xref: /linux/fs/ocfs2/journal.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "heartbeat.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "namei.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "vote.h"
48 #include "sysfile.h"
49 
50 #include "buffer_head_io.h"
51 
52 spinlock_t trans_inc_lock = SPIN_LOCK_UNLOCKED;
53 
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
56 			      int node_num);
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
61 				       struct ocfs2_journal_handle *handle);
62 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle);
63 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
64 				      int dirty);
65 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
66 				 int slot_num);
67 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
68 				 int slot);
69 static int ocfs2_commit_thread(void *arg);
70 
71 static int ocfs2_commit_cache(struct ocfs2_super *osb)
72 {
73 	int status = 0;
74 	unsigned int flushed;
75 	unsigned long old_id;
76 	struct ocfs2_journal *journal = NULL;
77 
78 	mlog_entry_void();
79 
80 	journal = osb->journal;
81 
82 	/* Flush all pending commits and checkpoint the journal. */
83 	down_write(&journal->j_trans_barrier);
84 
85 	if (atomic_read(&journal->j_num_trans) == 0) {
86 		up_write(&journal->j_trans_barrier);
87 		mlog(0, "No transactions for me to flush!\n");
88 		goto finally;
89 	}
90 
91 	journal_lock_updates(journal->j_journal);
92 	status = journal_flush(journal->j_journal);
93 	journal_unlock_updates(journal->j_journal);
94 	if (status < 0) {
95 		up_write(&journal->j_trans_barrier);
96 		mlog_errno(status);
97 		goto finally;
98 	}
99 
100 	old_id = ocfs2_inc_trans_id(journal);
101 
102 	flushed = atomic_read(&journal->j_num_trans);
103 	atomic_set(&journal->j_num_trans, 0);
104 	up_write(&journal->j_trans_barrier);
105 
106 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
107 	     journal->j_trans_id, flushed);
108 
109 	ocfs2_kick_vote_thread(osb);
110 	wake_up(&journal->j_checkpointed);
111 finally:
112 	mlog_exit(status);
113 	return status;
114 }
115 
116 struct ocfs2_journal_handle *ocfs2_alloc_handle(struct ocfs2_super *osb)
117 {
118 	struct ocfs2_journal_handle *retval = NULL;
119 
120 	retval = kcalloc(1, sizeof(*retval), GFP_NOFS);
121 	if (!retval) {
122 		mlog(ML_ERROR, "Failed to allocate memory for journal "
123 		     "handle!\n");
124 		return NULL;
125 	}
126 
127 	retval->max_buffs = 0;
128 	retval->num_locks = 0;
129 	retval->k_handle = NULL;
130 
131 	INIT_LIST_HEAD(&retval->locks);
132 	INIT_LIST_HEAD(&retval->inode_list);
133 	retval->journal = osb->journal;
134 
135 	return retval;
136 }
137 
138 /* pass it NULL and it will allocate a new handle object for you.  If
139  * you pass it a handle however, it may still return error, in which
140  * case it has free'd the passed handle for you. */
141 struct ocfs2_journal_handle *ocfs2_start_trans(struct ocfs2_super *osb,
142 					       struct ocfs2_journal_handle *handle,
143 					       int max_buffs)
144 {
145 	int ret;
146 	journal_t *journal = osb->journal->j_journal;
147 
148 	mlog_entry("(max_buffs = %d)\n", max_buffs);
149 
150 	BUG_ON(!osb || !osb->journal->j_journal);
151 
152 	if (ocfs2_is_hard_readonly(osb)) {
153 		ret = -EROFS;
154 		goto done_free;
155 	}
156 
157 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
158 	BUG_ON(max_buffs <= 0);
159 
160 	/* JBD might support this, but our journalling code doesn't yet. */
161 	if (journal_current_handle()) {
162 		mlog(ML_ERROR, "Recursive transaction attempted!\n");
163 		BUG();
164 	}
165 
166 	if (!handle)
167 		handle = ocfs2_alloc_handle(osb);
168 	if (!handle) {
169 		ret = -ENOMEM;
170 		mlog(ML_ERROR, "Failed to allocate memory for journal "
171 		     "handle!\n");
172 		goto done_free;
173 	}
174 
175 	handle->max_buffs = max_buffs;
176 
177 	down_read(&osb->journal->j_trans_barrier);
178 
179 	/* actually start the transaction now */
180 	handle->k_handle = journal_start(journal, max_buffs);
181 	if (IS_ERR(handle->k_handle)) {
182 		up_read(&osb->journal->j_trans_barrier);
183 
184 		ret = PTR_ERR(handle->k_handle);
185 		handle->k_handle = NULL;
186 		mlog_errno(ret);
187 
188 		if (is_journal_aborted(journal)) {
189 			ocfs2_abort(osb->sb, "Detected aborted journal");
190 			ret = -EROFS;
191 		}
192 		goto done_free;
193 	}
194 
195 	atomic_inc(&(osb->journal->j_num_trans));
196 	handle->flags |= OCFS2_HANDLE_STARTED;
197 
198 	mlog_exit_ptr(handle);
199 	return handle;
200 
201 done_free:
202 	if (handle)
203 		ocfs2_commit_unstarted_handle(handle); /* will kfree handle */
204 
205 	mlog_exit(ret);
206 	return ERR_PTR(ret);
207 }
208 
209 void ocfs2_handle_add_inode(struct ocfs2_journal_handle *handle,
210 			    struct inode *inode)
211 {
212 	BUG_ON(!handle);
213 	BUG_ON(!inode);
214 
215 	atomic_inc(&inode->i_count);
216 
217 	/* we're obviously changing it... */
218 	mutex_lock(&inode->i_mutex);
219 
220 	/* sanity check */
221 	BUG_ON(OCFS2_I(inode)->ip_handle);
222 	BUG_ON(!list_empty(&OCFS2_I(inode)->ip_handle_list));
223 
224 	OCFS2_I(inode)->ip_handle = handle;
225 	list_del(&(OCFS2_I(inode)->ip_handle_list));
226 	list_add_tail(&(OCFS2_I(inode)->ip_handle_list), &(handle->inode_list));
227 }
228 
229 static void ocfs2_handle_unlock_inodes(struct ocfs2_journal_handle *handle)
230 {
231 	struct list_head *p, *n;
232 	struct inode *inode;
233 	struct ocfs2_inode_info *oi;
234 
235 	list_for_each_safe(p, n, &handle->inode_list) {
236 		oi = list_entry(p, struct ocfs2_inode_info,
237 				ip_handle_list);
238 		inode = &oi->vfs_inode;
239 
240 		OCFS2_I(inode)->ip_handle = NULL;
241 		list_del_init(&OCFS2_I(inode)->ip_handle_list);
242 
243 		mutex_unlock(&inode->i_mutex);
244 		iput(inode);
245 	}
246 }
247 
248 /* This is trivial so we do it out of the main commit
249  * paths. Beware, it can be called from start_trans too! */
250 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle)
251 {
