xref: /linux/fs/pidfs.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/anon_inodes.h>
3 #include <linux/file.h>
4 #include <linux/fs.h>
5 #include <linux/cgroup.h>
6 #include <linux/magic.h>
7 #include <linux/mount.h>
8 #include <linux/pid.h>
9 #include <linux/pidfs.h>
10 #include <linux/pid_namespace.h>
11 #include <linux/poll.h>
12 #include <linux/proc_fs.h>
13 #include <linux/proc_ns.h>
14 #include <linux/pseudo_fs.h>
15 #include <linux/ptrace.h>
16 #include <linux/seq_file.h>
17 #include <uapi/linux/pidfd.h>
18 #include <linux/ipc_namespace.h>
19 #include <linux/time_namespace.h>
20 #include <linux/utsname.h>
21 #include <net/net_namespace.h>
22 
23 #include "internal.h"
24 #include "mount.h"
25 
26 #ifdef CONFIG_PROC_FS
27 /**
28  * pidfd_show_fdinfo - print information about a pidfd
29  * @m: proc fdinfo file
30  * @f: file referencing a pidfd
31  *
32  * Pid:
33  * This function will print the pid that a given pidfd refers to in the
34  * pid namespace of the procfs instance.
35  * If the pid namespace of the process is not a descendant of the pid
36  * namespace of the procfs instance 0 will be shown as its pid. This is
37  * similar to calling getppid() on a process whose parent is outside of
38  * its pid namespace.
39  *
40  * NSpid:
41  * If pid namespaces are supported then this function will also print
42  * the pid of a given pidfd refers to for all descendant pid namespaces
43  * starting from the current pid namespace of the instance, i.e. the
44  * Pid field and the first entry in the NSpid field will be identical.
45  * If the pid namespace of the process is not a descendant of the pid
46  * namespace of the procfs instance 0 will be shown as its first NSpid
47  * entry and no others will be shown.
48  * Note that this differs from the Pid and NSpid fields in
49  * /proc/<pid>/status where Pid and NSpid are always shown relative to
50  * the  pid namespace of the procfs instance. The difference becomes
51  * obvious when sending around a pidfd between pid namespaces from a
52  * different branch of the tree, i.e. where no ancestral relation is
53  * present between the pid namespaces:
54  * - create two new pid namespaces ns1 and ns2 in the initial pid
55  *   namespace (also take care to create new mount namespaces in the
56  *   new pid namespace and mount procfs)
57  * - create a process with a pidfd in ns1
58  * - send pidfd from ns1 to ns2
59  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
60  *   have exactly one entry, which is 0
61  */
62 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
63 {
64 	struct pid *pid = pidfd_pid(f);
65 	struct pid_namespace *ns;
66 	pid_t nr = -1;
67 
68 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
69 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
70 		nr = pid_nr_ns(pid, ns);
71 	}
72 
73 	seq_put_decimal_ll(m, "Pid:\t", nr);
74 
75 #ifdef CONFIG_PID_NS
76 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
77 	if (nr > 0) {
78 		int i;
79 
80 		/* If nr is non-zero it means that 'pid' is valid and that
81 		 * ns, i.e. the pid namespace associated with the procfs
82 		 * instance, is in the pid namespace hierarchy of pid.
83 		 * Start at one below the already printed level.
84 		 */
85 		for (i = ns->level + 1; i <= pid->level; i++)
86 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
87 	}
88 #endif
89 	seq_putc(m, '\n');
90 }
91 #endif
92 
93 /*
94  * Poll support for process exit notification.
95  */
96 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
97 {
98 	struct pid *pid = pidfd_pid(file);
99 	bool thread = file->f_flags & PIDFD_THREAD;
100 	struct task_struct *task;
101 	__poll_t poll_flags = 0;
102 
103 	poll_wait(file, &pid->wait_pidfd, pts);
104 	/*
105 	 * Depending on PIDFD_THREAD, inform pollers when the thread
106 	 * or the whole thread-group exits.
