xref: /linux/fs/ocfs2/journal.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34 
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
55 
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
58 
59 DEFINE_SPINLOCK(trans_inc_lock);
60 
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62 
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65 			      int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70 				      int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 				 int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74 				 int slot,
75 				 enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 					    int slot_num,
79 					    struct ocfs2_dinode *la_dinode,
80 					    struct ocfs2_dinode *tl_dinode,
81 					    struct ocfs2_quota_recovery *qrec,
82 					    enum ocfs2_orphan_reco_type orphan_reco_type);
83 
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85 {
86 	return __ocfs2_wait_on_mount(osb, 0);
87 }
88 
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90 {
91 	return __ocfs2_wait_on_mount(osb, 1);
92 }
93 
94 /*
95  * This replay_map is to track online/offline slots, so we could recover
96  * offline slots during recovery and mount
97  */
98 
99 enum ocfs2_replay_state {
100 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
101 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
102 	REPLAY_DONE 		/* Replay was already queued */
103 };
104 
105 struct ocfs2_replay_map {
106 	unsigned int rm_slots;
107 	enum ocfs2_replay_state rm_state;
108 	unsigned char rm_replay_slots[0];
109 };
110 
111 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112 {
113 	if (!osb->replay_map)
114 		return;
115 
116 	/* If we've already queued the replay, we don't have any more to do */
117 	if (osb->replay_map->rm_state == REPLAY_DONE)
118 		return;
119 
120 	osb->replay_map->rm_state = state;
121 }
122 
123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124 {
125 	struct ocfs2_replay_map *replay_map;
126 	int i, node_num;
127 
128 	/* If replay map is already set, we don't do it again */
129 	if (osb->replay_map)
130 		return 0;
131 
132 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
134 
135 	if (!replay_map) {
136 		mlog_errno(-ENOMEM);
137 		return -ENOMEM;
138 	}
139 
140 	spin_lock(&osb->osb_lock);
141 
142 	replay_map->rm_slots = osb->max_slots;
143 	replay_map->rm_state = REPLAY_UNNEEDED;
144 
145 	/* set rm_replay_slots for offline slot(s) */
146 	for (i = 0; i < replay_map->rm_slots; i++) {
147 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 			replay_map->rm_replay_slots[i] = 1;
149 	}
150 
151 	osb->replay_map = replay_map;
152 	spin_unlock(&osb->osb_lock);
153 	return 0;
154 }
155 
156 void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 		enum ocfs2_orphan_reco_type orphan_reco_type)
158 {
159 	struct ocfs2_replay_map *replay_map = osb->replay_map;
160 	int i;
161 
162 	if (!replay_map)
163 		return;
164 
165 	if (replay_map->rm_state != REPLAY_NEEDED)
166 		return;
167 
168 	for (i = 0; i < replay_map->rm_slots; i++)
169 		if (replay_map->rm_replay_slots[i])
170 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171 							NULL, NULL,
172 							orphan_reco_type);
173 	replay_map->rm_state = REPLAY_DONE;
174 }
175 
176 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177 {
178 	struct ocfs2_replay_map *replay_map = osb->replay_map;
179 
180 	if (!osb->replay_map)
181 		return;
182 
183 	kfree(replay_map);
184 	osb->replay_map = NULL;
185 }
186 
187 int ocfs2_recovery_init(struct ocfs2_super *osb)
188 {
189 	struct ocfs2_recovery_map *rm;
190 
191 	mutex_init(&osb->recovery_lock);
192 	osb->disable_recovery = 0;
193 	osb->recovery_thread_task = NULL;
194 	init_waitqueue_head(&osb->recovery_event);
195 
196 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 		     osb->max_slots * sizeof(unsigned int),
198 		     GFP_KERNEL);
199 	if (!rm) {
200 		mlog_errno(-ENOMEM);
201 		return -ENOMEM;
202 	}
203 
204 	rm->rm_entries = (unsigned int *)((char *)rm +
205 					  sizeof(struct ocfs2_recovery_map));
206 	osb->recovery_map = rm;
207 
208 	return 0;
209 }
210 
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212  * memory barriers to make sure that we'll see the null task before
213  * being woken up */
214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215 {
216 	mb();
217 	return osb->recovery_thread_task != NULL;
218 }
219 
220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
221 {
222 	struct ocfs2_recovery_map *rm;
223 
224 	/* disable any new recovery threads and wait for any currently
225 	 * running ones to exit. Do this before setting the vol_state. */
226 	mutex_lock(&osb->recovery_lock);
227 	osb->disable_recovery = 1;
228 	mutex_unlock(&osb->recovery_lock);
229 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230 
231 	/* At this point, we know that no more recovery threads can be
232 	 * launched, so wait for any recovery completion work to
233 	 * complete. */
234 	flush_workqueue(ocfs2_wq);
235 
236 	/*
237 	 * Now that recovery is shut down, and the osb is about to be
238 	 * freed,  the osb_lock is not taken here.
239 	 */
240 	rm = osb->recovery_map;
241 	/* XXX: Should we bug if there are dirty entries? */
242 
243 	kfree(rm);
244 }
245 
246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247 				     unsigned int node_num)
248 {
249 	int i;
250 	struct ocfs2_recovery_map *rm = osb->recovery_map;
251 
252 	assert_spin_locked(&osb->osb_lock);
253 
254 	for (i = 0; i < rm->rm_used; i++) {
255 		if (rm->rm_entries[i] == node_num)
256 			return 1;
257 	}
258 
259 	return 0;
260 }
261 
262 /* Behaves like test-and-set.  Returns the previous value */
263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264 				  unsigned int node_num)
265 {
266 	struct ocfs2_recovery_map *rm = osb->recovery_map;
267 
268 	spin_lock(&osb->osb_lock);
269 	if (__ocfs2_recovery_map_test(osb, node_num)) {
270 		spin_unlock(&osb->osb_lock);
271 		return 1;
272 	}
273 
274 	/* XXX: Can this be exploited? Not from o2dlm... */
275 	BUG_ON(rm->rm_used >= osb->max_slots);
276 
277 	rm->rm_entries[rm->rm_used] = node_num;
278 	rm->rm_used++;
279 	spin_unlock(&osb->osb_lock);
280 
281 	return 0;
282 }
283 
284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285 				     unsigned int node_num)
286 {
287 	int i;
288 	struct ocfs2_recovery_map *rm = osb->recovery_map;
289 
290 	spin_lock(&osb->osb_lock);
291 
292 	for (i = 0; i < rm->rm_used; i++) {
293 		if (rm->rm_entries[i] == node_num)
294 			break;
295 	}
296 
297 	if (i < rm->rm_used) {
298 		/* XXX: be careful with the pointer math */
299 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300 			(rm->rm_used - i - 1) * sizeof(unsigned int));
301 		rm->rm_used--;
302 	}
303 
304 	spin_unlock(&osb->osb_lock);
305 }
306 
307 static int ocfs2_commit_cache(struct ocfs2_super *osb)
308 {
309 	int status = 0;
310 	unsigned int flushed;
311 	struct ocfs2_journal *journal = NULL;
312 
313 	journal = osb->journal;
314 
315 	/* Flush all pending commits and checkpoint the journal. */
316 	down_write(&journal->j_trans_barrier);
317 
318 	flushed = atomic_read(&journal->j_num_trans);
319 	trace_ocfs2_commit_cache_begin(flushed);
320 	if (flushed == 0) {
321 		up_write(&journal->j_trans_barrier);
322 		goto finally;
323 	}
324 
325 	jbd2_journal_lock_updates(journal->j_journal);
326 	status = jbd2_journal_flush(journal->j_journal);
327 	jbd2_journal_unlock_updates(journal->j_journal);
328 	if (status < 0) {
329 		up_write(&journal->j_trans_barrier);
330 		mlog_errno(status);
331 		goto finally;
332 	}
333 
334 	ocfs2_inc_trans_id(journal);
335 
336 	flushed = atomic_read(&journal->j_num_trans);
337 	atomic_set(&journal->j_num_trans, 0);
338 	up_write(&journal->j_trans_barrier);
339 
340 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
341 
342 	ocfs2_wake_downconvert_thread(osb);
343 	wake_up(&journal->j_checkpointed);
344 finally:
345 	return status;
346 }
347 
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 {
350 	journal_t *journal = osb->journal->j_journal;
351 	handle_t *handle;
352 
353 	BUG_ON(!osb || !osb->journal->j_journal);
354 
355 	if (ocfs2_is_hard_readonly(osb))
356 		return ERR_PTR(-EROFS);
357 
358 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 	BUG_ON(max_buffs <= 0);
360 
361 	/* Nested transaction? Just return the handle... */
362 	if (journal_current_handle())
363 		return jbd2_journal_start(journal, max_buffs);
364 
365 	sb_start_intwrite(osb->sb);
366 
367 	down_read(&osb->journal->j_trans_barrier);
368 
369 	handle = jbd2_journal_start(journal, max_buffs);
370 	if (IS_ERR(handle)) {
371 		up_read(&osb->journal->j_trans_barrier);
372 		sb_end_intwrite(osb->sb);
373 
374 		mlog_errno(PTR_ERR(handle));
375 
376 		if (is_journal_aborted(journal)) {
377 			ocfs2_abort(osb->sb, "Detected aborted journal");
378 			handle = ERR_PTR(-EROFS);
379 		}
380 	} else {
381 		if (!ocfs2_mount_local(osb))
382 			atomic_inc(&(osb->journal->j_num_trans));
383 	}
384 
385 	return handle;
386 }
387 
388 int ocfs2_commit_trans(struct ocfs2_super *osb,
389 		       handle_t *handle)
390 {
391 	int ret, nested;
392 	struct ocfs2_journal *journal = osb->journal;
393 
394 	BUG_ON(!handle);
395 
396 	nested = handle->h_ref > 1;
397 	ret = jbd2_journal_stop(handle);
398 	if (ret < 0)
399 		mlog_errno(ret);
400 
401 	if (!nested) {
402 		up_read(&journal->j_trans_barrier);
403 		sb_end_intwrite(osb->sb);
404 	}
405 
406 	return ret;
407 }
408 
409 /*
410  * 'nblocks' is what you want to add to the current transaction.