252 	mlog_entry_void();
253 
254 	BUG_ON(handle->flags & OCFS2_HANDLE_STARTED);
255 
256 	ocfs2_handle_unlock_inodes(handle);
257 	/* You are allowed to add journal locks before the transaction
258 	 * has started. */
259 	ocfs2_handle_cleanup_locks(handle->journal, handle);
260 
261 	kfree(handle);
262 
263 	mlog_exit_void();
264 }
265 
266 void ocfs2_commit_trans(struct ocfs2_journal_handle *handle)
267 {
268 	handle_t *jbd_handle;
269 	int retval;
270 	struct ocfs2_journal *journal = handle->journal;
271 
272 	mlog_entry_void();
273 
274 	BUG_ON(!handle);
275 
276 	if (!(handle->flags & OCFS2_HANDLE_STARTED)) {
277 		ocfs2_commit_unstarted_handle(handle);
278 		mlog_exit_void();
279 		return;
280 	}
281 
282 	/* release inode semaphores we took during this transaction */
283 	ocfs2_handle_unlock_inodes(handle);
284 
285 	/* ocfs2_extend_trans may have had to call journal_restart
286 	 * which will always commit the transaction, but may return
287 	 * error for any number of reasons. If this is the case, we
288 	 * clear k_handle as it's not valid any more. */
289 	if (handle->k_handle) {
290 		jbd_handle = handle->k_handle;
291 
292 		if (handle->flags & OCFS2_HANDLE_SYNC)
293 			jbd_handle->h_sync = 1;
294 		else
295 			jbd_handle->h_sync = 0;
296 
297 		/* actually stop the transaction. if we've set h_sync,
298 		 * it'll have been committed when we return */
299 		retval = journal_stop(jbd_handle);
300 		if (retval < 0) {
301 			mlog_errno(retval);
302 			mlog(ML_ERROR, "Could not commit transaction\n");
303 			BUG();
304 		}
305 
306 		handle->k_handle = NULL; /* it's been free'd in journal_stop */
307 	}
308 
309 	ocfs2_handle_cleanup_locks(journal, handle);
310 
311 	up_read(&journal->j_trans_barrier);
312 
313 	kfree(handle);
314 	mlog_exit_void();
315 }
316 
317 /*
318  * 'nblocks' is what you want to add to the current
319  * transaction. extend_trans will either extend the current handle by
320  * nblocks, or commit it and start a new one with nblocks credits.
321  *
322  * WARNING: This will not release any semaphores or disk locks taken
323  * during the transaction, so make sure they were taken *before*
324  * start_trans or we'll have ordering deadlocks.
325  *
326  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
327  * good because transaction ids haven't yet been recorded on the
328  * cluster locks associated with this handle.
329  */
330 int ocfs2_extend_trans(struct ocfs2_journal_handle *handle,
331 		       int nblocks)
332 {
333 	int status;
334 
335 	BUG_ON(!handle);
336 	BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
337 	BUG_ON(!nblocks);
338 
339 	mlog_entry_void();
340 
341 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
342 
343 	status = journal_extend(handle->k_handle, nblocks);
344 	if (status < 0) {
345 		mlog_errno(status);
346 		goto bail;
347 	}
348 
349 	if (status > 0) {
350 		mlog(0, "journal_extend failed, trying journal_restart\n");
351 		status = journal_restart(handle->k_handle, nblocks);
352 		if (status < 0) {
353 			handle->k_handle = NULL;
354 			mlog_errno(status);
355 			goto bail;
356 		}
357 		handle->max_buffs = nblocks;
358 	} else
359 		handle->max_buffs += nblocks;
360 
361 	status = 0;
362 bail:
363 
364 	mlog_exit(status);
365 	return status;
366 }
367 
368 int ocfs2_journal_access(struct ocfs2_journal_handle *handle,
369 			 struct inode *inode,
370 			 struct buffer_head *bh,
371 			 int type)
372 {
373 	int status;
374 
375 	BUG_ON(!inode);
376 	BUG_ON(!handle);
377 	BUG_ON(!bh);
378 	BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
379 
380 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
381 		   (unsigned long long)bh->b_blocknr, type,
382 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
383 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
384 		   "OCFS2_JOURNAL_ACCESS_WRITE",
385 		   bh->b_size);
386 
387 	/* we can safely remove this assertion after testing. */
388 	if (!buffer_uptodate(bh)) {
389 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
390 		mlog(ML_ERROR, "b_blocknr=%llu\n",
391 		     (unsigned long long)bh->b_blocknr);
392 		BUG();
393 	}
394 
395 	/* Set the current transaction information on the inode so
396 	 * that the locking code knows whether it can drop it's locks
397 	 * on this inode or not. We're protected from the commit
398 	 * thread updating the current transaction id until
399 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
400 	 * j_trans_barrier for us. */
401 	ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
402 
403 	mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
404 	switch (type) {
405 	case OCFS2_JOURNAL_ACCESS_CREATE:
406 	case OCFS2_JOURNAL_ACCESS_WRITE:
407 		status = journal_get_write_access(handle->k_handle, bh);
408 		break;
409 
410 	case OCFS2_JOURNAL_ACCESS_UNDO:
411 		status = journal_get_undo_access(handle->k_handle, bh);
412 		break;
413 
414 	default:
415 		status = -EINVAL;
416 		mlog(ML_ERROR, "Uknown access type!\n");
417 	}
418 	mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
419 
420 	if (status < 0)
421 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
422 		     status, type);
423 
424 	mlog_exit(status);
425 	return status;
426 }
427 
428 int ocfs2_journal_dirty(struct ocfs2_journal_handle *handle,
429 			struct buffer_head *bh)
430 {
431 	int status;
432 
433 	BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
434 
435 	mlog_entry("(bh->b_blocknr=%llu)\n",
436 		   (unsigned long long)bh->b_blocknr);
437 
438 	status = journal_dirty_metadata(handle->k_handle, bh);
439 	if (status < 0)
440 		mlog(ML_ERROR, "Could not dirty metadata buffer. "
441 		     "(bh->b_blocknr=%llu)\n",
442 		     (unsigned long long)bh->b_blocknr);
443 
444 	mlog_exit(status);
445 	return status;
446 }
447 
448 int ocfs2_journal_dirty_data(handle_t *handle,
449 			     struct buffer_head *bh)
450 {
451 	int err = journal_dirty_data(handle, bh);
452 	if (err)
453 		mlog_errno(err);