107 	 */
108 	guard(rcu)();
109 	task = pid_task(pid, PIDTYPE_PID);
110 	if (!task)
111 		poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
112 	else if (task->exit_state && (thread || thread_group_empty(task)))
113 		poll_flags = EPOLLIN | EPOLLRDNORM;
114 
115 	return poll_flags;
116 }
117 
118 static long pidfd_info(struct task_struct *task, unsigned int cmd, unsigned long arg)
119 {
120 	struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg;
121 	size_t usize = _IOC_SIZE(cmd);
122 	struct pidfd_info kinfo = {};
123 	struct user_namespace *user_ns;
124 	const struct cred *c;
125 	__u64 mask;
126 #ifdef CONFIG_CGROUPS
127 	struct cgroup *cgrp;
128 #endif
129 
130 	if (!uinfo)
131 		return -EINVAL;
132 	if (usize < PIDFD_INFO_SIZE_VER0)
133 		return -EINVAL; /* First version, no smaller struct possible */
134 
135 	if (copy_from_user(&mask, &uinfo->mask, sizeof(mask)))
136 		return -EFAULT;
137 
138 	c = get_task_cred(task);
139 	if (!c)
140 		return -ESRCH;
141 
142 	/* Unconditionally return identifiers and credentials, the rest only on request */
143 
144 	user_ns = current_user_ns();
145 	kinfo.ruid = from_kuid_munged(user_ns, c->uid);
146 	kinfo.rgid = from_kgid_munged(user_ns, c->gid);
147 	kinfo.euid = from_kuid_munged(user_ns, c->euid);
148 	kinfo.egid = from_kgid_munged(user_ns, c->egid);
149 	kinfo.suid = from_kuid_munged(user_ns, c->suid);
150 	kinfo.sgid = from_kgid_munged(user_ns, c->sgid);
151 	kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid);
152 	kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid);
153 	kinfo.mask |= PIDFD_INFO_CREDS;
154 	put_cred(c);
155 
156 #ifdef CONFIG_CGROUPS
157 	rcu_read_lock();
158 	cgrp = task_dfl_cgroup(task);
159 	kinfo.cgroupid = cgroup_id(cgrp);
160 	kinfo.mask |= PIDFD_INFO_CGROUPID;
161 	rcu_read_unlock();
162 #endif
163 
164 	/*
165 	 * Copy pid/tgid last, to reduce the chances the information might be
166 	 * stale. Note that it is not possible to ensure it will be valid as the
167 	 * task might return as soon as the copy_to_user finishes, but that's ok
168 	 * and userspace expects that might happen and can act accordingly, so
169 	 * this is just best-effort. What we can do however is checking that all
170 	 * the fields are set correctly, or return ESRCH to avoid providing
171 	 * incomplete information. */
172 
173 	kinfo.ppid = task_ppid_nr_ns(task, NULL);
174 	kinfo.tgid = task_tgid_vnr(task);
175 	kinfo.pid = task_pid_vnr(task);
176 	kinfo.mask |= PIDFD_INFO_PID;
177 
178 	if (kinfo.pid == 0 || kinfo.tgid == 0 || (kinfo.ppid == 0 && kinfo.pid != 1))
179 		return -ESRCH;
180 
181 	/*
182 	 * If userspace and the kernel have the same struct size it can just
183 	 * be copied. If userspace provides an older struct, only the bits that
184 	 * userspace knows about will be copied. If userspace provides a new
185 	 * struct, only the bits that the kernel knows about will be copied.
186 	 */
187 	if (copy_to_user(uinfo, &kinfo, min(usize, sizeof(kinfo))))
188 		return -EFAULT;
189 
190 	return 0;
191 }
192 
193 static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
194 {
195 	struct task_struct *task __free(put_task) = NULL;
196 	struct nsproxy *nsp __free(put_nsproxy) = NULL;
197 	struct pid *pid = pidfd_pid(file);
198 	struct ns_common *ns_common = NULL;
199 	struct pid_namespace *pid_ns;
200 
201 	task = get_pid_task(pid, PIDTYPE_PID);
202 	if (!task)
203 		return -ESRCH;
204 
205 	/* Extensible IOCTL that does not open namespace FDs, take a shortcut */
206 	if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO))
207 		return pidfd_info(task, cmd, arg);
208 
209 	if (arg)
210 		return -EINVAL;
211 
212 	scoped_guard(task_lock, task) {
213 		nsp = task->nsproxy;
214 		if (nsp)
215 			get_nsproxy(nsp);
216 	}
217 	if (!nsp)
218 		return -ESRCH; /* just pretend it didn't exist */
219 
220 	/*
221 	 * We're trying to open a file descriptor to the namespace so perform a
222 	 * filesystem cred ptrace check. Also, we mirror nsfs behavior.
