1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/anon_inodes.h> 3 #include <linux/exportfs.h> 4 #include <linux/file.h> 5 #include <linux/fs.h> 6 #include <linux/cgroup.h> 7 #include <linux/magic.h> 8 #include <linux/mount.h> 9 #include <linux/pid.h> 10 #include <linux/pidfs.h> 11 #include <linux/pid_namespace.h> 12 #include <linux/poll.h> 13 #include <linux/proc_fs.h> 14 #include <linux/proc_ns.h> 15 #include <linux/pseudo_fs.h> 16 #include <linux/ptrace.h> 17 #include <linux/seq_file.h> 18 #include <uapi/linux/pidfd.h> 19 #include <linux/ipc_namespace.h> 20 #include <linux/time_namespace.h> 21 #include <linux/utsname.h> 22 #include <net/net_namespace.h> 23 #include <linux/coredump.h> 24 #include <linux/xattr.h> 25 26 #include "internal.h" 27 #include "mount.h" 28 29 #define PIDFS_PID_DEAD ERR_PTR(-ESRCH) 30 31 static struct kmem_cache *pidfs_attr_cachep __ro_after_init; 32 static struct kmem_cache *pidfs_xattr_cachep __ro_after_init; 33 34 static struct path pidfs_root_path = {}; 35 36 void pidfs_get_root(struct path *path) 37 { 38 *path = pidfs_root_path; 39 path_get(path); 40 } 41 42 enum pidfs_attr_mask_bits { 43 PIDFS_ATTR_BIT_EXIT = 0, 44 PIDFS_ATTR_BIT_COREDUMP = 1, 45 }; 46 47 struct pidfs_attr { 48 unsigned long attr_mask; 49 struct simple_xattrs *xattrs; 50 struct /* exit info */ { 51 __u64 cgroupid; 52 __s32 exit_code; 53 }; 54 __u32 coredump_mask; 55 __u32 coredump_signal; 56 }; 57 58 static struct rb_root pidfs_ino_tree = RB_ROOT; 59 60 #if BITS_PER_LONG == 32 61 static inline unsigned long pidfs_ino(u64 ino) 62 { 63 return lower_32_bits(ino); 64 } 65 66 /* On 32 bit the generation number are the upper 32 bits. */ 67 static inline u32 pidfs_gen(u64 ino) 68 { 69 return upper_32_bits(ino); 70 } 71 72 #else 73 74 /* On 64 bit simply return ino. */ 75 static inline unsigned long pidfs_ino(u64 ino) 76 { 77 return ino; 78 } 79 80 /* On 64 bit the generation number is 0. */ 81 static inline u32 pidfs_gen(u64 ino) 82 { 83 return 0; 84 } 85 #endif 86 87 static int pidfs_ino_cmp(struct rb_node *a, const struct rb_node *b) 88 { 89 struct pid *pid_a = rb_entry(a, struct pid, pidfs_node); 90 struct pid *pid_b = rb_entry(b, struct pid, pidfs_node); 91 u64 pid_ino_a = pid_a->ino; 92 u64 pid_ino_b = pid_b->ino; 93 94 if (pid_ino_a < pid_ino_b) 95 return -1; 96 if (pid_ino_a > pid_ino_b) 97 return 1; 98 return 0; 99 } 100 101 void pidfs_add_pid(struct pid *pid) 102 { 103 static u64 pidfs_ino_nr = 2; 104 105 /* 106 * On 64 bit nothing special happens. The 64bit number assigned 107 * to struct pid is the inode number. 108 * 109 * On 32 bit the 64 bit number assigned to struct pid is split 110 * into two 32 bit numbers. The lower 32 bits are used as the 111 * inode number and the upper 32 bits are used as the inode 112 * generation number. 113 * 114 * On 32 bit pidfs_ino() will return the lower 32 bit. When 115 * pidfs_ino() returns zero a wrap around happened. When a 116 * wraparound happens the 64 bit number will be incremented by 2 117 * so inode numbering starts at 2 again. 118 * 119 * On 64 bit comparing two pidfds is as simple as comparing 120 * inode numbers. 121 * 122 * When a wraparound happens on 32 bit multiple pidfds with the 123 * same inode number are likely to exist (This isn't a problem 124 * since before pidfs pidfds used the anonymous inode meaning 125 * all pidfds had the same inode number.). Userspace can 126 * reconstruct the 64 bit identifier by retrieving both the 127 * inode number and the inode generation number to compare or 128 * use file handles. 