454 	/* TODO: When we can handle it, abort the handle and go RO on
455 	 * error here. */
456 
457 	return err;
458 }
459 
460 /* We always assume you're adding a metadata lock at level 'ex' */
461 int ocfs2_handle_add_lock(struct ocfs2_journal_handle *handle,
462 			  struct inode *inode)
463 {
464 	int status;
465 	struct ocfs2_journal_lock *lock;
466 
467 	BUG_ON(!inode);
468 
469 	lock = kmem_cache_alloc(ocfs2_lock_cache, GFP_NOFS);
470 	if (!lock) {
471 		status = -ENOMEM;
472 		mlog_errno(-ENOMEM);
473 		goto bail;
474 	}
475 
476 	if (!igrab(inode))
477 		BUG();
478 	lock->jl_inode = inode;
479 
480 	list_add_tail(&(lock->jl_lock_list), &(handle->locks));
481 	handle->num_locks++;
482 
483 	status = 0;
484 bail:
485 	mlog_exit(status);
486 	return status;
487 }
488 
489 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
490 				       struct ocfs2_journal_handle *handle)
491 {
492 	struct list_head *p, *n;
493 	struct ocfs2_journal_lock *lock;
494 	struct inode *inode;
495 
496 	list_for_each_safe(p, n, &(handle->locks)) {
497 		lock = list_entry(p, struct ocfs2_journal_lock,
498 				  jl_lock_list);
499 		list_del(&lock->jl_lock_list);
500 		handle->num_locks--;
501 
502 		inode = lock->jl_inode;
503 		ocfs2_meta_unlock(inode, 1);
504 		if (atomic_read(&inode->i_count) == 1)
505 			mlog(ML_ERROR,
506 			     "Inode %llu, I'm doing a last iput for!",
507 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
508 		iput(inode);
509 		kmem_cache_free(ocfs2_lock_cache, lock);
510 	}
511 }
512 
513 #define OCFS2_DEFAULT_COMMIT_INTERVAL 	(HZ * 5)
514 
515 void ocfs2_set_journal_params(struct ocfs2_super *osb)
516 {
517 	journal_t *journal = osb->journal->j_journal;
518 
519 	spin_lock(&journal->j_state_lock);
520 	journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
521 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
522 		journal->j_flags |= JFS_BARRIER;
523 	else
524 		journal->j_flags &= ~JFS_BARRIER;
525 	spin_unlock(&journal->j_state_lock);
526 }
527 
528 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
529 {
530 	int status = -1;
531 	struct inode *inode = NULL; /* the journal inode */
532 	journal_t *j_journal = NULL;
533 	struct ocfs2_dinode *di = NULL;
534 	struct buffer_head *bh = NULL;
535 	struct ocfs2_super *osb;
536 	int meta_lock = 0;
537 
538 	mlog_entry_void();
539 
540 	BUG_ON(!journal);
541 
542 	osb = journal->j_osb;
543 
544 	/* already have the inode for our journal */
545 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
546 					    osb->slot_num);
547 	if (inode == NULL) {
548 		status = -EACCES;
549 		mlog_errno(status);
550 		goto done;
551 	}
552 	if (is_bad_inode(inode)) {
553 		mlog(ML_ERROR, "access error (bad inode)\n");
554 		iput(inode);
555 		inode = NULL;
556 		status = -EACCES;
557 		goto done;
558 	}
559 
560 	SET_INODE_JOURNAL(inode);
561 	OCFS2_I(inode)->ip_open_count++;
562 
563 	/* Skip recovery waits here - journal inode metadata never
564 	 * changes in a live cluster so it can be considered an
565 	 * exception to the rule. */
566 	status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
567 				      OCFS2_META_LOCK_RECOVERY);
568 	if (status < 0) {
569 		if (status != -ERESTARTSYS)
570 			mlog(ML_ERROR, "Could not get lock on journal!\n");
571 		goto done;
572 	}
573 
574 	meta_lock = 1;
575 	di = (struct ocfs2_dinode *)bh->b_data;
576 
577 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
578 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
579 		     inode->i_size);
580 		status = -EINVAL;
581 		goto done;
582 	}
583 
584 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
585 	mlog(0, "inode->i_blocks = %llu\n",
586 			(unsigned long long)inode->i_blocks);
587 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
588 
589 	/* call the kernels journal init function now */
590 	j_journal = journal_init_inode(inode);
591 	if (j_journal == NULL) {
592 		mlog(ML_ERROR, "Linux journal layer error\n");
593 		status = -EINVAL;
594 		goto done;
595 	}
596 
597 	mlog(0, "Returned from journal_init_inode\n");
598 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
599 
600 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
601 		  OCFS2_JOURNAL_DIRTY_FL);
602 
603 	journal->j_journal = j_journal;
604 	journal->j_inode = inode;
605 	journal->j_bh = bh;
606 
607 	ocfs2_set_journal_params(osb);
608 
609 	journal->j_state = OCFS2_JOURNAL_LOADED;
610 
611 	status = 0;
612 done:
613 	if (status < 0) {
614 		if (meta_lock)
615 			ocfs2_meta_unlock(inode, 1);
616 		if (bh != NULL)
617 			brelse(bh);
618 		if (inode) {
619 			OCFS2_I(inode)->ip_open_count--;
620 			iput(inode);
621 		}
622 	}
623 
624 	mlog_exit(status);
625 	return status;
626 }
627 
628 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
629 				      int dirty)
630 {
631 	int status;
632 	unsigned int flags;
633 	struct ocfs2_journal *journal = osb->journal;
634 	struct buffer_head *bh = journal->j_bh;
635 	struct ocfs2_dinode *fe;
636 
637 	mlog_entry_void();
638 
639 	fe = (struct ocfs2_dinode *)bh->b_data;
640 	if (!OCFS2_IS_VALID_DINODE(fe)) {
641 		/* This is called from startup/shutdown which will
642 		 * handle the errors in a specific manner, so no need
643 		 * to call ocfs2_error() here. */
644 		mlog(ML_ERROR, "Journal dinode %llu  has invalid "
645 		     "signature: %.*s", (unsigned long long)fe->i_blkno, 7,
646 		     fe->i_signature);
647 		status = -EIO;
648 		goto out;
649 	}
650 
651 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
652 	if (dirty)
653 		flags |= OCFS2_JOURNAL_DIRTY_FL;
654 	else
655 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
656 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
657 
658 	status = ocfs2_write_block(osb, bh, journal->j_inode);
659 	if (status < 0)
660 		mlog_errno(status);
661 
662 out:
663 	mlog_exit(status);
664 	return status;
665 }
666 
667 /*
668  * If the journal has been kmalloc'd it needs to be freed after this
669  * call.
