 size_t total_len = iov_iter_count(to); 272 struct file *filp = iocb->ki_filp; 273 struct pipe_inode_info *pipe = filp->private_data; 274 bool wake_writer = false, wake_next_reader = false; 275 ssize_t ret; 276 277 /* Null read succeeds. */ 278 if (unlikely(total_len == 0)) 279 return 0; 280 281 ret = 0; 282 mutex_lock(&pipe->mutex); 283 284 /* 285 * We only wake up writers if the pipe was full when we started reading 286 * and it is no longer full after reading to avoid unnecessary wakeups. 287 * 288 * But when we do wake up writers, we do so using a sync wakeup 289 * (WF_SYNC), because we want them to get going and generate more 290 * data for us. 291 */ 292 for (;;) { 293 /* Read ->head with a barrier vs post_one_notification() */ 294 unsigned int head = smp_load_acquire(&pipe->head); 295 unsigned int tail = pipe->tail; 296 297 #ifdef CONFIG_WATCH_QUEUE 298 if (pipe->note_loss) { 299 struct watch_notification n; 300 301 if (total_len < 8) { 302 if (ret == 0) 303 ret = -ENOBUFS; 304 break; 305 } 306 307 n.type = WATCH_TYPE_META; 308 n.subtype = WATCH_META_LOSS_NOTIFICATION; 309 n.info = watch_sizeof(n); 310 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) { 311 if (ret == 0) 312 ret = -EFAULT; 313 break; 314 } 315 ret += sizeof(n); 316 total_len -= sizeof(n); 317 pipe->note_loss = false; 318 } 319 #endif 320 321 if (!pipe_empty(head, tail)) { 322 struct pipe_buffer *buf = pipe_buf(pipe, tail); 323 size_t chars = buf->len; 324 size_t written; 325 int error; 326 327 if (chars > total_len) { 328 if (buf->flags & PIPE_BUF_FLAG_WHOLE) { 329 if (ret == 0) 330 ret = -ENOBUFS; 331 break; 332 } 333 chars = total_len; 334 } 335 336 error = pipe_buf_confirm(pipe, buf); 337 if (error) { 338 if (!ret) 339 ret = error; 340 break; 341 } 342 343 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 344 if (unlikely(written < chars)) { 345 if (!ret) 346 ret = -EFAULT; 347 break; 348 } 349 ret += chars; 350 buf->offset += chars; 351 buf->len -= chars; 352 353 /* Was it a packet buffer? Clean up and exit */ 354 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 355 total_len = chars; 356 buf->len = 0; 357 } 358 359 if (!buf->len) { 360 wake_writer |= pipe_full(head, tail, pipe->max_usage); 361 tail = pipe_update_tail(pipe, buf, tail); 362 } 363 total_len -= chars; 364 if (!total_len) 365 break; /* common path: read succeeded */ 366 if (!pipe_empty(head, tail)) /* More to do? */ 367 continue; 368 } 369 370 if (!pipe->writers) 371 break; 372 if (ret) 373 break; 374 if ((filp->f_flags & O_NONBLOCK) || 375 (iocb->ki_flags & IOCB_NOWAIT)) { 376 ret = -EAGAIN; 377 break; 378 } 379 mutex_unlock(&pipe->mutex); 380 /* 381 * We only get here if we didn't actually read anything. 382 * 383 * But because we didn't read anything, at this point we can 384 * just return directly with -ERESTARTSYS if we're interrupted, 385 * since we've done any required wakeups and there's no need 386 * to mark anything accessed. And we've dropped the lock. 387 */ 388 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) 389 return -ERESTARTSYS; 390 391 wake_next_reader = true; 392 mutex_lock(&pipe->mutex); 393 } 394 if (pipe_is_empty(pipe)) 395 wake_next_reader = false; 396 mutex_unlock(&pipe->mutex); 397 398 if (wake_writer) 399 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 400 if (wake_next_reader) 401 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 402 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 403 return ret; 404 } 405 406 static ssize_t 407 fifo_pipe_read(struct kiocb *iocb, struct iov_iter *to) 408 { 409 int ret = anon_pipe_read(iocb, to); 410 if (ret > 0) 411 file_accessed(iocb->ki_filp); 412 return ret; 413 } 414 415 static inline int is_packetized(struct file *file) 416 { 417 return (file->f_flags & O_DIRECT) != 0; 418 } 419 420 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 421 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 422 { 423 union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) }; 424 unsigned int max_usage = READ_ONCE(pipe->max_usage); 425 426 return !pipe_full(idx.head, idx.tail, max_usage) || 427 !READ_ONCE(pipe->readers); 428 } 429 430 static ssize_t 431 anon_pipe_write(struct kiocb *iocb, struct iov_iter *from) 432 { 433 struct file *filp = iocb->ki_filp; 434 struct pipe_inode_info *pipe = filp->private_data; 435 unsigned int head; 436 ssize_t ret = 0; 437 size_t total_len = iov_iter_count(from); 438 ssize_t chars; 439 bool was_empty = false; 440 bool wake_next_writer = false; 441 442 /* 443 * Reject writing to watch queue pipes before the point where we lock 444 * the pipe. 445 * Otherwise, lockdep would be unhappy if the caller already has another 446 * pipe locked. 