411  *
412  * This might call jbd2_journal_restart() which will commit dirty buffers
413  * and then restart the transaction. Before calling
414  * ocfs2_extend_trans(), any changed blocks should have been
415  * dirtied. After calling it, all blocks which need to be changed must
416  * go through another set of journal_access/journal_dirty calls.
417  *
418  * WARNING: This will not release any semaphores or disk locks taken
419  * during the transaction, so make sure they were taken *before*
420  * start_trans or we'll have ordering deadlocks.
421  *
422  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423  * good because transaction ids haven't yet been recorded on the
424  * cluster locks associated with this handle.
425  */
426 int ocfs2_extend_trans(handle_t *handle, int nblocks)
427 {
428 	int status, old_nblocks;
429 
430 	BUG_ON(!handle);
431 	BUG_ON(nblocks < 0);
432 
433 	if (!nblocks)
434 		return 0;
435 
436 	old_nblocks = handle->h_buffer_credits;
437 
438 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
439 
440 #ifdef CONFIG_OCFS2_DEBUG_FS
441 	status = 1;
442 #else
443 	status = jbd2_journal_extend(handle, nblocks);
444 	if (status < 0) {
445 		mlog_errno(status);
446 		goto bail;
447 	}
448 #endif
449 
450 	if (status > 0) {
451 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
452 		status = jbd2_journal_restart(handle,
453 					      old_nblocks + nblocks);
454 		if (status < 0) {
455 			mlog_errno(status);
456 			goto bail;
457 		}
458 	}
459 
460 	status = 0;
461 bail:
462 	return status;
463 }
464 
465 /*
466  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467  * If that fails, restart the transaction & regain write access for the
468  * buffer head which is used for metadata modifications.
469  * Taken from Ext4: extend_or_restart_transaction()
470  */
471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472 {
473 	int status, old_nblks;
474 
475 	BUG_ON(!handle);
476 
477 	old_nblks = handle->h_buffer_credits;
478 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479 
480 	if (old_nblks < thresh)
481 		return 0;
482 
483 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484 	if (status < 0) {
485 		mlog_errno(status);
486 		goto bail;
487 	}
488 
489 	if (status > 0) {
490 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 		if (status < 0)
492 			mlog_errno(status);
493 	}
494 
495 bail:
496 	return status;
497 }
498 
499 
500 struct ocfs2_triggers {
501 	struct jbd2_buffer_trigger_type	ot_triggers;
502 	int				ot_offset;
503 };
504 
505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
506 {
507 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
508 }
509 
510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511 				 struct buffer_head *bh,
512 				 void *data, size_t size)
513 {
514 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
515 
516 	/*
517 	 * We aren't guaranteed to have the superblock here, so we
518 	 * must unconditionally compute the ecc data.
519 	 * __ocfs2_journal_access() will only set the triggers if
520 	 * metaecc is enabled.
521 	 */
522 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
523 }
524 
525 /*
526  * Quota blocks have their own trigger because the struct ocfs2_block_check
527  * offset depends on the blocksize.
528  */
529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
530 				 struct buffer_head *bh,
531 				 void *data, size_t size)
532 {
533 	struct ocfs2_disk_dqtrailer *dqt =
534 		ocfs2_block_dqtrailer(size, data);
535 
536 	/*
537 	 * We aren't guaranteed to have the superblock here, so we
538 	 * must unconditionally compute the ecc data.
539 	 * __ocfs2_journal_access() will only set the triggers if
540 	 * metaecc is enabled.
541 	 */
542 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
543 }
544 
545 /*
546  * Directory blocks also have their own trigger because the
547  * struct ocfs2_block_check offset depends on the blocksize.
548  */
549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
550 				 struct buffer_head *bh,
551 				 void *data, size_t size)
552 {
553 	struct ocfs2_dir_block_trailer *trailer =
554 		ocfs2_dir_trailer_from_size(size, data);
555 
556 	/*
557 	 * We aren't guaranteed to have the superblock here, so we
558 	 * must unconditionally compute the ecc data.
559 	 * __ocfs2_journal_access() will only set the triggers if
560 	 * metaecc is enabled.
561 	 */
562 	ocfs2_block_check_compute(data, size, &trailer->db_check);
563 }
564 
565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566 				struct buffer_head *bh)
567 {
568 	mlog(ML_ERROR,
569 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
570 	     "bh->b_blocknr = %llu\n",
571 	     (unsigned long)bh,
572 	     (unsigned long long)bh->b_blocknr);
573 
574 	/* We aren't guaranteed to have the superblock here - but if we
575 	 * don't, it'll just crash. */
576 	ocfs2_error(bh->b_assoc_map->host->i_sb,
577 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
578 }
579 
580 static struct ocfs2_triggers di_triggers = {
581 	.ot_triggers = {
582 		.t_frozen = ocfs2_frozen_trigger,
583 		.t_abort = ocfs2_abort_trigger,
584 	},
585 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
586 };
587 
588 static struct ocfs2_triggers eb_triggers = {
589 	.ot_triggers = {
590 		.t_frozen = ocfs2_frozen_trigger,
591 		.t_abort = ocfs2_abort_trigger,
592 	},
593 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
594 };
595 
596 static struct ocfs2_triggers rb_triggers = {
597 	.ot_triggers = {
598 		.t_frozen = ocfs2_frozen_trigger,
599 		.t_abort = ocfs2_abort_trigger,
600 	},
601 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
602 };
603 
604 static struct ocfs2_triggers gd_triggers = {
605 	.ot_triggers = {
606 		.t_frozen = ocfs2_frozen_trigger,
607 		.t_abort = ocfs2_abort_trigger,
608 	},
609 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
610 };
611 
612 static struct ocfs2_triggers db_triggers = {
613 	.ot_triggers = {
614 		.t_frozen = ocfs2_db_frozen_trigger,
615 		.t_abort = ocfs2_abort_trigger,
616 	},
617 };
618 
619 static struct ocfs2_triggers xb_triggers = {
620 	.ot_triggers = {
621 		.t_frozen = ocfs2_frozen_trigger,
622 		.t_abort = ocfs2_abort_trigger,
623 	},
624 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
625 };
626 
627 static struct ocfs2_triggers dq_triggers = {
628 	.ot_triggers = {
629 		.t_frozen = ocfs2_dq_frozen_trigger,
630 		.t_abort = ocfs2_abort_trigger,
631 	},
632 };
633 
634 static struct ocfs2_triggers dr_triggers = {
635 	.ot_triggers = {
636 		.t_frozen = ocfs2_frozen_trigger,
637 		.t_abort = ocfs2_abort_trigger,
638 	},
639 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
640 };
641 
642 static struct ocfs2_triggers dl_triggers = {
643 	.ot_triggers = {
644 		.t_frozen = ocfs2_frozen_trigger,
645 		.t_abort = ocfs2_abort_trigger,
646 	},
647 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
648 };
649 
650 static int __ocfs2_journal_access(handle_t *handle,
651 				  struct ocfs2_caching_info *ci,
652 				  struct buffer_head *bh,
653 				  struct ocfs2_triggers *triggers,
654 				  int type)
655 {
656 	int status;
657 	struct ocfs2_super *osb =
658 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
659 
660 	BUG_ON(!ci || !ci->ci_ops);
661 	BUG_ON(!handle);
662 	BUG_ON(!bh);
663 
664 	trace_ocfs2_journal_access(
665 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
666 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
667 
668 	/* we can safely remove this assertion after testing. */
669 	if (!buffer_uptodate(bh)) {
670 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
671 		mlog(ML_ERROR, "b_blocknr=%llu\n",
672 		     (unsigned long long)bh->b_blocknr);
673 		BUG();
674 	}
675 
676 	/* Set the current transaction information on the ci so
677 	 * that the locking code knows whether it can drop it's locks
678 	 * on this ci or not. We're protected from the commit
679 	 * thread updating the current transaction id until
680 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
681 	 * j_trans_barrier for us. */
682 	ocfs2_set_ci_lock_trans(osb->journal, ci);