670  */
671 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
672 {
673 	struct ocfs2_journal *journal = NULL;
674 	int status = 0;
675 	struct inode *inode = NULL;
676 	int num_running_trans = 0;
677 
678 	mlog_entry_void();
679 
680 	BUG_ON(!osb);
681 
682 	journal = osb->journal;
683 	if (!journal)
684 		goto done;
685 
686 	inode = journal->j_inode;
687 
688 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
689 		goto done;
690 
691 	/* need to inc inode use count as journal_destroy will iput. */
692 	if (!igrab(inode))
693 		BUG();
694 
695 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
696 	if (num_running_trans > 0)
697 		mlog(0, "Shutting down journal: must wait on %d "
698 		     "running transactions!\n",
699 		     num_running_trans);
700 
701 	/* Do a commit_cache here. It will flush our journal, *and*
702 	 * release any locks that are still held.
703 	 * set the SHUTDOWN flag and release the trans lock.
704 	 * the commit thread will take the trans lock for us below. */
705 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
706 
707 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
708 	 * drop the trans_lock (which we want to hold until we
709 	 * completely destroy the journal. */
710 	if (osb->commit_task) {
711 		/* Wait for the commit thread */
712 		mlog(0, "Waiting for ocfs2commit to exit....\n");
713 		kthread_stop(osb->commit_task);
714 		osb->commit_task = NULL;
715 	}
716 
717 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
718 
719 	status = ocfs2_journal_toggle_dirty(osb, 0);
720 	if (status < 0)
721 		mlog_errno(status);
722 
723 	/* Shutdown the kernel journal system */
724 	journal_destroy(journal->j_journal);
725 
726 	OCFS2_I(inode)->ip_open_count--;
727 
728 	/* unlock our journal */
729 	ocfs2_meta_unlock(inode, 1);
730 
731 	brelse(journal->j_bh);
732 	journal->j_bh = NULL;
733 
734 	journal->j_state = OCFS2_JOURNAL_FREE;
735 
736 //	up_write(&journal->j_trans_barrier);
737 done:
738 	if (inode)
739 		iput(inode);
740 	mlog_exit_void();
741 }
742 
743 static void ocfs2_clear_journal_error(struct super_block *sb,
744 				      journal_t *journal,
745 				      int slot)
746 {
747 	int olderr;
748 
749 	olderr = journal_errno(journal);
750 	if (olderr) {
751 		mlog(ML_ERROR, "File system error %d recorded in "
752 		     "journal %u.\n", olderr, slot);
753 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
754 		     sb->s_id);
755 
756 		journal_ack_err(journal);
757 		journal_clear_err(journal);
758 	}
759 }
760 
761 int ocfs2_journal_load(struct ocfs2_journal *journal)
762 {
763 	int status = 0;
764 	struct ocfs2_super *osb;
765 
766 	mlog_entry_void();
767 
768 	if (!journal)
769 		BUG();
770 
771 	osb = journal->j_osb;
772 
773 	status = journal_load(journal->j_journal);
774 	if (status < 0) {
775 		mlog(ML_ERROR, "Failed to load journal!\n");
776 		goto done;
777 	}
778 
779 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
780 
781 	status = ocfs2_journal_toggle_dirty(osb, 1);
782 	if (status < 0) {
783 		mlog_errno(status);
784 		goto done;
785 	}
786 
787 	/* Launch the commit thread */
788 	osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt-%d",
789 				       osb->osb_id);
790 	if (IS_ERR(osb->commit_task)) {
791 		status = PTR_ERR(osb->commit_task);
792 		osb->commit_task = NULL;
793 		mlog(ML_ERROR, "unable to launch ocfs2commit thread, error=%d",
794 		     status);
795 		goto done;
796 	}
797 
798 done:
799 	mlog_exit(status);
800 	return status;
801 }
802 
803 
804 /* 'full' flag tells us whether we clear out all blocks or if we just
805  * mark the journal clean */
806 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
807 {
808 	int status;
809 
810 	mlog_entry_void();
811 
812 	BUG_ON(!journal);
813 
814 	status = journal_wipe(journal->j_journal, full);
815 	if (status < 0) {
816 		mlog_errno(status);
817 		goto bail;
818 	}
819 
820 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
821 	if (status < 0)
822 		mlog_errno(status);
823 
824 bail:
825 	mlog_exit(status);
826 	return status;
827 }
828 
829 /*
830  * JBD Might read a cached version of another nodes journal file. We
831  * don't want this as this file changes often and we get no
832  * notification on those changes. The only way to be sure that we've
833  * got the most up to date version of those blocks then is to force
834  * read them off disk. Just searching through the buffer cache won't
835  * work as there may be pages backing this file which are still marked
836  * up to date. We know things can't change on this file underneath us
837  * as we have the lock by now :)
838  */
839 static int ocfs2_force_read_journal(struct inode *inode)
840 {
841 	int status = 0;
842 	int i, p_blocks;
843 	u64 v_blkno, p_blkno;
844 #define CONCURRENT_JOURNAL_FILL 32
845 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
846 
847 	mlog_entry_void();
848 
849 	BUG_ON(inode->i_blocks !=
850 		     ocfs2_align_bytes_to_sectors(i_size_read(inode)));
851 
852 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
853 
854 	mlog(0, "Force reading %llu blocks\n",
855 		(unsigned long long)(inode->i_blocks >>
856 			(inode->i_sb->s_blocksize_bits - 9)));
857 
858 	v_blkno = 0;
859 	while (v_blkno <
860 	       (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))) {
861 
862 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
863 						     1, &p_blkno,
864 						     &p_blocks);
865 		if (status < 0) {
866 			mlog_errno(status);
867 			goto bail;
868 		}
869 
870 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
871 			p_blocks = CONCURRENT_JOURNAL_FILL;
872 
873 		/* We are reading journal data which should not
874 		 * be put in the uptodate cache */
875 		status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
876 					   p_blkno, p_blocks, bhs, 0,
877 					   NULL);
878 		if (status < 0) {
879 			mlog_errno(status);
880 			goto bail;
881 		}
882 
883 		for(i = 0; i < p_blocks; i++) {
884 			brelse(bhs[i]);
885 			bhs[i] = NULL;
886 		}
887 
888 		v_blkno += p_blocks;
889 	}
890 
891 bail:
892 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
893 		if (bhs[i])
894 			brelse(bhs[i]);
895 	mlog_exit(status);
896 	return status;
897 }
898 
899 struct ocfs2_la_recovery_item {
900 	struct list_head	lri_list;
901 	int			lri_slot;
902 	struct ocfs2_dinode	*lri_la_dinode;
903 	struct ocfs2_dinode	*lri_tl_dinode;
904 };
905 
906 /* Does the second half of the recovery process. By this point, the
907  * node is marked clean and can actually be considered recovered,
908  * hence it's no longer in the recovery map, but there's still some
909  * cleanup we can do which shouldn't happen within the recovery thread
910  * as locking in that context becomes very difficult if we are to take
911  * recovering nodes into account.