129 */ 130 if (pidfs_ino(pidfs_ino_nr) == 0) 131 pidfs_ino_nr += 2; 132 133 pid->ino = pidfs_ino_nr; 134 pid->stashed = NULL; 135 pid->attr = NULL; 136 pidfs_ino_nr++; 137 138 write_seqcount_begin(&pidmap_lock_seq); 139 rb_find_add_rcu(&pid->pidfs_node, &pidfs_ino_tree, pidfs_ino_cmp); 140 write_seqcount_end(&pidmap_lock_seq); 141 } 142 143 void pidfs_remove_pid(struct pid *pid) 144 { 145 write_seqcount_begin(&pidmap_lock_seq); 146 rb_erase(&pid->pidfs_node, &pidfs_ino_tree); 147 write_seqcount_end(&pidmap_lock_seq); 148 } 149 150 void pidfs_free_pid(struct pid *pid) 151 { 152 struct pidfs_attr *attr __free(kfree) = no_free_ptr(pid->attr); 153 struct simple_xattrs *xattrs __free(kfree) = NULL; 154 155 /* 156 * Any dentry must've been wiped from the pid by now. 157 * Otherwise there's a reference count bug. 158 */ 159 VFS_WARN_ON_ONCE(pid->stashed); 160 161 /* 162 * This if an error occurred during e.g., task creation that 163 * causes us to never go through the exit path. 164 */ 165 if (unlikely(!attr)) 166 return; 167 168 /* This never had a pidfd created. */ 169 if (IS_ERR(attr)) 170 return; 171 172 xattrs = no_free_ptr(attr->xattrs); 173 if (xattrs) 174 simple_xattrs_free(xattrs, NULL); 175 } 176 177 #ifdef CONFIG_PROC_FS 178 /** 179 * pidfd_show_fdinfo - print information about a pidfd 180 * @m: proc fdinfo file 181 * @f: file referencing a pidfd 182 * 183 * Pid: 184 * This function will print the pid that a given pidfd refers to in the 185 * pid namespace of the procfs instance. 186 * If the pid namespace of the process is not a descendant of the pid 187 * namespace of the procfs instance 0 will be shown as its pid. This is 188 * similar to calling getppid() on a process whose parent is outside of 189 * its pid namespace. 190 * 191 * NSpid: 192 * If pid namespaces are supported then this function will also print 193 * the pid of a given pidfd refers to for all descendant pid namespaces 194 * starting from the current pid namespace of the instance, i.e. the 195 * Pid field and the first entry in the NSpid field will be identical. 196 * If the pid namespace of the process is not a descendant of the pid 197 * namespace of the procfs instance 0 will be shown as its first NSpid 198 * entry and no others will be shown. 199 * Note that this differs from the Pid and NSpid fields in 200 * /proc/<pid>/status where Pid and NSpid are always shown relative to 201 * the pid namespace of the procfs instance. The difference becomes 202 * obvious when sending around a pidfd between pid namespaces from a 203 * different branch of the tree, i.e. where no ancestral relation is 204 * present between the pid namespaces: 205 * - create two new pid namespaces ns1 and ns2 in the initial pid 206 * namespace (also take care to create new mount namespaces in the 207 * new pid namespace and mount procfs) 208 * - create a process with a pidfd in ns1 209 * - send pidfd from ns1 to ns2 210 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 211 * have exactly one entry, which is 0 212 */ 213 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 214 { 215 struct pid *pid = pidfd_pid(f); 216 struct pid_namespace *ns; 217 pid_t nr = -1; 218 219 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 220 ns = proc_pid_ns(file_inode(m->file)->i_sb); 221 nr = pid_nr_ns(pid, ns); 222 } 223 224 seq_put_decimal_ll(m, "Pid:\t", nr); 225 226 #ifdef CONFIG_PID_NS 227 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 228 if (nr > 0) { 229 int i; 230 231 /* If nr is non-zero it means that 'pid' is valid and that 232 * ns, i.e. the pid namespace associated with the procfs 233 * instance, is in the pid namespace hierarchy of pid. 234 * Start at one below the already printed level. 235 */ 236 for (i = ns->level + 1; i <= pid->level; i++) 237 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 238 } 239 #endif 240 seq_putc(m, '\n'); 241 } 242 #endif 243 244 /* 245 * Poll support for process exit notification. 246 */ 247 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 248 { 249 struct pid *pid = pidfd_pid(file); 250 struct task_struct *task; 251 __poll_t poll_flags = 0; 252 253 poll_wait(file, &pid->wait_pidfd, pts); 254 /* 255 * Don't wake waiters if the thread-group leader exited 256 * prematurely. They either get notified when the last subthread 257 * exits or not at all if one of the remaining subthreads execs 258 * and assumes the struct pid of the old thread-group leader. 