447 * If we had to support locking a normal pipe and a notification pipe at 448 * the same time, we could set up lockdep annotations for that, but 449 * since we don't actually need that, it's simpler to just bail here. 450 */ 451 if (pipe_has_watch_queue(pipe)) 452 return -EXDEV; 453 454 /* Null write succeeds. */ 455 if (unlikely(total_len == 0)) 456 return 0; 457 458 mutex_lock(&pipe->mutex); 459 460 if (!pipe->readers) { 461 if ((iocb->ki_flags & IOCB_NOSIGNAL) == 0) 462 send_sig(SIGPIPE, current, 0); 463 ret = -EPIPE; 464 goto out; 465 } 466 467 /* 468 * If it wasn't empty we try to merge new data into 469 * the last buffer. 470 * 471 * That naturally merges small writes, but it also 472 * page-aligns the rest of the writes for large writes 473 * spanning multiple pages. 474 */ 475 head = pipe->head; 476 was_empty = pipe_empty(head, pipe->tail); 477 chars = total_len & (PAGE_SIZE-1); 478 if (chars && !was_empty) { 479 struct pipe_buffer *buf = pipe_buf(pipe, head - 1); 480 int offset = buf->offset + buf->len; 481 482 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && 483 offset + chars <= PAGE_SIZE) { 484 ret = pipe_buf_confirm(pipe, buf); 485 if (ret) 486 goto out; 487 488 ret = copy_page_from_iter(buf->page, offset, chars, from); 489 if (unlikely(ret < chars)) { 490 ret = -EFAULT; 491 goto out; 492 } 493 494 buf->len += ret; 495 if (!iov_iter_count(from)) 496 goto out; 497 } 498 } 499 500 for (;;) { 501 if (!pipe->readers) { 502 if ((iocb->ki_flags & IOCB_NOSIGNAL) == 0) 503 send_sig(SIGPIPE, current, 0); 504 if (!ret) 505 ret = -EPIPE; 506 break; 507 } 508 509 head = pipe->head; 510 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 511 struct pipe_buffer *buf; 512 struct page *page; 513 int copied; 514 515 page = anon_pipe_get_page(pipe); 516 if (unlikely(!page)) { 517 if (!ret) 518 ret = -ENOMEM; 519 break; 520 } 521 522 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 523 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 524 anon_pipe_put_page(pipe, page); 525 if (!ret) 526 ret = -EFAULT; 527 break; 528 } 529 530 pipe->head = head + 1; 531 /* Insert it into the buffer array */ 532 buf = pipe_buf(pipe, head); 533 buf->page = page; 534 buf->ops = &anon_pipe_buf_ops; 535 buf->offset = 0; 536 if (is_packetized(filp)) 537 buf->flags = PIPE_BUF_FLAG_PACKET; 538 else 539 buf->flags = PIPE_BUF_FLAG_CAN_MERGE; 540 541 buf->len = copied; 542 ret += copied; 543 544 if (!iov_iter_count(from)) 545 break; 546 547 continue; 548 } 549 550 /* Wait for buffer space to become available. */ 551 if ((filp->f_flags & O_NONBLOCK) || 552 (iocb->ki_flags & IOCB_NOWAIT)) { 553 if (!ret) 554 ret = -EAGAIN; 555 break; 556 } 557 if (signal_pending(current)) { 558 if (!ret) 559 ret = -ERESTARTSYS; 560 break; 561 } 562 563 /* 564 * We're going to release the pipe lock and wait for more 565 * space. We wake up any readers if necessary, and then 566 * after waiting we need to re-check whether the pipe 567 * become empty while we dropped the lock. 568 */ 569 mutex_unlock(&pipe->mutex); 570 if (was_empty) 571 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 572 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 573 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); 574 mutex_lock(&pipe->mutex); 575 was_empty = pipe_is_empty(pipe); 576 wake_next_writer = true; 577 } 578 out: 579 if (pipe_is_full(pipe)) 580 wake_next_writer = false; 581 mutex_unlock(&pipe->mutex); 582 583 /* 584 * If we do do a wakeup event, we do a 'sync' wakeup, because we 585 * want the reader to start processing things asap, rather than 586 * leave the data pending. 