683 
684 	ocfs2_metadata_cache_io_lock(ci);
685 	switch (type) {
686 	case OCFS2_JOURNAL_ACCESS_CREATE:
687 	case OCFS2_JOURNAL_ACCESS_WRITE:
688 		status = jbd2_journal_get_write_access(handle, bh);
689 		break;
690 
691 	case OCFS2_JOURNAL_ACCESS_UNDO:
692 		status = jbd2_journal_get_undo_access(handle, bh);
693 		break;
694 
695 	default:
696 		status = -EINVAL;
697 		mlog(ML_ERROR, "Unknown access type!\n");
698 	}
699 	if (!status && ocfs2_meta_ecc(osb) && triggers)
700 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
701 	ocfs2_metadata_cache_io_unlock(ci);
702 
703 	if (status < 0)
704 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705 		     status, type);
706 
707 	return status;
708 }
709 
710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711 			    struct buffer_head *bh, int type)
712 {
713 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
714 }
715 
716 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
717 			    struct buffer_head *bh, int type)
718 {
719 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
720 }
721 
722 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
723 			    struct buffer_head *bh, int type)
724 {
725 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
726 				      type);
727 }
728 
729 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
730 			    struct buffer_head *bh, int type)
731 {
732 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
733 }
734 
735 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
736 			    struct buffer_head *bh, int type)
737 {
738 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
739 }
740 
741 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
742 			    struct buffer_head *bh, int type)
743 {
744 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
745 }
746 
747 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
748 			    struct buffer_head *bh, int type)
749 {
750 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
751 }
752 
753 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
754 			    struct buffer_head *bh, int type)
755 {
756 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
757 }
758 
759 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
760 			    struct buffer_head *bh, int type)
761 {
762 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
763 }
764 
765 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
766 			 struct buffer_head *bh, int type)
767 {
768 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
769 }
770 
771 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
772 {
773 	int status;
774 
775 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
776 
777 	status = jbd2_journal_dirty_metadata(handle, bh);
778 	BUG_ON(status);
779 }
780 
781 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
782 
783 void ocfs2_set_journal_params(struct ocfs2_super *osb)
784 {
785 	journal_t *journal = osb->journal->j_journal;
786 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
787 
788 	if (osb->osb_commit_interval)
789 		commit_interval = osb->osb_commit_interval;
790 
791 	write_lock(&journal->j_state_lock);
792 	journal->j_commit_interval = commit_interval;
793 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
794 		journal->j_flags |= JBD2_BARRIER;
795 	else
796 		journal->j_flags &= ~JBD2_BARRIER;
797 	write_unlock(&journal->j_state_lock);
798 }
799 
800 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
801 {
802 	int status = -1;
803 	struct inode *inode = NULL; /* the journal inode */
804 	journal_t *j_journal = NULL;
805 	struct ocfs2_dinode *di = NULL;
806 	struct buffer_head *bh = NULL;
807 	struct ocfs2_super *osb;
808 	int inode_lock = 0;
809 
810 	BUG_ON(!journal);
811 
812 	osb = journal->j_osb;
813 
814 	/* already have the inode for our journal */
815 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
816 					    osb->slot_num);
817 	if (inode == NULL) {
818 		status = -EACCES;
819 		mlog_errno(status);
820 		goto done;
821 	}
822 	if (is_bad_inode(inode)) {
823 		mlog(ML_ERROR, "access error (bad inode)\n");
824 		iput(inode);
825 		inode = NULL;
826 		status = -EACCES;
827 		goto done;
828 	}
829 
830 	SET_INODE_JOURNAL(inode);
831 	OCFS2_I(inode)->ip_open_count++;
832 
833 	/* Skip recovery waits here - journal inode metadata never
834 	 * changes in a live cluster so it can be considered an
835 	 * exception to the rule. */
836 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
837 	if (status < 0) {
838 		if (status != -ERESTARTSYS)
839 			mlog(ML_ERROR, "Could not get lock on journal!\n");
840 		goto done;
841 	}
842 
843 	inode_lock = 1;
844 	di = (struct ocfs2_dinode *)bh->b_data;
845 
846 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
847 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
848 		     i_size_read(inode));
849 		status = -EINVAL;
850 		goto done;
851 	}
852 
853 	trace_ocfs2_journal_init(i_size_read(inode),
854 				 (unsigned long long)inode->i_blocks,
855 				 OCFS2_I(inode)->ip_clusters);
856 
857 	/* call the kernels journal init function now */
858 	j_journal = jbd2_journal_init_inode(inode);
859 	if (j_journal == NULL) {
860 		mlog(ML_ERROR, "Linux journal layer error\n");
861 		status = -EINVAL;
862 		goto done;
863 	}
864 
865 	trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
866 
867 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
868 		  OCFS2_JOURNAL_DIRTY_FL);
869 
870 	journal->j_journal = j_journal;
871 	journal->j_inode = inode;
872 	journal->j_bh = bh;
873 
874 	ocfs2_set_journal_params(osb);
875 
876 	journal->j_state = OCFS2_JOURNAL_LOADED;
877 
878 	status = 0;
879 done:
880 	if (status < 0) {
881 		if (inode_lock)
882 			ocfs2_inode_unlock(inode, 1);
883 		brelse(bh);
884 		if (inode) {
885 			OCFS2_I(inode)->ip_open_count--;
886 			iput(inode);
887 		}
888 	}
889 
890 	return status;
891 }
892 
893 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
894 {
895 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
896 }
897 
898 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
899 {
900 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
901 }
902 
903 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
904 				      int dirty, int replayed)
905 {
906 	int status;
907 	unsigned int flags;
908 	struct ocfs2_journal *journal = osb->journal;
909 	struct buffer_head *bh = journal->j_bh;
910 	struct ocfs2_dinode *fe;
911 
912 	fe = (struct ocfs2_dinode *)bh->b_data;
913 
914 	/* The journal bh on the osb always comes from ocfs2_journal_init()
915 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
916 	 * code bug if we mess it up. */
917 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
918 
919 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
920 	if (dirty)
921 		flags |= OCFS2_JOURNAL_DIRTY_FL;
922 	else
923 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
924 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
925 
926 	if (replayed)
927 		ocfs2_bump_recovery_generation(fe);
928 
929 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
930 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
931 	if (status < 0)
932 		mlog_errno(status);
933 
934 	return status;
935 }
936 
937 /*
938  * If the journal has been kmalloc'd it needs to be freed after this
939  * call.
940  */
941 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
942 {
943 	struct ocfs2_journal *journal = NULL;
944 	int status = 0;
945 	struct inode *inode = NULL;
946 	int num_running_trans = 0;
947 
948 	BUG_ON(!osb);
949 
950 	journal = osb->journal;
951 	if (!journal)
952 		goto done;
953 
954 	inode = journal->j_inode;
955 
956 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
957 		goto done;
958 
959 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
960 	if (!igrab(inode))
961 		BUG();
962 
963 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
964 	trace_ocfs2_journal_shutdown(num_running_trans);
965 
966 	/* Do a commit_cache here. It will flush our journal, *and*
967 	 * release any locks that are still held.
968 	 * set the SHUTDOWN flag and release the trans lock.
