xref: /linux/fs/pidfs.c (revision 527eff227d4321c6ea453db1083bc4fdd4d3a3e8)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/anon_inodes.h>
3 #include <linux/file.h>
4 #include <linux/fs.h>
5 #include <linux/magic.h>
6 #include <linux/mount.h>
7 #include <linux/pid.h>
8 #include <linux/pidfs.h>
9 #include <linux/pid_namespace.h>
10 #include <linux/poll.h>
11 #include <linux/proc_fs.h>
12 #include <linux/proc_ns.h>
13 #include <linux/pseudo_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/seq_file.h>
16 #include <uapi/linux/pidfd.h>
17 #include <linux/ipc_namespace.h>
18 #include <linux/time_namespace.h>
19 #include <linux/utsname.h>
20 #include <net/net_namespace.h>
21 
22 #include "internal.h"
23 #include "mount.h"
24 
25 #ifdef CONFIG_PROC_FS
26 /**
27  * pidfd_show_fdinfo - print information about a pidfd
28  * @m: proc fdinfo file
29  * @f: file referencing a pidfd
30  *
31  * Pid:
32  * This function will print the pid that a given pidfd refers to in the
33  * pid namespace of the procfs instance.
34  * If the pid namespace of the process is not a descendant of the pid
35  * namespace of the procfs instance 0 will be shown as its pid. This is
36  * similar to calling getppid() on a process whose parent is outside of
37  * its pid namespace.
38  *
39  * NSpid:
40  * If pid namespaces are supported then this function will also print
41  * the pid of a given pidfd refers to for all descendant pid namespaces
42  * starting from the current pid namespace of the instance, i.e. the
43  * Pid field and the first entry in the NSpid field will be identical.
44  * If the pid namespace of the process is not a descendant of the pid
45  * namespace of the procfs instance 0 will be shown as its first NSpid
46  * entry and no others will be shown.
47  * Note that this differs from the Pid and NSpid fields in
48  * /proc/<pid>/status where Pid and NSpid are always shown relative to
49  * the  pid namespace of the procfs instance. The difference becomes
50  * obvious when sending around a pidfd between pid namespaces from a
51  * different branch of the tree, i.e. where no ancestral relation is
52  * present between the pid namespaces:
53  * - create two new pid namespaces ns1 and ns2 in the initial pid
54  *   namespace (also take care to create new mount namespaces in the
55  *   new pid namespace and mount procfs)
56  * - create a process with a pidfd in ns1
57  * - send pidfd from ns1 to ns2
58  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
59  *   have exactly one entry, which is 0
60  */
61 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
62 {
63 	struct pid *pid = pidfd_pid(f);
64 	struct pid_namespace *ns;
65 	pid_t nr = -1;
66 
67 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
68 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
69 		nr = pid_nr_ns(pid, ns);
70 	}
71 
72 	seq_put_decimal_ll(m, "Pid:\t", nr);
73 
74 #ifdef CONFIG_PID_NS
75 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
76 	if (nr > 0) {
77 		int i;
78 
79 		/* If nr is non-zero it means that 'pid' is valid and that
80 		 * ns, i.e. the pid namespace associated with the procfs
81 		 * instance, is in the pid namespace hierarchy of pid.
82 		 * Start at one below the already printed level.
83 		 */
84 		for (i = ns->level + 1; i <= pid->level; i++)
85 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
86 	}
87 #endif
88 	seq_putc(m, '\n');
89 }
90 #endif
91 
92 /*
93  * Poll support for process exit notification.
94  */
95 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
96 {
97 	struct pid *pid = pidfd_pid(file);
98 	bool thread = file->f_flags & PIDFD_THREAD;
99 	struct task_struct *task;
100 	__poll_t poll_flags = 0;
101 
102 	poll_wait(file, &pid->wait_pidfd, pts);
103 	/*
104 	 * Depending on PIDFD_THREAD, inform pollers when the thread
105 	 * or the whole thread-group exits.
106 	 */
107 	guard(rcu)();
108 	task = pid_task(pid, PIDTYPE_PID);
109 	if (!task)
110 		poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
111 	else if (task->exit_state && (thread || thread_group_empty(task)))
112 		poll_flags = EPOLLIN | EPOLLRDNORM;
113 
114 	return poll_flags;
115 }
116 
117 static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
118 {
119 	struct task_struct *task __free(put_task) = NULL;
120 	struct nsproxy *nsp __free(put_nsproxy) = NULL;
121 	struct pid *pid = pidfd_pid(file);
122 	struct ns_common *ns_common;
123 
124 	if (arg)
125 		return -EINVAL;
126 
127 	task = get_pid_task(pid, PIDTYPE_PID);
128 	if (!task)
129 		return -ESRCH;
130 
131 	scoped_guard(task_lock, task) {
132 		nsp = task->nsproxy;
133 		if (nsp)
134 			get_nsproxy(nsp);
135 	}
136 	if (!nsp)
137 		return -ESRCH; /* just pretend it didn't exist */
138 
139 	/*
140 	 * We're trying to open a file descriptor to the namespace so perform a
141 	 * filesystem cred ptrace check. Also, we mirror nsfs behavior.