259 */ 260 guard(rcu)(); 261 task = pid_task(pid, PIDTYPE_PID); 262 if (!task) 263 poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP; 264 else if (task->exit_state && !delay_group_leader(task)) 265 poll_flags = EPOLLIN | EPOLLRDNORM; 266 267 return poll_flags; 268 } 269 270 static inline bool pid_in_current_pidns(const struct pid *pid) 271 { 272 const struct pid_namespace *ns = task_active_pid_ns(current); 273 274 if (ns->level <= pid->level) 275 return pid->numbers[ns->level].ns == ns; 276 277 return false; 278 } 279 280 static __u32 pidfs_coredump_mask(unsigned long mm_flags) 281 { 282 switch (__get_dumpable(mm_flags)) { 283 case SUID_DUMP_USER: 284 return PIDFD_COREDUMP_USER; 285 case SUID_DUMP_ROOT: 286 return PIDFD_COREDUMP_ROOT; 287 case SUID_DUMP_DISABLE: 288 return PIDFD_COREDUMP_SKIP; 289 default: 290 WARN_ON_ONCE(true); 291 } 292 293 return 0; 294 } 295 296 /* This must be updated whenever a new flag is added */ 297 #define PIDFD_INFO_SUPPORTED (PIDFD_INFO_PID | \ 298 PIDFD_INFO_CREDS | \ 299 PIDFD_INFO_CGROUPID | \ 300 PIDFD_INFO_EXIT | \ 301 PIDFD_INFO_COREDUMP | \ 302 PIDFD_INFO_SUPPORTED_MASK | \ 303 PIDFD_INFO_COREDUMP_SIGNAL) 304 305 static long pidfd_info(struct file *file, unsigned int cmd, unsigned long arg) 306 { 307 struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg; 308 struct task_struct *task __free(put_task) = NULL; 309 struct pid *pid = pidfd_pid(file); 310 size_t usize = _IOC_SIZE(cmd); 311 struct pidfd_info kinfo = {}; 312 struct user_namespace *user_ns; 313 struct pidfs_attr *attr; 314 const struct cred *c; 315 __u64 mask; 316 317 BUILD_BUG_ON(sizeof(struct pidfd_info) != PIDFD_INFO_SIZE_VER2); 318 319 if (!uinfo) 320 return -EINVAL; 321 if (usize < PIDFD_INFO_SIZE_VER0) 322 return -EINVAL; /* First version, no smaller struct possible */ 323 324 if (copy_from_user(&mask, &uinfo->mask, sizeof(mask))) 325 return -EFAULT; 326 327 /* 328 * Restrict information retrieval to tasks within the caller's pid 329 * namespace hierarchy. 330 */ 331 if (!pid_in_current_pidns(pid)) 332 return -ESRCH; 333 334 attr = READ_ONCE(pid->attr); 335 if (mask & PIDFD_INFO_EXIT) { 336 if (test_bit(PIDFS_ATTR_BIT_EXIT, &attr->attr_mask)) { 337 smp_rmb(); 338 kinfo.mask |= PIDFD_INFO_EXIT; 339 #ifdef CONFIG_CGROUPS 340 kinfo.cgroupid = attr->cgroupid; 341 kinfo.mask |= PIDFD_INFO_CGROUPID; 342 #endif 343 kinfo.exit_code = attr->exit_code; 344 } 345 } 346 347 if (mask & PIDFD_INFO_COREDUMP) { 348 if (test_bit(PIDFS_ATTR_BIT_COREDUMP, &attr->attr_mask)) { 349 smp_rmb(); 350 kinfo.mask |= PIDFD_INFO_COREDUMP | PIDFD_INFO_COREDUMP_SIGNAL; 351 kinfo.coredump_mask = attr->coredump_mask; 352 kinfo.coredump_signal = attr->coredump_signal; 353 } 354 } 355 356 task = get_pid_task(pid, PIDTYPE_PID); 357 if (!task) { 358 /* 359 * If the task has already been reaped, only exit 360 * information is available 361 */ 362 if (!(mask & PIDFD_INFO_EXIT)) 363 return -ESRCH; 364 365 goto copy_out; 366 } 367 368 c = get_task_cred(task); 369 if (!c) 370 return -ESRCH; 371 372 if ((mask & PIDFD_INFO_COREDUMP) && !kinfo.coredump_mask) { 373 guard(task_lock)(task); 374 if (task->mm) { 375 unsigned long flags = __mm_flags_get_dumpable(task->mm); 376 377 kinfo.coredump_mask = pidfs_coredump_mask(flags); 378 kinfo.mask |= PIDFD_INFO_COREDUMP; 379 /* No coredump actually took place, so no coredump signal. */ 380 } 381 } 382 383 /* Unconditionally return identifiers and credentials, the rest only on request */ 384 385 user_ns = current_user_ns(); 386 kinfo.ruid = from_kuid_munged(user_ns, c->uid); 387 kinfo.rgid = from_kgid_munged(user_ns, c->gid); 388 kinfo.euid = from_kuid_munged(user_ns, c->euid); 389 kinfo.egid = from_kgid_munged(user_ns, c->egid); 390 kinfo.suid = from_kuid_munged(user_ns, c->suid); 391 kinfo.sgid = from_kgid_munged(user_ns, c->sgid); 392 kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid); 393 kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid); 394 kinfo.mask |= PIDFD_INFO_CREDS; 395 put_cred(c); 396 397 #ifdef CONFIG_CGROUPS 398 if (!kinfo.cgroupid) { 399 struct cgroup *cgrp; 400 401 rcu_read_lock(); 402 cgrp = task_dfl_cgroup(task); 403 kinfo.cgroupid = cgroup_id(cgrp); 404 kinfo.mask |= PIDFD_INFO_CGROUPID; 405 rcu_read_unlock(); 406 } 407 #endif 408 409 /* 410 * Copy pid/tgid last, to reduce the chances the information might be 411 * stale. Note that it is not possible to ensure it will be valid as the 412 * task might return as soon as the copy_to_user finishes, but that's ok 413 * and userspace expects that might happen and can act accordingly, so 414 * this is just best-effort. What we can do however is checking that all 415 * the fields are set correctly, or return ESRCH to avoid providing 416 * incomplete information. */ 417 418 kinfo.ppid = task_ppid_nr_ns(task, NULL); 419 kinfo.tgid = task_tgid_vnr(task); 420 kinfo.pid = task_pid_vnr(task); 421 kinfo.mask |= PIDFD_INFO_PID; 422 423 if (kinfo.pid == 0 || kinfo.tgid == 0) 424 return -ESRCH; 425 426 copy_out: 427 if (mask & PIDFD_INFO_SUPPORTED_MASK) { 428 kinfo.mask |= PIDFD_INFO_SUPPORTED_MASK; 429 kinfo.supported_mask = PIDFD_INFO_SUPPORTED; 430 } 431 432 /* Are there bits in the return mask not present in PIDFD_INFO_SUPPORTED? */ 433 WARN_ON_ONCE(~PIDFD_INFO_SUPPORTED & kinfo.mask); 434 /* 435 * If userspace and the kernel have the same struct size it can just 436 * be copied. If userspace provides an older struct, only the bits that 437 * userspace knows about will be copied. If userspace provides a new 438 * struct, only the bits that the kernel knows about will be copied. 439 */ 440 return copy_struct_to_user(uinfo, usize, &kinfo, sizeof(kinfo), NULL); 441 } 442 443 static bool pidfs_ioctl_valid(unsigned int cmd) 444 { 445 switch (cmd) { 446 case FS_IOC_GETVERSION: 447 case PIDFD_GET_CGROUP_NAMESPACE: 448 case PIDFD_GET_IPC_NAMESPACE: 449 case PIDFD_GET_MNT_NAMESPACE: 450 case PIDFD_GET_NET_NAMESPACE: 451 case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE: 452 case PIDFD_GET_TIME_NAMESPACE: 453 case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE: 454 case PIDFD_GET_UTS_NAMESPACE: 455 case PIDFD_GET_USER_NAMESPACE: 456 case PIDFD_GET_PID_NAMESPACE: 457 return true; 458 } 459 460 /* Extensible ioctls require some more careful checks. */ 461 switch (_IOC_NR(cmd)) { 462 case _IOC_NR(PIDFD_GET_INFO): 463 /* 464 * Try to prevent performing a pidfd ioctl when someone 465 * erronously mistook the file descriptor for a pidfd. 466 * This is not perfect but will catch most cases. 467 */ 468 return extensible_ioctl_valid(cmd, PIDFD_GET_INFO, PIDFD_INFO_SIZE_VER0); 469 } 470 471 return false; 472 } 473 474 static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 475 { 476 struct task_struct *task __free(put_task) = NULL; 477 struct nsproxy *nsp __free(put_nsproxy) = NULL; 478 struct ns_common *ns_common = NULL; 479 480 if (!pidfs_ioctl_valid(cmd)) 481 return -ENOIOCTLCMD; 482 483 if (cmd == FS_IOC_GETVERSION) { 484 if (!arg) 485 return -EINVAL; 486 487 __u32 __user *argp = (__u32 __user *)arg; 488 return put_user(file_inode(file)->i_generation, argp); 489 } 490 491 /* Extensible IOCTL that does not open namespace FDs, take a shortcut */ 492 if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO)) 493 return pidfd_info(file, cmd, arg); 494 495 task = get_pid_task(pidfd_pid(file), PIDTYPE_PID); 496 if (!task) 497 return -ESRCH; 498 499 if (arg) 500 return -EINVAL; 501 502 scoped_guard(task_lock, task) { 503 nsp = task->nsproxy; 504 if (nsp) 505 get_nsproxy(nsp); 506 } 507 if (!nsp) 508 return -ESRCH; /* just pretend it didn't exist */ 509 510 /* 511 * We're trying to open a file descriptor to the namespace so perform a 512 * filesystem cred ptrace check. Also, we mirror nsfs behavior. 