969 	 * the commit thread will take the trans lock for us below. */
970 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
971 
972 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
973 	 * drop the trans_lock (which we want to hold until we
974 	 * completely destroy the journal. */
975 	if (osb->commit_task) {
976 		/* Wait for the commit thread */
977 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
978 		kthread_stop(osb->commit_task);
979 		osb->commit_task = NULL;
980 	}
981 
982 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
983 
984 	if (ocfs2_mount_local(osb)) {
985 		jbd2_journal_lock_updates(journal->j_journal);
986 		status = jbd2_journal_flush(journal->j_journal);
987 		jbd2_journal_unlock_updates(journal->j_journal);
988 		if (status < 0)
989 			mlog_errno(status);
990 	}
991 
992 	if (status == 0) {
993 		/*
994 		 * Do not toggle if flush was unsuccessful otherwise
995 		 * will leave dirty metadata in a "clean" journal
996 		 */
997 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
998 		if (status < 0)
999 			mlog_errno(status);
1000 	}
1001 
1002 	/* Shutdown the kernel journal system */
1003 	jbd2_journal_destroy(journal->j_journal);
1004 	journal->j_journal = NULL;
1005 
1006 	OCFS2_I(inode)->ip_open_count--;
1007 
1008 	/* unlock our journal */
1009 	ocfs2_inode_unlock(inode, 1);
1010 
1011 	brelse(journal->j_bh);
1012 	journal->j_bh = NULL;
1013 
1014 	journal->j_state = OCFS2_JOURNAL_FREE;
1015 
1016 //	up_write(&journal->j_trans_barrier);
1017 done:
1018 	if (inode)
1019 		iput(inode);
1020 }
1021 
1022 static void ocfs2_clear_journal_error(struct super_block *sb,
1023 				      journal_t *journal,
1024 				      int slot)
1025 {
1026 	int olderr;
1027 
1028 	olderr = jbd2_journal_errno(journal);
1029 	if (olderr) {
1030 		mlog(ML_ERROR, "File system error %d recorded in "
1031 		     "journal %u.\n", olderr, slot);
1032 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1033 		     sb->s_id);
1034 
1035 		jbd2_journal_ack_err(journal);
1036 		jbd2_journal_clear_err(journal);
1037 	}
1038 }
1039 
1040 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1041 {
1042 	int status = 0;
1043 	struct ocfs2_super *osb;
1044 
1045 	BUG_ON(!journal);
1046 
1047 	osb = journal->j_osb;
1048 
1049 	status = jbd2_journal_load(journal->j_journal);
1050 	if (status < 0) {
1051 		mlog(ML_ERROR, "Failed to load journal!\n");
1052 		goto done;
1053 	}
1054 
1055 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1056 
1057 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1058 	if (status < 0) {
1059 		mlog_errno(status);
1060 		goto done;
1061 	}
1062 
1063 	/* Launch the commit thread */
1064 	if (!local) {
1065 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1066 					       "ocfs2cmt");
1067 		if (IS_ERR(osb->commit_task)) {
1068 			status = PTR_ERR(osb->commit_task);
1069 			osb->commit_task = NULL;
1070 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1071 			     "error=%d", status);
1072 			goto done;
1073 		}
1074 	} else
1075 		osb->commit_task = NULL;
1076 
1077 done:
1078 	return status;
1079 }
1080 
1081 
1082 /* 'full' flag tells us whether we clear out all blocks or if we just
1083  * mark the journal clean */
1084 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1085 {
1086 	int status;
1087 
1088 	BUG_ON(!journal);
1089 
1090 	status = jbd2_journal_wipe(journal->j_journal, full);
1091 	if (status < 0) {
1092 		mlog_errno(status);
1093 		goto bail;
1094 	}
1095 
1096 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1097 	if (status < 0)
1098 		mlog_errno(status);
1099 
1100 bail:
1101 	return status;
1102 }
1103 
1104 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1105 {
1106 	int empty;
1107 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1108 
1109 	spin_lock(&osb->osb_lock);
1110 	empty = (rm->rm_used == 0);
1111 	spin_unlock(&osb->osb_lock);
1112 
1113 	return empty;
1114 }
1115 
1116 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1117 {
1118 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1119 }
1120 
1121 /*
1122  * JBD Might read a cached version of another nodes journal file. We
1123  * don't want this as this file changes often and we get no
1124  * notification on those changes. The only way to be sure that we've
1125  * got the most up to date version of those blocks then is to force
1126  * read them off disk. Just searching through the buffer cache won't
1127  * work as there may be pages backing this file which are still marked
1128  * up to date. We know things can't change on this file underneath us
1129  * as we have the lock by now :)
1130  */
1131 static int ocfs2_force_read_journal(struct inode *inode)
1132 {
1133 	int status = 0;
1134 	int i;
1135 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1136 #define CONCURRENT_JOURNAL_FILL 32ULL
1137 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1138 
1139 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1140 
1141 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1142 	v_blkno = 0;
1143 	while (v_blkno < num_blocks) {
1144 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1145 						     &p_blkno, &p_blocks, NULL);
1146 		if (status < 0) {
1147 			mlog_errno(status);
1148 			goto bail;
1149 		}
1150 
1151 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1152 			p_blocks = CONCURRENT_JOURNAL_FILL;
1153 
1154 		/* We are reading journal data which should not
1155 		 * be put in the uptodate cache */
1156 		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1157 						p_blkno, p_blocks, bhs);
1158 		if (status < 0) {
1159 			mlog_errno(status);
1160 			goto bail;
1161 		}
1162 
1163 		for(i = 0; i < p_blocks; i++) {
1164 			brelse(bhs[i]);
1165 			bhs[i] = NULL;
1166 		}
1167 
1168 		v_blkno += p_blocks;
1169 	}
1170 
1171 bail:
1172 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1173 		brelse(bhs[i]);
1174 	return status;
1175 }
1176 
1177 struct ocfs2_la_recovery_item {
1178 	struct list_head	lri_list;
1179 	int			lri_slot;
1180 	struct ocfs2_dinode	*lri_la_dinode;
1181 	struct ocfs2_dinode	*lri_tl_dinode;
1182 	struct ocfs2_quota_recovery *lri_qrec;
1183 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1184 };
1185 
1186 /* Does the second half of the recovery process. By this point, the
1187  * node is marked clean and can actually be considered recovered,
1188  * hence it's no longer in the recovery map, but there's still some
1189  * cleanup we can do which shouldn't happen within the recovery thread
1190  * as locking in that context becomes very difficult if we are to take
1191  * recovering nodes into account.
1192  *
1193  * NOTE: This function can and will sleep on recovery of other nodes
1194  * during cluster locking, just like any other ocfs2 process.