587 * 588 * This is particularly important for small writes, because of 589 * how (for example) the GNU make jobserver uses small writes to 590 * wake up pending jobs 591 * 592 * Epoll nonsensically wants a wakeup whether the pipe 593 * was already empty or not. 594 */ 595 if (was_empty || pipe->poll_usage) 596 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 597 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 598 if (wake_next_writer) 599 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 600 return ret; 601 } 602 603 static ssize_t 604 fifo_pipe_write(struct kiocb *iocb, struct iov_iter *from) 605 { 606 int ret = anon_pipe_write(iocb, from); 607 if (ret > 0) { 608 struct file *filp = iocb->ki_filp; 609 if (sb_start_write_trylock(file_inode(filp)->i_sb)) { 610 int err = file_update_time(filp); 611 if (err) 612 ret = err; 613 sb_end_write(file_inode(filp)->i_sb); 614 } 615 } 616 return ret; 617 } 618 619 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 620 { 621 struct pipe_inode_info *pipe = filp->private_data; 622 unsigned int count, head, tail; 623 624 switch (cmd) { 625 case FIONREAD: 626 mutex_lock(&pipe->mutex); 627 count = 0; 628 head = pipe->head; 629 tail = pipe->tail; 630 631 while (!pipe_empty(head, tail)) { 632 count += pipe_buf(pipe, tail)->len; 633 tail++; 634 } 635 mutex_unlock(&pipe->mutex); 636 637 return put_user(count, (int __user *)arg); 638 639 #ifdef CONFIG_WATCH_QUEUE 640 case IOC_WATCH_QUEUE_SET_SIZE: { 641 int ret; 642 mutex_lock(&pipe->mutex); 643 ret = watch_queue_set_size(pipe, arg); 644 mutex_unlock(&pipe->mutex); 645 return ret; 646 } 647 648 case IOC_WATCH_QUEUE_SET_FILTER: 649 return watch_queue_set_filter( 650 pipe, (struct watch_notification_filter __user *)arg); 651 #endif 652 653 default: 654 return -ENOIOCTLCMD; 655 } 656 } 657 658 /* No kernel lock held - fine */ 659 static __poll_t 660 pipe_poll(struct file *filp, poll_table *wait) 661 { 662 __poll_t mask; 663 struct pipe_inode_info *pipe = filp->private_data; 664 union pipe_index idx; 665 666 /* Epoll has some historical nasty semantics, this enables them */ 667 WRITE_ONCE(pipe->poll_usage, true); 668 669 /* 670 * Reading pipe state only -- no need for acquiring the semaphore. 671 * 672 * But because this is racy, the code has to add the 673 * entry to the poll table _first_ .. 674 */ 675 if (filp->f_mode & FMODE_READ) 676 poll_wait(filp, &pipe->rd_wait, wait); 677 if (filp->f_mode & FMODE_WRITE) 678 poll_wait(filp, &pipe->wr_wait, wait); 679 680 /* 681 * .. and only then can you do the racy tests. That way, 682 * if something changes and you got it wrong, the poll 683 * table entry will wake you up and fix it. 684 */ 685 idx.head_tail = READ_ONCE(pipe->head_tail); 686 687 mask = 0; 688 if (filp->f_mode & FMODE_READ) { 689 if (!pipe_empty(idx.head, idx.tail)) 690 mask |= EPOLLIN | EPOLLRDNORM; 691 if (!pipe->writers && filp->f_pipe != pipe->w_counter) 692 mask |= EPOLLHUP; 693 } 694 695 if (filp->f_mode & FMODE_WRITE) { 696 if (!pipe_full(idx.head, idx.tail, pipe->max_usage)) 697 mask |= EPOLLOUT | EPOLLWRNORM; 698 /* 699 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 700 * behave exactly like pipes for poll(). 701 */ 702 if (!pipe->readers) 703 mask |= EPOLLERR; 704 } 705 706 return mask; 707 } 708 709 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 710 { 711 int kill = 0; 712 713 spin_lock(&inode->i_lock); 714 if (!--pipe->files) { 715 inode->i_pipe = NULL; 716 kill = 1; 717 } 718 spin_unlock(&inode->i_lock); 719 720 if (kill) 721 free_pipe_info(pipe); 722 } 723 724 static int 725 pipe_release(struct inode *inode, struct file *file) 726 { 727 struct pipe_inode_info *pipe = file->private_data; 728 729 mutex_lock(&pipe->mutex); 730 if (file->f_mode & FMODE_READ) 731 pipe->readers--; 732 if (file->f_mode & FMODE_WRITE) 733 pipe->writers--; 734 735 /* Was that the last reader or writer, but not the other side? */ 736 if (!pipe->readers != !pipe->writers) { 737 wake_up_interruptible_all(&pipe->rd_wait); 738 wake_up_interruptible_all(&pipe->wr_wait); 739 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 740 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 741 } 742 mutex_unlock(&pipe->mutex); 743 744 put_pipe_info(inode, pipe); 745 return 0; 746 } 747 748 static int 749 pipe_fasync(int fd, struct file *filp, int