513 */ 514 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 515 return -EACCES; 516 517 switch (cmd) { 518 /* Namespaces that hang of nsproxy. */ 519 case PIDFD_GET_CGROUP_NAMESPACE: 520 if (!ns_ref_get(nsp->cgroup_ns)) 521 break; 522 ns_common = to_ns_common(nsp->cgroup_ns); 523 break; 524 case PIDFD_GET_IPC_NAMESPACE: 525 if (!ns_ref_get(nsp->ipc_ns)) 526 break; 527 ns_common = to_ns_common(nsp->ipc_ns); 528 break; 529 case PIDFD_GET_MNT_NAMESPACE: 530 if (!ns_ref_get(nsp->mnt_ns)) 531 break; 532 ns_common = to_ns_common(nsp->mnt_ns); 533 break; 534 case PIDFD_GET_NET_NAMESPACE: 535 if (!ns_ref_get(nsp->net_ns)) 536 break; 537 ns_common = to_ns_common(nsp->net_ns); 538 break; 539 case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE: 540 if (!ns_ref_get(nsp->pid_ns_for_children)) 541 break; 542 ns_common = to_ns_common(nsp->pid_ns_for_children); 543 break; 544 case PIDFD_GET_TIME_NAMESPACE: 545 if (!ns_ref_get(nsp->time_ns)) 546 break; 547 ns_common = to_ns_common(nsp->time_ns); 548 break; 549 case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE: 550 if (!ns_ref_get(nsp->time_ns_for_children)) 551 break; 552 ns_common = to_ns_common(nsp->time_ns_for_children); 553 break; 554 case PIDFD_GET_UTS_NAMESPACE: 555 if (!ns_ref_get(nsp->uts_ns)) 556 break; 557 ns_common = to_ns_common(nsp->uts_ns); 558 break; 559 /* Namespaces that don't hang of nsproxy. */ 560 case PIDFD_GET_USER_NAMESPACE: 561 scoped_guard(rcu) { 562 struct user_namespace *user_ns; 563 564 user_ns = task_cred_xxx(task, user_ns); 565 if (!ns_ref_get(user_ns)) 566 break; 567 ns_common = to_ns_common(user_ns); 568 } 569 break; 570 case PIDFD_GET_PID_NAMESPACE: 571 scoped_guard(rcu) { 572 struct pid_namespace *pid_ns; 573 574 pid_ns = task_active_pid_ns(task); 575 if (!ns_ref_get(pid_ns)) 576 break; 577 ns_common = to_ns_common(pid_ns); 578 } 579 break; 580 default: 581 return -ENOIOCTLCMD; 582 } 583 584 if (!ns_common) 585 return -EOPNOTSUPP; 586 587 /* open_namespace() unconditionally consumes the reference */ 588 return open_namespace(ns_common); 589 } 590 591 static const struct file_operations pidfs_file_operations = { 592 .poll = pidfd_poll, 593 #ifdef CONFIG_PROC_FS 594 .show_fdinfo = pidfd_show_fdinfo, 595 #endif 596 .unlocked_ioctl = pidfd_ioctl, 597 .compat_ioctl = compat_ptr_ioctl, 598 }; 599 600 struct pid *pidfd_pid(const struct file *file) 601 { 602 if (file->f_op != &pidfs_file_operations) 603 return ERR_PTR(-EBADF); 604 return file_inode(file)->i_private; 605 } 606 607 /* 608 * We're called from release_task(). We know there's at least one 609 * reference to struct pid being held that won't be released until the 610 * task has been reaped which cannot happen until we're out of 611 * release_task(). 612 * 613 * If this struct pid has at least once been referred to by a pidfd then 614 * pid->attr will be allocated. If not we mark the struct pid as dead so 615 * anyone who is trying to register it with pidfs will fail to do so. 616 * Otherwise we would hand out pidfs for reaped tasks without having 617 * exit information available. 618 * 619 * Worst case is that we've filled in the info and the pid gets freed 620 * right away in free_pid() when no one holds a pidfd anymore. Since 621 * pidfs_exit() currently is placed after exit_task_work() we know that 622 * it cannot be us aka the exiting task holding a pidfd to itself. 623 */ 624 void pidfs_exit(struct task_struct *tsk) 625 { 626 struct pid *pid = task_pid(tsk); 627 struct pidfs_attr *attr; 628 #ifdef CONFIG_CGROUPS 629 struct cgroup *cgrp; 630 #endif 631 632 might_sleep(); 633 634 /* Synchronize with pidfs_register_pid(). */ 635 scoped_guard(spinlock_irq, &pid->wait_pidfd.lock) { 636 attr = pid->attr; 637 if (!attr) { 638 /* 639 * No one ever held a pidfd for this struct pid. 640 * Mark it as dead so no one can add a pidfs 641 * entry anymore. We're about to be reaped and 642 * so no exit information would be available. 643 */ 644 pid->attr = PIDFS_PID_DEAD; 645 return; 646 } 647 } 648 649 /* 650 * If @pid->attr is set someone might still legitimately hold a 651 * pidfd to @pid or someone might concurrently still be getting 652 * a reference to an already stashed dentry from @pid->stashed. 