1195  */
1196 void ocfs2_complete_recovery(struct work_struct *work)
1197 {
1198 	int ret = 0;
1199 	struct ocfs2_journal *journal =
1200 		container_of(work, struct ocfs2_journal, j_recovery_work);
1201 	struct ocfs2_super *osb = journal->j_osb;
1202 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1203 	struct ocfs2_la_recovery_item *item, *n;
1204 	struct ocfs2_quota_recovery *qrec;
1205 	enum ocfs2_orphan_reco_type orphan_reco_type;
1206 	LIST_HEAD(tmp_la_list);
1207 
1208 	trace_ocfs2_complete_recovery(
1209 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1210 
1211 	spin_lock(&journal->j_lock);
1212 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1213 	spin_unlock(&journal->j_lock);
1214 
1215 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1216 		list_del_init(&item->lri_list);
1217 
1218 		ocfs2_wait_on_quotas(osb);
1219 
1220 		la_dinode = item->lri_la_dinode;
1221 		tl_dinode = item->lri_tl_dinode;
1222 		qrec = item->lri_qrec;
1223 		orphan_reco_type = item->lri_orphan_reco_type;
1224 
1225 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1226 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1227 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1228 			qrec);
1229 
1230 		if (la_dinode) {
1231 			ret = ocfs2_complete_local_alloc_recovery(osb,
1232 								  la_dinode);
1233 			if (ret < 0)
1234 				mlog_errno(ret);
1235 
1236 			kfree(la_dinode);
1237 		}
1238 
1239 		if (tl_dinode) {
1240 			ret = ocfs2_complete_truncate_log_recovery(osb,
1241 								   tl_dinode);
1242 			if (ret < 0)
1243 				mlog_errno(ret);
1244 
1245 			kfree(tl_dinode);
1246 		}
1247 
1248 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1249 				orphan_reco_type);
1250 		if (ret < 0)
1251 			mlog_errno(ret);
1252 
1253 		if (qrec) {
1254 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1255 							  item->lri_slot);
1256 			if (ret < 0)
1257 				mlog_errno(ret);
1258 			/* Recovery info is already freed now */
1259 		}
1260 
1261 		kfree(item);
1262 	}
1263 
1264 	trace_ocfs2_complete_recovery_end(ret);
1265 }
1266 
1267 /* NOTE: This function always eats your references to la_dinode and
1268  * tl_dinode, either manually on error, or by passing them to
1269  * ocfs2_complete_recovery */
1270 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1271 					    int slot_num,
1272 					    struct ocfs2_dinode *la_dinode,
1273 					    struct ocfs2_dinode *tl_dinode,
1274 					    struct ocfs2_quota_recovery *qrec,
1275 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1276 {
1277 	struct ocfs2_la_recovery_item *item;
1278 
1279 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1280 	if (!item) {
1281 		/* Though we wish to avoid it, we are in fact safe in
1282 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1283 		 * than capable of reclaiming unused space. */
1284 		kfree(la_dinode);
1285 		kfree(tl_dinode);
1286 
1287 		if (qrec)
1288 			ocfs2_free_quota_recovery(qrec);
1289 
1290 		mlog_errno(-ENOMEM);
1291 		return;
1292 	}
1293 
1294 	INIT_LIST_HEAD(&item->lri_list);
1295 	item->lri_la_dinode = la_dinode;
1296 	item->lri_slot = slot_num;
1297 	item->lri_tl_dinode = tl_dinode;
1298 	item->lri_qrec = qrec;
1299 	item->lri_orphan_reco_type = orphan_reco_type;
1300 
1301 	spin_lock(&journal->j_lock);
1302 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1303 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1304 	spin_unlock(&journal->j_lock);
1305 }
1306 
1307 /* Called by the mount code to queue recovery the last part of
1308  * recovery for it's own and offline slot(s). */
1309 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1310 {
1311 	struct ocfs2_journal *journal = osb->journal;
1312 
1313 	if (ocfs2_is_hard_readonly(osb))
1314 		return;
1315 
1316 	/* No need to queue up our truncate_log as regular cleanup will catch
1317 	 * that */
1318 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1319 					osb->local_alloc_copy, NULL, NULL,
1320 					ORPHAN_NEED_TRUNCATE);
1321 	ocfs2_schedule_truncate_log_flush(osb, 0);
1322 
1323 	osb->local_alloc_copy = NULL;
1324 	osb->dirty = 0;
1325 
1326 	/* queue to recover orphan slots for all offline slots */
1327 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1328 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1329 	ocfs2_free_replay_slots(osb);
1330 }
1331 
1332 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1333 {
1334 	if (osb->quota_rec) {
1335 		ocfs2_queue_recovery_completion(osb->journal,
1336 						osb->slot_num,
1337 						NULL,
1338 						NULL,
1339 						osb->quota_rec,
1340 						ORPHAN_NEED_TRUNCATE);
1341 		osb->quota_rec = NULL;
1342 	}
1343 }
1344 
1345 static int __ocfs2_recovery_thread(void *arg)
1346 {
1347 	int status, node_num, slot_num;
1348 	struct ocfs2_super *osb = arg;
1349 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1350 	int *rm_quota = NULL;
1351 	int rm_quota_used = 0, i;
1352 	struct ocfs2_quota_recovery *qrec;
1353 
1354 	status = ocfs2_wait_on_mount(osb);
1355 	if (status < 0) {
1356 		goto bail;
1357 	}
1358 
1359 	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1360 	if (!rm_quota) {
1361 		status = -ENOMEM;
1362 		goto bail;
1363 	}
1364 restart:
1365 	status = ocfs2_super_lock(osb, 1);
1366 	if (status < 0) {
1367 		mlog_errno(status);
1368 		goto bail;
1369 	}
1370 
1371 	status = ocfs2_compute_replay_slots(osb);
1372 	if (status < 0)
1373 		mlog_errno(status);
1374 
1375 	/* queue recovery for our own slot */
1376 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1377 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1378 
1379 	spin_lock(&osb->osb_lock);
1380 	while (rm->rm_used) {
1381 		/* It's always safe to remove entry zero, as we won't
1382 		 * clear it until ocfs2_recover_node() has succeeded. */
1383 		node_num = rm->rm_entries[0];
1384 		spin_unlock(&osb->osb_lock);
1385 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1386 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1387 		if (slot_num == -ENOENT) {
1388 			status = 0;
1389 			goto skip_recovery;
1390 		}
1391 
1392 		/* It is a bit subtle with quota recovery. We cannot do it
1393 		 * immediately because we have to obtain cluster locks from
1394 		 * quota files and we also don't want to just skip it because
1395 		 * then quota usage would be out of sync until some node takes
1396 		 * the slot. So we remember which nodes need quota recovery
1397 		 * and when everything else is done, we recover quotas. */
1398 		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1399 		if (i == rm_quota_used)
1400 			rm_quota[rm_quota_used++] = slot_num;
1401 
1402 		status = ocfs2_recover_node(osb, node_num, slot_num);
1403 skip_recovery:
1404 		if (!status) {
1405 			ocfs2_recovery_map_clear(osb, node_num);
1406 		} else {
1407 			mlog(ML_ERROR,
1408 			     "Error %d recovering node %d on device (%u,%u)!\n",
1409 			     status, node_num,
1410 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1411 			mlog(ML_ERROR, "Volume requires unmount.\n");
1412 		}
1413 
1414 		spin_lock(&osb->osb_lock);
1415 	}
1416 	spin_unlock(&osb->osb_lock);
1417 	trace_ocfs2_recovery_thread_end(status);
1418 
1419 	/* Refresh all journal recovery generations from disk */
1420 	status = ocfs2_check_journals_nolocks(osb);
1421 	status = (status == -EROFS) ? 0 : status;
1422 	if (status < 0)
1423 		mlog_errno(status);
1424 
1425 	/* Now it is right time to recover quotas... We have to do this under
1426 	 * superblock lock so that no one can start using the slot (and crash)
1427 	 * before we recover it */
1428 	for (i = 0; i < rm_quota_used; i++) {
1429 		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1430 		if (IS_ERR(qrec)) {
1431 			status = PTR_ERR(qrec);
1432 			mlog_errno(status);
1433 			continue;
1434 		}
1435 		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1436 						NULL, NULL, qrec,
1437 						ORPHAN_NEED_TRUNCATE);
1438 	}
1439 
1440 	ocfs2_super_unlock(osb, 1);
1441 
1442 	/* queue recovery for offline slots */
1443 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1444 
1445 bail:
1446 	mutex_lock(&osb->recovery_lock);
1447 	if (!status && !ocfs2_recovery_completed(osb)) {
1448 		mutex_unlock(&osb->recovery_lock);
1449 		goto restart;
1450 	}
1451 
1452 	ocfs2_free_replay_slots(osb);
1453 	osb->recovery_thread_task = NULL;
1454 	mb(); /* sync with ocfs2_recovery_thread_running */
1455 	wake_up(&osb->recovery_event);
1456 
1457 	mutex_unlock(&osb->recovery_lock);
1458 
1459 	kfree(rm_quota);
1460 
1461 	/* no one is callint kthread_stop() for us so the kthread() api
1462 	 * requires that we call do_exit().  And it isn't exported, but
1463 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1464 	complete_and_exit(NULL, status);
1465 }
1466 
1467 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1468 {
1469 	mutex_lock(&osb->recovery_lock);
1470 
1471 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1472 		osb->disable_recovery, osb->recovery_thread_task,
1473 		osb->disable_recovery ?