on) 750 { 751 struct pipe_inode_info *pipe = filp->private_data; 752 int retval = 0; 753 754 mutex_lock(&pipe->mutex); 755 if (filp->f_mode & FMODE_READ) 756 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 757 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 758 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 759 if (retval < 0 && (filp->f_mode & FMODE_READ)) 760 /* this can happen only if on == T */ 761 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 762 } 763 mutex_unlock(&pipe->mutex); 764 return retval; 765 } 766 767 unsigned long account_pipe_buffers(struct user_struct *user, 768 unsigned long old, unsigned long new) 769 { 770 return atomic_long_add_return(new - old, &user->pipe_bufs); 771 } 772 773 bool too_many_pipe_buffers_soft(unsigned long user_bufs) 774 { 775 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 776 777 return soft_limit && user_bufs > soft_limit; 778 } 779 780 bool too_many_pipe_buffers_hard(unsigned long user_bufs) 781 { 782 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 783 784 return hard_limit && user_bufs > hard_limit; 785 } 786 787 bool pipe_is_unprivileged_user(void) 788 { 789 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 790 } 791 792 struct pipe_inode_info *alloc_pipe_info(void) 793 { 794 struct pipe_inode_info *pipe; 795 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 796 struct user_struct *user = get_current_user(); 797 unsigned long user_bufs; 798 unsigned int max_size = READ_ONCE(pipe_max_size); 799 800 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 801 if (pipe == NULL) 802 goto out_free_uid; 803 804 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 805 pipe_bufs = max_size >> PAGE_SHIFT; 806 807 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 808 809 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { 810 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS); 811 pipe_bufs = PIPE_MIN_DEF_BUFFERS; 812 } 813 814 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) 815 goto out_revert_acct; 816 817 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 818 GFP_KERNEL_ACCOUNT); 819 820 if (pipe->bufs) { 821 init_waitqueue_head(&pipe->rd_wait); 822 init_waitqueue_head(&pipe->wr_wait); 823 pipe->r_counter = pipe->w_counter = 1; 824 pipe->max_usage = pipe_bufs; 825 pipe->ring_size = pipe_bufs; 826 pipe->nr_accounted = pipe_bufs; 827 pipe->user = user; 828 mutex_init(&pipe->mutex); 829 lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL); 830 return pipe; 831 } 832 833 out_revert_acct: 834 (void) account_pipe_buffers(user, pipe_bufs, 0); 835 kfree(pipe); 836 out_free_uid: 837 free_uid(user); 838 return NULL; 839 } 840 841 void free_pipe_info(struct pipe_inode_info *pipe) 842 { 843 unsigned int i; 844 845 #ifdef CONFIG_WATCH_QUEUE 846 if (pipe->watch_queue) 847 watch_queue_clear(pipe->watch_queue); 848 #endif 849 850 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0); 851 free_uid(pipe->user); 852 for (i = 0; i < pipe->ring_size; i++) { 853 struct pipe_buffer *buf = pipe->bufs + i; 854 if (buf->ops) 855 pipe_buf_release(pipe, buf); 856 } 857 #ifdef CONFIG_WATCH_QUEUE 858 if (pipe->watch_queue) 859 put_watch_queue(pipe->watch_queue); 860 #endif 861 for (i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) { 862 if (pipe->tmp_page[i]) 863 __free_page(pipe->tmp_page[i]); 864 } 865 kfree(pipe->bufs); 866 kfree(pipe); 867 } 868 869 static struct vfsmount *pipe_mnt __ro_after_init; 870 871 /* 872 * pipefs_dname() is called from d_path(). 873 */ 874 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 875 { 876 return dynamic_dname(buffer, buflen, "pipe:[%lu]", 877 d_inode(dentry)->i_ino); 878 } 879 880 static const struct dentry_operations pipefs_dentry_operations = { 881 .d_dname = pipefs_dname, 882 }; 883 884 static const struct file_operations pipeanon_fops; 885 886 static struct inode * get_pipe_inode(void) 887 { 888 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 889 struct pipe_inode_info *pipe; 890 891 if (!inode) 892 goto fail_inode; 893 894 inode->i_ino = get_next_ino(); 895 896 pipe = alloc_pipe_info(); 897 if (!pipe) 898 goto fail_iput; 899 900 inode->i_pipe = pipe; 901 pipe->files = 2; 902 pipe->readers = pipe->writers = 1; 903 inode->i_fop = &pipeanon_fops; 904 905 /* 906 * Mark the inode dirty from the very beginning, 907 * that way it will never be moved to the dirty 908 * list because "mark_inode_dirty()" will think 909 * that it already _is_ on the dirty list. 910 */ 911 inode->i_state = I_DIRTY; 912 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 913 inode->i_uid = current_fsuid(); 914 inode->i_gid = current_fsgid(); 915 simple_inode_init_ts(inode); 916 917 return inode; 918 919 fail_iput: 920 iput(inode); 921 922 fail_inode: 923 return NULL; 924 } 925 926 int create_pipe_files(struct file **res, int flags) 927 { 928 struct inode *inode = get_pipe_inode(); 929 struct file *f; 930 int error; 931 932 if (!inode) 933 return -ENFILE; 934 935 if (flags & O_NOTIFICATION_PIPE) { 936 error = watch_queue_init(inode->i_pipe); 937 if (error) { 938 free_pipe_info(inode->i_pipe); 939 iput(inode); 940 return error; 941 } 942 } 943 944 f = alloc_file_pseudo(inode, pipe_mnt, "", 945 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 946 &pipeanon_fops); 947 if (IS_ERR(f)) { 948 free_pipe_info(inode->i_pipe); 949 iput(inode); 950 return PTR_ERR(f); 951 } 952 953 f->private_data = inode->i_pipe; 954 f->f_pipe = 0; 955 956 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 957 &pipeanon_fops); 958 if (IS_ERR(res[0])) { 959 put_pipe_info(inode, inode->i_pipe); 960 fput(f); 961 return PTR_ERR(res[0]); 962 } 963 res[0]->private_data = inode->i_pipe; 964 res[0]->f_pipe = 0; 965 res[1] = f; 966 stream_open(inode, res[0]); 967 stream_open(inode, res[1]); 968 969 /* pipe groks IOCB_NOWAIT */ 970 res[0]->f_mode |= FMODE_NOWAIT; 971 res[1]->f_mode |= FMODE_NOWAIT; 972 973 /* 974 * Disable permission and pre-content events, but enable legacy 975 * inotify events for legacy users. 976 */ 977 file_set_fsnotify_mode(res[0], FMODE_NONOTIFY_PERM); 978 file_set_fsnotify_mode(res[1], FMODE_NONOTIFY_PERM); 979 return 0; 980 } 981 982 static int __do_pipe_flags(int *fd, struct file **files, int flags) 983 { 984 int error; 985 int fdw, fdr; 986 987 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) 988 return -EINVAL; 989 990 error = create_pipe_files(files, flags); 991 if (error) 992 return error; 993 994 error = get_unused_fd_flags(flags); 995 if (error < 0) 996 goto err_read_pipe; 997 fdr = error; 998 999 error = get_unused_fd_flags(flags); 1000 if (error < 0) 1001 goto err_fdr; 1002 fdw = error; 1003 1004 audit_fd_pair(fdr, fdw); 1005 fd[0] = fdr; 1006 fd[1] = fdw; 1007 return 0; 1008 1009 err_fdr: 1010 put_unused_fd(fdr); 1011 err_read_pipe: 1012 fput(files[0]); 1013 fput(files[1]); 1014 return error; 1015 } 1016 1017 int do_pipe_flags(int *fd, int flags) 1018 { 1019 struct file *files[2]; 1020 int error = __do_pipe_flags(fd, files, flags); 1021 if (!error) { 1022 fd_install(fd[0], files[0]); 1023 fd_install(fd[1], files[1]); 1024 } 1025 return error; 1026 } 1027 1028 /* 1029 * sys_pipe() is the normal C calling standard for creating 1030 * a pipe. It's not the way Unix traditionally does this, though. 1031 */ 1032 static int do_pipe2(int __user *fildes, int flags) 1033 { 1034 struct file *files[2]; 1035 int fd[2]; 1036 int error; 1037 1038 error = __do_pipe_flags(fd, files, flags); 1039 if (!error) { 1040 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 1041 fput(files[0]); 1042 fput(files[1]); 1043 put_unused_fd(fd[0]); 1044 put_unused_fd(fd[1]); 1045 error = -EFAULT; 1046 } else { 1047 fd_install(fd[0], files[0]); 1048 fd_install(fd[1], files[1]); 1049 } 1050 } 1051 return error; 1052 } 1053 1054 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 1055 { 1056 return do_pipe2(fildes, flags); 1057 } 1058 1059 SYSCALL_DEFINE1(pipe, int __user *, fildes) 1060 { 1061 return do_pipe2(fildes, 0); 1062 } 1063 1064 /* 1065 * This is the stupid "wait for pipe to be readable or writable" 1066 * model. 1067 * 1068 * See pipe_read/write() for the proper kind of exclusive wait, 1069 * but that requires that we wake up any other readers/writers 1070 * if we then do not end up reading everything (ie the whole 1071 * "wake_next_reader/writer" logic in pipe_read/write()). 