142 	 */
143 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
144 		return -EACCES;
145 
146 	switch (cmd) {
147 	/* Namespaces that hang of nsproxy. */
148 	case PIDFD_GET_CGROUP_NAMESPACE:
149 		get_cgroup_ns(nsp->cgroup_ns);
150 		ns_common = to_ns_common(nsp->cgroup_ns);
151 		break;
152 	case PIDFD_GET_IPC_NAMESPACE:
153 		get_ipc_ns(nsp->ipc_ns);
154 		ns_common = to_ns_common(nsp->ipc_ns);
155 		break;
156 	case PIDFD_GET_MNT_NAMESPACE:
157 		get_mnt_ns(nsp->mnt_ns);
158 		ns_common = to_ns_common(nsp->mnt_ns);
159 		break;
160 	case PIDFD_GET_NET_NAMESPACE:
161 		ns_common = to_ns_common(nsp->net_ns);
162 		get_net_ns(ns_common);
163 		break;
164 	case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
165 		get_pid_ns(nsp->pid_ns_for_children);
166 		ns_common = to_ns_common(nsp->pid_ns_for_children);
167 		break;
168 	case PIDFD_GET_TIME_NAMESPACE:
169 		get_time_ns(nsp->time_ns);
170 		ns_common = to_ns_common(nsp->time_ns);
171 		break;
172 	case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
173 		get_time_ns(nsp->time_ns_for_children);
174 		ns_common = to_ns_common(nsp->time_ns_for_children);
175 		break;
176 	case PIDFD_GET_UTS_NAMESPACE:
177 		get_uts_ns(nsp->uts_ns);
178 		ns_common = to_ns_common(nsp->uts_ns);
179 		break;
180 	/* Namespaces that don't hang of nsproxy. */
181 	case PIDFD_GET_USER_NAMESPACE:
182 		rcu_read_lock();
183 		ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns)));
184 		rcu_read_unlock();
185 		break;
186 	case PIDFD_GET_PID_NAMESPACE:
187 		rcu_read_lock();
188 		ns_common = to_ns_common(get_pid_ns(task_active_pid_ns(task)));
189 		rcu_read_unlock();
190 		break;
191 	default:
192 		return -ENOIOCTLCMD;
193 	}
194 
195 	/* open_namespace() unconditionally consumes the reference */
196 	return open_namespace(ns_common);
197 }
198 
199 static const struct file_operations pidfs_file_operations = {
200 	.poll		= pidfd_poll,
201 #ifdef CONFIG_PROC_FS
202 	.show_fdinfo	= pidfd_show_fdinfo,
203 #endif
204 	.unlocked_ioctl	= pidfd_ioctl,
205 	.compat_ioctl   = compat_ptr_ioctl,
206 };
207 
208 struct pid *pidfd_pid(const struct file *file)
209 {
210 	if (file->f_op != &pidfs_file_operations)
211 		return ERR_PTR(-EBADF);
212 	return file_inode(file)->i_private;
213 }
214 
215 static struct vfsmount *pidfs_mnt __ro_after_init;
216 
217 #if BITS_PER_LONG == 32
218 /*
219  * Provide a fallback mechanism for 32-bit systems so processes remain
220  * reliably comparable by inode number even on those systems.
221  */
222 static DEFINE_IDA(pidfd_inum_ida);
223 
224 static int pidfs_inum(struct pid *pid, unsigned long *ino)
225 {
226 	int ret;
227 
228 	ret = ida_alloc_range(&pidfd_inum_ida, RESERVED_PIDS + 1,
229 			      UINT_MAX, GFP_ATOMIC);
230 	if (ret < 0)
231 		return -ENOSPC;
232 
233 	*ino = ret;
234 	return 0;
235 }
236 
237 static inline void pidfs_free_inum(unsigned long ino)
238 {
239 	if (ino > 0)
240 		ida_free(&pidfd_inum_ida, ino);
241 }
242 #else
243 static inline int pidfs_inum(struct pid *pid, unsigned long *ino)
244 {
245 	*ino = pid->ino;
246 	return 0;
247 }
248 #define pidfs_free_inum(ino) ((void)(ino))
249 #endif
250 
251 /*
252  * The vfs falls back to simple_setattr() if i_op->setattr() isn't
253  * implemented. Let's reject it completely until we have a clean
254  * permission concept for pidfds.