1474 		-1 : ocfs2_recovery_map_set(osb, node_num));
1475 
1476 	if (osb->disable_recovery)
1477 		goto out;
1478 
1479 	if (osb->recovery_thread_task)
1480 		goto out;
1481 
1482 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1483 						 "ocfs2rec");
1484 	if (IS_ERR(osb->recovery_thread_task)) {
1485 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1486 		osb->recovery_thread_task = NULL;
1487 	}
1488 
1489 out:
1490 	mutex_unlock(&osb->recovery_lock);
1491 	wake_up(&osb->recovery_event);
1492 }
1493 
1494 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1495 				    int slot_num,
1496 				    struct buffer_head **bh,
1497 				    struct inode **ret_inode)
1498 {
1499 	int status = -EACCES;
1500 	struct inode *inode = NULL;
1501 
1502 	BUG_ON(slot_num >= osb->max_slots);
1503 
1504 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1505 					    slot_num);
1506 	if (!inode || is_bad_inode(inode)) {
1507 		mlog_errno(status);
1508 		goto bail;
1509 	}
1510 	SET_INODE_JOURNAL(inode);
1511 
1512 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1513 	if (status < 0) {
1514 		mlog_errno(status);
1515 		goto bail;
1516 	}
1517 
1518 	status = 0;
1519 
1520 bail:
1521 	if (inode) {
1522 		if (status || !ret_inode)
1523 			iput(inode);
1524 		else
1525 			*ret_inode = inode;
1526 	}
1527 	return status;
1528 }
1529 
1530 /* Does the actual journal replay and marks the journal inode as
1531  * clean. Will only replay if the journal inode is marked dirty. */
1532 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1533 				int node_num,
1534 				int slot_num)
1535 {
1536 	int status;
1537 	int got_lock = 0;
1538 	unsigned int flags;
1539 	struct inode *inode = NULL;
1540 	struct ocfs2_dinode *fe;
1541 	journal_t *journal = NULL;
1542 	struct buffer_head *bh = NULL;
1543 	u32 slot_reco_gen;
1544 
1545 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1546 	if (status) {
1547 		mlog_errno(status);
1548 		goto done;
1549 	}
1550 
1551 	fe = (struct ocfs2_dinode *)bh->b_data;
1552 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1553 	brelse(bh);
1554 	bh = NULL;
1555 
1556 	/*
1557 	 * As the fs recovery is asynchronous, there is a small chance that
1558 	 * another node mounted (and recovered) the slot before the recovery
1559 	 * thread could get the lock. To handle that, we dirty read the journal
1560 	 * inode for that slot to get the recovery generation. If it is
1561 	 * different than what we expected, the slot has been recovered.
1562 	 * If not, it needs recovery.
1563 	 */
1564 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1565 		trace_ocfs2_replay_journal_recovered(slot_num,
1566 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1567 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1568 		status = -EBUSY;
1569 		goto done;
1570 	}
1571 
1572 	/* Continue with recovery as the journal has not yet been recovered */
1573 
1574 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1575 	if (status < 0) {
1576 		trace_ocfs2_replay_journal_lock_err(status);
1577 		if (status != -ERESTARTSYS)
1578 			mlog(ML_ERROR, "Could not lock journal!\n");
1579 		goto done;
1580 	}
1581 	got_lock = 1;
1582 
1583 	fe = (struct ocfs2_dinode *) bh->b_data;
1584 
1585 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1586 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1587 
1588 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1589 		trace_ocfs2_replay_journal_skip(node_num);
1590 		/* Refresh recovery generation for the slot */
1591 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1592 		goto done;
1593 	}
1594 
1595 	/* we need to run complete recovery for offline orphan slots */
1596 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1597 
1598 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1599 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1600 	       MINOR(osb->sb->s_dev));
1601 
1602 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1603 
1604 	status = ocfs2_force_read_journal(inode);
1605 	if (status < 0) {
1606 		mlog_errno(status);
1607 		goto done;
1608 	}
1609 
1610 	journal = jbd2_journal_init_inode(inode);
1611 	if (journal == NULL) {
1612 		mlog(ML_ERROR, "Linux journal layer error\n");
1613 		status = -EIO;
1614 		goto done;
1615 	}
1616 
1617 	status = jbd2_journal_load(journal);
1618 	if (status < 0) {
1619 		mlog_errno(status);
1620 		if (!igrab(inode))
1621 			BUG();
1622 		jbd2_journal_destroy(journal);
1623 		goto done;
1624 	}
1625 
1626 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1627 
1628 	/* wipe the journal */
1629 	jbd2_journal_lock_updates(journal);
1630 	status = jbd2_journal_flush(journal);
1631 	jbd2_journal_unlock_updates(journal);
1632 	if (status < 0)
1633 		mlog_errno(status);
1634 
1635 	/* This will mark the node clean */
1636 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1637 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1638 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1639 
1640 	/* Increment recovery generation to indicate successful recovery */
1641 	ocfs2_bump_recovery_generation(fe);
1642 	osb->slot_recovery_generations[slot_num] =
1643 					ocfs2_get_recovery_generation(fe);
1644 
1645 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1646 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1647 	if (status < 0)
1648 		mlog_errno(status);
1649 
1650 	if (!igrab(inode))
1651 		BUG();
1652 
1653 	jbd2_journal_destroy(journal);
1654 
1655 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1656 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1657 	       MINOR(osb->sb->s_dev));
1658 done:
1659 	/* drop the lock on this nodes journal */
1660 	if (got_lock)
1661 		ocfs2_inode_unlock(inode, 1);
1662 
1663 	if (inode)
1664 		iput(inode);
1665 
1666 	brelse(bh);
1667 
1668 	return status;
1669 }
1670 
1671 /*
1672  * Do the most important parts of node recovery:
1673  *  - Replay it's journal
1674  *  - Stamp a clean local allocator file
1675  *  - Stamp a clean truncate log
1676  *  - Mark the node clean
1677  *
1678  * If this function completes without error, a node in OCFS2 can be
1679  * said to have been safely recovered. As a result, failure during the
1680  * second part of a nodes recovery process (local alloc recovery) is
1681  * far less concerning.
1682  */
1683 static int ocfs2_recover_node(struct ocfs2_super *osb,
1684 			      int node_num, int slot_num)
1685 {
1686 	int status = 0;
1687 	struct ocfs2_dinode *la_copy = NULL;
1688 	struct ocfs2_dinode *tl_copy = NULL;
1689 
1690 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1691 
1692 	/* Should not ever be called to recover ourselves -- in that
1693 	 * case we should've called ocfs2_journal_load instead. */
1694 	BUG_ON(osb->node_num == node_num);
1695 
1696 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1697 	if (status < 0) {
1698 		if (status == -EBUSY) {
1699 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1700 			status = 0;
1701 			goto done;
1702 		}
1703 		mlog_errno(status);
1704 		goto done;
1705 	}
1706 
1707 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1708 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1709 	if (status < 0) {
1710 		mlog_errno(status);
1711 		goto done;
1712 	}
1713 
1714 	/* An error from begin_truncate_log_recovery is not
1715 	 * serious enough to warrant halting the rest of
1716 	 * recovery. */
1717 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1718 	if (status < 0)
1719 		mlog_errno(status);
1720 
1721 	/* Likewise, this would be a strange but ultimately not so
1722 	 * harmful place to get an error... */
1723 	status = ocfs2_clear_slot(osb, slot_num);
1724 	if (status < 0)
1725 		mlog_errno(status);
1726 
1727 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1728 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1729 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1730 
1731 	status = 0;
1732 done:
1733 
1734 	return status;
1735 }
1736 
1737 /* Test node liveness by trylocking his journal. If we get the lock,
1738  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1739  * still alive (we couldn't get the lock) and < 0 on error. */
1740 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1741 				 int slot_num)
1742 {
1743 	int status, flags;
1744 	struct inode *inode = NULL;
1745 
1746 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1747 					    slot_num);
1748 	if (inode == NULL) {
1749 		mlog(ML_ERROR, "access error\n");
1750 		status = -EACCES;
1751 		goto bail;
1752 	}
1753 	if (is_bad_inode(inode)) {
1754 		mlog(ML_ERROR, "access error (bad inode)\n");
1755 		iput(inode);
1756 		inode = NULL;
1757 		status = -EACCES;
1758 		goto bail;
1759 	}
1760 	SET_INODE_JOURNAL(inode);
1761 
1762 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1763 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1764 	if (status < 0) {
1765 		if (status != -EAGAIN)
1766 			mlog_errno(status);
1767 		goto bail;
1768 	}
1769 
1770 	ocfs2_inode_unlock(inode, 1);
1771 bail:
1772 	if (inode)
1773 		iput(inode);
1774 
1775 	return status;
1776 }
1777 
1778 /* Call this underneath ocfs2_super_lock. It also assumes that the
1779  * slot info struct has been updated from disk. */
1780 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1781 {
1782 	unsigned int node_num;
1783 	int status, i;
1784 	u32 gen;
1785 	struct buffer_head *bh = NULL;
1786 	struct ocfs2_dinode *di;
1787 
1788 	/* This is called with the super block cluster lock, so we
1789 	 * know that the slot map can't change underneath us. */
1790 
1791 	for (i = 0; i < osb->max_slots; i++) {
1792 		/* Read journal inode to get the recovery generation */
1793 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1794 		if (status) {
1795 			mlog_errno(status);
1796 			goto bail;
1797 		}
1798 		di = (struct ocfs2_dinode *)bh->b_data;
1799 		gen = ocfs2_get_recovery_generation(di);
1800 		brelse(bh);
1801 		bh = NULL;
1802 
1803 		spin_lock(&osb->osb_lock);
1804 		osb->slot_recovery_generations[i] = gen;
1805 
1806 		trace_ocfs2_mark_dead_nodes(i,
1807 					    osb->slot_recovery_generations[i]);
1808 
1809 		if (i == osb->slot_num) {
1810 			spin_unlock(&osb->osb_lock);
1811 			continue;
1812 		}
1813 
1814 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1815 		if (status == -ENOENT) {
1816 			spin_unlock(&osb->osb_lock);
1817 			continue;
1818 		}
1819 
1820 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1821 			spin_unlock(&osb->osb_lock);
1822 			continue;
1823 		}
1824 		spin_unlock(&osb->osb_lock);
1825 
1826 		/* Ok, we have a slot occupied by another node which
1827 		 * is not in the recovery map. We trylock his journal
1828 		 * file here to test if he's alive. */
1829 		status = ocfs2_trylock_journal(osb, i);
1830 		if (!status) {
1831 			/* Since we're called from mount, we know that
1832 			 * the recovery thread can't race us on
1833 			 * setting / checking the recovery bits. */
1834 			ocfs2_recovery_thread(osb, node_num);
1835 		} else if ((status < 0) && (status != -EAGAIN)) {
1836 			mlog_errno(status);
1837 			goto bail;
1838 		}
1839 	}
1840 
1841 	status = 0;
1842 bail:
1843 	return status;
1844 }
1845 
1846 /*
1847  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1848  * randomness to the timeout to minimize multple nodes firing the timer at the
1849  * same time.