653 * So defer cleaning @pid->attr until the last reference to @pid 654 * is put 655 */ 656 657 #ifdef CONFIG_CGROUPS 658 rcu_read_lock(); 659 cgrp = task_dfl_cgroup(tsk); 660 attr->cgroupid = cgroup_id(cgrp); 661 rcu_read_unlock(); 662 #endif 663 attr->exit_code = tsk->exit_code; 664 665 /* Ensure that PIDFD_GET_INFO sees either all or nothing. */ 666 smp_wmb(); 667 set_bit(PIDFS_ATTR_BIT_EXIT, &attr->attr_mask); 668 } 669 670 #ifdef CONFIG_COREDUMP 671 void pidfs_coredump(const struct coredump_params *cprm) 672 { 673 struct pid *pid = cprm->pid; 674 struct pidfs_attr *attr; 675 676 attr = READ_ONCE(pid->attr); 677 678 VFS_WARN_ON_ONCE(!attr); 679 VFS_WARN_ON_ONCE(attr == PIDFS_PID_DEAD); 680 681 /* Note how we were coredumped and that we coredumped. */ 682 attr->coredump_mask = pidfs_coredump_mask(cprm->mm_flags) | 683 PIDFD_COREDUMPED; 684 /* If coredumping is set to skip we should never end up here. */ 685 VFS_WARN_ON_ONCE(attr->coredump_mask & PIDFD_COREDUMP_SKIP); 686 /* Expose the signal number that caused the coredump. */ 687 attr->coredump_signal = cprm->siginfo->si_signo; 688 smp_wmb(); 689 set_bit(PIDFS_ATTR_BIT_COREDUMP, &attr->attr_mask); 690 } 691 #endif 692 693 static struct vfsmount *pidfs_mnt __ro_after_init; 694 695 /* 696 * The vfs falls back to simple_setattr() if i_op->setattr() isn't 697 * implemented. Let's reject it completely until we have a clean 698 * permission concept for pidfds. 699 */ 700 static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 701 struct iattr *attr) 702 { 703 return anon_inode_setattr(idmap, dentry, attr); 704 } 705 706 static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path, 707 struct kstat *stat, u32 request_mask, 708 unsigned int query_flags) 709 { 710 return anon_inode_getattr(idmap, path, stat, request_mask, query_flags); 711 } 712 713 static ssize_t pidfs_listxattr(struct dentry *dentry, char *buf, size_t size) 714 { 715 struct inode *inode = d_inode(dentry); 716 struct pid *pid = inode->i_private; 717 struct pidfs_attr *attr = pid->attr; 718 struct simple_xattrs *xattrs; 719 720 xattrs = READ_ONCE(attr->xattrs); 721 if (!xattrs) 722 return 0; 723 724 return simple_xattr_list(inode, xattrs, buf, size); 725 } 726 727 static const struct inode_operations pidfs_inode_operations = { 728 .getattr = pidfs_getattr, 729 .setattr = pidfs_setattr, 730 .listxattr = pidfs_listxattr, 731 }; 732 733 static void pidfs_evict_inode(struct inode *inode) 734 { 735 struct pid *pid = inode->i_private; 736 737 clear_inode(inode); 738 put_pid(pid); 739 } 740 741 static const struct super_operations pidfs_sops = { 742 .drop_inode = inode_just_drop, 743 .evict_inode = pidfs_evict_inode, 744 .statfs = simple_statfs, 745 }; 746 747 /* 748 * 'lsof' has knowledge of out historical anon_inode use, and expects 749 * the pidfs dentry name to start with 'anon_inode'. 750 */ 751 static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen) 752 { 753 return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]"); 754 } 755 756 const struct dentry_operations pidfs_dentry_operations = { 757 .d_dname = pidfs_dname, 758 .d_prune = stashed_dentry_prune, 759 }; 760 761 static int pidfs_encode_fh(struct inode *inode, u32 *fh, int *max_len, 762 struct inode *parent) 763 { 764 const struct pid *pid = inode->i_private; 765 766 if (*max_len < 2) { 767 *max_len = 2; 768 return FILEID_INVALID; 769 } 770 771 *max_len = 2; 772 *(u64 *)fh = pid->ino; 773 return FILEID_KERNFS; 774 } 775 776 static int pidfs_ino_find(const void *key, const struct rb_node *node) 777 { 778 const u64 pid_ino = *(u64 *)key; 779 const struct pid *pid = rb_entry(node, struct pid, pidfs_node); 780 781 if (pid_ino < pid->ino) 782 return -1; 783 if (pid_ino > pid->ino) 784 return 1; 785 return 0; 786 } 787 788 /* Find a struct pid based on the inode number. */ 789 static struct pid *pidfs_ino_get_pid(u64 ino) 790 { 791 struct pid *pid; 792 struct rb_node *node; 793 unsigned int seq; 794 795 guard(rcu)(); 796 do { 797 seq = read_seqcount_begin(&pidmap_lock_seq); 798 node = rb_find_rcu(&ino, &pidfs_ino_tree, pidfs_ino_find); 799 if (node) 800 break; 801 } while (read_seqcount_retry(&pidmap_lock_seq, seq)); 802 803 if (!node) 804 return NULL; 805 806 pid = rb_entry(node, struct pid, pidfs_node); 807 808 /* Within our pid namespace hierarchy? */ 809 if (pid_vnr(pid) == 0) 810 return