1072 */ 1073 void pipe_wait_readable(struct pipe_inode_info *pipe) 1074 { 1075 pipe_unlock(pipe); 1076 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe)); 1077 pipe_lock(pipe); 1078 } 1079 1080 void pipe_wait_writable(struct pipe_inode_info *pipe) 1081 { 1082 pipe_unlock(pipe); 1083 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe)); 1084 pipe_lock(pipe); 1085 } 1086 1087 /* 1088 * This depends on both the wait (here) and the wakeup (wake_up_partner) 1089 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot 1090 * race with the count check and waitqueue prep. 1091 * 1092 * Normally in order to avoid races, you'd do the prepare_to_wait() first, 1093 * then check the condition you're waiting for, and only then sleep. But 1094 * because of the pipe lock, we can check the condition before being on 1095 * the wait queue. 1096 * 1097 * We use the 'rd_wait' waitqueue for pipe partner waiting. 1098 */ 1099 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 1100 { 1101 DEFINE_WAIT(rdwait); 1102 int cur = *cnt; 1103 1104 while (cur == *cnt) { 1105 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); 1106 pipe_unlock(pipe); 1107 schedule(); 1108 finish_wait(&pipe->rd_wait, &rdwait); 1109 pipe_lock(pipe); 1110 if (signal_pending(current)) 1111 break; 1112 } 1113 return cur == *cnt ? -ERESTARTSYS : 0; 1114 } 1115 1116 static void wake_up_partner(struct pipe_inode_info *pipe) 1117 { 1118 wake_up_interruptible_all(&pipe->rd_wait); 1119 } 1120 1121 static int fifo_open(struct inode *inode, struct file *filp) 1122 { 1123 bool is_pipe = inode->i_fop == &pipeanon_fops; 1124 struct pipe_inode_info *pipe; 1125 int ret; 1126 1127 filp->f_pipe = 0; 1128 1129 spin_lock(&inode->i_lock); 1130 if (inode->i_pipe) { 1131 pipe = inode->i_pipe; 1132 pipe->files++; 1133 spin_unlock(&inode->i_lock); 1134 } else { 1135 spin_unlock(&inode->i_lock); 1136 pipe = alloc_pipe_info(); 1137 if (!pipe) 1138 return -ENOMEM; 1139 pipe->files = 1; 1140 spin_lock(&inode->i_lock); 1141 if (unlikely(inode->i_pipe)) { 1142 inode->i_pipe->files++; 1143 spin_unlock(&inode->i_lock); 1144 free_pipe_info(pipe); 1145 pipe = inode->i_pipe; 1146 } else { 1147 inode->i_pipe = pipe; 1148 spin_unlock(&inode->i_lock); 1149 } 1150 } 1151 filp->private_data = pipe; 1152 /* OK, we have a pipe and it's pinned down */ 1153 1154 mutex_lock(&pipe->mutex); 1155 1156 /* We can only do regular read/write on fifos */ 1157 stream_open(inode, filp); 1158 1159 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1160 case FMODE_READ: 1161 /* 1162 * O_RDONLY 1163 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1164 * opened, even when there is no process writing the FIFO. 1165 */ 1166 pipe->r_counter++; 1167 if (pipe->readers++ == 0) 1168 wake_up_partner(pipe); 1169 1170 if (!is_pipe && !pipe->writers) { 1171 if ((filp->f_flags & O_NONBLOCK)) { 1172 /* suppress EPOLLHUP until we have 1173 * seen a writer */ 1174 filp->f_pipe = pipe->w_counter; 1175 } else { 1176 if (wait_for_partner(pipe, &pipe->w_counter)) 1177 goto err_rd; 1178 } 1179 } 1180 break; 1181 1182 case FMODE_WRITE: 1183 /* 1184 * O_WRONLY 1185 * POSIX.1 says that O_NONBLOCK means return -1 with 1186 * errno=ENXIO when there is no process reading the FIFO. 1187 */ 1188 ret = -ENXIO; 1189 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1190 goto err; 1191 1192 pipe->w_counter++; 1193 if (!pipe->writers++) 1194 wake_up_partner(pipe); 1195 1196 if (!is_pipe && !pipe->readers) { 1197 if (wait_for_partner(pipe, &pipe->r_counter)) 1198 goto err_wr; 1199 } 1200 break; 1201 1202 case FMODE_READ | FMODE_WRITE: 1203 /* 1204 * O_RDWR 1205 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1206 * This implementation will NEVER block on a O_RDWR open, since 1207 * the process can at least talk to itself. 1208 */ 1209 1210 pipe->readers++; 1211 pipe->writers++; 1212 pipe->r_counter++; 1213 pipe->w_counter++; 1214 if (pipe->readers == 1 || pipe->writers == 1) 1215 wake_up_partner(pipe); 1216 break; 1217 1218 default: 1219 ret = -EINVAL; 1220 goto err; 1221 } 1222 1223 /* Ok! */ 1224 mutex_unlock(&pipe->mutex); 1225 return 0; 1226 1227 err_rd: 1228 if (!--pipe->readers) 1229 wake_up_interruptible(&pipe->wr_wait); 1230 ret = -ERESTARTSYS; 1231 goto err; 1232 1233 err_wr: 1234 if (!