1850  */
1851 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1852 {
1853 	unsigned long time;
1854 
1855 	get_random_bytes(&time, sizeof(time));
1856 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1857 	return msecs_to_jiffies(time);
1858 }
1859 
1860 /*
1861  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1862  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1863  * is done to catch any orphans that are left over in orphan directories.
1864  *
1865  * It scans all slots, even ones that are in use. It does so to handle the
1866  * case described below:
1867  *
1868  *   Node 1 has an inode it was using. The dentry went away due to memory
1869  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1870  *   has the open lock.
1871  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1872  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1873  *   open lock, sees that another node has a PR, and does nothing.
1874  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1875  *   open lock, sees the PR still, and does nothing.
1876  *   Basically, we have to trigger an orphan iput on node 1. The only way
1877  *   for this to happen is if node 1 runs node 2's orphan dir.
1878  *
1879  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1880  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1881  * stored in LVB. If the sequence number has changed, it means some other
1882  * node has done the scan.  This node skips the scan and tracks the
1883  * sequence number.  If the sequence number didn't change, it means a scan
1884  * hasn't happened.  The node queues a scan and increments the
1885  * sequence number in the LVB.
1886  */
1887 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1888 {
1889 	struct ocfs2_orphan_scan *os;
1890 	int status, i;
1891 	u32 seqno = 0;
1892 
1893 	os = &osb->osb_orphan_scan;
1894 
1895 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1896 		goto out;
1897 
1898 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1899 					    atomic_read(&os->os_state));
1900 
1901 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1902 	if (status < 0) {
1903 		if (status != -EAGAIN)
1904 			mlog_errno(status);
1905 		goto out;
1906 	}
1907 
1908 	/* Do no queue the tasks if the volume is being umounted */
1909 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1910 		goto unlock;
1911 
1912 	if (os->os_seqno != seqno) {
1913 		os->os_seqno = seqno;
1914 		goto unlock;
1915 	}
1916 
1917 	for (i = 0; i < osb->max_slots; i++)
1918 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1919 						NULL, ORPHAN_NO_NEED_TRUNCATE);
1920 	/*
1921 	 * We queued a recovery on orphan slots, increment the sequence
1922 	 * number and update LVB so other node will skip the scan for a while
1923 	 */
1924 	seqno++;
1925 	os->os_count++;
1926 	os->os_scantime = CURRENT_TIME;
1927 unlock:
1928 	ocfs2_orphan_scan_unlock(osb, seqno);
1929 out:
1930 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1931 					  atomic_read(&os->os_state));
1932 	return;
1933 }
1934 
1935 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1936 void ocfs2_orphan_scan_work(struct work_struct *work)
1937 {
1938 	struct ocfs2_orphan_scan *os;
1939 	struct ocfs2_super *osb;
1940 
1941 	os = container_of(work, struct ocfs2_orphan_scan,
1942 			  os_orphan_scan_work.work);
1943 	osb = os->os_osb;
1944 
1945 	mutex_lock(&os->os_lock);
1946 	ocfs2_queue_orphan_scan(osb);
1947 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1948 		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1949 				      ocfs2_orphan_scan_timeout());
1950 	mutex_unlock(&os->os_lock);
1951 }
1952 
1953 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1954 {
1955 	struct ocfs2_orphan_scan *os;
1956 
1957 	os = &osb->osb_orphan_scan;
1958 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1959 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1960 		mutex_lock(&os->os_lock);
1961 		cancel_delayed_work(&os->os_orphan_scan_work);
1962 		mutex_unlock(&os->os_lock);
1963 	}
1964 }
1965 
1966 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1967 {
1968 	struct ocfs2_orphan_scan *os;
1969 
1970 	os = &osb->osb_orphan_scan;
1971 	os->os_osb = osb;
1972 	os->os_count = 0;
1973 	os->os_seqno = 0;
1974 	mutex_init(&os->os_lock);
1975 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1976 }
1977 
1978 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1979 {
1980 	struct ocfs2_orphan_scan *os;
1981 
1982 	os = &osb->osb_orphan_scan;
1983 	os->os_scantime = CURRENT_TIME;
1984 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1985 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1986 	else {
1987 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1988 		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1989 				   ocfs2_orphan_scan_timeout());
1990 	}
1991 }
1992 
1993 struct ocfs2_orphan_filldir_priv {
1994 	struct dir_context	ctx;
1995 	struct inode		*head;
1996 	struct ocfs2_super	*osb;
1997 };
1998 
1999 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2000 				int name_len, loff_t pos, u64 ino,
2001 				unsigned type)
2002 {
2003 	struct ocfs2_orphan_filldir_priv *p =
2004 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2005 	struct inode *iter;
2006 
2007 	if (name_len == 1 && !strncmp(".", name, 1))
2008 		return 0;
2009 	if (name_len == 2 && !strncmp("..", name, 2))
2010 		return 0;
2011 
2012 	/* Skip bad inodes so that recovery can continue */
2013 	iter = ocfs2_iget(p->osb, ino,
2014 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2015 	if (IS_ERR(iter))
2016 		return 0;
2017 
2018 	/* Skip inodes which are already added to recover list, since dio may
2019 	 * happen concurrently with unlink/rename */
2020 	if (OCFS2_I(iter)->ip_next_orphan) {
2021 		iput(iter);
2022 		return 0;
2023 	}
2024 
2025 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2026 	/* No locking is required for the next_orphan queue as there
2027 	 * is only ever a single process doing orphan recovery. */
2028 	OCFS2_I(iter)->ip_next_orphan = p->head;
2029 	p->head = iter;
2030 
2031 	return 0;
2032 }
2033 
2034 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2035 			       int slot,
2036 			       struct inode **head)
2037 {
2038 	int status;
2039 	struct inode *orphan_dir_inode = NULL;
2040 	struct ocfs2_orphan_filldir_priv priv = {
2041 		.ctx.actor = ocfs2_orphan_filldir,
2042 		.osb = osb,
2043 		.head = *head
2044 	};
2045 
2046 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2047 						       ORPHAN_DIR_SYSTEM_INODE,
2048 						       slot);
2049 	if  (!orphan_dir_inode) {
2050 		status = -ENOENT;
2051 		mlog_errno(status);
2052 		return status;
2053 	}
2054 
2055 	mutex_lock(&orphan_dir_inode->i_mutex);
2056 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2057 	if (status < 0) {
2058 		mlog_errno(status);
2059 		goto out;
2060 	}
2061 
2062 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2063 	if (status) {
2064 		mlog_errno(status);
2065 		goto out_cluster;
2066 	}
2067 
2068 	*head = priv.head;
2069 
2070 out_cluster:
2071 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2072 out:
2073 	mutex_unlock(&orphan_dir_inode->i_mutex);
2074 	iput(orphan_dir_inode);
2075 	return status;
2076 }
2077 
2078 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2079 					      int slot)
2080 {
2081 	int ret;
2082 
2083 	spin_lock(&osb->osb_lock);
2084 	ret = !osb->osb_orphan_wipes[slot];
2085 	spin_unlock(&osb->osb_lock);
2086 	return ret;
2087 }
2088 
2089 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2090 					     int slot)
2091 {
2092 	spin_lock(&osb->osb_lock);
2093 	/* Mark ourselves such that new processes in delete_inode()
2094 	 * know to quit early. */
2095 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2096 	while (osb->osb_orphan_wipes[slot]) {
2097 		/* If any processes are already in the middle of an
2098 		 * orphan wipe on this dir, then we need to wait for
2099 		 * them. */
2100 		spin_unlock(&osb->osb_lock);
2101 		wait_event_interruptible(osb->osb_wipe_event,
2102 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2103 		spin_lock(&osb->osb_lock);
2104 	}
2105 	spin_unlock(&osb->osb_lock);
2106 }
2107 
2108 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2109 					      int slot)
2110 {
2111 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2112 }
2113 
2114 /*
2115  * Orphan recovery. Each mounted node has it's own orphan dir which we
2116  * must run during recovery. Our strategy here is to build a list of
2117  * the inodes in the orphan dir and iget/iput them. The VFS does
2118  * (most) of the rest of the work.