223 	 */
224 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
225 		return -EACCES;
226 
227 	switch (cmd) {
228 	/* Namespaces that hang of nsproxy. */
229 	case PIDFD_GET_CGROUP_NAMESPACE:
230 		if (IS_ENABLED(CONFIG_CGROUPS)) {
231 			get_cgroup_ns(nsp->cgroup_ns);
232 			ns_common = to_ns_common(nsp->cgroup_ns);
233 		}
234 		break;
235 	case PIDFD_GET_IPC_NAMESPACE:
236 		if (IS_ENABLED(CONFIG_IPC_NS)) {
237 			get_ipc_ns(nsp->ipc_ns);
238 			ns_common = to_ns_common(nsp->ipc_ns);
239 		}
240 		break;
241 	case PIDFD_GET_MNT_NAMESPACE:
242 		get_mnt_ns(nsp->mnt_ns);
243 		ns_common = to_ns_common(nsp->mnt_ns);
244 		break;
245 	case PIDFD_GET_NET_NAMESPACE:
246 		if (IS_ENABLED(CONFIG_NET_NS)) {
247 			ns_common = to_ns_common(nsp->net_ns);
248 			get_net_ns(ns_common);
249 		}
250 		break;
251 	case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
252 		if (IS_ENABLED(CONFIG_PID_NS)) {
253 			get_pid_ns(nsp->pid_ns_for_children);
254 			ns_common = to_ns_common(nsp->pid_ns_for_children);
255 		}
256 		break;
257 	case PIDFD_GET_TIME_NAMESPACE:
258 		if (IS_ENABLED(CONFIG_TIME_NS)) {
259 			get_time_ns(nsp->time_ns);
260 			ns_common = to_ns_common(nsp->time_ns);
261 		}
262 		break;
263 	case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
264 		if (IS_ENABLED(CONFIG_TIME_NS)) {
265 			get_time_ns(nsp->time_ns_for_children);
266 			ns_common = to_ns_common(nsp->time_ns_for_children);
267 		}
268 		break;
269 	case PIDFD_GET_UTS_NAMESPACE:
270 		if (IS_ENABLED(CONFIG_UTS_NS)) {
271 			get_uts_ns(nsp->uts_ns);
272 			ns_common = to_ns_common(nsp->uts_ns);
273 		}
274 		break;
275 	/* Namespaces that don't hang of nsproxy. */
276 	case PIDFD_GET_USER_NAMESPACE:
277 		if (IS_ENABLED(CONFIG_USER_NS)) {
278 			rcu_read_lock();
279 			ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns)));
280 			rcu_read_unlock();
281 		}
282 		break;
283 	case PIDFD_GET_PID_NAMESPACE:
284 		if (IS_ENABLED(CONFIG_PID_NS)) {
285 			rcu_read_lock();
286 			pid_ns = task_active_pid_ns(task);
287 			if (pid_ns)
288 				ns_common = to_ns_common(get_pid_ns(pid_ns));
289 			rcu_read_unlock();
290 		}
291 		break;
292 	default:
293 		return -ENOIOCTLCMD;
294 	}
295 
296 	if (!ns_common)
297 		return -EOPNOTSUPP;
298 
299 	/* open_namespace() unconditionally consumes the reference */
300 	return open_namespace(ns_common);
301 }
302 
303 static const struct file_operations pidfs_file_operations = {
304 	.poll		= pidfd_poll,
305 #ifdef CONFIG_PROC_FS
306 	.show_fdinfo	= pidfd_show_fdinfo,
307 #endif
308 	.unlocked_ioctl	= pidfd_ioctl,
309 	.compat_ioctl   = compat_ptr_ioctl,
310 };
311 
312 struct pid *pidfd_pid(const struct file *file)
313 {
314 	if (file->f_op != &pidfs_file_operations)
315 		return ERR_PTR(-EBADF);
316 	return file_inode(file)->i_private;
317 }
318 
319 static struct vfsmount *pidfs_mnt __ro_after_init;
320 
321 #if BITS_PER_LONG == 32
322 /*
323  * Provide a fallback mechanism for 32-bit systems so processes remain
324  * reliably comparable by inode number even on those systems.
325  */
326 static DEFINE_IDA(pidfd_inum_ida);
327 
328 static int pidfs_inum(struct pid *pid, unsigned long *ino)
329 {
330 	int ret;
331 
332 	ret = ida_alloc_range(&pidfd_inum_ida, RESERVED_PIDS + 1,
333 			      UINT_MAX, GFP_ATOMIC);
334 	if (ret < 0)
335 		return -ENOSPC;
336 
337 	*ino = ret;
338 	return 0;
339 }
340 
341 static inline void pidfs_free_inum(unsigned long ino)
342 {
343 	if (ino > 0)
344 		ida_free(&pidfd_inum_ida, ino);
345 }
346 #else
347 static inline int pidfs_inum(struct pid *pid, unsigned long *ino)
348 {
349 	*ino = pid->ino;
350 	return 0;
351 }
352 #define pidfs_free_inum(ino) ((void)(ino))
353 #endif
354 
355 /*
356  * The vfs falls back to simple_setattr() if i_op->setattr() isn't
357  * implemented. Let's reject it completely until we have a clean
358  * permission concept for pidfds.