NULL; 811 812 return get_pid(pid); 813 } 814 815 static struct dentry *pidfs_fh_to_dentry(struct super_block *sb, 816 struct fid *fid, int fh_len, 817 int fh_type) 818 { 819 int ret; 820 u64 pid_ino; 821 struct path path; 822 struct pid *pid; 823 824 if (fh_len < 2) 825 return NULL; 826 827 switch (fh_type) { 828 case FILEID_KERNFS: 829 pid_ino = *(u64 *)fid; 830 break; 831 default: 832 return NULL; 833 } 834 835 pid = pidfs_ino_get_pid(pid_ino); 836 if (!pid) 837 return NULL; 838 839 ret = path_from_stashed(&pid->stashed, pidfs_mnt, pid, &path); 840 if (ret < 0) 841 return ERR_PTR(ret); 842 843 VFS_WARN_ON_ONCE(!pid->attr); 844 845 mntput(path.mnt); 846 return path.dentry; 847 } 848 849 /* 850 * Make sure that we reject any nonsensical flags that users pass via 851 * open_by_handle_at(). Note that PIDFD_THREAD is defined as O_EXCL, and 852 * PIDFD_NONBLOCK as O_NONBLOCK. 853 */ 854 #define VALID_FILE_HANDLE_OPEN_FLAGS \ 855 (O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_CLOEXEC | O_EXCL) 856 857 static int pidfs_export_permission(struct handle_to_path_ctx *ctx, 858 unsigned int oflags) 859 { 860 if (oflags & ~(VALID_FILE_HANDLE_OPEN_FLAGS | O_LARGEFILE)) 861 return -EINVAL; 862 863 /* 864 * pidfd_ino_get_pid() will verify that the struct pid is part 865 * of the caller's pid namespace hierarchy. No further 866 * permission checks are needed. 867 */ 868 return 0; 869 } 870 871 static struct file *pidfs_export_open(const struct path *path, unsigned int oflags) 872 { 873 /* 874 * Clear O_LARGEFILE as open_by_handle_at() forces it and raise 875 * O_RDWR as pidfds always are. 876 */ 877 oflags &= ~O_LARGEFILE; 878 return dentry_open(path, oflags | O_RDWR, current_cred()); 879 } 880 881 static const struct export_operations pidfs_export_operations = { 882 .encode_fh = pidfs_encode_fh, 883 .fh_to_dentry = pidfs_fh_to_dentry, 884 .open = pidfs_export_open, 885 .permission = pidfs_export_permission, 886 }; 887 888 static int pidfs_init_inode(struct inode *inode, void *data) 889 { 890 const struct pid *pid = data; 891 892 inode->i_private = data; 893 inode->i_flags |= S_PRIVATE | S_ANON_INODE; 894 /* We allow to set xattrs. */ 895 inode->i_flags &= ~S_IMMUTABLE; 896 inode->i_mode |= S_IRWXU; 897 inode->i_op = &pidfs_inode_operations; 898 inode->i_fop = &pidfs_file_operations; 899 inode->i_ino = pidfs_ino(pid->ino); 900 inode->i_generation = pidfs_gen(pid->ino); 901 return 0; 902 } 903 904 static void pidfs_put_data(void *data) 905 { 906 struct pid *pid = data; 907 put_pid(pid); 908 } 909 910 /** 911 * pidfs_register_pid - register a struct pid in pidfs 912 * @pid: pid to pin 913 * 914 * Register a struct pid in pidfs. 915 * 916 * Return: On success zero, on error a negative error code is returned. 917 */ 918 int pidfs_register_pid(struct pid *pid) 919 { 920 struct pidfs_attr *new_attr __free(kfree) = NULL; 921 struct pidfs_attr *attr; 922 923 might_sleep(); 924 925 if (!pid) 926 return 0; 927 928 attr = READ_ONCE(pid->attr); 929 if (unlikely(attr == PIDFS_PID_DEAD)) 930 return PTR_ERR(PIDFS_PID_DEAD); 931 if (attr) 932 return 0; 933 934 new_attr = kmem_cache_zalloc(pidfs_attr_cachep, GFP_KERNEL); 935 if (!new_attr) 936 return -ENOMEM; 937 938 /* Synchronize with pidfs_exit(). */ 939 guard(spinlock_irq)(&pid->wait_pidfd.lock); 940 941 attr = pid->attr; 942 if (unlikely(attr == PIDFS_PID_DEAD)) 943 return PTR_ERR(PIDFS_PID_DEAD); 944 if (unlikely(attr)) 945 return 0; 946 947 pid->attr = no_free_ptr(new_attr); 948 return 0; 949 } 950 951 static struct dentry *pidfs_stash_dentry(struct dentry **stashed, 952 struct dentry *dentry) 953 { 954 int ret; 955 struct pid *pid = d_inode(dentry)->i_private; 956 957 VFS_WARN_ON_ONCE(stashed != &pid->stashed); 958 959 ret = pidfs_register_pid(pid); 960 if (ret) 961 return ERR_PTR(ret); 962 963 return stash_dentry(stashed, dentry); 964 } 965 966 static const struct stashed_operations pidfs_stashed_ops = { 967 .stash_dentry = pidfs_stash_dentry, 968 .init_inode = pidfs_init_inode, 969 .put_data = pidfs_put_data, 970 }; 971 972 static