912  *
913  * NOTE: This function can and will sleep on recovery of other nodes
914  * during cluster locking, just like any other ocfs2 process.
915  */
916 void ocfs2_complete_recovery(void *data)
917 {
918 	int ret;
919 	struct ocfs2_super *osb = data;
920 	struct ocfs2_journal *journal = osb->journal;
921 	struct ocfs2_dinode *la_dinode, *tl_dinode;
922 	struct ocfs2_la_recovery_item *item;
923 	struct list_head *p, *n;
924 	LIST_HEAD(tmp_la_list);
925 
926 	mlog_entry_void();
927 
928 	mlog(0, "completing recovery from keventd\n");
929 
930 	spin_lock(&journal->j_lock);
931 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
932 	spin_unlock(&journal->j_lock);
933 
934 	list_for_each_safe(p, n, &tmp_la_list) {
935 		item = list_entry(p, struct ocfs2_la_recovery_item, lri_list);
936 		list_del_init(&item->lri_list);
937 
938 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
939 
940 		la_dinode = item->lri_la_dinode;
941 		if (la_dinode) {
942 			mlog(0, "Clean up local alloc %llu\n",
943 			     (unsigned long long)la_dinode->i_blkno);
944 
945 			ret = ocfs2_complete_local_alloc_recovery(osb,
946 								  la_dinode);
947 			if (ret < 0)
948 				mlog_errno(ret);
949 
950 			kfree(la_dinode);
951 		}
952 
953 		tl_dinode = item->lri_tl_dinode;
954 		if (tl_dinode) {
955 			mlog(0, "Clean up truncate log %llu\n",
956 			     (unsigned long long)tl_dinode->i_blkno);
957 
958 			ret = ocfs2_complete_truncate_log_recovery(osb,
959 								   tl_dinode);
960 			if (ret < 0)
961 				mlog_errno(ret);
962 
963 			kfree(tl_dinode);
964 		}
965 
966 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
967 		if (ret < 0)
968 			mlog_errno(ret);
969 
970 		kfree(item);
971 	}
972 
973 	mlog(0, "Recovery completion\n");
974 	mlog_exit_void();
975 }
976 
977 /* NOTE: This function always eats your references to la_dinode and
978  * tl_dinode, either manually on error, or by passing them to
979  * ocfs2_complete_recovery */
980 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
981 					    int slot_num,
982 					    struct ocfs2_dinode *la_dinode,
983 					    struct ocfs2_dinode *tl_dinode)
984 {
985 	struct ocfs2_la_recovery_item *item;
986 
987 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
988 	if (!item) {
989 		/* Though we wish to avoid it, we are in fact safe in
990 		 * skipping local alloc cleanup as fsck.ocfs2 is more
991 		 * than capable of reclaiming unused space. */
992 		if (la_dinode)
993 			kfree(la_dinode);
994 
995 		if (tl_dinode)
996 			kfree(tl_dinode);
997 
998 		mlog_errno(-ENOMEM);
999 		return;
1000 	}
1001 
1002 	INIT_LIST_HEAD(&item->lri_list);
1003 	item->lri_la_dinode = la_dinode;
1004 	item->lri_slot = slot_num;
1005 	item->lri_tl_dinode = tl_dinode;
1006 
1007 	spin_lock(&journal->j_lock);
1008 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1009 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1010 	spin_unlock(&journal->j_lock);
1011 }
1012 
1013 /* Called by the mount code to queue recovery the last part of
1014  * recovery for it's own slot. */
1015 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1016 {
1017 	struct ocfs2_journal *journal = osb->journal;
1018 
1019 	if (osb->dirty) {
1020 		/* No need to queue up our truncate_log as regular
1021 		 * cleanup will catch that. */
1022 		ocfs2_queue_recovery_completion(journal,
1023 						osb->slot_num,
1024 						osb->local_alloc_copy,
1025 						NULL);
1026 		ocfs2_schedule_truncate_log_flush(osb, 0);
1027 
1028 		osb->local_alloc_copy = NULL;
1029 		osb->dirty = 0;
1030 	}
1031 }
1032 
1033 static int __ocfs2_recovery_thread(void *arg)
1034 {
1035 	int status, node_num;
1036 	struct ocfs2_super *osb = arg;
1037 
1038 	mlog_entry_void();
1039 
1040 	status = ocfs2_wait_on_mount(osb);
1041 	if (status < 0) {
1042 		goto bail;
1043 	}
1044 
1045 restart:
1046 	status = ocfs2_super_lock(osb, 1);
1047 	if (status < 0) {
1048 		mlog_errno(status);
1049 		goto bail;
1050 	}
1051 
1052 	while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
1053 		node_num = ocfs2_node_map_first_set_bit(osb,
1054 							&osb->recovery_map);
1055 		if (node_num == O2NM_INVALID_NODE_NUM) {
1056 			mlog(0, "Out of nodes to recover.\n");
1057 			break;
1058 		}
1059 
1060 		status = ocfs2_recover_node(osb, node_num);
1061 		if (status < 0) {
1062 			mlog(ML_ERROR,
1063 			     "Error %d recovering node %d on device (%u,%u)!\n",
1064 			     status, node_num,
1065 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1066 			mlog(ML_ERROR, "Volume requires unmount.\n");
1067 			continue;
1068 		}
1069 
1070 		ocfs2_recovery_map_clear(osb, node_num);
1071 	}
1072 	ocfs2_super_unlock(osb, 1);
1073 
1074 	/* We always run recovery on our own orphan dir - the dead
1075 	 * node(s) may have voted "no" on an inode delete earlier. A
1076 	 * revote is therefore required. */
1077 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1078 					NULL);
1079 
1080 bail:
1081 	mutex_lock(&osb->recovery_lock);
1082 	if (!status &&
1083 	    !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
1084 		mutex_unlock(&osb->recovery_lock);
1085 		goto restart;
1086 	}
1087 
1088 	osb->recovery_thread_task = NULL;
1089 	mb(); /* sync with ocfs2_recovery_thread_running */
1090 	wake_up(&osb->recovery_event);
1091 
1092 	mutex_unlock(&osb->recovery_lock);
1093 
1094 	mlog_exit(status);
1095 	/* no one is callint kthread_stop() for us so the kthread() api
1096 	 * requires that we call do_exit().  And it isn't exported, but
1097 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1098 	complete_and_exit(NULL, status);
1099 	return status;
1100 }
1101 
1102 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1103 {
1104 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1105 		   node_num, osb->node_num);
1106 
1107 	mutex_lock(&osb->recovery_lock);
1108 	if (osb->disable_recovery)
1109 		goto out;
1110 
1111 	/* People waiting on recovery will wait on
1112 	 * the recovery map to empty. */
1113 	if (!ocfs2_recovery_map_set(osb, node_num))
1114 		mlog(0, "node %d already be in recovery.\n", node_num);
1115 
1116 	mlog(0, "starting recovery thread...\n");
1117 
1118 	if (osb->recovery_thread_task)
1119 		goto out;
1120 
1121 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1122 						 "ocfs2rec-%d", osb->osb_id);
1123 	if (IS_ERR(osb->recovery_thread_task)) {
1124 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1125 		osb->recovery_thread_task = NULL;
1126 	}