359  */
360 static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
361 			 struct iattr *attr)
362 {
363 	return -EOPNOTSUPP;
364 }
365 
366 
367 /*
368  * User space expects pidfs inodes to have no file type in st_mode.
369  *
370  * In particular, 'lsof' has this legacy logic:
371  *
372  *	type = s->st_mode & S_IFMT;
373  *	switch (type) {
374  *	  ...
375  *	case 0:
376  *		if (!strcmp(p, "anon_inode"))
377  *			Lf->ntype = Ntype = N_ANON_INODE;
378  *
379  * to detect our old anon_inode logic.
380  *
381  * Rather than mess with our internal sane inode data, just fix it
382  * up here in getattr() by masking off the format bits.
383  */
384 static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
385 			 struct kstat *stat, u32 request_mask,
386 			 unsigned int query_flags)
387 {
388 	struct inode *inode = d_inode(path->dentry);
389 
390 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
391 	stat->mode &= ~S_IFMT;
392 	return 0;
393 }
394 
395 static const struct inode_operations pidfs_inode_operations = {
396 	.getattr = pidfs_getattr,
397 	.setattr = pidfs_setattr,
398 };
399 
400 static void pidfs_evict_inode(struct inode *inode)
401 {
402 	struct pid *pid = inode->i_private;
403 
404 	clear_inode(inode);
405 	put_pid(pid);
406 	pidfs_free_inum(inode->i_ino);
407 }
408 
409 static const struct super_operations pidfs_sops = {
410 	.drop_inode	= generic_delete_inode,
411 	.evict_inode	= pidfs_evict_inode,
412 	.statfs		= simple_statfs,
413 };
414 
415 /*
416  * 'lsof' has knowledge of out historical anon_inode use, and expects
417  * the pidfs dentry name to start with 'anon_inode'.
418  */
419 static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
420 {
421 	return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
422 }
423 
424 static const struct dentry_operations pidfs_dentry_operations = {
425 	.d_delete	= always_delete_dentry,
426 	.d_dname	= pidfs_dname,
427 	.d_prune	= stashed_dentry_prune,
428 };
429 
430 static int pidfs_init_inode(struct inode *inode, void *data)
431 {
432 	inode->i_private = data;
433 	inode->i_flags |= S_PRIVATE;
434 	inode->i_mode |= S_IRWXU;
435 	inode->i_op = &pidfs_inode_operations;
436 	inode->i_fop = &pidfs_file_operations;
437 	/*
438 	 * Inode numbering for pidfs start at RESERVED_PIDS + 1. This
439 	 * avoids collisions with the root inode which is 1 for pseudo
440 	 * filesystems.
441 	 */
442 	return pidfs_inum(data, &inode->i_ino);
443 }
444 
445 static void pidfs_put_data(void *data)
446 {
447 	struct pid *pid = data;
448 	put_pid(pid);
449 }
450 
451 static const struct stashed_operations pidfs_stashed_ops = {
452 	.init_inode = pidfs_init_inode,
453 	.put_data = pidfs_put_data,
454 };
455 
456 static int pidfs_init_fs_context(struct fs_context *fc)
457 {
458 	struct pseudo_fs_context *ctx;
459 
460 	ctx = init_pseudo(fc, PID_FS_MAGIC);
461 	if (!ctx)
462 		return -ENOMEM;
463 
464 	ctx->ops = &pidfs_sops;
465 	ctx->dops = &pidfs_dentry_operations;
466 	fc->s_fs_info = (void *)&pidfs_stashed_ops;
467 	return 0;
468 }
469 
470 static struct file_system_type pidfs_type = {
471 	.name			= "pidfs",
472 	.init_fs_context	= pidfs_init_fs_context,
473 	.kill_sb		= kill_anon_super,
474 };
475 
476 struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
477 {
478 
479 	struct file *pidfd_file;
480 	struct path path;
481 	int ret;
482 
483 	ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
484 	if (ret < 0)
485 		return ERR_PTR(ret);
486 
487 	pidfd_file = dentry_open(&path, flags, current_cred());
488 	path_put(&path);
489 	return pidfd_file;
490 }
491 
492 void __init pidfs_init(void)
493 {
494 	pidfs_mnt = kern_mount(&pidfs_type);
495 	if (IS_ERR(pidfs_mnt))
496 		panic("Failed to mount pidfs pseudo filesystem");
497 }
498