--pipe->writers) 1235 wake_up_interruptible_all(&pipe->rd_wait); 1236 ret = -ERESTARTSYS; 1237 goto err; 1238 1239 err: 1240 mutex_unlock(&pipe->mutex); 1241 1242 put_pipe_info(inode, pipe); 1243 return ret; 1244 } 1245 1246 const struct file_operations pipefifo_fops = { 1247 .open = fifo_open, 1248 .read_iter = fifo_pipe_read, 1249 .write_iter = fifo_pipe_write, 1250 .poll = pipe_poll, 1251 .unlocked_ioctl = pipe_ioctl, 1252 .release = pipe_release, 1253 .fasync = pipe_fasync, 1254 .splice_write = iter_file_splice_write, 1255 }; 1256 1257 static const struct file_operations pipeanon_fops = { 1258 .open = fifo_open, 1259 .read_iter = anon_pipe_read, 1260 .write_iter = anon_pipe_write, 1261 .poll = pipe_poll, 1262 .unlocked_ioctl = pipe_ioctl, 1263 .release = pipe_release, 1264 .fasync = pipe_fasync, 1265 .splice_write = iter_file_splice_write, 1266 }; 1267 1268 /* 1269 * Currently we rely on the pipe array holding a power-of-2 number 1270 * of pages. Returns 0 on error. 1271 */ 1272 unsigned int round_pipe_size(unsigned int size) 1273 { 1274 if (size > (1U << 31)) 1275 return 0; 1276 1277 /* Minimum pipe size, as required by POSIX */ 1278 if (size < PAGE_SIZE) 1279 return PAGE_SIZE; 1280 1281 return roundup_pow_of_two(size); 1282 } 1283 1284 /* 1285 * Resize the pipe ring to a number of slots. 1286 * 1287 * Note the pipe can be reduced in capacity, but only if the current 1288 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be 1289 * returned instead. 1290 */ 1291 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots) 1292 { 1293 struct pipe_buffer *bufs; 1294 unsigned int head, tail, mask, n; 1295 1296 /* nr_slots larger than limits of pipe->{head,tail} */ 1297 if (unlikely(nr_slots > (pipe_index_t)-1u)) 1298 return -EINVAL; 1299 1300 bufs = kcalloc(nr_slots, sizeof(*bufs), 1301 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1302 if (unlikely(!bufs)) 1303 return -ENOMEM; 1304 1305 spin_lock_irq(&pipe->rd_wait.lock); 1306 mask = pipe->ring_size - 1; 1307 head = pipe->head; 1308 tail = pipe->tail; 1309 1310 n = pipe_occupancy(head, tail); 1311 if (nr_slots < n) { 1312 spin_unlock_irq(&pipe->rd_wait.lock); 1313 kfree(bufs); 1314 return -EBUSY; 1315 } 1316 1317 /* 1318 * The pipe array wraps around, so just start the new one at zero 1319 * and adjust the indices. 1320 */ 1321 if (n > 0) { 1322 unsigned int h = head & mask; 1323 unsigned int t = tail & mask; 1324 if (h > t) { 1325 memcpy(bufs, pipe->bufs + t, 1326 n * sizeof(struct pipe_buffer)); 1327 } else { 1328 unsigned int tsize = pipe->ring_size - t; 1329 if (h > 0) 1330 memcpy(bufs + tsize, pipe->bufs, 1331 h * sizeof(struct pipe_buffer)); 1332 memcpy(bufs, pipe->bufs + t, 1333 tsize * sizeof(struct pipe_buffer)); 1334 } 1335 } 1336 1337 head = n; 1338 tail = 0; 1339 1340 kfree(pipe->bufs); 1341 pipe->bufs = bufs; 1342 pipe->ring_size = nr_slots; 1343 if (pipe->max_usage > nr_slots) 1344 pipe->max_usage = nr_slots; 1345 pipe->tail = tail; 1346 pipe->head = head; 1347 1348 if (!pipe_has_watch_queue(pipe)) { 1349 pipe->max_usage = nr_slots; 1350 pipe->nr_accounted = nr_slots; 1351 } 1352 1353 spin_unlock_irq(&pipe->rd_wait.lock); 1354 1355 /* This might have made more room for writers */ 1356 wake_up_interruptible(&pipe->wr_wait); 1357 return 0; 1358 } 1359 1360 /* 1361 * Allocate a new array of pipe buffers and copy the info over. Returns the 1362 * pipe size if successful, or return -ERROR on error. 1363 */ 1364 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg) 1365 { 1366 unsigned long user_bufs; 1367 unsigned int nr_slots, size; 1368 long ret = 0; 1369 1370 if (pipe_has_watch_queue(pipe)) 1371 return -EBUSY; 1372 1373 size = round_pipe_size(arg); 1374 nr_slots = size >> PAGE_SHIFT; 1375 1376 if (!nr_slots) 1377 return -EINVAL; 1378 1379 /* 1380 * If trying to increase the pipe capacity, check that an 1381 * unprivileged user is not trying to exceed various limits 1382 * (soft limit check here, hard limit check just below). 1383 * Decreasing the pipe capacity is always permitted, even 1384 * if the user is currently over a limit. 