1127 
1128 out:
1129 	mutex_unlock(&osb->recovery_lock);
1130 	wake_up(&osb->recovery_event);
1131 
1132 	mlog_exit_void();
1133 }
1134 
1135 /* Does the actual journal replay and marks the journal inode as
1136  * clean. Will only replay if the journal inode is marked dirty. */
1137 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1138 				int node_num,
1139 				int slot_num)
1140 {
1141 	int status;
1142 	int got_lock = 0;
1143 	unsigned int flags;
1144 	struct inode *inode = NULL;
1145 	struct ocfs2_dinode *fe;
1146 	journal_t *journal = NULL;
1147 	struct buffer_head *bh = NULL;
1148 
1149 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1150 					    slot_num);
1151 	if (inode == NULL) {
1152 		status = -EACCES;
1153 		mlog_errno(status);
1154 		goto done;
1155 	}
1156 	if (is_bad_inode(inode)) {
1157 		status = -EACCES;
1158 		iput(inode);
1159 		inode = NULL;
1160 		mlog_errno(status);
1161 		goto done;
1162 	}
1163 	SET_INODE_JOURNAL(inode);
1164 
1165 	status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
1166 				      OCFS2_META_LOCK_RECOVERY);
1167 	if (status < 0) {
1168 		mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
1169 		if (status != -ERESTARTSYS)
1170 			mlog(ML_ERROR, "Could not lock journal!\n");
1171 		goto done;
1172 	}
1173 	got_lock = 1;
1174 
1175 	fe = (struct ocfs2_dinode *) bh->b_data;
1176 
1177 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1178 
1179 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1180 		mlog(0, "No recovery required for node %d\n", node_num);
1181 		goto done;
1182 	}
1183 
1184 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1185 	     node_num, slot_num,
1186 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1187 
1188 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1189 
1190 	status = ocfs2_force_read_journal(inode);
1191 	if (status < 0) {
1192 		mlog_errno(status);
1193 		goto done;
1194 	}
1195 
1196 	mlog(0, "calling journal_init_inode\n");
1197 	journal = journal_init_inode(inode);
1198 	if (journal == NULL) {
1199 		mlog(ML_ERROR, "Linux journal layer error\n");
1200 		status = -EIO;
1201 		goto done;
1202 	}
1203 
1204 	status = journal_load(journal);
1205 	if (status < 0) {
1206 		mlog_errno(status);
1207 		if (!igrab(inode))
1208 			BUG();
1209 		journal_destroy(journal);
1210 		goto done;
1211 	}
1212 
1213 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1214 
1215 	/* wipe the journal */
1216 	mlog(0, "flushing the journal.\n");
1217 	journal_lock_updates(journal);
1218 	status = journal_flush(journal);
1219 	journal_unlock_updates(journal);
1220 	if (status < 0)
1221 		mlog_errno(status);
1222 
1223 	/* This will mark the node clean */
1224 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1225 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1226 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1227 
1228 	status = ocfs2_write_block(osb, bh, inode);
1229 	if (status < 0)
1230 		mlog_errno(status);
1231 
1232 	if (!igrab(inode))
1233 		BUG();
1234 
1235 	journal_destroy(journal);
1236 
1237 done:
1238 	/* drop the lock on this nodes journal */
1239 	if (got_lock)
1240 		ocfs2_meta_unlock(inode, 1);
1241 
1242 	if (inode)
1243 		iput(inode);
1244 
1245 	if (bh)
1246 		brelse(bh);
1247 
1248 	mlog_exit(status);
1249 	return status;
1250 }
1251 
1252 /*
1253  * Do the most important parts of node recovery:
1254  *  - Replay it's journal
1255  *  - Stamp a clean local allocator file
1256  *  - Stamp a clean truncate log
1257  *  - Mark the node clean
1258  *
1259  * If this function completes without error, a node in OCFS2 can be
1260  * said to have been safely recovered. As a result, failure during the
1261  * second part of a nodes recovery process (local alloc recovery) is
1262  * far less concerning.
1263  */
1264 static int ocfs2_recover_node(struct ocfs2_super *osb,
1265 			      int node_num)
1266 {
1267 	int status = 0;
1268 	int slot_num;
1269 	struct ocfs2_slot_info *si = osb->slot_info;
1270 	struct ocfs2_dinode *la_copy = NULL;
1271 	struct ocfs2_dinode *tl_copy = NULL;
1272 
1273 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1274 		   node_num, osb->node_num);
1275 
1276 	mlog(0, "checking node %d\n", node_num);
1277 
1278 	/* Should not ever be called to recover ourselves -- in that
1279 	 * case we should've called ocfs2_journal_load instead. */
1280 	BUG_ON(osb->node_num == node_num);
1281 
1282 	slot_num = ocfs2_node_num_to_slot(si, node_num);
1283 	if (slot_num == OCFS2_INVALID_SLOT) {
1284 		status = 0;
1285 		mlog(0, "no slot for this node, so no recovery required.\n");
1286 		goto done;
1287 	}
1288 
1289 	mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1290 
1291 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1292 	if (status < 0) {
1293 		mlog_errno(status);
1294 		goto done;
1295 	}
1296 
1297 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1298 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1299 	if (status < 0) {
1300 		mlog_errno(status);
1301 		goto done;
1302 	}
1303 
1304 	/* An error from begin_truncate_log_recovery is not
1305 	 * serious enough to warrant halting the rest of
1306 	 * recovery. */
1307 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1308 	if (status < 0)
1309 		mlog_errno(status);
1310 
1311 	/* Likewise, this would be a strange but ultimately not so
1312 	 * harmful place to get an error... */
1313 	ocfs2_clear_slot(si, slot_num);
1314 	status = ocfs2_update_disk_slots(osb, si);
1315 	if (status < 0)
1316 		mlog_errno(status);
1317 
1318 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1319 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1320 					tl_copy);
1321 
1322 	status = 0;
1323 done:
1324 
1325 	mlog_exit(status);
1326 	return status;
1327 }
1328 
1329 /* Test node liveness by trylocking his journal. If we get the lock,
1330  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1331  * still alive (we couldn't get the lock) and < 0 on error. */
1332 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1333 				 int slot_num)
1334 {
1335 	int status, flags;
1336 	struct inode *inode = NULL;
1337 
1338 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1339 					    slot_num);
1340 	if (inode == NULL) {
1341 		mlog(ML_ERROR, "access error\n");
1342 		status = -EACCES;
1343 		goto bail;
1344 	}
1345 	if (is_bad_inode(inode)) {
1346 		mlog(ML_ERROR, "access error (bad inode)\n");
1347 		iput(inode);
1348 		inode = NULL;