2119  *
2120  * Orphan recovery can happen at any time, not just mount so we have a
2121  * couple of extra considerations.
2122  *
2123  * - We grab as many inodes as we can under the orphan dir lock -
2124  *   doing iget() outside the orphan dir risks getting a reference on
2125  *   an invalid inode.
2126  * - We must be sure not to deadlock with other processes on the
2127  *   system wanting to run delete_inode(). This can happen when they go
2128  *   to lock the orphan dir and the orphan recovery process attempts to
2129  *   iget() inside the orphan dir lock. This can be avoided by
2130  *   advertising our state to ocfs2_delete_inode().
2131  */
2132 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2133 				 int slot,
2134 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2135 {
2136 	int ret = 0;
2137 	struct inode *inode = NULL;
2138 	struct inode *iter;
2139 	struct ocfs2_inode_info *oi;
2140 
2141 	trace_ocfs2_recover_orphans(slot);
2142 
2143 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2144 	ret = ocfs2_queue_orphans(osb, slot, &inode);
2145 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2146 
2147 	/* Error here should be noted, but we want to continue with as
2148 	 * many queued inodes as we've got. */
2149 	if (ret)
2150 		mlog_errno(ret);
2151 
2152 	while (inode) {
2153 		oi = OCFS2_I(inode);
2154 		trace_ocfs2_recover_orphans_iput(
2155 					(unsigned long long)oi->ip_blkno);
2156 
2157 		iter = oi->ip_next_orphan;
2158 		oi->ip_next_orphan = NULL;
2159 
2160 		/*
2161 		 * We need to take and drop the inode lock to
2162 		 * force read inode from disk.
2163 		 */
2164 		ret = ocfs2_inode_lock(inode, NULL, 0);
2165 		if (ret) {
2166 			mlog_errno(ret);
2167 			goto next;
2168 		}
2169 		ocfs2_inode_unlock(inode, 0);
2170 
2171 		if (inode->i_nlink == 0) {
2172 			spin_lock(&oi->ip_lock);
2173 			/* Set the proper information to get us going into
2174 			 * ocfs2_delete_inode. */
2175 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2176 			spin_unlock(&oi->ip_lock);
2177 		} else if (orphan_reco_type == ORPHAN_NEED_TRUNCATE) {
2178 			struct buffer_head *di_bh = NULL;
2179 
2180 			ret = ocfs2_rw_lock(inode, 1);
2181 			if (ret) {
2182 				mlog_errno(ret);
2183 				goto next;
2184 			}
2185 
2186 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2187 			if (ret < 0) {
2188 				ocfs2_rw_unlock(inode, 1);
2189 				mlog_errno(ret);
2190 				goto next;
2191 			}
2192 
2193 			ret = ocfs2_truncate_file(inode, di_bh,
2194 					i_size_read(inode));
2195 			ocfs2_inode_unlock(inode, 1);
2196 			ocfs2_rw_unlock(inode, 1);
2197 			brelse(di_bh);
2198 			if (ret < 0) {
2199 				if (ret != -ENOSPC)
2200 					mlog_errno(ret);
2201 				goto next;
2202 			}
2203 
2204 			ret = ocfs2_del_inode_from_orphan(osb, inode, 0, 0);
2205 			if (ret)
2206 				mlog_errno(ret);
2207 
2208 			wake_up(&OCFS2_I(inode)->append_dio_wq);
2209 		} /* else if ORPHAN_NO_NEED_TRUNCATE, do nothing */
2210 
2211 next:
2212 		iput(inode);
2213 
2214 		inode = iter;
2215 	}
2216 
2217 	return ret;
2218 }
2219 
2220 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2221 {
2222 	/* This check is good because ocfs2 will wait on our recovery
2223 	 * thread before changing it to something other than MOUNTED
2224 	 * or DISABLED. */
2225 	wait_event(osb->osb_mount_event,
2226 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2227 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2228 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2229 
2230 	/* If there's an error on mount, then we may never get to the
2231 	 * MOUNTED flag, but this is set right before
2232 	 * dismount_volume() so we can trust it. */
2233 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2234 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2235 		mlog(0, "mount error, exiting!\n");
2236 		return -EBUSY;
2237 	}
2238 
2239 	return 0;
2240 }
2241 
2242 static int ocfs2_commit_thread(void *arg)
2243 {
2244 	int status;
2245 	struct ocfs2_super *osb = arg;
2246 	struct ocfs2_journal *journal = osb->journal;
2247 
2248 	/* we can trust j_num_trans here because _should_stop() is only set in
2249 	 * shutdown and nobody other than ourselves should be able to start
2250 	 * transactions.  committing on shutdown might take a few iterations
2251 	 * as final transactions put deleted inodes on the list */
2252 	while (!(kthread_should_stop() &&
2253 		 atomic_read(&journal->j_num_trans) == 0)) {
2254 
2255 		wait_event_interruptible(osb->checkpoint_event,
2256 					 atomic_read(&journal->j_num_trans)
2257 					 || kthread_should_stop());
2258 
2259 		status = ocfs2_commit_cache(osb);
2260 		if (status < 0) {
2261 			static unsigned long abort_warn_time;
2262 
2263 			/* Warn about this once per minute */
2264 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2265 				mlog(ML_ERROR, "status = %d, journal is "
2266 						"already aborted.\n", status);
2267 			/*
2268 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2269 			 * non-zero value.  Sleep here to avoid a busy-wait
2270 			 * loop.
2271 			 */
2272 			msleep_interruptible(1000);
2273 		}
2274 
2275 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2276 			mlog(ML_KTHREAD,
2277 			     "commit_thread: %u transactions pending on "
2278 			     "shutdown\n",
2279 			     atomic_read(&journal->j_num_trans));
2280 		}
2281 	}
2282 
2283 	return 0;
2284 }
2285 
2286 /* Reads all the journal inodes without taking any cluster locks. Used
2287  * for hard readonly access to determine whether any journal requires
2288  * recovery. Also used to refresh the recovery generation numbers after
2289  * a journal has been recovered by another node.
2290  */
2291 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2292 {
2293 	int ret = 0;
2294 	unsigned int slot;
2295 	struct buffer_head *di_bh = NULL;
2296 	struct ocfs2_dinode *di;
2297 	int journal_dirty = 0;
2298 
2299 	for(slot = 0; slot < osb->max_slots; slot++) {
2300 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2301 		if (ret) {
2302 			mlog_errno(ret);
2303 			goto out;
2304 		}
2305 
2306 		di = (struct ocfs2_dinode *) di_bh->b_data;
2307 
2308 		osb->slot_recovery_generations[slot] =
2309 					ocfs2_get_recovery_generation(di);
2310 
2311 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2312 		    OCFS2_JOURNAL_DIRTY_FL)
2313 			journal_dirty = 1;
2314 
2315 		brelse(di_bh);
2316 		di_bh = NULL;
2317 	}
2318 
2319 out:
2320 	if (journal_dirty)
2321 		ret = -EROFS;
2322 	return ret;
2323 }
2324