255  */
256 static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
257 			 struct iattr *attr)
258 {
259 	return -EOPNOTSUPP;
260 }
261 
262 
263 /*
264  * User space expects pidfs inodes to have no file type in st_mode.
265  *
266  * In particular, 'lsof' has this legacy logic:
267  *
268  *	type = s->st_mode & S_IFMT;
269  *	switch (type) {
270  *	  ...
271  *	case 0:
272  *		if (!strcmp(p, "anon_inode"))
273  *			Lf->ntype = Ntype = N_ANON_INODE;
274  *
275  * to detect our old anon_inode logic.
276  *
277  * Rather than mess with our internal sane inode data, just fix it
278  * up here in getattr() by masking off the format bits.
279  */
280 static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
281 			 struct kstat *stat, u32 request_mask,
282 			 unsigned int query_flags)
283 {
284 	struct inode *inode = d_inode(path->dentry);
285 
286 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
287 	stat->mode &= ~S_IFMT;
288 	return 0;
289 }
290 
291 static const struct inode_operations pidfs_inode_operations = {
292 	.getattr = pidfs_getattr,
293 	.setattr = pidfs_setattr,
294 };
295 
296 static void pidfs_evict_inode(struct inode *inode)
297 {
298 	struct pid *pid = inode->i_private;
299 
300 	clear_inode(inode);
301 	put_pid(pid);
302 	pidfs_free_inum(inode->i_ino);
303 }
304 
305 static const struct super_operations pidfs_sops = {
306 	.drop_inode	= generic_delete_inode,
307 	.evict_inode	= pidfs_evict_inode,
308 	.statfs		= simple_statfs,
309 };
310 
311 /*
312  * 'lsof' has knowledge of out historical anon_inode use, and expects
313  * the pidfs dentry name to start with 'anon_inode'.
314  */
315 static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
316 {
317 	return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
318 }
319 
320 static const struct dentry_operations pidfs_dentry_operations = {
321 	.d_delete	= always_delete_dentry,
322 	.d_dname	= pidfs_dname,
323 	.d_prune	= stashed_dentry_prune,
324 };
325 
326 static int pidfs_init_inode(struct inode *inode, void *data)
327 {
328 	inode->i_private = data;
329 	inode->i_flags |= S_PRIVATE;
330 	inode->i_mode |= S_IRWXU;
331 	inode->i_op = &pidfs_inode_operations;
332 	inode->i_fop = &pidfs_file_operations;
333 	/*
334 	 * Inode numbering for pidfs start at RESERVED_PIDS + 1. This
335 	 * avoids collisions with the root inode which is 1 for pseudo
336 	 * filesystems.
337 	 */
338 	return pidfs_inum(data, &inode->i_ino);
339 }
340 
341 static void pidfs_put_data(void *data)
342 {
343 	struct pid *pid = data;
344 	put_pid(pid);
345 }
346 
347 static const struct stashed_operations pidfs_stashed_ops = {
348 	.init_inode = pidfs_init_inode,
349 	.put_data = pidfs_put_data,
350 };
351 
352 static int pidfs_init_fs_context(struct fs_context *fc)
353 {
354 	struct pseudo_fs_context *ctx;
355 
356 	ctx = init_pseudo(fc, PID_FS_MAGIC);
357 	if (!ctx)
358 		return -ENOMEM;
359 
360 	ctx->ops = &pidfs_sops;
361 	ctx->dops = &pidfs_dentry_operations;
362 	fc->s_fs_info = (void *)&pidfs_stashed_ops;
363 	return 0;
364 }
365 
366 static struct file_system_type pidfs_type = {
367 	.name			= "pidfs",
368 	.init_fs_context	= pidfs_init_fs_context,
369 	.kill_sb		= kill_anon_super,
370 };
371 
372 struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
373 {
374 
375 	struct file *pidfd_file;
376 	struct path path;
377 	int ret;
378 
379 	ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
380 	if (ret < 0)
381 		return ERR_PTR(ret);
382 
383 	pidfd_file = dentry_open(&path, flags, current_cred());
384 	path_put(&path);
385 	return pidfd_file;
386 }
387 
388 void __init pidfs_init(void)
389 {
390 	pidfs_mnt = kern_mount(&pidfs_type);
391 	if (IS_ERR(pidfs_mnt))
392 		panic("Failed to mount pidfs pseudo filesystem");
393 }
394