1349 		status = -EACCES;
1350 		goto bail;
1351 	}
1352 	SET_INODE_JOURNAL(inode);
1353 
1354 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1355 	status = ocfs2_meta_lock_full(inode, NULL, NULL, 1, flags);
1356 	if (status < 0) {
1357 		if (status != -EAGAIN)
1358 			mlog_errno(status);
1359 		goto bail;
1360 	}
1361 
1362 	ocfs2_meta_unlock(inode, 1);
1363 bail:
1364 	if (inode)
1365 		iput(inode);
1366 
1367 	return status;
1368 }
1369 
1370 /* Call this underneath ocfs2_super_lock. It also assumes that the
1371  * slot info struct has been updated from disk. */
1372 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1373 {
1374 	int status, i, node_num;
1375 	struct ocfs2_slot_info *si = osb->slot_info;
1376 
1377 	/* This is called with the super block cluster lock, so we
1378 	 * know that the slot map can't change underneath us. */
1379 
1380 	spin_lock(&si->si_lock);
1381 	for(i = 0; i < si->si_num_slots; i++) {
1382 		if (i == osb->slot_num)
1383 			continue;
1384 		if (ocfs2_is_empty_slot(si, i))
1385 			continue;
1386 
1387 		node_num = si->si_global_node_nums[i];
1388 		if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1389 			continue;
1390 		spin_unlock(&si->si_lock);
1391 
1392 		/* Ok, we have a slot occupied by another node which
1393 		 * is not in the recovery map. We trylock his journal
1394 		 * file here to test if he's alive. */
1395 		status = ocfs2_trylock_journal(osb, i);
1396 		if (!status) {
1397 			/* Since we're called from mount, we know that
1398 			 * the recovery thread can't race us on
1399 			 * setting / checking the recovery bits. */
1400 			ocfs2_recovery_thread(osb, node_num);
1401 		} else if ((status < 0) && (status != -EAGAIN)) {
1402 			mlog_errno(status);
1403 			goto bail;
1404 		}
1405 
1406 		spin_lock(&si->si_lock);
1407 	}
1408 	spin_unlock(&si->si_lock);
1409 
1410 	status = 0;
1411 bail:
1412 	mlog_exit(status);
1413 	return status;
1414 }
1415 
1416 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1417 			       int slot,
1418 			       struct inode **head)
1419 {
1420 	int status;
1421 	struct inode *orphan_dir_inode = NULL;
1422 	struct inode *iter;
1423 	unsigned long offset, blk, local;
1424 	struct buffer_head *bh = NULL;
1425 	struct ocfs2_dir_entry *de;
1426 	struct super_block *sb = osb->sb;
1427 
1428 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1429 						       ORPHAN_DIR_SYSTEM_INODE,
1430 						       slot);
1431 	if  (!orphan_dir_inode) {
1432 		status = -ENOENT;
1433 		mlog_errno(status);
1434 		return status;
1435 	}
1436 
1437 	mutex_lock(&orphan_dir_inode->i_mutex);
1438 	status = ocfs2_meta_lock(orphan_dir_inode, NULL, NULL, 0);
1439 	if (status < 0) {
1440 		mlog_errno(status);
1441 		goto out;
1442 	}
1443 
1444 	offset = 0;
1445 	iter = NULL;
1446 	while(offset < i_size_read(orphan_dir_inode)) {
1447 		blk = offset >> sb->s_blocksize_bits;
1448 
1449 		bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0);
1450 		if (!bh)
1451 			status = -EINVAL;
1452 		if (status < 0) {
1453 			if (bh)
1454 				brelse(bh);
1455 			mlog_errno(status);
1456 			goto out_unlock;
1457 		}
1458 
1459 		local = 0;
1460 		while(offset < i_size_read(orphan_dir_inode)
1461 		      && local < sb->s_blocksize) {
1462 			de = (struct ocfs2_dir_entry *) (bh->b_data + local);
1463 
1464 			if (!ocfs2_check_dir_entry(orphan_dir_inode,
1465 						  de, bh, local)) {
1466 				status = -EINVAL;
1467 				mlog_errno(status);
1468 				brelse(bh);
1469 				goto out_unlock;
1470 			}
1471 
1472 			local += le16_to_cpu(de->rec_len);
1473 			offset += le16_to_cpu(de->rec_len);
1474 
1475 			/* I guess we silently fail on no inode? */
1476 			if (!le64_to_cpu(de->inode))
1477 				continue;
1478 			if (de->file_type > OCFS2_FT_MAX) {
1479 				mlog(ML_ERROR,
1480 				     "block %llu contains invalid de: "
1481 				     "inode = %llu, rec_len = %u, "
1482 				     "name_len = %u, file_type = %u, "
1483 				     "name='%.*s'\n",
1484 				     (unsigned long long)bh->b_blocknr,
1485 				     (unsigned long long)le64_to_cpu(de->inode),
1486 				     le16_to_cpu(de->rec_len),
1487 				     de->name_len,
1488 				     de->file_type,
1489 				     de->name_len,
1490 				     de->name);
1491 				continue;
1492 			}
1493 			if (de->name_len == 1 && !strncmp(".", de->name, 1))
1494 				continue;
1495 			if (de->name_len == 2 && !strncmp("..", de->name, 2))
1496 				continue;
1497 
1498 			iter = ocfs2_iget(osb, le64_to_cpu(de->inode));
1499 			if (IS_ERR(iter))
1500 				continue;
1501 
1502 			mlog(0, "queue orphan %llu\n",
1503 			     (unsigned long long)OCFS2_I(iter)->ip_blkno);
1504 			/* No locking is required for the next_orphan
1505 			 * queue as there is only ever a single
1506 			 * process doing orphan recovery. */
1507 			OCFS2_I(iter)->ip_next_orphan = *head;
1508 			*head = iter;
1509 		}
1510 		brelse(bh);
1511 	}
1512 
1513 out_unlock:
1514 	ocfs2_meta_unlock(orphan_dir_inode, 0);
1515 out:
1516 	mutex_unlock(&orphan_dir_inode->i_mutex);
1517 	iput(orphan_dir_inode);
1518 	return status;
1519 }
1520 
1521 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1522 					      int slot)
1523 {
1524 	int ret;
1525 
1526 	spin_lock(&osb->osb_lock);
1527 	ret = !osb->osb_orphan_wipes[slot];
1528 	spin_unlock(&osb->osb_lock);
1529 	return ret;
1530 }
1531 
1532 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1533 					     int slot)
1534 {
1535 	spin_lock(&osb->osb_lock);
1536 	/* Mark ourselves such that new processes in delete_inode()
1537 	 * know to quit early. */
1538 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1539 	while (osb->osb_orphan_wipes[slot]) {
1540 		/* If any processes are already in the middle of an
1541 		 * orphan wipe on this dir, then we need to wait for
1542 		 * them. */
1543 		spin_unlock(&osb->osb_lock);
1544 		wait_event_interruptible(osb->osb_wipe_event,
1545 					 ocfs2_orphan_recovery_can_continue(osb, slot));
1546 		spin_lock(&osb->osb_lock);
1547 	}
1548 	spin_unlock(&osb->osb_lock);
1549 }
1550 
1551 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1552 					      int slot)
1553 {
1554 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1555 }
1556 
1557 /*
1558  * Orphan recovery. Each mounted node has it's own orphan dir which we
1559  * must run during recovery. Our strategy here is to build a list of
1560  * the inodes in the orphan dir and iget/iput them. The VFS does
1561  * (most) of the rest of the work.