1385 */ 1386 if (nr_slots > pipe->max_usage && 1387 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1388 return -EPERM; 1389 1390 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots); 1391 1392 if (nr_slots > pipe->max_usage && 1393 (too_many_pipe_buffers_hard(user_bufs) || 1394 too_many_pipe_buffers_soft(user_bufs)) && 1395 pipe_is_unprivileged_user()) { 1396 ret = -EPERM; 1397 goto out_revert_acct; 1398 } 1399 1400 ret = pipe_resize_ring(pipe, nr_slots); 1401 if (ret < 0) 1402 goto out_revert_acct; 1403 1404 return pipe->max_usage * PAGE_SIZE; 1405 1406 out_revert_acct: 1407 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted); 1408 return ret; 1409 } 1410 1411 /* 1412 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is 1413 * not enough to verify that this is a pipe. 1414 */ 1415 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) 1416 { 1417 struct pipe_inode_info *pipe = file->private_data; 1418 1419 if (!pipe) 1420 return NULL; 1421 if (file->f_op != &pipefifo_fops && file->f_op != &pipeanon_fops) 1422 return NULL; 1423 if (for_splice && pipe_has_watch_queue(pipe)) 1424 return NULL; 1425 return pipe; 1426 } 1427 1428 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg) 1429 { 1430 struct pipe_inode_info *pipe; 1431 long ret; 1432 1433 pipe = get_pipe_info(file, false); 1434 if (!pipe) 1435 return -EBADF; 1436 1437 mutex_lock(&pipe->mutex); 1438 1439 switch (cmd) { 1440 case F_SETPIPE_SZ: 1441 ret = pipe_set_size(pipe, arg); 1442 break; 1443 case F_GETPIPE_SZ: 1444 ret = pipe->max_usage * PAGE_SIZE; 1445 break; 1446 default: 1447 ret = -EINVAL; 1448 break; 1449 } 1450 1451 mutex_unlock(&pipe->mutex); 1452 return ret; 1453 } 1454 1455 static const struct super_operations pipefs_ops = { 1456 .destroy_inode = free_inode_nonrcu, 1457 .statfs = simple_statfs, 1458 }; 1459 1460 /* 1461 * pipefs should _never_ be mounted by userland - too much of security hassle, 1462 * no real gain from having the whole file system mounted. So we don't need 1463 * any operations on the root directory. However, we need a non-trivial 1464 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1465 */ 1466 1467 static int pipefs_init_fs_context(struct fs_context *fc) 1468 { 1469 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1470 if (!ctx) 1471 return -ENOMEM; 1472 ctx->ops = &pipefs_ops; 1473 ctx->dops = &pipefs_dentry_operations; 1474 return 0; 1475 } 1476 1477 static struct file_system_type pipe_fs_type = { 1478 .name = "pipefs", 1479 .init_fs_context = pipefs_init_fs_context, 1480 .kill_sb = kill_anon_super, 1481 }; 1482 1483 #ifdef CONFIG_SYSCTL 1484 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp, 1485 unsigned int *valp, 1486 int write, void *data) 1487 { 1488 if (write) { 1489 unsigned int val; 1490 1491 val = round_pipe_size(*lvalp); 1492 if (val == 0) 1493 return -EINVAL; 1494 1495 *valp = val; 1496 } else { 1497 unsigned int val = *valp; 1498 *lvalp = (unsigned long) val; 1499 } 1500 1501 return 0; 1502 } 1503 1504 static int proc_dopipe_max_size(const struct ctl_table *table, int write, 1505 void *buffer, size_t *lenp, loff_t *ppos) 1506 { 1507 return do_proc_douintvec(table, write, buffer, lenp, ppos, 1508 do_proc_dopipe_max_size_conv, NULL); 1509 } 1510 1511 static const struct ctl_table fs_pipe_sysctls[] = { 1512 { 1513 .procname = "pipe-max-size", 1514 .data = &pipe_max_size, 1515 .maxlen = sizeof(pipe_max_size), 1516 .mode = 0644, 1517 .proc_handler = proc_dopipe_max_size, 1518 }, 1519 { 1520 .procname = "pipe-user-pages-hard", 1521 .data = &pipe_user_pages_hard, 1522 .maxlen = sizeof(pipe_user_pages_hard), 1523 .mode = 0644, 1524 .proc_handler = proc_doulongvec_minmax, 1525 }, 1526 { 1527 .procname = "pipe-user-pages-soft", 1528 .data = &pipe_user_pages_soft, 1529 .maxlen = sizeof(pipe_user_pages_soft), 1530 .mode = 0644, 1531 .proc_handler = proc_doulongvec_minmax, 1532 }, 1533 }; 1534 #endif 1535 1536 static int __init init_pipe_fs(void) 1537 { 1538 int err = register_filesystem(&pipe_fs_type); 1539 1540 if (!err) { 1541 pipe_mnt = kern_mount(&pipe_fs_type); 1542 if (IS_ERR(pipe_mnt)) { 1543 err = PTR_ERR(pipe_mnt); 1544 unregister_filesystem(&pipe_fs_type); 1545 } 1546 } 1547 #ifdef CONFIG_SYSCTL 1548 register_sysctl_init("fs", fs_pipe_sysctls); 1549 #endif 1550 return err; 1551 } 1552 1553 fs_initcall(init_pipe_fs); 1554