int pidfs_xattr_get(const struct xattr_handler *handler, 973 struct dentry *unused, struct inode *inode, 974 const char *suffix, void *value, size_t size) 975 { 976 struct pid *pid = inode->i_private; 977 struct pidfs_attr *attr = pid->attr; 978 const char *name; 979 struct simple_xattrs *xattrs; 980 981 xattrs = READ_ONCE(attr->xattrs); 982 if (!xattrs) 983 return 0; 984 985 name = xattr_full_name(handler, suffix); 986 return simple_xattr_get(xattrs, name, value, size); 987 } 988 989 static int pidfs_xattr_set(const struct xattr_handler *handler, 990 struct mnt_idmap *idmap, struct dentry *unused, 991 struct inode *inode, const char *suffix, 992 const void *value, size_t size, int flags) 993 { 994 struct pid *pid = inode->i_private; 995 struct pidfs_attr *attr = pid->attr; 996 const char *name; 997 struct simple_xattrs *xattrs; 998 struct simple_xattr *old_xattr; 999 1000 /* Ensure we're the only one to set @attr->xattrs. */ 1001 WARN_ON_ONCE(!inode_is_locked(inode)); 1002 1003 xattrs = READ_ONCE(attr->xattrs); 1004 if (!xattrs) { 1005 xattrs = kmem_cache_zalloc(pidfs_xattr_cachep, GFP_KERNEL); 1006 if (!xattrs) 1007 return -ENOMEM; 1008 1009 simple_xattrs_init(xattrs); 1010 smp_store_release(&pid->attr->xattrs, xattrs); 1011 } 1012 1013 name = xattr_full_name(handler, suffix); 1014 old_xattr = simple_xattr_set(xattrs, name, value, size, flags); 1015 if (IS_ERR(old_xattr)) 1016 return PTR_ERR(old_xattr); 1017 1018 simple_xattr_free(old_xattr); 1019 return 0; 1020 } 1021 1022 static const struct xattr_handler pidfs_trusted_xattr_handler = { 1023 .prefix = XATTR_TRUSTED_PREFIX, 1024 .get = pidfs_xattr_get, 1025 .set = pidfs_xattr_set, 1026 }; 1027 1028 static const struct xattr_handler *const pidfs_xattr_handlers[] = { 1029 &pidfs_trusted_xattr_handler, 1030 NULL 1031 }; 1032 1033 static int pidfs_init_fs_context(struct fs_context *fc) 1034 { 1035 struct pseudo_fs_context *ctx; 1036 1037 ctx = init_pseudo(fc, PID_FS_MAGIC); 1038 if (!ctx) 1039 return -ENOMEM; 1040 1041 fc->s_iflags |= SB_I_NOEXEC; 1042 fc->s_iflags |= SB_I_NODEV; 1043 ctx->s_d_flags |= DCACHE_DONTCACHE; 1044 ctx->ops = &pidfs_sops; 1045 ctx->eops = &pidfs_export_operations; 1046 ctx->dops = &pidfs_dentry_operations; 1047 ctx->xattr = pidfs_xattr_handlers; 1048 fc->s_fs_info = (void *)&pidfs_stashed_ops; 1049 return 0; 1050 } 1051 1052 static struct file_system_type pidfs_type = { 1053 .name = "pidfs", 1054 .init_fs_context = pidfs_init_fs_context, 1055 .kill_sb = kill_anon_super, 1056 }; 1057 1058 struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags) 1059 { 1060 struct file *pidfd_file; 1061 struct path path __free(path_put) = {}; 1062 int ret; 1063 1064 /* 1065 * Ensure that PIDFD_STALE can be passed as a flag without 1066 * overloading other uapi pidfd flags. 1067 */ 1068 BUILD_BUG_ON(PIDFD_STALE == PIDFD_THREAD); 1069 BUILD_BUG_ON(PIDFD_STALE == PIDFD_NONBLOCK); 1070 1071 ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path); 1072 if (ret < 0) 1073 return ERR_PTR(ret); 1074 1075 VFS_WARN_ON_ONCE(!pid->attr); 1076 1077 flags &= ~PIDFD_STALE; 1078 flags |= O_RDWR; 1079 pidfd_file = dentry_open(&path, flags, current_cred()); 1080 /* Raise PIDFD_THREAD explicitly as do_dentry_open() strips it. */ 1081 if (!IS_ERR(pidfd_file)) 1082 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 1083 1084 return pidfd_file; 1085 } 1086 1087 void __init pidfs_init(void) 1088 { 1089 pidfs_attr_cachep = kmem_cache_create("pidfs_attr_cache", sizeof(struct pidfs_attr), 0, 1090 (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | 1091 SLAB_ACCOUNT | SLAB_PANIC), NULL); 1092 1093 pidfs_xattr_cachep = kmem_cache_create("pidfs_xattr_cache", 1094 sizeof(struct simple_xattrs), 0, 1095 (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | 1096 SLAB_ACCOUNT | SLAB_PANIC), NULL); 1097 1098 pidfs_mnt = kern_mount(&pidfs_type); 1099 if (IS_ERR(pidfs_mnt)) 1100 panic("Failed to mount pidfs pseudo filesystem"); 1101 1102 pidfs_root_path.mnt = pidfs_mnt; 1103 pidfs_root_path.dentry = pidfs_mnt->mnt_root; 1104 } 1105