1562  *
1563  * Orphan recovery can happen at any time, not just mount so we have a
1564  * couple of extra considerations.
1565  *
1566  * - We grab as many inodes as we can under the orphan dir lock -
1567  *   doing iget() outside the orphan dir risks getting a reference on
1568  *   an invalid inode.
1569  * - We must be sure not to deadlock with other processes on the
1570  *   system wanting to run delete_inode(). This can happen when they go
1571  *   to lock the orphan dir and the orphan recovery process attempts to
1572  *   iget() inside the orphan dir lock. This can be avoided by
1573  *   advertising our state to ocfs2_delete_inode().
1574  */
1575 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1576 				 int slot)
1577 {
1578 	int ret = 0;
1579 	struct inode *inode = NULL;
1580 	struct inode *iter;
1581 	struct ocfs2_inode_info *oi;
1582 
1583 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1584 
1585 	ocfs2_mark_recovering_orphan_dir(osb, slot);
1586 	ret = ocfs2_queue_orphans(osb, slot, &inode);
1587 	ocfs2_clear_recovering_orphan_dir(osb, slot);
1588 
1589 	/* Error here should be noted, but we want to continue with as
1590 	 * many queued inodes as we've got. */
1591 	if (ret)
1592 		mlog_errno(ret);
1593 
1594 	while (inode) {
1595 		oi = OCFS2_I(inode);
1596 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1597 
1598 		iter = oi->ip_next_orphan;
1599 
1600 		spin_lock(&oi->ip_lock);
1601 		/* Delete voting may have set these on the assumption
1602 		 * that the other node would wipe them successfully.
1603 		 * If they are still in the node's orphan dir, we need
1604 		 * to reset that state. */
1605 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1606 
1607 		/* Set the proper information to get us going into
1608 		 * ocfs2_delete_inode. */
1609 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1610 		oi->ip_orphaned_slot = slot;
1611 		spin_unlock(&oi->ip_lock);
1612 
1613 		iput(inode);
1614 
1615 		inode = iter;
1616 	}
1617 
1618 	return ret;
1619 }
1620 
1621 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1622 {
1623 	/* This check is good because ocfs2 will wait on our recovery
1624 	 * thread before changing it to something other than MOUNTED
1625 	 * or DISABLED. */
1626 	wait_event(osb->osb_mount_event,
1627 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1628 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1629 
1630 	/* If there's an error on mount, then we may never get to the
1631 	 * MOUNTED flag, but this is set right before
1632 	 * dismount_volume() so we can trust it. */
1633 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1634 		mlog(0, "mount error, exiting!\n");
1635 		return -EBUSY;
1636 	}
1637 
1638 	return 0;
1639 }
1640 
1641 static int ocfs2_commit_thread(void *arg)
1642 {
1643 	int status;
1644 	struct ocfs2_super *osb = arg;
1645 	struct ocfs2_journal *journal = osb->journal;
1646 
1647 	/* we can trust j_num_trans here because _should_stop() is only set in
1648 	 * shutdown and nobody other than ourselves should be able to start
1649 	 * transactions.  committing on shutdown might take a few iterations
1650 	 * as final transactions put deleted inodes on the list */
1651 	while (!(kthread_should_stop() &&
1652 		 atomic_read(&journal->j_num_trans) == 0)) {
1653 
1654 		wait_event_interruptible(osb->checkpoint_event,
1655 					 atomic_read(&journal->j_num_trans)
1656 					 || kthread_should_stop());
1657 
1658 		status = ocfs2_commit_cache(osb);
1659 		if (status < 0)
1660 			mlog_errno(status);
1661 
1662 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1663 			mlog(ML_KTHREAD,
1664 			     "commit_thread: %u transactions pending on "
1665 			     "shutdown\n",
1666 			     atomic_read(&journal->j_num_trans));
1667 		}
1668 	}
1669 
1670 	return 0;
1671 }
1672 
1673 /* Look for a dirty journal without taking any cluster locks. Used for
1674  * hard readonly access to determine whether the file system journals
1675  * require recovery. */
1676 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1677 {
1678 	int ret = 0;
1679 	unsigned int slot;
1680 	struct buffer_head *di_bh;
1681 	struct ocfs2_dinode *di;
1682 	struct inode *journal = NULL;
1683 
1684 	for(slot = 0; slot < osb->max_slots; slot++) {
1685 		journal = ocfs2_get_system_file_inode(osb,
1686 						      JOURNAL_SYSTEM_INODE,
1687 						      slot);
1688 		if (!journal || is_bad_inode(journal)) {
1689 			ret = -EACCES;
1690 			mlog_errno(ret);
1691 			goto out;
1692 		}
1693 
1694 		di_bh = NULL;
1695 		ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1696 				       0, journal);
1697 		if (ret < 0) {
1698 			mlog_errno(ret);
1699 			goto out;
1700 		}
1701 
1702 		di = (struct ocfs2_dinode *) di_bh->b_data;
1703 
1704 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
1705 		    OCFS2_JOURNAL_DIRTY_FL)
1706 			ret = -EROFS;
1707 
1708 		brelse(di_bh);
1709 		if (ret)
1710 			break;
1711 	}
1712 
1713 out:
1714 	if (journal)
1715 		iput(journal);
1716 
1717 	return ret;
1718 }
1719